三角恒等变换技巧

合集下载

三角恒等变换与解题技巧

三角恒等变换与解题技巧

三角恒等变换与解题技巧三角函数是数学中重要的一部分,与几何、物理等学科密切相关。

在解三角函数的问题时,常常需要运用恒等变换来简化计算或将复杂的式子转化为简单的形式。

恒等变换是指在等式两边同时做相同的运算而不改变等式的值。

掌握常用的三角恒等变换并灵活运用是解题的关键。

本文将介绍一些常用的三角恒等变换,并分享一些解题技巧。

一、正弦、余弦、正切的恒等变换1. 余切的逆关系根据余切的定义,我们知道cot(A)等于tan(A)的倒数,即cot(A) = 1 / tan(A)。

这是一个重要的恒等变换,在简化复杂式子、证明等题目中经常会用到。

2. 三角函数的平方和恒等式sin^2(A) + cos^2(A) = 1这是三角函数最基本的恒等式之一,也是勾股定理的三角形形式。

该恒等式可以用来将一个三角函数转化为其他三角函数的形式。

3. 正切的平方和恒等式1 + tan^2(A) = sec^2(A)这是正切函数的平方和恒等式,也是解析几何中的一条重要公式。

运用该恒等式可以将一个正切函数的式子转化为其他三角函数的式子。

4. 余切的平方和恒等式1 + cot^2(A) = csc^2(A)这是余切函数的平方和恒等式,与正切的平方和恒等式相对应。

在解题时运用该恒等式可以将一个余切函数的式子转化为其他三角函数的式子。

二、两角和与差的恒等变换1. 正弦的两角和与差sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这是正弦函数的两角和与差公式,可以通过将两个三角函数用另外两个三角函数来表示。

在解题时,可以通过将复杂的三角函数式子转化为正弦函数的形式来简化计算。

2. 余弦的两角和与差cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)这是余弦函数的两角和与差公式,与正弦的两角和与差公式相似。

在解题时,也可以通过转化为余弦函数的形式来简化计算。

高中数学中的三角恒等变换利用恒等变换简化复杂三角式子的技巧

高中数学中的三角恒等变换利用恒等变换简化复杂三角式子的技巧

高中数学中的三角恒等变换利用恒等变换简化复杂三角式子的技巧在高中数学中,三角函数是一个非常重要的概念。

通过恒等变换,我们可以简化复杂的三角式子,使其更易于计算和理解。

本文将介绍一些常用的三角恒等变换以及利用恒等变换简化复杂三角式子的技巧。

一、基本恒等变换1. 正弦函数的基本恒等变换正弦函数的基本恒等变换包括:sin²θ + cos²θ = 1sin(90° - θ) = cosθsin(-θ) = -sinθsin(180° - θ) = sinθ2. 余弦函数的基本恒等变换余弦函数的基本恒等变换包括:cos²θ + sin²θ = 1cos(90° - θ) = sinθcos(-θ) = cosθcos(180° - θ) = -cosθ3. 正切函数的基本恒等变换正切函数的基本恒等变换包括:tanθ = sinθ/cosθtan(-θ) = -tanθtan(π/2 - θ) = 1/tanθtan(π + θ) = tanθ二、常用恒等变换1. 二倍角恒等变换二倍角恒等变换可以将一个角的正弦、余弦、正切函数转化为两倍角的正弦、余弦、正切函数。

常用的二倍角恒等变换包括:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ/1 - tan²θ2. 和差角恒等变换和差角恒等变换可以将两个角的正弦、余弦、正切函数转化为一个角的正弦、余弦、正切函数。

常用的和差角恒等变换包括:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)三、利用恒等变换简化复杂三角式子的技巧1. 利用二倍角恒等变换当我们遇到一个三角函数中带有角度为θ的复杂式子时,可以尝试使用二倍角恒等变换将其转化为两倍角的三角函数。

三角恒等变换的常用技巧

三角恒等变换的常用技巧

三角恒等变换的常用方法肖新勇解答三角函数问题,几乎都要通过恒等变换将复杂问题简单化,将隐性问题明朗化。

三角恒等变换的公式很多,主要有“同角三角函数的基本关系”、“诱导公式”、“和、差、倍、半角公式”等,这些公式间一般都存在三种差异,如角的差异、函数名的差异和运算种类的差异,只有灵活有序地整合使用这些公式,消除差异、化异为同,才能得心应手地解决问题,这是三角问题的特点,也是三角问题“难得高分”的根本所在。

本文从六个方面解读三角恒等变换的常用技巧。

一、 角变换角变换的基本思想是,观察发现问题中出现的角之间的数量关系,把“未知角”分解成“已知角”的“和、差、倍、半角”,然后运用相应的公式求解。

例1 已知534cos =⎪⎭⎫ ⎝⎛+πx ,4743ππ<<x ,求x x x tan 1sin 22sin 2-+的值。

【分析】考虑到“已知角”是4π+x ,而“未知角”是x 和x 2,注意到44ππ-⎪⎭⎫ ⎝⎛+=x x ,可直接运用相关公式求出x sin 和x cos 。

【解析】因为ππ4743<<x ,所以πππ24<+<x , 又因为0534cos >=⎪⎭⎫ ⎝⎛+πx ,所以πππ2423<+<x ,544sin -=⎪⎭⎫ ⎝⎛+πx 10274sin 4cos 4cos 4sin 44sin sin -=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=ππππππx x x x , 从而102cos -=x ,7tan =x . 原式=7528tan 1sin 2cos sin 22-=-+x x x x . 【点评】(1)若先计算出102cos -=x ,则在计算x sin 时,要注意符号的选取;(2)本题的另一种自然的思路是,从已知出发,用和角公式展开,结合“平方关系”通过解二元二次方程组求出x sin 和x cos . 但很繁琐,易出现计算错误。

三角恒等变换的常见技巧(生)

三角恒等变换的常见技巧(生)

三角恒等变换的常见技巧一、核心技巧方法1、三角恒等变换中的“统一”思想:三角恒等变换的主要目的是异名化同名、异次化同次、异角化同角、异构化同构,即化异为同,也就是将待证式左右两边统一为一个形式,或将条件中的角、函数式表达为问题中的角或函数式,达到以已知表达未知的目的。

基本切入点是统一角,往往从统一角入手便能全面达到化异为同的目的。

2、统一思想的应用——引入辅助角:对x b x a y cos sin +=型函数式的性质的研究,我们常常引入辅助角ϕ。

即化ab x b a x b x a y =++=+=ϕϕtan ),sin(cos sin 22,然后将该式与基本三角函数x A sin y =进行比照研究。

“位置相同,地位平等”是处理原则。

3、统一思想的应用——拆、拼角,如()()()()22β-α+β+α=αβ-β+α=αβ+β+α=β+α,,等等;4、统一思想的应用——弦切互化,如利用万能公式,把正余弦化为正切等等;对关于正余弦函数的齐次式的处理也属于“弦化切”技巧;5、统一思想的应用——公式变、逆用,主要做法是将三角函数式或其一部分整理成公式的一部分,然后利用公式的这一部分与另一部分的等量关系代入6、代换思想的应用——关于正余弦对等式的处理,常以21t x cos x sin ,t x cos x sin 2-==+代入,把函数式化为关于t 的函数式进行研究;另外,三角代换也是处理函数最值、值域等问题的重要技巧。

二、考点解析与典型例题考点一 引入辅助角研究三角函数的性质例. 设f (x )=asin x ω+bcos x ω(0,,>ωb a )的周期为π且最大值f (12π)=4; 1)求ω、a 、b 的值;2)若α、β为f (x )=0的两个根(α、β终边不共线), 求tan (α+β)的值。

考点二 拆、拼角 例. 已知cos (91)2-=-βα,sin (2α-β)=32,且,20,2πβπαπ<<<<求.2cos βα+考点三 化弦为切例. 当π04x <<时,函数22c o s ()c o s s i n s i n x f x x x x=-的最小值是( ). (A )4 (B ) (C )2 (D ) 考点四 巧用公式例. 求︒︒+︒+︒28tan 17tan 28tan 17tan 的值。

三角恒等变换技巧

三角恒等变换技巧

三角恒等变换技巧三角恒等变换是指一系列三角函数的等价关系,通过这些等价关系,可以将复杂的三角函数表达式简化为简单的形式,从而更容易进行求解和计算。

在解三角函数方程、化简三角函数表达式、证明三角恒等式等问题中,三角恒等变换技巧是非常重要的。

1.基本恒等式:基本恒等式是指最基本的三角函数之间的等价关系,包括正弦函数、余弦函数和正切函数。

(1)正弦函数的基本恒等式:sin²θ + cos²θ = 1sin(-θ) = -sinθsin(π/2 - θ) = cosθsin(π/2 + θ) = cosθsin(π - θ) = sinθsin(π + θ) = -sinθsin(2θ) = 2sinθcosθ(2)余弦函数的基本恒等式:cos²θ + sin²θ = 1cos(-θ) = cosθcos(π/2 - θ) = sinθcos(π/2 + θ) = -sinθcos(π - θ) = -cosθcos(π + θ) = -cosθcos(2θ) = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ(3)正切函数的基本恒等式:ta nθ = sinθ/cosθtan(-θ) = -tanθtan(π/2 - θ) = 1/tanθtan(π/2 + θ) = -1/tanθtan(π - θ) = -tanθtan(π + θ) = tanθtan(2θ) = 2tanθ/(1 - tan²θ)2.和差角公式:和差角公式是指可以将两个三角函数的和、差转化为一个三角函数的等价关系。

(1)正弦函数的和差角公式:sin(α ± β) = sinαcosβ ± cosαsinβ(2)余弦函数的和差角公式:cos(α ±β) = cosαcosβ ∓ sinαsinβ(3)正切函数的和差角公式:tan(α ± β) = (tanα ± tanβ)/(1 ∓ tanαtanβ)3.二倍角公式:二倍角公式是指可以将一个三角函数的二倍角转化为一个三角函数的等价关系。

进行三角恒等变换的三个技巧

进行三角恒等变换的三个技巧

解题宝典在解答三角函数问题时,经常需对三角函数式进行三角恒等变换,这就要求同学们熟练掌握一些进行三角恒等变换的技巧,以便能顺利化简三角函数式、求出三角函数式的值.那么怎样合理进行三角恒等变换呢?可以从以下三个方面进行.一、变换角当进行三角恒等变换时,首先要仔细观察已知角和所求角之间的差别,并建立两角之间的联系,如互余、互补、半角、倍角等,然后利用诱导公式、二倍角公式、两角的和差公式等求解.在进行角的变换时,还可将已知角、所求角与特殊角,如π6、π4、π3等建立联系,然后利用这些特殊角的函数值进行求解.例1.已知cos æèöøα+π4=35,π2≤α<3π2,求cos(2α+π4)的值.分析:先观察题目中的角可发现,已知角α+π4与所要求的角2α+π4之间相差一个α,可以找到一个关系:2æèöøα+π4−π4=2α+π4,用二倍角公式和诱导公式求出sin 2æèöøα+π4和cos 2æèöøα+π4的值,最后根据余弦的两角和公式cos ()α−β=cos α∙cos β+sin α∙sin β求出cos æèöø2α+π4的值.解:由于π2≤α<3π2,所以3π4≤α+π4<7π4,又因为cos æèöøα+π4=35>0,可知3π2≤α+π4<7π4,因此sin æèöøα+π4=−45,所以sin 2æèöøα+π4=2sin æèöøα+π4cos æèöøα+π4=−2425,cos 2æèöøα+π4=2cos 2æèöøα+π4−1=−725,因此cos æèöø2α+π4=cos éëêùûú2æèöøα+π4−π4=cos 2æèöøα+π4cos π4+sin 2æèöøα+π4sin π4=.二、变换函数名称有些三角函数式中的函数名称并不相同,此时,我们需变换函数的名称,如将正切、余切转化为正弦、余弦,将正弦化为余弦,将余弦化为正弦,等等,以达到统一函数名称的目的.在变换函数名称的过程中,常用到的公式有诱导公式sin ()2k π+α=sin α()k ∈Z 、cos ()2k π+α=cos α()k ∈Z 、tan ()2k π+α=tan α(k ∈Z),重要关系式tan α=sin αcos α、sin 2α+cos 2α=1、辅助角公式a sin α+b cos α=a 2+b 2sin (α+φ)等.例2.化简2cos 2α−12tan æèöøπ4−αsin 2æèöøπ4+α.分析:这个式子中既含有正切函数也有正弦、余弦函数,我们第一步就是要想办法将正切函数转变为正弦函数.观察式子中角的特点,可发现æèöøπ4−α+æèöøπ4+α=π2,根据角的特征,可以利用诱导公式将函数式转化成函数名称一致的式子.解:原式=cos 2α2sin æèöøπ4−αcos æèöøπ4−αsin 2éëêùûúπ2−æèöøπ4−α=cos 2α2sin æèöøπ4−αcos æèöøπ4−α=cos 2αsin æèöøπ2−2α=1.三、变换幂的次数有些三角函数式中幂的次数不相同,此时,我们要对其作升幂或者降幂处理,以便使函数式中的次数相同.“升幂”可以通过二倍角公式cos 2α=cos 2α−sin 2α=2cos 2α−1=1−2sin 2α、tan 2α=2tan α1−tan 2α来实现,“降幂”可以通过二倍角公式sin 2α=2sin αcos α及变形式sin 2α=1−cos 2α2,cos 2α=1+cos 2α2.sin 2α=1−cos 2α2,cos 2α=1+cos 2α2来达到目的.例3.已知tan α=−13,求sin α−cos 2α1+cos 2α的值.分析:由于已知tan α=−13,目标式中含有正弦函数和余弦函数,且含有二次式,可以先利用二倍角公式把2α转变为α,使幂的次数统一,即将所求的式子转化为关于sin α、cos α的齐次式,然后依据tan α=sin αcos α,将目标式中的分子、分母同时除以cos 2α,得到只含有tan α的分式,将tan α=−13代入求解即可得到答案.解:原式=2sin αcos α−cos 2α2cos 2α=2sin α−cos α2cos α=tan α−12=−56.总而言之,在进行三角恒等变换时最重要的就是要做到“变异为同”,灵活使用各种三角函数公式,将角、函数名称、幂的次数不同的式子转化为角、函数名称、次数相同的式子.在解题的过程中,同学们要熟记各种三角函数公式,并灵活使用,根据角、函数名称、幂的特点合理进行变换,以实现“变异为同”.(作者单位:山东省聊城第一中学)41Copyright©博看网 . All Rights Reserved.。

9种常用三角恒等变换技巧总结

9种常用三角恒等变换技巧总结

9种常用三角恒等变换技巧总结三角函数是数学中一种重要的函数,它广泛应用于几何、物理、工程等领域。

而在解题过程中,常常需要通过三角恒等变换技巧来简化或转换问题,以便更容易求解或证明。

下面我们将总结一下常用的九种三角恒等变换技巧。

1.正弦和余弦平方和恒等式:sin^2(x) + cos^2(x) = 1这是最基本的三角恒等式,即正弦和余弦的平方和等于1、它在很多场合都会被应用到,例如求解三角方程、证明三角函数的性质等。

2.余弦的二倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)这个公式可以将一个角的余弦值转化为另一个角的余弦值,同时也可以将余弦值转化为正弦值。

它在解决一些二次方程和证明一些三角恒等式的时候非常有用。

3.正弦的二倍角公式:sin(2x) = 2sin(x)cos(x)这个公式可以将一个角的正弦值转化为另一个角的正弦值,或者将正弦值转化为余弦值。

它在解决一些二次方程和证明一些三角恒等式的时候非常有用。

4.正切的和差公式:tan(x±y) = (tan(x)±tan(y))/(1∓tan(x)tan(y))这个公式可以将两个角的正切值的和或差转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和或差。

它在解决一些三角方程和证明一些三角恒等式的时候非常有用。

5.两角和差公式:sin(x±y) = sin(x)cos(y)±cos(x)sin(y)cos(x±y) = cos(x)cos(y)∓sin(x)sin(y)这些公式可以将两个角的正弦值或余弦值的和或差转化为一个角的正弦值或余弦值,或者将一个角的正弦值或余弦值转化为两个角的正弦值或余弦值之和或差。

它们在解决一些三角方程和证明一些三角恒等式的时候非常有用。

6.正切的和公式:tan(x+y) = (tan(x)+tan(y))/(1-tan(x)tan(y))这个公式可以将两个角的正切值的和转化为一个角的正切值,或者将一个角的正切值转化为两个角的正切值之和。

三角恒等变换技巧

三角恒等变换技巧

三角恒等变换技巧1.三角函数平方表示三角函数的平方表示可以将复杂的三角函数化简为简单的平方形式。

例如,可以利用以下恒等式:sin^2(x) + cos^2(x) = 1这个三角恒等式表明,一个角的正弦平方与余弦平方之和等于1、利用这个恒等式,我们可以将复杂的三角函数式子简化为更简单的形式,从而更好地进行计算。

2.和差化积和差化积是指将三角函数的和差形式转化为积的形式。

例如,可以利用以下恒等式:sin(x) + sin(y) = 2sin((x+y)/2)cos((x-y)/2)这个三角恒等式表明,两个角的正弦之和可以表示为正弦和余弦的乘积形式。

同样地,我们也可以通过差化积将两个角的正弦之差转化为正弦和余弦的乘积形式。

3.积化和差积化和差是指将三角函数的积的形式转化为和差的形式。

例如,可以利用以下恒等式:cos(x)cos(y) = 1/2[cos(x+y) + cos(x-y)]这个三角恒等式表明,两个角的余弦之积可以表示为两个角的和与差的余弦之和的一半。

同样地,我们也可以通过积化和差将两个角的正弦之积转化为正弦和余弦的和差形式。

这些三角恒等变换技巧在解决问题时经常被使用。

通过灵活地运用这些恒等变换技巧,可以将复杂的三角函数式子简化为更简单的形式,从而更方便地进行计算和分析。

此外,在解析几何中,三角恒等变换技巧也有助于直观地理解和推导三角函数的性质和关系。

总结起来,三角恒等变换技巧是一种重要的数学工具,它通过对三角函数之间相互转化,将复杂的三角函数式子简化为更简单的形式。

掌握这些变换技巧不仅有助于解决数学问题,还可以提高数学理解和推导的能力。

因此,我们应该加强对这些三角恒等变换技巧的学习和掌握,使其成为解决各种问题的利器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换技巧三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益 · 一、 切割化弦“切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 【例1】证明:ααααααααcot tan cos sin 2cot cos tan sin22+=++证明:左边ααααααααcos sin 2sin cos cos cos sin sin 22+⋅+⋅=ααααααααααααcos sin 1cos sin )cos (sin cos sin cos cos sin 2sin 2224224=+=++=右边ααααααααααcos sin 1cos sin cos sin sin cos cos sin 22=+=+= ∴左边~右边.原等式得证.点评“切割化弦”是将正切、余切、正割、余割函数均用正弦、余弦函数表示,这是一种常用的、有效的解题方法.当涉及多种名称的函数时,常用此法减少函数的种类. 【例2】已知θ同时满足b a b a b a 2sec cos 2cos sec22=-=-θθθθ和,且b a ,均不为零,试求“b a ,”b 的关系.解:⎪⎩⎪⎨⎧=-=-②① b a b a b a 2sec cos 2cos sec 22θθθθ显然0cos ≠θ,由①×θ2cos +②×θcos 得: 0cos 2cos 22=+θθb a ,即0cos =+b a θ又0≠a ,∴ab-=θcos 代入①得a a b b a 2223=+0)(222=-⇔b a ∴22b a =点评 本例是化弦在解有关问题时的具体运用,其中正割与余弦、余割与正弦之间的倒数关系是化弦的通径. 【例3】化简)10tan 31(50sin 00+解:原式=000000010cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin +⋅=+ 110cos 80sin 10cos 10cos 40sin 210cos )1030sin(250sin 000000000===+⋅=点评 这里除用到化切为弦外,其他化异角函数为同角函数等也是常用技巧. 二、 角的拆变在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角的相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为ββα-+)(;α2可变为)()(βαβα-++;βα-2可变为αβα+-)(;α可视为2α的倍角;)45(0α±可视为)290(0α+的半角等等.【例4】(2005年全国卷)设α为第四象限角,若513sin 3sin =αα,则=α2tan _______. 解: 513tan 1tan 3tan 2tan tan 2tan sin 2cos cos 2sin sin 2cos cos 2sin sin 3sin 22=+-=-+=-+=αααααααααααααααα ∴91tan 2=α 又∵α为第四象限角 ∴31tan -=α∴43tan 1tan 22tan 2-=-=ααα 点评这里将α3写成αα+2,将α写成αα-2是解题的切人点.根据三角表达式的结构特征,寻求它与三角公式间的相互关系是解题的关键.【例5】已知锐角α、β满足)cos(2csc sin βααβ+=,2πβα≠+,求βtan 的最大值及β的值。

解:∵)cos(2csc sin βααβ+= ∴αβαβsin )cos(2sin +=又αβααβααβαβsin )cos(cos )sin(])sin[(sin +-+=-+= ∴=+αβαsin )cos(2αβααβαsin )cos(cos )sin(+-+ 又∵)2,0(,πβα∈,2πβα≠+,∴0cos )cos(≠+αβα等式两边同除以αβαcos )cos(+得:αβααtan )tan(tan 2-+=,即αβαtan 3)tan(=+∴33tan 32tan 2tan 31tan 2tan )tan(1tan )tan(])tan[(tan 2=≤-=+--+=-+=αααααβααβααβαβ βtan 在)2,0(π上是增函数,故βtan 的最大值是33,此时6πβ= 点评 已知条件中有βα,和βα+,而待求式中只有β,因此可将β拆变成已知条件中出现的角即αβαβ-+=)(.这种常用的拆变技巧要注意掌握.【例6】已知53)4cos(,434,40=-<<<<αππαππβ,135)43sin(=+βπ,试求)sin(βα+解:∵)(2)4()43(βαπαπβπ++=--+∴)sin(βα+)](2cos[βαπ++-=cos -=)]4()43[(απβπ--+ )]4sin()43sin()4cos()43[cos(απβπαπβπ-++-+-=∵042434<-<-⇒<<απππαπ ∴54)4sin(53)4cos(-=-⇒=-απαππβπππβ<+<⇒<<434340,由135)43sin(=+βπ1312)43cos(-=+⇒βπ∴)sin(βα+6556)54(13553)1312(=-⋅-⋅--= 点评 研究已知角与待求式之间角的关系,以确定角的拆变的操作方式是解题的出发点,此即“变角”技巧的由来.【例7】求)15cos(3)45cos()75sin(000+-+++θθθ的值解:设αθ=+015,则)15cos(3)45cos()75sin(000+-+++θθθ=αααcos 3)30cos()60sin(0-+++ =0点评 这里选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一 三、“ 1 ”的代换在三角函数中," 1 ”可以变换为 x x x x x x 222222cot csc ,tan sec ,cos sin --+ ,4tan,sin csc cos,sec ,cot tan πx x x x x ⋅⋅⋅等等,根据解题的需要,适时地将“ 1 ”作某种变形,常能获得较理想的解题方法.【例8】求αα22cos 4sin 1+=y 的最小值 解:αααααααα22222222cos )cos (sin 4sin cos sin cos 4sin 1+++=+=y 9cot tan 425tan 4cot 54tan 4cot 1222222=+≥++=+++αααααα当且仅当αα22tan 4cot =即21tan 2=α时取等号。

故所求最小值为 9 .【例9】( 2004 年全国卷)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=最小正周期、最大值和最小值解:)cos sin 1(2cos sin 1cos sin 22cos sin )cos (sin )(2222222x x xx x x x x x x x f --=--+=212sin 41)cos sin 1(21+=+=x x x 所以函数)(x f 的最小正周期是π,最大值是43,最小值是41【例10】化简xx4466cos sin 1cos sin 1----解:原式=23cos sin 2cos sin 3cos sin 3cos sin )cos (sin cos sin )cos (sin 2242242222266322=+=--+--+xx x x x x x x x x x点评“1=x x 22cos sin +”的正用、逆用在三角变换中应用十分广泛,要灵活掌握.除此以外,还经常用到: 1 =4tan 1,cot csc 1,cot tan 22παα=-=⋅x x .灵活运用这些等式,可使许多三角函数问题得到简化.【例11】已知625tan 1tan 1+=-+αα,求αα2cos 2sin 1-的值 解:625)45tan(tan 45tan 1tan 45tan tan 1tan 1000+=+=-+=-+ααααα ∵625)45tan()290cos(1)290sin(2sin 12cos 000+=+=+++=-ααααα ∴62562512cos 2sin 1-=+=-αα点评这里是 1=tan α的运用.若直接从已知式中求出tan α,再用万能公式,虽然思路很直观,但却导致较复杂的运算.四、变通公式对于每一个三角公式,教材中仅给出其基本形式,但我们若熟悉其它变通形式常可以开拓解题思路.例如,由αααcos sin 22sin =可变通为αααsin 22sin cos =与αααcos 22sin sin =、由βαβαβαtan tan 1tan tan )tan( ±=±,可变通为)tan tan 1)(tan(tan tan βαβαβα ±=±【例12】(2002·北京春·)在△ABC 中,已知三内角A 、B 、C 成等差数列,求2tan 2tan 32tan 2tanCA C A ++的值 解:∵三内角A 、B 、C 成等差数列,且A+B+C=π,∴A+C=1200∴32tan =+CA 由两角和的正切公式:32tan2tan 12tan 2tan=-+C A C A ⇒32tan 2tan 32tan 2tan =++C A C A 点评 本例是正切公式变形的运用,在历年高考题中,曾多次出现两角和与差的正切公式的变形运用,读者要仔细体会.【例13】已知4π=+B A ,求)tan 1)(tan 1(B A ++的值解:)tan 1)(tan 1(B A ++)tan tan 1()tan tan 1)(tan()tan tan 1(tan tan B A B A B A B A B A ++-+=+++==2)tan tan 1()tan tan 1)(4tan(=++-B A B A π点评 若三角函数式中同时出现B A B A tan tan tan tan 、±,常可用)tan tan 1)(tan(tan tan βαβαβα ±=±【例14】证明:ααααα4tan 42tan 2tan 8cot 8cot ++=-证明 由αααααα2cot 2tan cot tan 1tan 22tan 2=-⇒-=……………………① 同理:ααα4cot 22tan 2cot =-…………………………………………………②ααα8cot 24tan 4cot =-…………………………………………………③ ①+2×②+4×③整理得:ααααα4tan 42tan 2tan 8cot 8cot ++=-【例15】证明:521115cos 114cos 113cos 112cos11cos =πππππ证明 左边=115sin21110sin 114sin 2118sin 113sin 2116sin 112sin 2114sin 11sin 2112sinππππππππππ⋅⋅⋅⋅ 521115sin211sin 114sin 2113sin 113sin 2115sin 112sin 2114sin 11sin 2112sin =⋅⋅⋅⋅=ππππππππππ=右边 点评 应用倍角公式的变形公式来处理三角函数式的积的问题常常是一种很巧妙的解题方法.五、升幂与降次分析题目的结构,掌握结构的特点,通过升幂、降次等手段,为使用公式创造条件,这也是三角变换的重要技巧.利用余弦的倍角公式可知2cos 12cos2αα+=,2cos 12sin 2αα-=,这样可以用倍、半角公式来升幂(从右到左)和降次(从左到右) 【例16】 .已知)sin(3)csc(βαβα+=-,求αβα422cos sin 2sin 41++ 解:αβα422cos sin 2sin 41++=22)22cos 1(22cos 12sin 41αβα++-+)2cos 2(cos 2121)2cos 2sin 4122βααα++++=)sin()sin(1βαβα-+-=由)sin(3)csc(βαβα+=-得31)sin()sin(=-+βαβα∴原式=32311=-点评 遇平方可用“降次”公式,这是常用的解题策略.本题中首先化异角为同角,消除角的差异,然后化简求值.关于积化和差、和差化积公式,教材中是以习题形式给出的,望引起重视.【例17】 ( 2002 年全国卷)已知))2,0((12cos cos 2sin 2sin 2πααααα∈=-+,求αsin 和αtan 的值解:由12cos cos 2sin 2sin 2=-+αααα得0)2cos 1(cos sin 2cos sin 4222=+-+ααααα∴0cos 2cos sin 2cos sin42222=-+ααααα ∴0)1sin sin 2(cos 222=-+ααα即0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈ ∴1sin ,0cos -≠≠αα ∴01sin 2=-α即21sin =α6πα=⇒33tan =⇒α点评 观察题设条件和待求的函数值,会发现题设条件中为倍角,而待求函数为单角,所以使用半角公式升幂,并通过因式分解使问题得以迅速解决.【例18】证明:A A A A 3sin 43)240(sin )120(sin sin 03033-=++++ 证明 左边)]3360sin()120sin(3[41)3sin sin 3(4100A A A A +-++-=)]3720sin()240sin(3[410A A +-++)120sin([sin 430A A ++=)]240sin(0A ++-A 3sin 43A A A A A A 3sin 43)]sin 21cos 23()sin 21cos 23([sin 43-+--+= =-=A 3sin 43右边点评 根据三倍角公式,有)3cos cos 3(41cos ),3sin sin 3(41sin 33αααα-=-=也常用来降次.有些数学竞赛题中经常用到此技巧方法.六、引入辅助角当b a ,均不为零时.利用)sin(cos sin 22ϕ++=+x b a x b x a (其中ϕ为辅助角且满足2222sin ,cos ba b ba a +=+=ϕϕ)来作变换也是常用方法.【例19】 (2005 年辽宁卷)如图 10一1,在直径为 1 的圆 O 中,作一关于圆心对称,邻边互相垂直的十字形,其中 y > x > 0 .(Ⅰ)将十字形的面积表示为θ的函数;(θ为何值时,十字形的而积最大?最大面积是多少? 解( I )设 S 为十字形的面积,依题意有)24(cos cos sin 2222πθπθθθ<<-=-=x xy S(Ⅱ)化简S 的表达式21)2sin(25212cos 212sin cos cos sin 22--=--=-=ϕθθθθθθS其中552arccos =ϕ,当1)2sin(=-ϕθ即22πϕθ=-时,S 最大所以,当552arccos 214+=πθ时,S 最大,最大值为215-点评 在求三角函数的极值时经常通过引人辅助角后利用三角函数的有界性求解. 【例20】(200 ,年全国卷)若b a =+=+<<<ββααπβαcos sin ,cos sin ,40则( )(A )b a < (B )b a > (C )1<ab (D)2>ab解:)4sin(2),4sin(2πβπα+=+=b a∵⇒<<<40πβα2444ππβπαπ<+<+<又x y sin =在)2,0(π上是增函数,∴)4sin(2)4sin(2πβπα+=<+=b a故选A点评 比较大小,一般可作差比较,但运算量较大.这里由于b a 、均为x n x m cos sin +型,所以可引入辅助角,这是处理此类问题的常用技巧. 七、平方消元有时将某些式子平方后再相减(加)可消去一些项,使所求问题变得更简单明了.【例21】(2005年南昌市模拟题)设βα、为锐角,且)cos ,(sin αα-=,)22,66(),sin ,cos (=+-=ββ,求⋅和)cos(βα+的值。

相关文档
最新文档