[NSFC]重要纳米材料的生物效应机制与安全性评价研究
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.建立针对食品相关5种重要纳米颗粒的释放与性质检测方法;建立这类复杂成分纳米产品中纳米颗粒生物效应研究的实验方法学;
4.综合上述成果,从10-15种复杂因素中力争筛选出3-5种决定产品中纳米颗粒的毒理学效应的关键因素;阐明它们影响细胞或生物分子的基本过程;在此基础上,提出1种适合纳米生物效应的高通量筛选方法(包括细胞模型、检测参数、检测方法,以及集成的技术体系等);进一步结合理论模拟和上述研究结果,建立纳米材料生物效应的定量构效关系,发展相关的分析预测模型;探索纳米技术相关的社会伦理学现象,为提高公众的接受度和理解度出谋划策。
项目名称:
重要纳米材料的生物效应机制与安全性评价研究
首席科学家:
XxxLeabharlann Baidu
起止年限:
2011.1至2015.8
依托部门:
中国科学院
二、预期目标
总体目标
本项目将围绕与工作场所和纳米产品相关,已经规模化生产或使用的重要纳米材料的生物效应与安全性展开研究,在学术上取得重大突破的同时,抓住机遇,提升我国纳米产业所面临的国际竞争力,为我国纳米科技可持续发展的重大国家需求,提供保障。
5.取得一批具有国际影响的原创性成果,在国际重要学术刊物包括Science或Nature系列期刊上发表高质量论文100篇以上,申请国际国内专利10项以上。向国家提出经实验验证过的纳米安全性评价方法1种,纳米安全性评价程序草案1部;向国家提出1-2种重要纳米材料的职业接触限值。培养一批有国际影响力的中、青年学术带头人,培养研究生40名,博士后10-15名。
1.揭示工作场所中重要纳米材料(TiO2、ZnO、SiO2、Al2O3、富勒烯、碳纳米管的健康效应;建立工作场所吸入纳米颗粒特性与生物效应和安全性的关系;阐明释放空气中的纳米颗粒吸附2-3种重金属和1-2种重要有机污染物的复合-协同效应对生物安全性的影响;阐明工作场所纳米颗粒健康效应的分子机制;
2.科学客观阐述食品相关5种重要纳米颗粒(如Ag、TiO2、ZnO、SiO2、Al2O3)的生物效应,以及与2-3种添加剂的复合-协同效应;阐述这些纳米颗粒对胃肠道、皮肤的作用规律;发现这些纳米颗粒生物学效应的分子机制;
研究方案
考虑同时兼顾科学探索和国家需求,我们的研究方案将从纳米材料和相关产品的整个生命周期的四个阶段入手:一是纳米材料的生产,二是含纳米材料的产品的生产,三是消费者使用纳米产品,四是废弃处理(图1)。
图1. 纳米材料与相关产品的生命周期
前期的研究,主要集中在第一阶段生产的纳米材料的生物效应与安全性。本项目重点针对第二和第三阶段所释放的纳米颗粒展开研究。欧洲不断出现的反对纳米技术的大规模游行(见“研究背景”中的介绍和文献),其实是因为人们不清楚纳米材料毒理学效应和纳米产品的安全性所导致的误解。建立科学客观评价纳米产品安全性的方法,是扭转目前一提到纳米产品就认为不安全的误区的唯一办法。因此,直接选择与消费产品密切相关的阶段进行研究,尽管难度大,但是具有紧迫性,一方面它对保障纳米科技的顺利发展至关重要,另一方面,针对这个阶段的科学研究也接近空白。
因此,本项目的研究思路将与实际应用紧密结合起来,从生物整体、组织器官,重点是生物分子,逐层选择,逐层深入,综合考虑各种相关成分的协同效应,系统地揭示纳米尺度下物质的毒理学效应的重要机制,阐明纳米尺度颗粒与生物体系相互作用的过程;建立纳米产品与生产现场中的纳米颗粒的生物效应、与纳米特性、以及与环境因素之间的相关性;建立产品中纳米颗粒的毒理学分析、测试方法和评估流程。
在应用上:筛选出能够用于评价纳米材料安全性的生物学或毒理学的指标;提出我国自主知识产权的与工作场所和消费产品相关的纳米材料安全性评价方法和评估程序;向国家提出相关纳米材料的职业接触限值OELs;为国家建立相应的安全评价体系提供科学依据,提高我国纳米产业的国际竞争力,支撑国家纳米科技可持续发展。
五年预期目标
三、研究方案
学术思路
已有的纳米毒理学研究结果存在三个突出的问题,发现了一系列复杂的毒理学现象,但是机制不清;研究在大剂量,急性暴露下引起的毒性反应,虽然可用于“突发事故”的安全性评估,但对纳米材料含量低的纳米产品并不适用;缺乏实际工作现场的研究,导致无法对生产场所的安全评价做出正确的结论。因此,本项目的基本学术思路:(1)从观察现象转移到揭示机制,在细胞和分子水平上,系统揭示纳米生物效应尤其是纳米毒理学过程的分子机制;(2)从单一组分纳米材料研究发展到研究复杂成分的纳米产品。直接研究消费产品如食品等中的纳米颗粒,才能建立科学客观评价方法,扭转目前认为纳米产品不安全的误区;(3)从实验室模拟研究深入到工作现场研究。由于有前期实验室模拟研究成果的积累,使针对更为复杂的现场研究成为可能(对国家建立安全性评估体系而言,现场研究结果比实验室模拟结果更为真实可靠;(4)建立纳米毒理学效应快速筛选方法学至关重要,传统材料一般3-5个因素就可以决定其毒理学行为。然而由于纳米特性,纳米材料通常需要研究10-15个不同因素。因此,探索高通量筛选方法,快速筛选出决定纳米材料或产品安全性的关键因素,才能实际指导纳米产品和纳米技术的研发。
根据上述的整体设置和布局,结合拟研究的关键科学问题,我们设计了如图2 A所示的总体研究方案。围绕纳米材料在生物体内的过程与行为,阐明纳米材料对生物作用的分子机理及安全性这个中心目标。
我们首先开展工作场所纳米颗粒的研究,包括释放,职业暴露与安全性等(由课题1分工承担):研究纳米材料生产过程中释放的纳米颗粒在空气中的行为,尤其是团聚和表面吸附行为;建立工作场所纳米颗粒的采集方法和表征方法;选择并确立适合研究工作场所纳米颗粒经呼吸暴露的动物模型;研究低剂量、长期暴露纳米颗粒与呼吸系统的相互作用,以及与心血管系统的相互作用,发现相关的生物安全性指标。
在科学上:重点揭示:生产车间纳米颗粒的释放与团聚行为,工人暴露限量以及健康效应,食品纳米颗粒进入胃肠道后的行为和命运;在细胞、分子水平上揭示这些纳米材料与呼吸系统、心血管系统、胃肠道以及皮肤相互作用机理;力争率先揭示影响工作场所和消费品中纳米颗粒生物安全性的关键因素和共性规律;揭示纳米颗粒与产品添加剂的复合-协同效应关系;获得具有重大国际影响力的研究成果。培养一批能够进行原创性研究的高水平人才。
4.综合上述成果,从10-15种复杂因素中力争筛选出3-5种决定产品中纳米颗粒的毒理学效应的关键因素;阐明它们影响细胞或生物分子的基本过程;在此基础上,提出1种适合纳米生物效应的高通量筛选方法(包括细胞模型、检测参数、检测方法,以及集成的技术体系等);进一步结合理论模拟和上述研究结果,建立纳米材料生物效应的定量构效关系,发展相关的分析预测模型;探索纳米技术相关的社会伦理学现象,为提高公众的接受度和理解度出谋划策。
项目名称:
重要纳米材料的生物效应机制与安全性评价研究
首席科学家:
XxxLeabharlann Baidu
起止年限:
2011.1至2015.8
依托部门:
中国科学院
二、预期目标
总体目标
本项目将围绕与工作场所和纳米产品相关,已经规模化生产或使用的重要纳米材料的生物效应与安全性展开研究,在学术上取得重大突破的同时,抓住机遇,提升我国纳米产业所面临的国际竞争力,为我国纳米科技可持续发展的重大国家需求,提供保障。
5.取得一批具有国际影响的原创性成果,在国际重要学术刊物包括Science或Nature系列期刊上发表高质量论文100篇以上,申请国际国内专利10项以上。向国家提出经实验验证过的纳米安全性评价方法1种,纳米安全性评价程序草案1部;向国家提出1-2种重要纳米材料的职业接触限值。培养一批有国际影响力的中、青年学术带头人,培养研究生40名,博士后10-15名。
1.揭示工作场所中重要纳米材料(TiO2、ZnO、SiO2、Al2O3、富勒烯、碳纳米管的健康效应;建立工作场所吸入纳米颗粒特性与生物效应和安全性的关系;阐明释放空气中的纳米颗粒吸附2-3种重金属和1-2种重要有机污染物的复合-协同效应对生物安全性的影响;阐明工作场所纳米颗粒健康效应的分子机制;
2.科学客观阐述食品相关5种重要纳米颗粒(如Ag、TiO2、ZnO、SiO2、Al2O3)的生物效应,以及与2-3种添加剂的复合-协同效应;阐述这些纳米颗粒对胃肠道、皮肤的作用规律;发现这些纳米颗粒生物学效应的分子机制;
研究方案
考虑同时兼顾科学探索和国家需求,我们的研究方案将从纳米材料和相关产品的整个生命周期的四个阶段入手:一是纳米材料的生产,二是含纳米材料的产品的生产,三是消费者使用纳米产品,四是废弃处理(图1)。
图1. 纳米材料与相关产品的生命周期
前期的研究,主要集中在第一阶段生产的纳米材料的生物效应与安全性。本项目重点针对第二和第三阶段所释放的纳米颗粒展开研究。欧洲不断出现的反对纳米技术的大规模游行(见“研究背景”中的介绍和文献),其实是因为人们不清楚纳米材料毒理学效应和纳米产品的安全性所导致的误解。建立科学客观评价纳米产品安全性的方法,是扭转目前一提到纳米产品就认为不安全的误区的唯一办法。因此,直接选择与消费产品密切相关的阶段进行研究,尽管难度大,但是具有紧迫性,一方面它对保障纳米科技的顺利发展至关重要,另一方面,针对这个阶段的科学研究也接近空白。
因此,本项目的研究思路将与实际应用紧密结合起来,从生物整体、组织器官,重点是生物分子,逐层选择,逐层深入,综合考虑各种相关成分的协同效应,系统地揭示纳米尺度下物质的毒理学效应的重要机制,阐明纳米尺度颗粒与生物体系相互作用的过程;建立纳米产品与生产现场中的纳米颗粒的生物效应、与纳米特性、以及与环境因素之间的相关性;建立产品中纳米颗粒的毒理学分析、测试方法和评估流程。
在应用上:筛选出能够用于评价纳米材料安全性的生物学或毒理学的指标;提出我国自主知识产权的与工作场所和消费产品相关的纳米材料安全性评价方法和评估程序;向国家提出相关纳米材料的职业接触限值OELs;为国家建立相应的安全评价体系提供科学依据,提高我国纳米产业的国际竞争力,支撑国家纳米科技可持续发展。
五年预期目标
三、研究方案
学术思路
已有的纳米毒理学研究结果存在三个突出的问题,发现了一系列复杂的毒理学现象,但是机制不清;研究在大剂量,急性暴露下引起的毒性反应,虽然可用于“突发事故”的安全性评估,但对纳米材料含量低的纳米产品并不适用;缺乏实际工作现场的研究,导致无法对生产场所的安全评价做出正确的结论。因此,本项目的基本学术思路:(1)从观察现象转移到揭示机制,在细胞和分子水平上,系统揭示纳米生物效应尤其是纳米毒理学过程的分子机制;(2)从单一组分纳米材料研究发展到研究复杂成分的纳米产品。直接研究消费产品如食品等中的纳米颗粒,才能建立科学客观评价方法,扭转目前认为纳米产品不安全的误区;(3)从实验室模拟研究深入到工作现场研究。由于有前期实验室模拟研究成果的积累,使针对更为复杂的现场研究成为可能(对国家建立安全性评估体系而言,现场研究结果比实验室模拟结果更为真实可靠;(4)建立纳米毒理学效应快速筛选方法学至关重要,传统材料一般3-5个因素就可以决定其毒理学行为。然而由于纳米特性,纳米材料通常需要研究10-15个不同因素。因此,探索高通量筛选方法,快速筛选出决定纳米材料或产品安全性的关键因素,才能实际指导纳米产品和纳米技术的研发。
根据上述的整体设置和布局,结合拟研究的关键科学问题,我们设计了如图2 A所示的总体研究方案。围绕纳米材料在生物体内的过程与行为,阐明纳米材料对生物作用的分子机理及安全性这个中心目标。
我们首先开展工作场所纳米颗粒的研究,包括释放,职业暴露与安全性等(由课题1分工承担):研究纳米材料生产过程中释放的纳米颗粒在空气中的行为,尤其是团聚和表面吸附行为;建立工作场所纳米颗粒的采集方法和表征方法;选择并确立适合研究工作场所纳米颗粒经呼吸暴露的动物模型;研究低剂量、长期暴露纳米颗粒与呼吸系统的相互作用,以及与心血管系统的相互作用,发现相关的生物安全性指标。
在科学上:重点揭示:生产车间纳米颗粒的释放与团聚行为,工人暴露限量以及健康效应,食品纳米颗粒进入胃肠道后的行为和命运;在细胞、分子水平上揭示这些纳米材料与呼吸系统、心血管系统、胃肠道以及皮肤相互作用机理;力争率先揭示影响工作场所和消费品中纳米颗粒生物安全性的关键因素和共性规律;揭示纳米颗粒与产品添加剂的复合-协同效应关系;获得具有重大国际影响力的研究成果。培养一批能够进行原创性研究的高水平人才。