第三章 三角恒等变换.
第三章 3.2 简单的三角恒等变换
§3.2 简单的三角恒等变换学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式思考 半角公式对任意角都适用吗? 答案 不是,要使得式子有意义的角才适用. 知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=ba1.若α≠k π,k ∈Z ,则tan α2=sin α1+cos α=1-cos αsin α恒成立.( √ )2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ所在的象限由a ,b 的符号决定,φ与点(a ,b )同象限.( √ )3.sin x +3cos x =2sin ⎝⎛⎭⎫x +π6.( × ) 提示 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x =2sin ⎝⎛⎭⎫x +π3.题型一 应用半角公式求值例1 已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.∵5π4<θ2<3π2,∴cos θ2=-1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思感悟 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正弦、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算. (4)下结论:结合(2)求值. 跟踪训练1 已知cos α=33,α为第四象限角,则tan α2的值为________. 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案2-62解析 方法一 ⎝⎛⎭⎪⎫用tan α2=±1-cos α1+cos α来处理因为α为第四象限角,所以α2是第二或第四象限角.所以tan α2<0.所以tan α2=-1-cos α1+cos α=-1-331+33 =-2-3=-128-4 3 =-12(6-2)2=2-62.方法二 ⎝⎛⎭⎫用tan α2=1-cos αsin α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=1-cos αsin α=1-33-63=2-62.方法三 ⎝⎛⎭⎫用tan α2=sin α1+cos α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=sin α1+cos α=-631+33=-63+3=2-62.题型二 三角函数式的化简 例2 化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 解 2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=cos 2α2cos ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4+α·sin 2⎝⎛⎭⎫π4+α =cos 2αsin ⎝⎛⎭⎫π2+2α=cos 2αcos 2α=1. 反思感悟 三角函数式化简的要求、思路和方法(1)化简的要求:①能求出值的应求出值.②尽量使三角函数种数最少.③尽量使项数最少.④尽量使分母不含三角函数.⑤尽量使被开方数不含三角函数.(2)化简的思路:对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用.另外,还可以用切化弦、变量代换、角度归一等方法.跟踪训练2 化简:(1-sin α-cos α)⎝⎛⎭⎫sin α2+cos α22-2cos α(-π<α<0).考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 原式=⎝⎛⎭⎫2sin 2α2-2sin α2cos α2⎝⎛⎭⎫sin α2+cos α22×2sin2α2=2sin α2⎝⎛⎭⎫sin α2-cos α2⎝⎛⎭⎫sin α2+cos α22⎪⎪⎪⎪sin α2=sin α2⎝⎛⎭⎫sin 2α2-cos 2α2⎪⎪⎪⎪sin α2=-sin α2cos α⎪⎪⎪⎪sin α2.因为-π<α<0,所以-π2<α2<0,所以sin α2<0,所以原式=-sin α2cos α-sinα2=cos α.题型三 三角函数式的证明例3 求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ.考点 三角恒等式的证明 题点 三角恒等式的证明 证明 要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ.∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ,∴左边=右边, ∴原式得证.反思感悟 证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练3 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .考点 三角恒等式的证明 题点 三角恒等式的证明 证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2 x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x2sin 2 x 2=cos x 2sin x 2=2cos 2x 22sin x 2cosx 2=1+cos xsin x=右边.所以原等式成立. 题型四 辅助角公式的应用例4 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1,有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z . 反思感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)的正弦、余弦、正切公式、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,以便于讨论函数性质. 跟踪训练4 已知函数f (x )=cos ⎝⎛⎭⎫π3+x ·cos ⎝⎛⎭⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)f (x )=⎝⎛⎭⎫12cos x -32sin x ·⎝⎛⎭⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π.(2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎫2x +π4, 当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )有最大值22.此时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π-π8,k ∈Z .利用半角公式化简求值典例 已知等腰三角形的顶角的余弦值为725,则它的底角的余弦值为( )A.34B.35C.12D.45考点 简单的三角恒等变换的综合应用题点 三角恒等变换与三角形的综合应用 答案 B解析 设等腰三角形的顶角为α,底角为β,则cos α=725.又β=π2-α2,所以cos β=cos ⎝⎛⎭⎫π2-α2=sin α2=1-7252=35,故选B. [素养评析] 从实际问题提炼出等腰三角形底角、顶角间的关系,利用半角公式进行恒等变换化简,进而求值,这正是数学核心素养数学抽象的具体体现.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±33考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 由题意知α2∈⎝⎛⎭⎫0,π2,∴cos α2>0,cos α2=1+cos α2=63. 2.已知sin θ=-35,3π<θ<72π,则tan θ2的值为( )A .3B .-3 C.13 D .-13考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 ∵3π<θ<7π2,sin θ=-35,∴cos θ=-45,tan θ2=sin θ1+cos θ=-3.3.已知2sin α=1+cos α,则tan α2等于( )A.12B.12或不存在 C .2D .2或不存在考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值答案 B解析 2sin α=1+cos α,即4sin α2cos α2=2cos 2α2,当cos α2=0时,tan α2不存在,当cos α2≠0时,tan α2=12.4.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果为( )A .tan αB .tan 2αC .1D .2 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.5.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3考点 利用简单的三角恒等变换化简求值 题点 利用辅助角公式化简求值 答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ) =2sin ⎝⎛⎭⎫2x +π3+θ. 当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x 是奇函数.6.已知在△ABC 中,sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,求证:sin A +sin C =2sin B .考点 三角恒等式的证明 题点 三角恒等式的证明证明 由sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,得sin A ·1+cos C 2+sin C ·1+cos A 2=32sin B ,即sin A +sin C +sin A ·cos C +sin C ·cos A =3sin B , ∴sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C +sin(π-B )=3sin B , 即sin A +sin C +sin B =3sin B , ∴sin A +sin C =2sin B .1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式. 2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ满足: ①φ与点(a ,b )同象限; ②tan φ=b a ⎝ ⎛⎭⎪⎫或sin φ=b a 2+b 2,cos φ=a a 2+b 2.3.研究形如f (x )=a sin x +b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a ,b 应熟练掌握, 例如sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4; sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.一、选择题1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π, sin α2=1-cos α2=105. 2.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2等于( )A .-55 B.55 C.35 D .-35考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 因为α是第二象限角,且sin α2<cos α2,所以α2为第三象限角,所以cos α2<0.因为tan α=-43,所以cos α=-35,所以cos α2=-1+cos α2=-55. 3.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <bD .b <c <a考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用 答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°cos 13°=sin 26°,c =sin 25°, ∵当0°≤x ≤90°时,y =sin x 是单调递增的, ∴a <c <b .4.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于( )A .-12 B.12C .2D .-2考点 利用简单的三角恒等变换化简求值 题点 利用弦化切对齐次分式化简求值 答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35.∴1+tan α21-tan α2=1+sinα2cos α21-sin α2cosα2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45=-12.故选A.5.sin x cos x +sin 2x 可化为( ) A.22sin ⎝⎛⎭⎫2x -π4+12 B.2sin ⎝⎛⎭⎫2x +π4-12 C .sin ⎝⎛⎭⎫2x -π4+12 D .2sin ⎝⎛⎭⎫2x +3π4+1 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 A解析 y =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22⎝⎛⎭⎫22sin 2x -22cos 2x +12=22sin ⎝⎛⎭⎫2x -π4+12.故选A. 6.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1,则函数f (x )的单调递增区间为( ) A.⎣⎡⎦⎤2k π-π3,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ) C.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+π3(k ∈Z ) 考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 因为f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6,所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ),故选C. 7.已知sin θ=m -3m +5,cos θ=4-2m m +5⎝⎛⎭⎫π2<θ<π,则tan θ2等于( ) A .-13B .5C .-5或13D .-13或5 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换化简求值答案 B解析 由sin 2θ+cos 2θ=1,得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1, 解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π. ∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5. 二、填空题8.已知α∈⎝⎛⎭⎫0,π2,sin 2α=12,则sin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 32解析 因为1-2sin 2⎝⎛⎭⎫α+π4=cos ⎝⎛⎭⎫2α+π2=-sin 2α, 所以sin 2⎝⎛⎭⎫α+π4=34, 因为α∈⎝⎛⎭⎫0,π2, 所以α+π4∈⎝⎛⎭⎫π4,3π4, 所以sin ⎝⎛⎭⎫α+π4=32. 9.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 tan x 2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x 1+cos x =sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x 1+cos x=sin x 1+cos x=tan x 2. 10.已知cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 65解析 因为cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,所以sin ⎝⎛⎭⎫α-π4=-35,sin ⎝⎛⎭⎫π4-α=35. 所以cos 2αsin ⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫2α+π2sin ⎝⎛⎭⎫α+π4=2cos ⎝⎛⎭⎫α+π4 =2sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=2sin ⎝⎛⎭⎫π4-α=65. 11.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0,即2sin 2α-cos 2α≤0,所以4sin 2α≤1,所以-12≤sin α≤12. 因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π. 三、解答题12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 考点 三角恒等式的证明题点 三角恒等式的证明证明 ∵左边=tan 3x 2-tan x 2=sin3x 2cos 3x 2-sin x 2cos x 2 =sin3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝⎛⎭⎫3x 2-x 2cos 3x 2cos x 2=sin x cos 3x 2cos x 2=2sin x cos ⎝⎛⎭⎫3x 2+x 2+cos ⎝⎛⎭⎫3x 2-x 2 =2sin x cos x +cos 2x =右边. ∴原等式得证.13.(2018·浙江宁波高三期末)已知函数f (x )=2sin x ·cos x +1-2sin 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值与最小值.考点 简单的三角恒等变换的应用题点 辅助角公式与三角函数的综合应用解 (1)因为f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, 所以f (x )的最小正周期为π.(2)因为-π3≤x ≤π4,所以-5π12≤2x +π4≤3π4. 当2x +π4=π2,即x =π8时,f (x )取得最大值2; 当2x +π4=-5π12,即x =-π3时, f (x )min =f ⎝⎛⎭⎫-π3=sin ⎝⎛⎭⎫-2π3+cos ⎝⎛⎭⎫-2π3=-3+12, 即f (x )的最小值为-3+12.14.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=2sin x cos x +1;②f (x )=2sin ⎝⎛⎭⎫x +π4; ③f (x )=sin x +3cos x ;④f (x )=2sin 2x +1.其中是“同簇函数”的有( )A .①②B .①④C .②③D .③④考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 ①式化简后为f (x )=sin 2x +1,③式化简后为f (x )=2sin ⎝⎛⎭⎫x +π3,①④中振幅不同,平移后不能重合.②③振幅、周期相同,平移后可以重合.15.证明:sin 10°·sin 30°·sin 50°·sin 70°=116. 考点 三角恒等式的证明题点 三角恒等式的证明证明 原式=sin 10°·sin 30°·sin 50°·sin 70°=12cos 20°·cos 40°·cos 80°=2sin 20°·cos 20°·cos 40°·cos 80°4sin 20°=sin 40°·cos 40°·cos 80°4sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116=右边,所以原等式得证.。
三角恒等变换
2, π 2cos4=-1, 2,最小值为-
3π f 4 =
3π π 2sin 2 -4=-
所以函数 1.
π 3π f(x)在区间8, 4 上的最大值为
【考情分析】
两角和与差的三角函数公式及倍角公式一直是高考数学的 热点内容之一,可对其直接考查,主要是作为工具在有关三角 函数的解答题中进行考查,各种题型均可能出现,难度不大, 分值4~6分.
π α α 2 cos2 . α,再升幂或化为sin2± 1± cos2±
(4)asin α + bcos α→ 辅 助 角 公 式 asin α + bcos α = b a +b · sin(α + φ) , 其 中 tan φ = a 或 asin α + b cos α =
2
升幂:1+cos 2α=2cos2 α, 1-cos 2α=2sin2 α.
(4) 角的变换.角的变换沟通了已知角与未知角之间的联 系,使公式顺利运用,解题过程被简化.常见的变换有: α=(α+β)-β, 1 α=β-(β-α),α=2[(α+β)+(α-β)] , 1 α=2[(α+β)-(β-α)] , α+β=(2α+β)-α 等. (5)公式的逆用和变用.
sin 47° -sin 17° cos 30° 6.(2013· 重庆高考) =( cos 17° 3 A.- 2 1 C.2 1 B.-2 3 D. 2
)
sin 47° -sin 17° cos 30° 解析: cos 17° sin17° +30° -sin 17° cos 30° = cos 17° sin 17° cos 30° +cos 17°sin 30° -sin 17°cos 30° = cos 17° 1 =sin 30° =2,选 C. 答案:C
高一数学人教A版必修4课件:第三章 三角恒等变换
当 t=12时,ymax=54;
当 t=- 2时,ymin=- 2-1.
∴函数的值域为-
2-1,54.
理网络·明结构
跟踪训练2 求函数f(x)=sin x+cos x+sin x·cos x,x∈R的最值及
取到最值时x的值.
解 设sin x+cos x=t,
则 t=sin x+cos x=
=右边. 2x
∴tan
32x-tan
2x=cos
2sin x x+cos
. 2x
理网络·明结构
跟踪训练 3 已知 cosπ4+x=35,1172π<x<74π,求sin12-x+ta2nsxin2x的值.
解
sin
2x+2sin2x sin =
2x+2sinco2xscxos
x
1-tan x
1+tan x
理网络·明结构
例 1 已知 α、β 为锐角,cos α=45,tan(α-β)=-13,求 cos β 的值. 解 ∵α 是锐角,cos α=45,∴sin α=35,tan α=34. ∴tan β=tan[α-(α-β)]=1t+antαan-αttaannαα--ββ=193.
∵β 是锐角,故 cos β=95010.
理网络·明结构
例2 求函数y=sin x+sin 2x-cos x(x∈R)的值域. 解 令sin x-cos x=t, 则由 t= 2sinx-π4知 t∈[- 2, 2], 又sin 2x=1-(sin x-cos x)2=1-t2. ∴y=(sin x-cos x)+sin 2x=t+1-t2 =-t-122+54.
脑会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常宝贵的,不要全部用来玩手机哦~
第三章 三角恒等变换
第三章 三角恒等变换§3.1 两角和与差的正弦、余弦和正切公式一、课标要求:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用. 二、编写意图与特色本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用. 三、教学重点与难点1. 重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2. 难点:两角差的余弦公式的探索与证明.3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等. 三、学法与教学用具 1. 学法:启发式教学 2. 教学用具:多媒体 四、教学设想:(一)导入:我们在初中时就知道 cos 452=,cos30= ,由此我们能否得到()cos15cos 4530?=-= 大家可以猜想,是不是等于cos 45cos30- 呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果? 展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处. 思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出()()()()cos cos cos cos sin sin cos cos sin sin αβαβαβαβαβαβ+=--=-+-=-⎡⎤⎣⎦(三)例题讲解例1、利用和、差角余弦公式求cos75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()1cos75cos 4530cos 45cos30sin 45sin 3022224=+=-=-=()12c o s 15c o s 4530c o s 45c o s 30s i n 4530222=-=+=+⨯点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=- ,要学会灵活运用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活运用. (五)作业:§3.1.2 两角和与差的正弦、余弦、正切公式一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用. 二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+.这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式.()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+.()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-.通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-.注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.(二)例题讲解例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.解:因为3sin ,5αα=-是第四象限角,得4cos 5α===,3sin 35tan 4cos 45ααα-===- ,于是有43sin sin cos cos sin 44455πππααα⎛⎫⎛⎫-=-=-=⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 44455πππααα⎛⎫⎛⎫+=-=-= ⎪ ⎪⎝⎭⎝⎭两结果一样,我们能否用第一章知识证明?3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭例2、利用和(差)角公式计算下列各式的值:(1)、si n 72c o s 42c o s 72s i n 42-;(2)、co s 20c o s 70s i n 20s i n 70-;(3)、1tan151tan15+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.(1)、()1s i n 72c o s 42c o s 72s i n 42s i n7242s i n 302-=-==; (2)、()co s 20c o s 70s i n 20s i n 70c o s 2070c o s 900-=+==;(3)、()1t a n 15t a n 45t a n 15t a n 4515t a n 6031t a n 151t a n 45t a n 15++==+==--.例3x x解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)(1cos sin 30cos cos30sin 3022x x x x x x x ⎫=-=-=-⎪⎪⎭思考:=我们是构造一个叫使它的正、余弦分别等于12的.小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用. 作业:§3.1.3 二倍角的正弦、余弦和正切公式一、教学目标以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想:(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,()sin sin cos cos sin αβαβαβ+=+;()cos cos cos sin sin αβαβαβ+=-;()tan tan tan 1tan tan αβαβαβ++=-.我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), (二)公式推导:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-;思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈(三)例题讲解 例1、已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值. 解:由,42ππα<<得22παπ<<.又因为5sin 2,13α=12cos 213α===-.于是512120sin 42sin 2cos 221313169ααα⎛⎫==⨯⨯-=-⎪⎝⎭; 225119cos 412sin 21213169αα⎛⎫=-=-⨯= ⎪⎝⎭;120sin 4120169tan 4119cos 4119169ααα-===-. 例2、已知1tan 2,3α=求tan α的值. 解:22tan 1tan 21tan 3ααα==-,由此得2tan 6tan 10αα+-=解得tan 2α=-tan 2α=-(四)小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用. (五)作业:3.2 简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力. 五、学法与教学用具 学法:讲授式教学 六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容. 例1、试以cos α表示222sin,cos ,tan 222ααα.解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题.因为2cos 12sin 2αα=-,可以得到21cos sin22αα-=; 因为2cos 2cos12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2、求证: (1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sincos22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-.两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sin cos22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想?例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式. 例3、求函数sin y x x =+的周期,最大值和最小值.解:sin y x x =+这种形式我们在前面见过,1sin 2sin cos 2sin 223y x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:《三角恒等变换》复习课(2个课时)一、教学目标进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:二、知识与方法:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2π±β代替β、α=β等换元法可以推导出其它公式。
高中数学第三章三角恒等变换3
3.三角恒等变换知识框架图
简单三角恒等变换
31/32
不要对一切人都以不信任眼光对待,但要慎
重而坚定。
——德谟克里特
32/32
所以周期T = 2π,最大值为2,最小值为- 2.
9/32
经过三角恒等变换, 我们把形如 y a sin x函 b数cos x
转化为形如
y 函A数sin,(从x而使)问题得到简化.
10/32
【变式练习】
已知函数 f(x)=2sin2ωx+2 3sinωxsin(π2-ωx)(ω>0)的 最小正周期为 π. (1)求 ω 的值; (2)求函数 f(x)在区间[0,23π]上的值域.
1 A.2
2 B. 2
C.2
3 D. 2
解析:
3-sin70° 2-cos210°
=
3-cos20° 2-cos210°
=
3-(22-cocso2s1201° 0°-1)=42--2ccooss221100°°=2.
27/32
5、(2014·山东高考)函数 y
3 2
sin
2x
cos2
x
的
最小正周期为 .
32
2
63
66
由0 , 得 2 5 .
36
66
所以当2+ = ,即= 时,
62
6
S最大 =
1 3
3 6
3. 6
因此,当= 时,矩形ABCD的面积最大,最大面积为 3 .
6
6
20/32
【变式练习】
已知半径为1半圆,PQRM是半圆内接矩形,如 图,P点在什么位置时,矩形面积最大,并求最大 面积值.
高中数学 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.1.3 二倍角的正弦、
3.1.3 二倍角的正弦、余弦、正切公式(二)课堂导学三点剖析1.二倍角公式在证明题中的应用【例1】 求证:x x cos 22sin (1+tanx·tan 2x )=tanx. 思路分析:本题的目标是把等式的左端统一成角x 的正切函数.可能用的公式有sin2x=2sinxcosx ,tan 2x =x x x x x x x sin cos 12cos 2sin 22sin 22cos 2sin2-==. 证法1:左端=x x x cos 2cos sin 2(1+xx x x sin cos 1cos sin -•) =sinx (1+xx cos cos 1-) =xx cos sin =tanx=右端. 证法2:左端=x x x x x x x x x x x x x x x cos sin 2tan 2cos cos 2sin cos 2cos sin 2)2tan(2tan tan cos 22sin =••=--• =x x cos sin =tanx=右端. 温馨提示证明恒等式就是要根据所证等式两端的特征(结构、名称、角度等)来选择最佳方法,本题就是抓住左右两端的次数差异作为突破口,使问题得以解决.2.二倍角公式在化简题中的应用【例2】 已知函数f (x )=cos 4x-2sinxcosx-sin 4x.(1)求f (x )的最小正周期;(2)若x∈[0,2π],求f (x )的最大值,最小值. 解:(1)因为f (x )=cos 4x-2sinxcosx-sin 4x=(cos 2x+sin 2x )(cos 2x-sin 2x )-sin2x =cos2x-sin2x=2cos (2x+4π),所以f (x )的最小正周期T=22π=π. (2)因为0≤x≤2π,所以4π≤2x+4π≤π45. 当2x+4π=4π时,cos (2x+4π)取得最大值22; 当2x+4π=π时,cos (2x+4π)取得最小值-1. 所以f (x )在[0,2π]上的最大值为1, 最小值为2-.温馨提示(1)将cos2x-sin2x 变形为sin (4π-2x ),也会有同样的结果; (2)像这类高次三角函数,首先利用倍角公式通过降幂化为y=Asin (ωx+φ)或y=Acos (ωx+φ)(A ,ω,φ均为常数,A >0)的形式,然后再求周期和最值.3.公式的综合、灵活运用【例3】 已知函数f (x )=3-sin 2x+sinxcosx (1)求f (625π)的值; (2)设α∈(0,π),f (2α)=41-23,求sinα的值 解:(1)∵sin 625π=21,cos 625π=23, ∴f(625π)=-3sin 2625π+sin 625πcos 625π=0 (2)f (x )=23cos2x-23+21sin2x ∴f(2α)=23cos α+21sin α-23=41-23, 16sin 2α-4sin α-11=0解得sin α=8531±. ∵α∈(0,π),∴sinα>0故sinα=8531+ 温馨提示要注意公式变形的重要性,不能死记公式,更不能只会正用,同时逆用、变形也要学会只有灵活运用公式,才能灵活解决问题各个击破类题演练1求证:3+cos4α-4cos2α=8sin 4α.证法1:∵左边=2+1+cos4α-4cos2α=2+2cos 22α-4cos2α=2(cos 22α-2cos2α+1)=2(cos2α-1)2=2(-2sin 2α)2=8sin 4α=右边.∴等式成立.证法2:右边=2×4sin 4α=2(1-cos2α)2=2(1-2cos2α+cos 22α)=2-4cos2α+2cos 22α =2-4cos2α+1+cos4α=3+cos4α-4cos2α=左边.∴等式成立.变式提升1 求证:.tan 14cos 4sin 1tan 24cos 4sin 12θθθθθθ-++=-+ 证明:左边=θθθtan 24sin )4cos 1(+- =θθθθθcos sin 22cos 2sin 22sin 22+=θθθθθsin sin cos 2)2cos 2(sin 2+ =2cos 2θ(sin2θ+cos2θ) 右边=θθθ2tan 14sin )4cos 1(-++ =θθθθθθ2222cos sin cos 2cos 2sin 22cos 2•-+ =θθθθθ2cos 2cos )2sin 2(cos 2cos 2•+ =2cos 2θ(sin2θ+cos2θ)∴左边=右边,故等式成立.类题演练2设函数f (x )=sin 2x+3sinxcosx+α, (1)写出函数f (x )的单调递增区间;(2)求f (x )的最小正周期.解:(1)f (x )=2322cos 1+-x sin2x+a =23sin2x-21cos2x+a+21 =sin (2x-6π)+a+21, 2k π-2π≤2x -6π≤2kπ+2π,k∈Z , k π-6π≤x≤kπ+3π,k∈Z , ∴f(x )的单调递增区间是[kπ-6π,kπ+3π],k∈Z (2)T=222πωπ==π, ∴f(x )的最小正周期为π.变式提升2已知函数y=sin2x-2(sinx+cosx )+a 2设t=sinx+cosx ,t 为何值时,函数y 取得最小值;解:∵t=sinx+cosx=2sin (x+4π),-2≤t≤2, ∴t 2=1+2sinxcosx=1+sin2x ,sin2x=t 2-1,∴y=t 2-1-2t+a 2=(t-1)2+a 2-2∵-2≤t≤2,∴当t=1时,函数y 取得最小值a 2-2类题演练3 已知α为第二象限角,且sinα=415,求12cos 2sin )4sin(+++ααπα的值. 解:∵sinα=415,α为第二象限角,∴cosα=-41. ∴sin2α=2sinαcosα=815-. ααπαπαααπα2cos 22sin 4sin cos 4cos sin 12cos 2sin )4sin(++=+++ =151230)41(28152241224152--=-⨯+-⨯-⨯ =.2151)115(2-=--变式提升3函数f (x )=sin 2(x+4π)-sin 2(x-4π)是( ) A.周期为π的偶函数 B.周期为π的奇函数C.周期为2π的偶函数D.周期为2π的奇函数解析:f (x )=2)22cos(12)22cos(1ππ---+-x x =22sin 122sin 1x x --+=sin2x.∴T=22 =π,f(x )为奇函数. 答案:B。
第三章 第六节 简单的三角恒等变换
[题组自测 题组自测] 题组自测 1.化简 .
π 2sin4-x+ π 6cos4 -x.
解: =2 =2 =2
π 2sin4 -x+ 1 π 2 sin -x+ 4 2
π 6cos4 -x 3 π cos4 -x 2
(sin2α+cos2α-1)( + - )(sin2α-cos2α+1) - + ) )( 3.(1)化简: 化简: . 化简 ; sin4α (2) 已 知 tan2θ = - 2 2 , π < 2θ < 2π , 化 简 2cos -sinθ-1 - 2 . π + 2sinθ+4
[归纳领悟] 归纳领悟] 三角函数式的化简要遵循“三看”原则. 三角函数式的化简要遵循“三看”原则. (1)一看“ (1)一看“角”,这是最重要的一环,通过看角之间的差 一看 这是最重要的一环, 别与联系,把角进行合理的拆分,从而正确使用公式; 别与联系,把角进行合理的拆分,从而正确使用公式; (2)二看“函数名称” 看函数名称之间的差异, (2)二看“函数名称”,看函数名称之间的差异,从而确 二看 定使用的公式,常见的有“切化弦” 定使用的公式,常见的有“切化弦”; (3)三看“结构特征” 分析结构特征, (3)三看“结构特征”,分析结构特征,可以帮助我们找 三看 到变形的方向,常见的有“遇到分式要通分” 到变形的方向,常见的有“遇到分式要通分”等.
2α
不要求记忆) 二、积化和差与和差化积公式(不要求记忆 积化和差与和差化积公式 不要求记忆 积化和差公式: 积化和差公式: 1 sinαcosβ= [sin(α+β)+sin(α-β)]; =2 + + - ; 1 cosαsinβ= [sin(α+β)-sin(α-β)]; =2 + - - ; 1 cosαcosβ= [cos(α+β)+cos(α-β)]; =2 + + - ; 1 sinαsinβ=- [cos(α+β)-cos(α-β)]. =-2 + - - .
数学示范教案:第三章三角恒等变换
示范教案本章知识网络教学分析本章三角函数模型是主线,三角变形是关键.三角函数及其三角恒等变形不仅有着广泛的实际应用,而且是进一步学习中学后续内容和高等数学的基础,因而成为高考中对基础知识、基本技能和基本思想方法考查的重要内容之一.本章特点是公式多,但积化和差与和差化积公式不要求记忆.切实掌握三角函数的基本变形思想是复习掌握好本章的关键.三角函数的恒等变形,不仅在三角函数的化简、求值问题中应用,而且在研究第一章三角函数的图象与性质时、在后续内容解三角形中也应用广泛.解决三角函数的恒等变形问题,其关键在掌握基本变换思想,运用三角恒等变形的主要途径-—变角,变函数,变结构,注意公式的灵活应用.三角恒等变形是一种基本技能,从题型上一般表现为对三角式的化简、求值与证明.对所给三角式进行三角恒等变形时,除使用三角公式外,一般还需运用代数式的运算法则或公式.如平方差公式、立方差公式等.对三角公式不仅要掌握其“原形”,更要掌握其“变形”,解题时才能真正达到运用自如,左右逢源的境界.基本变形思想主要是:①化成“三个一”:即化为一个角的一种三角函数的一次方的形式y=Asin(ωx+φ);②化成“两个一”:即化为一个角的一种三角函数的二次型结构,再用配方法求解;③“合二为一”:对于形如asinθ+bcosθ的式子,引入辅助角φ并化成a2+b2 sin(θ+φ)的形式(但在这里不要增加难度,仅限于特殊值、特殊角即可).高考对整个三角问题的考查主要集中在三个方面,一是三角函数的图象与性质,包括:定义域、值域、单调性、奇偶性、周期性、对称性等等;二是三角式的恒等变形,包括:化简、证明、直接求值、条件求值、求最值等;三是三角综合运用.特别是结合下一章的解三角形及与向量的交汇更是高考经久不衰的热点.因此复习中要充分运用数形结合的思想,利用向量的工具性,灵活运用三角函数的图象和性质解题,掌握化简和求值问题的解题规律和途径.学完本章后,前一章平面向量更有了用武之地,它是沟通代数、几何、与三角函数的一种重要工具,三角函数又具有较强的渗透力,切实提高三角函数的综合能力是复习好本章的保证.因此,我们可以通过整合,将三角函数,平面向量结成一个知识板块来复习,并进行三角与向量相融合的综合训练,这样更有利于学生对平面向量、三角函数及三角恒等变形的深刻理解及运用.三维目标1.通过复习全章知识方法,掌握两角和与差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.并能正确地运用上述公式化简三角函数式、求某些角的三角函数值、证明较简单的三角恒等式以及解决一些简单的实际问题.2.掌握简单的三角恒等变形的基本思想方法,并结合向量解决一些基本的综合问题.3.通过三角恒等变换体会数学的逻辑性的特征,进一步理解数学的化归思想、方程思想和代换意识,认识事物之间是相互依存、相互联系的.重点难点教学重点:和角公式、差角公式、倍角公式及其灵活应用.教学难点:和角公式、差角公式、倍角公式在三角恒等变形中的综合运用.课时安排1课时错误!导入新课思路1.(直接导入)在第一章三角函数的基础上,我们一起又探究学习了第三章简单三角恒等变形的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力与运算能力.现在我们一起对本章进行小结与复习,进一步巩固本章所学的知识,请同学们画出本章的知识框图,由此进入复习.思路2.(问题导入)本章学习了几个公式?推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?对三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?通过学生解决这些问题展开全章的复习.推进新课错误!错误!1列出本章所学的公式,理清它们之间的关系,回顾、思考并回答:推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?2三角函数的变形灵活性大、方法多,回顾从前所学,三角变形都有哪些?3如果对三角函数变形题型进行归类,那么回顾从前所学,常见的基本题型有哪些?活动:问题(1),本章的三角恒等变换公式中,余弦的差角公式是其他公式的基础,由它出发,用-β代替β,±β代替β,α=β等换元法就可以推导出其他公式.见下表:教师引导学生用类比、联系、化归的观点来理解这些公式的逻辑关系,认识公式的特点,联想与代数运算的相同与不同之处;三角函数的恒等变形,是运用三角公式,变换三角表达式中的函数、角度和结构,把一个表达式变形成另一个与它等价的表达式.三角恒等变形是代数式恒等变形的推广和发展;进行三角恒等变形,除了要熟练运用代数恒等变形的各种方法,还要抓住三角本身的特点,领会和掌握最基本最常见的变形.教师要引导学生明确三角变换不仅有三角函数式的结构形式变形,而且还有角的变形,以及不同三角函数之间的变形,使学生领悟有关公式在变形中的作用和用法,学会用恰当的数学思想方法指导选择和设计变换思路.并让学生体会到通过三角恒等变形的探究训练,能大大提高他们的推理能力和运算能力.问题(2),教师引导学生回顾总结,在学生探索时适时点拨,常见的变形有:①公式变形,数学公式变形的方法多种多样,揭示数学公式变形的一般规律对深化公式教学会有积极的意义.由于公式中的字母可以代表数、式、函数等有数学意义的式子,因此可以根据需要对公式进行适当的数学处理,或代换,或迭代,或取特殊值等等.如:tanα+tanβ=tan(α+β)(1-tanαtanβ),tanαtanβ=1-错误!,1=tanαtanβ+错误!,1+cos2α=2cos2α,1-cos2α=2sin2α等.②角的变形,角度变形是三角函数恒等变形的首选方法,在进行三角恒等变形时,对角之间关系必须进行认真的观察联想,分析角之间的和、差、倍、分关系.在数值角的三角函数式化简中,要特别注意是否能够产生特殊角;熟悉两角互余、互补的各种形式;或者引入辅助角进行角的变形等.如:α=(α+β)-β;2α=(α+β)+(α-β);错误!-α=错误!-(错误!+α);错误!+α=错误!-(错误!-α)等.还需熟练掌握一些常见的式子:如:sinx±cosx=2sin(x±π4),sinx±错误!cosx=2sin(x±错误!)等.问题(3),教师引导学生回顾总结,适时地点拨学生,常见三角恒等变形的基本题型有求值、化简、证明.对于求值,常见的有给角求值、给值求值、给值求角.①给角求值的关键是正确地分析角之间的关系,准确地选用公式,要注意产生特殊角,同时把非特殊角的三角函数值相约或相消,从而求出三角函数式的值;②给值求值的关键是分析已知式与待求式之间角、函数、结构间差异,有目的地将已知式、待求式的一方或两方加以变形,找出它们之间的联系,最后求出待求式的值;③给值求角的关键是先求出该角的某一三角函数值,其次判断该角对应函数的单调区间,最后求出角.对于化简,有两种常见的形式,①未指明答案的恒等变形,这时应把结果化为最简形式;②根据解题需要将三角函数式化为某种特定的形式,例如一角一函数的形式,以便研究它的各种性质.无论是何种形式的化简,都要切实注意角度变形、函数变形等各种变形.对于证明,它包括无条件的恒等式和有附加条件恒等式的证明.①无条件恒等式的证明,需认真分析等式两边三角函数式的特点,角度、函数、结构的差异,一般由繁的一边往简的一边证,逐步消除差异,最后达到统一.对于较难的题目,可以用分析法帮助思考,或分析法和综合法联用.②有附加条件的恒等式的证明,关键是恰当地利用附加条件,需认真分析条件式和结论式中三角函数之间的联系,从分析过程中发现条件应怎样利用,证明这类恒等式时,还常常用到消元法和基本量方法.讨论结果:(1)~(3)略.错误!思路1例1(1)化简tan2Atan(30°-A)+tan2A·tan(60°-A)+tan(30°-A)tan(60°-A);(2)已知α为锐角,且tanα=错误!,求错误!的值.活动:本例是一个三角函数化简求值问题,属于给出某些角的三角函数式的值,求另外一些三角函数式的值.关键是正确运用三角变换公式及常用思想方法,探索已知式与欲求式之间的差异和联系的途径和方法.教师可以大胆放手,让学生自己独立探究,必要时给予适时的点拨引导.但要让学生明白,从高考角度来看,关于三角函数求值问题是个重要题型、命题热点,一直备受高考的青睐.因为三角函数求值问题能综合考查考生三角变形、代数变形的基本运算能力和灵活运用公式、合理选用公式、准确选择解题方向的思维能力,且题目的答案可以简单明了.并让学生明了解决这类问题时应在认准目标的前提下,从结构式的特点去分析,以寻找到合理、简捷的解题方法,切忌不分青红皂白地盲目运用三角公式.比如在本例的(1)中,首先应想到将倍角化为单角这一基本的转化方法.教师还应点拨学生思考,求三角函数式的值必须明确求值的目标.一般来说,题设中给出的是一个或某几个特定角,即便这些角都不是特殊角,其最终结果也应该是一个具体的实数;题设中给出的是某种或几种参变量关系,其结果既可能是一个具体的实数,也可能是含参变量的某种代数式.如本例的(2)中,目标是“弦”且是“和差角",而条件是“切"且是“单角".在学生探讨向目标转化的过程中,由于视角不同,思考方式不同,学生会有多种解法,教师应鼓励学生一题多解,对新颖解法给予表扬.解:(1)∵tan(90°-2A)=tan[(30°-A)+(60°-A)]=错误!,∴tan(30°-A)+tan(60°-A)=tan(90°-2A)[1-tan(30°-A)tan(60°-A)].∴原式=tan2A[tan(30°-A)+tan(60°-A)]+tan(30°-A)tan(60°-A)=tan2Atan(90°-2A)[1-tan(30°-A)tan(60°-A)]+tan(30°-A)tan(60°-A)=1-tan(30°-A)tan(60°-A)+tan(30°-A)tan(60°-A)=1.(2)原式=错误!=错误!=错误!=错误!。
第三章__三角恒等变换_小结
1 sin 2 (4)sin6α+ cos6α=________________; 4
2
1
1
sin 2
2
3
公式的正用、反用、变形使用:
[sin( ) sin( )]
[cos( ) cos( )]
[cos( ) cos( )]
头 尾 头
1 2
1 2
sin sin
1 2
尾
Hale Waihona Puke 和差化积公式sin sin 2 sin
2
cos
一、知识点回顾 cos( ) cos cos sin sin cos( ) cos cos sin sin
以-β代β C(α+β)
诱导 公式
C(α-β)
诱导 公式
S(α+β)
以β代 -β
S(α-β)
sin( ) sin cos cos sin
tan tan 1 tan tan
一、知识点回顾
cos 2 cos
C 2α T 2α
sin 2 2 cos 1 2 1 2 sin
2 2
以-β代β C(α+β)
诱导 公式
C(α-β)
诱导 公式
T(α+β)
tan 2 2 tan
1 tan
2
T(α-β)
S(α+β)
高中数学 第三章 三角恒等变换 3.1 和角公式 3.1.2 两
3.1.2 两角和与差的正弦21.两角和与差的正弦公式两角和的正弦公式:sin(α+β)=sin αcos β+cos αsin β,(Sα+β)两角差的正弦公式:sin(α-β)=sin αcos β-cos αsin β.(Sα-β)【自主测试1-1】sin 7°cos 37°-cos 7°sin 37°的值是( )A.-12B.12C.32D.-32答案:A【自主测试1-2】sin 105°=________.答案:6+242.旋转变换公式已知点P(x,y),与原点的距离保持不变,逆时针旋转θ角到点P′(x′,y′),则有⎩⎪⎨⎪⎧x′=x cos θ-y sin θ,y′=x sin θ+y cos θ.【自主测试2-1】已知点M(-1,6),与坐标原点保持距离不变,按顺时针旋转90°得到点M′的坐标为________.答案:(6,1)【自主测试2-2】已知向量OBuuu r=(1,3),绕原点按逆时针旋转60°得到向量'OBu u u u r的坐标为________.答案:⎝⎛⎭⎪⎫1-332,3+323.辅助角公式形如a sin x+b cos x(a,b不同时为0)的式子可以化为一个三角函数式.即a sin x+b cos x=a2+b2sin(x+φ),其中cos φ=aa2+b2,sin φ=ba2+b2.【自主测试3-1】函数y=sin x+cos x的最小正周期是( )A.π2B.π C.2π D.4π解析:∵y=sin x+cos x=2⎝⎛⎭⎪⎫22sin x+22cos x=2⎝⎛⎭⎪⎫cosπ4sin x+sinπ4cos x=2sin⎝⎛⎭⎪⎫x+π4,∴最小正周期为T =2π1=2π.答案:C【自主测试3-2】已知3cos x -sin x =-65,则sin ⎝ ⎛⎭⎪⎫π3-x =( ) A .45 B .-45 C .35 D .-35 答案:D1.对两角和与差的正弦公式的正确理解 剖析:(1)公式中的α,β均为任意角. (2)与两角和与差的余弦公式一样,公式对分配律不成立,即sin(α±β)≠sin α±sinβ.(3)和差公式是诱导公式的推广,诱导公式是和差公式的特例.如sin(2π-α)=sin 2πcos α-cos 2πsin α=0×cos α-1×sin α=-sin α,当α或β中有一个角是π2的整数倍时,通常使用诱导公式较为方便. (4)使用任何一个公式都要注意它的逆向、多向变换,还要掌握整体思想等,这是灵活使用公式的前提,特别是三角函数公式.如化简sin(α+β)cos β-cos(α+β)sin β,不要将sin(α+β)和cos(α+β)展开,而是采用整体思想,进行如下变形:sin(α+β)cos β-cos(α+β)sin β=sin[(α+β)-β]=sin α,这也体现了数学中的整体原则.(5)记忆时要与两角和与差的余弦公式区别开来,两角和与差的余弦公式的右端的两部分为同名三角函数的积,连接符号与左边的连接符号相反;两角和与差的正弦公式的右端的两部分为异名三角函数的积,连接符号与左边的连接符号相同.归纳总结两角和与差的正、余弦公式虽然形式、结构不同.但它们的本质是相同的:cos(α+β)cos(α-β)sin(α+β),sin(α-β),所以在理解公式的基础上,只要记住中心公式cos(α+β)的由来及其表达方式就可掌握其他三个公式了.这要作为一种数学思想、一个数学方法来仔细加以体会.2.解读辅助角公式剖析:(1)a sin x +b cos x (a ,b 不同时为0)中的角x 必须为同一个角,否则不成立. (2)通过化单角(x )为复角(x +θ),达到减少函数名称,合二为一的目的.最终化为一个(复)角的一种三角函数,有利于进一步研究相关性质.(3)化简的形式不唯一. 由于选用的辅助角不一样,所以化简的结果也会不相同,这实际上是由化简过程中采用的公式决定的.如f (x )=3sin x +cos x 可以写成f (x )=2sin ⎝⎛⎭⎪⎫x +π6还可以写成f (x )=2cos ⎝⎛⎭⎪⎫x -π3.3.有关三角函数的最值问题的求法剖析:一般地,三角函数的求最值问题可归结为以下几种情况: (1)形如y =A sin(ωx +φ)+B 的函数,利用sin α的值域求最值;(2)形如y =a sin x +bc cos x +d的函数,可通过数形结合法,将y 看成是两点连线的斜率,确定斜率的最值即可;(3)可化为形如y =a (sin x -b )2+c 或y =a (cos x -b )2+c 的函数,利用换元法转化为二次函数在特定区间上的最值问题;(4)求形如f (x )=a sin x +b cos x (ab ≠0)的函数的最值,通常化归为求函数y =A sin(ωx +φ)⎝⎛⎭⎪⎫tan φ=b a 的最值.题型一 利用两角和与差的正弦公式求值【例题1】已知cos φ=45,在下列情况下,分别求sin ⎝ ⎛⎭⎪⎫π3-φ的值. (1)φ∈⎝ ⎛⎭⎪⎫0,π2;(2)φ∈⎝ ⎛⎭⎪⎫3π2,2π. 分析:在已知cos φ=45和φ的取值范围的前提下,要求sin ⎝ ⎛⎭⎪⎫π3-φ,只需把sin φ求出再应用公式即可得出.解:(1)∵cos φ=45,φ∈⎝ ⎛⎭⎪⎫0,π2,∴sin φ=1-cos 2φ=35,∴sin ⎝ ⎛⎭⎪⎫π3-φ=sin π3cos φ-cos π3sin φ=32×45-12×35=43-310. (2)∵cos φ=45,φ∈⎝ ⎛⎭⎪⎫3π2,2π, ∴sin φ=-1-cos 2φ=-35,∴sin ⎝ ⎛⎭⎪⎫π3-φ=sin π3cos φ-cos π3sin φ=32×45-12×⎝ ⎛⎭⎪⎫-35=43+310. 反思在cos φ已知的前提下,sin φ要根据φ的取值范围才能唯一确定.如果φ不能确定,则一定要分情况讨论.题型二 三角函数式的化简【例题2】化简:sin A +2Bsin B-2cos(A +B ).分析:解答本题若用两角和与差的正余弦公式展开,则计算复杂.对题中各角之间的关系进行分析后,我们选定(A +B )和B 作为基本量,则有A +2B =(A +B )+B ,抓住了这些关系后,再恰当地运用公式,问题便不难解决了.解:原式=sin[A +B +B ]-2cos A +B sin Bsin B=sin A +B cos B -cos A +B sin B sin B=sin[A +B -B ]sin B =sin A sin B.反思在做三角函数题时,角度变换是三角恒等变换的首选方法,但具体怎样来变换,我们主要是分析它们之间的关系,以便通过角度变换,减少不同角的个数.这其中,寻找一个或几个基本量是快速定位这类题目解法的关键.题型三 公式在三角形中的应用【例题3】在△ABC 中,若sin A =35,cos B =513,求cos C .分析:借助C =π-A -B 转化,再利用公式求解.解:∵cos B =513,∴B 为锐角,∴sin B =1-cos 2B =1213.∵sin A =35,0<A <π,∴当A 为锐角时,cos A =1-sin 2A =45,此时cos C =cos[π-(A +B )]=-cos(A +B )=sin A sin B -cos A cos B =1665,当A 为钝角时,sin A =35<32,∴A >120°.又∵cos B =513<12,∴B >60°,∴A +B >180°与三角形内角和等于180°矛盾.∴cos C =1665.反思解决与三角形有关的问题时要注意: (1)三角形的内角和等于180°;(2)创设条件使之能运用两角和与两角差的三角函数公式; (3)常用结论:A +B +C =180°,sin(A +B )=sin C ,cos(A +B )=-cos C ,sin A +B 2=cos C2,cos A +B 2=sin C 2,tan(A +B )=-tan C .〖互动探究〗若把本例中的“cos B ”改为“sin B ”,结果又如何?解:∵sin A =35,0<A <π,∴当A 为锐角时,cos A =1-sin 2A =45.∵sin B =513<35=sin A ,∴B 为锐角,∴cos B =1-⎝ ⎛⎭⎪⎫5132=1213,∴cos C =-cos(A +B )=sin A sin B -cos A cos B =35×513-45×1213=-3365, 当A 为钝角时,cos A =-45,cos B =1213,∴cos C =-cos(A +B )=sin A sin B -cos A cos B =35×513-⎝ ⎛⎭⎪⎫-45×1213=6365.题型四 辅助角公式的应用【例题4】已知函数f (x )=sin x -3cos x ,x ∈R . (1)求f (x )的最小正周期与值域;(2)求f (x )的单调递增区间.分析:解答本题时,可把a sin x +b cos x 化简成a 2+b 2sin(x +θ)的形式求解.解:f (x )=sin x -3cos x =2⎝ ⎛⎭⎪⎫12sin x -32cos x=2⎝ ⎛⎭⎪⎫sin x cos π3-cos x sin π3=2sin ⎝ ⎛⎭⎪⎫x -π3,x ∈R . (1)T =2π1=2π,f (x )的值域为[-2,2].(2)由2k π-π2≤x -π3≤2k π+π2(k ∈Z ),得2k π-π6≤x ≤2k π+5π6(k ∈Z ).所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π6,2k π+5π6(k ∈Z ). 反思研究形如f (x )=a sin x +b cos x 的函数的性质,都要先把其化为整体角的正弦函数形式或余弦函数形式,方法是提取a 2+b 2,逆用公式S α±β,C α±β,特别注意角的范围对三角函数值的影响.题型五 易错辨析 【例题5】已知向量MN u u u u r=(3,-1),将此向量绕其始点,顺时针旋转30°后所得向量MN ′→的坐标为________.错解:由旋转变换公式得⎩⎪⎨⎪⎧x ′=x cos 30°-y sin 30°,y ′=x sin 30°+y cos 30°,即⎩⎪⎨⎪⎧x ′=33+12,y ′=3-32,所以MN ′→=⎝ ⎛⎭⎪⎫33+12,3-32.错因分析:没有考虑到是顺时针旋转30°,在代入公式时,角的度数为-30°. 正解:由旋转变换公式得 ⎩⎪⎨⎪⎧x ′=3cos -30°--1sin -30°,y ′=3sin -30°+-1cos -30°,即⎩⎪⎨⎪⎧x ′=33-12,y ′=-3+32,所以MN ′→=⎝ ⎛⎭⎪⎫33-12,-3+32.1.(2012·山东邹城质检)sin 75°cos 30°-cos 75°sin 30°的值为( )A .1B .12C .22D .32答案:C2.已知sin(α+β)=14,sin(α-β)=13,则tan α∶tan β=( )A .-17B .17C .-7D .7解析:由sin(α+β)=14,sin(α-β)=13,得sin αcos β+cos αsin β=14,①sin αcos β-cos αsin β=13.②由①+②,得2sin αcos β=712.③由①-②,得2cos αsin β=-112.④故由③④,得tan αtan β=-7.答案:C3.(2012·山东鱼台期末)在△ABC 中,如果sin A =2sin C cos B ,那么这个三角形是( )A .锐角三角形B .直角三角形C .等腰三角形D .等边三角形 答案:C4.sin α+30°-sin α-30°cos α=________.解析:sin α+30°-sin α-30°cos α=sin αc os 30°+cos αsin 30°-sin αcos 30°-cos αsin 30°cos α=2cos αsin 30°cos α=2sin 30°=1.答案:15.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ=________.解析:3sin x -3cos x =23⎝ ⎛⎭⎪⎫32sin x -12cos x=23(sin x cos φ+cos x sin φ)=23sin(x +φ),∴cos φ=32,sin φ=-12.又φ∈(-π,π),∴φ=-π6.答案:-π66.是否存在x 使得函数y =sin(x +10°)+cos(x +40°)存在最小值?若存在,求出x ;若不存在,请说明理由.解:∵x +40°=(x +10°)+30°,∴y =sin(x +10°)+cos[(x +10°)+30°]=sin(x +10°)+cos(x +10°)cos 30°-sin(x +10°)sin 30° =12sin(x +10°)+cos 30°cos(x +10°) =sin 30°sin(x +10°)+cos 30°cos(x +10°) =cos(x +10°-30°)=cos(x -20°).∵-1≤cos(x -20°)≤1,∴函数的值域为[-1,1], ∴当y min =-1时,x -20°=k ·360°+180°,k ∈Z , 此时,x =k ·360°+200°,k ∈Z .。
高中数学必修4第三章3.2简单的三角恒等变换
一、复习:两角和的正弦、余弦、正切公式:
sin sin cos cos sin
cos cos cos sin sin
tan
tan tan 1 tan tan
二sin 2 2sin cos
=3(cosx 2)2 1 33
又 x 2 , 1 cosx 1 ,
3 当x= 2
3
32
时,(cosx) min
1 2
,
y2max=145
;
当x=
3
时,(cosx) max
1 2
, ymin=
1 4.
七、y (a sinx+cosx)+bsinxcosx型
例7 求函数y sinx+cosx+sinxcosx的最值. <分析>注意到(sinx+cosx)2=1 2sinxcosx.可把sinx+cosx
sin2 1 cos 2
2
降幂升角公式
二、讲授新课:
例1.试以cos表示sin2 ,cos2 ,tan2 .
2
2
2
半角公式
sin 1 cos ,
2
2
cos 1 cos ,
2
2
tan 1 cos .
符号由α所在象限决定. 2
1 cos
2
1.半角公式
sin 1 cos
分析:要求当角取何值时,矩形ABCD的面积 S最大, 可分二步进行. ①找出S与之间的函数关系; ②由得出的函数关系,求S的最大值.
解 在Rt△OBC中,OB=cos,BC=sin 在Rt△OAD中,
简单的三角恒等变换
学习目标 要点疑点 深入探究 课堂检测
填要点·记疑点
以此为依据选择可以联系它们的适当公式进行转化变形,是三 角恒等变换的重要特点.例如,在二倍角公式中 2α 是 α 的二倍, α 是α2的二倍,那么 cos α 能用α2的三角函数表示出来吗?反过来, 你能用 cos α 表示出 sin2α2,cos2α2,tan2α2吗?
学习目标 要点疑点 深入探究 课堂检测
深入探究
反思与感悟 研究形如 f(x)=asin2ωx+bsin ωxcos ωx+ccos2ωx 的性质时,先化成 f(x)= a2+b2sin(ωx+φ)+c 的形式再解答.
学习目标 要点疑点 深入探究 课堂检测
课堂检测
跟 踪 训 练 2 已 知 函 数 f(x) = 3 sin 2x-π6 + 2sin2 x-1π2 (x∈R).
学习目标 要点疑点 深入探究 课堂检测
深入探究
(2)求函数 f(x)在区间π8,34π上的最小值和最大值. 解 因为 f(x)= 2sin2x-π4在区间π8,38π上为增函数,在区间 38π,34π上为减函数,又 fπ8=0,f38π= 2, f34π= 2sin32π-π4=- 2cos π4=-1, 故函数 f(x)在区间π8,34π上的最大值为 2,最小值为-1.
要点疑点 深入探究 课堂检测
和一些简单的应用.
填要点·记疑点
1.半角公式
(1)S 2
:sin
α2= ±
(2)C :cos 2
α2=
±
1-cos α 2;
1+cos α 2;
学习目标 要点疑点 深入探究 课堂检测
填要点·记疑点
±
(3)T :tan 2
α2=
高中数学必修四第三章三角恒等变换
必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。
例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。
例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。
例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
高中数学 第三单元 三角恒等变换 3.2.2 半角的正弦、余弦和正切课件 新人教B版必修4.pptx
1-cos α 2,
1+cos α 2,
(S )
2
(C )
2
1-cos 1+cos
αα=1+sincoαs
1-cos
= α
sin α
α
.
(T )
2
8
题型探究
9
类型一 应用半角公式求值
例1
若π2<α<π,且 cos α=-35,则 sin 2α=
25 5
.
解析 因为 cos α=1-2sin2α2,
答案
αα
α
tan2α= sin cos
2α=
sin2·2cos α
2 cos2·2cos
2α=1+sincoαs 2
, α
α
αα
tan
2α= sin
2α= sin
2·2sin α
2α=1-sincoαs
α .
cos 2 cos 2·2sin 2
7 答案
梳理 正弦、余弦、正切的半角公式
sin α2= ± cos α2=± tan α2=±
sin α、cos α 都可以表示成 tan 2α=t 的“有理式”,将其代入式子中,
从而可以对式子求值.
11
跟踪训练 1
若 tan θ2+ 1 θ=m,则 sin θ=
2 m
.
tan 2
解析 因为 tanθ2+ 1 θ=m, tan2
即tanta2θ2n+θ2 1=m,所以tanta2θ2n+θ2 1=m1 ,
所以 2sin2α2=1-c2os α=45,
又因为π4<2α<π2,所以
sinα2=2
5
5 .
解析 10 答案
容易推出下列式子:
高中数学第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式省公开课一等奖新名师优质课获奖PPT课件
(1)2cos2 =
(2) sin
;
.
解析:(1)原式=1+cos 2 ×
π
π
12
π
6
3
2
=1+cos =1+ .
2
(2)原式=1+sin 4=1+ 2 .
3
答案:(1)1+
2
2
(2)1+
2
第9页
一
二
思考辨析
判断下列说法是否正确,正确的在后面的括号内打“ ”,错误的
打“×”.
(1)sin 2θ=2sin θ.
3.1.3 二倍角正弦、余弦、正切公式
第1页
课
标 阐 释
1.会推导二倍角的正弦、余弦、正
切公式.
2.能够灵活运用二倍角公式解决求
值、化简和证明等问题.
思
维 脉 络
二倍角公式
二倍角公式的推导
二倍角公式的变形
二倍角公式的应用
第2页
一
二
一、二倍角正弦、余弦和正切公式
【问题思索】
1.在两角和正弦、余弦、正切公式中,令β=α,将得到怎样结果?
形式?
提醒:1±sin 2α=sin2α±2sin αcos α+cos2α=(sin α±cos α)2.
2.依据二倍角余弦公式,sin α,cos α与cos 2α关系分别怎样?
提醒:1+cos 2α=2cos2α,1-cos 2α=2sin2α,
1-cos2
1+cos2
2
2
sin α=
,cos α=
1
2
3
6
(2)原式= tan 150°=- tan 30°=- .
数学本章综述第三章三角恒等变换
第三章三角恒等变换
本章综述
本章主要包括两角和与差的三角函数及二倍角的三角函数,它是以两角差的余弦公式为基础,利用向量为工具推导出来的。
尤其是两角差的余弦和正弦公式,它们是本章各类公式的基础,学习这两个公式时,应注意它们的推导和一般性,同时要做足够的练习,牢记这些公式。
本章的重点是:两角和与差的三角公式、二倍角公式及其运用。
本章的难点是:综合运用三角公式进行三角函数式的化简、求值和三角恒等式的证明.
学习本章时应注意以下几点:(1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用。
(2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。
(3)能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆).
本章的三角公式众多,对学过的公式做到真正的理解、记准、记熟、用活。
掌握知识体系,对三角函数式的恒等变形,要牢记公式及其相互关系,在应用公式时要特别注意逆用公式或变形使用,训练逆向思维能力。
三角函数的问题千变万化,但只要抓住三角函数式的恒等变形这一根本,许多看似不同的问题的解法是相同的.此外在学习中要注意领会数学思想与方法的实质。
本章中化归思想、数形结合思想、
等价转化思想都是贯穿始终的重要思想和方法,在掌握知识的同时应注意这些思想和方法的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章三角恒等变换密云县编写组第一部分:第三章的教学设计一、教材分析1.教学内容本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.2.在模块内容体系中的地位和作用在第一章三角函数的学习的基础上,学习简单的三角变换是对三角函数的进一步深化也是为必修5中的解三角形做铺垫.3.总体教学目标(1)了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;(2)理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;(3)运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性,体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用.4.重点、难点分析本章内容的重点是两角差的余弦公式的推导及在推导过程中体现的思想方法,同时也是难点.5.其他相关问题本章内容安排贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容”的理念,严格控制了三角变换及应用的繁、难程度,尤其注意了不以半角公式,积化和差以及和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习.二、教学方式概述应以教师为主导学生为主体的启发式教学为主,以学生为主体探究式教学为辅.三、教学资源概述充分利用多媒体课件四、教学内容及课时安排建议 1.本章知识结构如下图:2.教学内容本章的内容分为两节:“两角和与差的正弦、余弦和正切公式”,“简单的三角恒等变换”. (1)三角恒等变换的学习以代数变换与同角三角函数式的变换的学习基础,和其他数学变换一样,它包括变换的对象,变换的依据和方法等要素.本章变换的对象要由只含一个角的三角函数拓展为包含两个角的三角函数式,因此建立起一套包含两个角的三角函数式变换的公式.(2)本章是以两角差的余弦公式作为基础来推导其它的公式,具体过程如下: ()()()()222,,C C S T C S T αβαβαβαβααε-+±±→→→→(3)本章在内容的安排上有明暗两条线,明线是建立公式,学会变换,暗线是发展推理和运算的能力,因此在本章全部内容的安排上,特别注意恰时恰点的提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,使他们能够依据三角函数的特点,逐渐明确三角变换不仅包括式子结构形式变换,还包括式子中的角的变换,以及不同三角函数之间的变换,引导学生逐渐拓广有关公式在变换过程中的作用,强化运用数学思想方法指导设计变换思路的意识,并且也注意了引导的层次性和渐进性. 3.课时分配本章教学时间约8课时,具体分配如下:3.1两角和与差的正弦、余弦、和正切公式 约4课时 3.2简单的恒等变换 约3课时 复习 约1课时§3.1 两角和与差的正弦、余弦和正切公式一、学习目标:本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用. 二、教学重点与难点1. 重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;2. 难点:两角差的余弦公式的探索与证明. 三、教学内容安排3.1.1 两角差的余弦公式两角差的余弦公式的推导是本节的重点和难点,尤其是要引导学生通过主动参与,独立探索,自己得出结果更是难点.教科书P136章前图由实际例子引出已知两个角的正弦、余弦、正切来研究这两个角和、差的正弦、余弦、正切.这是实际的需要是为了解决实际问题所以我们要研究两角差的余弦公式()cos ?αβ-=、两角和的余弦公式()cos ?αβ+=两角差的正弦公式()sin ?αβ-=、两角和的正弦公式()sin ?αβ+=等知识.探究过程:1.通过展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.2.引导用向量法证明两角差余弦公式.然后通过两个例题来巩固所学公式例1利用和、差角余弦公式求cos 75o 、cos15o的值. 解:分析:把15o构造成两个特殊角的和、差.()1cos15cos 4530cos 45cos30sin 45sin 302=-=+==o o o o o o o 点评:本例说明差角余弦公式也适用于形式上不是差角,但可以拆分成两角差的情形.实际上,由于公式对任意角都成立,因此在使用公式时应当根据需要对角进行灵活表示.例如:()cos15cos 6045=-o o o ,要学会灵活运用.本例结束后思考如何求sin 75o,引导用诱导公式sin()cos 2παα-=,为后面推导出正弦两角和与差公式做准备. 例2已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭本例是运用两角差的基础题,主要训练学生思维的有序性,逐步培养学生良好思维习惯. §3.1.2 两角和与差的正弦、余弦、正切公式本节课以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.通过上节课的学习推导出了两角差的余弦,引导学生推导两角和的余弦公式,然后引导学生推出两角和与差的正弦公式和正切公式. 例3已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.解:因为3sin ,5αα=-是第四象限角,得4cos 5α===,3sin 35tan 4cos 45ααα-===- ,于是有43sin sin cos cos sin 444252510πππααα⎛⎫⎛⎫-=-=--=⎪ ⎪⎝⎭⎝⎭43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=--=⎪ ⎪⎝⎭⎝⎭ 3tan tan144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭本例是运用和差角公式的基础题,要注意认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要做什么准备.还要重视思维过程的表述,不能只看结果而不顾过程表述的准确性和简洁性.解答完本例可以把条件是α是第四象限角去掉,让学生考察结果和求解过程会有什么影响.引导学生正确使用分类讨论的方法. 例4利用和(差)角公式计算下列各式的值:(1)sin 72cos 42cos72sin 42-oooo;(2)cos 20cos70sin 20sin 70-oooo;(3)1tan151tan15+-oo. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.(1)()1sin 72cos 42cos72sin 42sin 7242sin 302-=-==ooooo oo; (2)()cos 20cos70sin 20sin 70cos 2070cos900-=+==o o o o o o o ;(3)()1tan15tan 45tan15tan 4515tan 601tan151tan 45tan15++==+==--o o oo o o o o o本例体现了对公式的全面理解上的要求,即要求学生能够从正(从左到右使用公式)、反(从右到左使用公式)两个角度使用公式.与正用相比反用表现的是一种逆向思维,他不仅要求有一定的逆向思维意识,对思维的灵活性要求较高,而且对公式要求更全面更深刻的理解. §3.1.3 二倍角的正弦、余弦和正切公式本节以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.学生先回顾一下两角和的正弦、余弦和正切公式,由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), 公式推导:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--. 注意:2,22k k ππαπαπ≠+≠+ ()k z ∈例题讲解 例5已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值. 解:由,42ππα<<得22παπ<<.又因为5sin 2,13α=12cos 213α===-.于是512120sin 42sin 2cos 221313169ααα⎛⎫==⨯⨯-=- ⎪⎝⎭; 225119cos 412sin 21213169αα⎛⎫=-=-⨯=⎪⎝⎭;120sin 4120169tan 4119cos 4119169ααα-===-. 通过本例要求学生对“倍”的相对性有一定的认识,灵活运用“倍” 的变换,体现了思维的灵活性,对学生推理能力的发展起到很好的推导作用. 例6 在ABC ∆中,4cos 5A =,tan 2B =,求tan(22)A B +的值.本例采用两种方法来解决:一种是先求出tan 2A 和tan 2B 从而求出tan(22)A B +,另一种是先求出tan()A B +再求出tan(22)A B +.这两种方法都是对倍角公式与和角公式的联合运用,本质上没有什么区别.值得注意的是在三角形的背景下研究问题,会带来一些隐含条件,如0,A A B C ππ<<++=等,教学中可以在学生自己尝试解决问题后,引导他们进行适当的小结.学生基础较好的班级可以直接求tan 2C 的值.四、教学资源建议 充分利用多媒体课件五、教学方法与学习指导策略建议以问题为核心,采用启发式教学.指导学生如何根据以学知识推导本章的十一个公式. 六、课堂评价建议1.情绪变化:通过探究活动学生表现出来的情绪变化,给每名同学打分.2.参与度:从课堂积极举手回答问题情况和自主探究的情况来了解,学生是否动手实践,对教师提出的问题是否是进行深层次的思考.3.讨论交流:小组讨论时能否能阐述自己的观点,对不同的观点进行分析,每组组长根据学生的表现情况给每名同学打分.4.学习水平:通过课后访谈和作业分析来了解学生的学习水平是否提高.5.知识水平:(1)通过作业了解学生是否掌握了三角变换的十一个基本公式. (2) 通过章节检测题来检验学生是否掌握了十一个基本公式.3.2 简单的三角恒等变换(3个课时)一、学习目标:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力 三、教学内容安排例 例题安排:例1试以cos α表示222sin,cos ,tan 222ααα.解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题.因为2cos 12sin 2αα=-,可以得到21cos sin22αα-=; 因为2cos 2cos12αα=-,可以得到21cos cos 22αα+=. 又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦;(2)、sin sin 2sincos22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-.两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sin cos22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想?例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3求函数sin y x x =的周期,最大值和最小值.解:sin y x x =+这种形式我们在前面见过,1sin 2sin 2sin 223y x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.例4 如图3.2-1 已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD是扇形的内接矩形.记COP α∠=,求当角α取何值时,矩形ABCD 的面积最大?并求出这图3.2-1O个最大面积.分析:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行: (1)找出S 与α之间的函数关系; (2)由得到的函数关系,求出S 的最大值.解:在Rt OBC ∆中,cos ,sin OB BC αα==在Rt OAD ∆中,tan 60DA OA==o ,所以sin 333OA DA BC α===.所以cos sin 3AB OA OA αα=-=-.设矩形ABCD 的面积为S ,则(cos sin )sin 3S AB BC ααα=⋅=-1)66πα+-由03πα<<,得52666πππα<+<,所以当262ππα+=,即6πα=时,S 最大13-=6因此,当6πα=时,矩形ABCD 的面积最大,最大面积为6.本例是一个实际问题,需要建立函数模型,建立函数模型时,对自变量可多一种选择,如果设AD=x ,则)3S x x =.尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.复习安排(1课时)知识与方法小结:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、2π±β代替β、α=β等换元法可以推导出其它公式.你能根据下图回顾推导过程吗?2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来.3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围.4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等.5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,0030tan 130tan 1-+=000030tan 45tan 130tan 45tan -+=tan (450+300)等. 6.自己根据学生状况适当配备例题.四、教学资源建议.充分利用多媒体课件五、教学方法与学习指导策略建议以问题为核心,采用启发式教学.指导学生如何根据式子的结构进行三角变换.六、课堂评价建议:1.情绪变化:通过探究活动学生表现出来的情绪变化,给每名同学打分.2.参与度:从课堂积极举手回答问题情况和自主探究的情况来了解,学生是否动手实践,对教师提出的问题是否是进行深层次的思考.3.讨论交流:小组讨论时能否能阐述自己的观点,对不同的观点进行分析,每组组长根据学生的表现情况给每名同学打分.4.学习水平:通过课后访谈和作业分析来了解学生的学习水平是否提高.5.知识水平:(1)通过作业了解学生是否掌握了三角变换的基本方法和基本能力.(2) 通过章节检测题来检验学生是否掌握了三角变换的基本方法和基本能力.。