2-1,圆锥曲线定点定值

合集下载

高考数学复习:圆锥曲线的定点、定值、定直线

高考数学复习:圆锥曲线的定点、定值、定直线

高考数学复习:圆锥曲线的定点、定值、定直线【热点聚焦】纵观近几年的高考试题,圆锥曲线的定点、定值、定直线问题是热点之一.从命题的类型看,主要是大题.一般说来,考查直线与椭圆、双曲线、抛物线的位置关系问题,综合性较强,涉及方程组联立,根的判别式、根与系数的关系、弦长、面积、参数、几何量为定值,或定点在某直线上、定直线过某点等.难度往往大些.【重点知识回眸】(一)定值问题1.定义:定值问题是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.3.常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.4.定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算(二)定点问题1.求解圆锥曲线中的定点问题的两种思路:(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组()0g()0f x y x y =⎧⎨=⎩,,;③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,则可以特殊解决.2.求解圆锥曲线中的定点问题的方法(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y .常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号内的部分为零即可②若等式为含k 的分式,00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)3.一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线).然后再验证该点(或该直线)对一般情况是否符合.属于“先猜再证”.(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件.所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点.尤其在含参数的直线方程中,要能够找到定点,抓住关键条件.例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转.(三)定直线问题探求圆锥曲线中的定直线问题的两种方法:方法一是参数法,即先利用题设条件探求出动点T 的坐标(包含参数),再消去参数,即得动点T 在定直线上;方法二是相关点法,即先设出动点T 的坐标为(x,y),根据题设条件得到已知曲线上的动点R 的坐标,再将动点R 的坐标代入已知的曲线方程,即得动点T 在定直线上.【典型考题解析】热点一定值问题【典例1】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.【典例2】如图,已知抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||MN MN -为定值,并求此定值.【典例3】已知抛物线C :22(0)y px p =>的焦点为F ,过F 且斜率为43的直线l 与抛物线C 交于A ,B 两点,B 在x 轴的上方,且点B 的横坐标为4.(1)求抛物线C 的标准方程;(2)设点P 为抛物线C 上异于A ,B 的点,直线PA 与PB 分别交抛物线C 的准线于E ,G 两点,x 轴与准线的交点为H ,求证:HG HE ⋅为定值,并求出定值.【典例4】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH = .证明:直线HN 过定点.【典例5】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【典例6】已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).【典例7】设椭圆的焦点在x 轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.【典例8】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅= ,证明:直线PQ 过定点.【典例9】设12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右两个焦点,O 为坐标原点,若点P 在双曲线C 的右支上,且1122,OP OF PF F == 的面积为3.(1)求双曲线C 的渐近线方程;(2)若双曲线C 的两顶点分别为()()12,0,,0A a A a -,过点2F 的直线l 与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.1.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2.在平面直角坐标系中,动点(),M x y 与定点()5,0F 的距离和M 到定直线16:5l x =的距离的比是常数54,设动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设()2,0P ,垂直于x 轴的直线与曲线C 相交于,A B 两点,直线AP 和曲线C 交于另一点D ,求证:直线BD 过定点.3.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为32,右焦点F.(1)求双曲线C 的方程;(2)若12,A A 分别是C 的左、右顶点,过F 的直线与C 交于,M N 两点(不同于12,A A ).记直线12,A M A N 的斜率分别为12,k k ,请问12k k 是否为定值?若是定值,求出该定值;若不是,请说明理由.4.已知椭圆C :()222210x y a b a b+=>>的左焦点为()11,0F -,上、下顶点分别为A ,B ,190AF B ∠=︒.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM OP OQ =+uuu r uu u r uuu r ,证明:四边形OPMQ 的面积为定值.5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.6.已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.7.在直角坐标系xOy 中,已知定点(0,1)F ,定直线:3l y =-,动点M 到直线l 的距离比动点M 到点F 的距离大2.记动点M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设0(2,)P y 在C 上,不过点P 的动直线1l 与C 交于A ,B 两点,若90APB ∠=︒,证明:直线1l 恒过定点.8.椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,M 为直线3x =-上任意一点,过F 作MF 的垂线交椭圆C 于点P ,Q .证明:OM 经过线段PQ 的中点N .(其中O 为坐标原点)9.已知椭圆E :()222210x y a b a b +=>>的离心率为2,短轴长为2.(1)求E 的方程;(2)过点()4,0M -且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MB NBMC NC =,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为1k ,2k ,求证:12k k 为定值.10.已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭ ,问:l 是否过一定点?若过定点,求出该定点的坐标11.已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,圆O :222x y a +=,过F 且垂直于x 轴的直线被椭圆C 和圆O.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线1l ,2l ,记1l ,2l 的斜率分别为1k ,2k ,直线OP 的斜率为3k ,证明:()123k k k +为定值.12.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.。

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法: (1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。

例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e −+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值..思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB 的表达式,化简整理得到定值.②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求△FBM 的面积;(2) ①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .圆锥曲线中的定点、定值问题解析一、题型选讲例1【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +−=−,可得121227(3)(3)y y x x =−++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219x y +=得222(9)290.m y mny n +++−=所以12229mn y y m +=−+,212299n y y m −=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +−−++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).例2、【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭,l ∴的方程为2p y x =−.由2,22,p y x y px ⎧=−⎪⎨⎪=⎩得22304p x px −+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =−(0k ≠),由()22,8,y k x y x ⎧=−⎨=⎩得()22224840k x k x k −++=,()22222484464640k k k k ∆=+−⋅⋅=+>,212248k x x k++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a −=−,()222PNk x k x a−=−. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+−−+−−=−+++=−=⎡⎤⎣⎦, ∴2a =−时,此时()2,0P −.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P −,使直线PM ,PN 关于x 轴对称. 例3、【解析】(1)由抛物线2:2C x py =−经过点(2,1)−,得2p =.所以抛物线C 的方程为24x y =−,其准线方程为1y =.(2)抛物线C 的焦点为(0,1)F −. 设直线l 的方程为1(0)y kx k =−≠.由21,4y kx x y=−⎧⎨=−⎩得2440x kx +−=.设()()1122,,,M x y N x y ,则124x x =−. 直线OM 的方程为11y y x x =. 令1y =−,得点A 的横坐标11A x x y =−. 同理得点B 的横坐标22B x x y =−. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=−−−=−−− ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫−− ⎪⎪⎝⎭⎝⎭21216(1)n x x =++ 24(1)n =−++.令0DA DB ⋅=,即24(1)0n −++=,则1n =或3n =−. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)−.例4、【解析】(1)由题设得22411a b +=,22212a b a −=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++−=. 于是2121222426,1212km m x x x x k k −+=−=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y −−+−−=,可得221212(1)(2)()(1)40k x x km k x x m ++−−++−+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k−+−−−+−+=++. 整理得(231)(21)0k m k m +++−=.因为(2,1)A 不在直线MN 上,所以210k m +−≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =−−≠.所以直线MN 过点21(,)33P −.若直线MN 与x 轴垂直,可得11(,)N x y −.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y −−+−−−=.又2211163x y +=,可得2113840x x −+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P −.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP =. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.例5、【解析】(1)由2220e −+=解得2e =或e =,∴a =,又222a b c =+,a ∴=,又()020AC k a −−==−a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =−,设()()1122,,,P x y Q x y ,由22212y kx x y =−⎧⎪⎨+=⎪⎩得()2221860k x kx +−+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k −−⨯⨯+=216240k −> 232k ∴>, ∴()121224421y y k x x k −+=+−=+,()()121222y y kx kx =−−()21212=24k x x k x x −++=224221k k −+, 直线BP 的方程为1111y y x x −=+,令0y =解得111x x y =−,则11,01x M y ⎛⎫⎪−⎝⎭,同理可得22,01x N y ⎛⎫⎪−⎝⎭, 12123411BOMBCNx x SSy y ∴=−−=()()()12121212123341141x x x x y y y y y y =−−−++=22226321444212121k k k k +−++++=12, BOM BON S S∆∴为定值12. 例6、 (1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分) 2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.(6分)所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PAPB=|x P-x A||x P-x B|=|x P-x A||x P+x A|=2-12+1=3-2 2.所以PAPB=3-22为定值.(8分)②设P(x0,y0),所以直线l1的方程为y-y0=k1(x-x0),即y=k1x-k1x0+y0,记t=-k1x0+y0,则l1的方程为y=k1x+t,代入椭圆C1的方程,消去y,得(4k21+1)x2+8k1tx+4t2-4=0,因为直线l1与椭圆C1有且只有一个公共点,所以Δ=(8k1t)2-4(4k21+1)(4t2-4)=0,即4k21-t2+1=0,将t=-k1x0+y0代入上式,整理得,(x20-4)k21-2x0y0k1+y20-1=0,(12分)同理可得,(x20-4)k22-2x0y0k2+y20-1=0,所以k1,k2为关于k的方程(x20-4)k2-2x0y0k+y20-1=0的两根,从而k1·k2=y20-1x20-4.(14又点在P(x0,y0)椭圆C2:x28+y22=1上,所以y20=2-14x20,所以k1·k2=2-14x20-1x20-4=-14为定值.(16分)二、达标训练1、【解析】(I) 椭圆22:14xC y+=,故)F,1 ||22FP x ====−.(II)设()33,A x y,()44,B x y,则将y kx m=+代入2214xy+=得到:()222418440k x kmx m+++−=,故2121222844,4141km mx x x xk k−−+==++,21241x xk−=+,OA OB=,故()3434343421k x x my yx x x x k+++==−++,得到34221kmx xk−+=+,PA PF=13122x x−=−42222x x−=−,由已知得:3124x x x x<<<或3124x x x x>>>,)()123421x x x x x+−+=−,2228241141km kmk k k−+=+++,化简得到221m k=+.故原点O到直线l的距离为1d==为定值.2、【解析】(1)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由241y xy kx⎧=⎨=+⎩得22(24)10k x k x+−+=.依题意22(24)410k k∆=−−⨯⨯>,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2).由(1)知12224kx xk−+=−,1221x xk=.直线P A的方程为1122(1)1yy xx−−=−−.令x=0,得点M的纵坐标为1111212211My kxyx x−+−+=+=+−−.同理得点N的纵坐标为22121Nkxyx−+=+−.由=QM QOλ,=QN QOμ得=1Myλ−,1Nyμ=−.所以2212121212122224112()111111=2111(1)(1)11M Nkx x x x x x k ky y k x k x k x x kk λμ−+−−−++=+=+=⋅=⋅−−−−−−.所以11λμ+为定值.3、规范解答(1)设椭圆的半焦距为c,由已知得,ca=32,则a2c-c=33,c2=a2-b2,(3分)解得a=2,b=1,c=3,(5分)所以椭圆E的标准方程是x24+y2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分)所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-8k 21t 21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分) 所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t),设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分) 因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD →=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t 2x 3x 4-t (x 3+x 4)+t 2.代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分)因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)4规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0),当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为x 3+y -1=1,即y =33x -1,联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍),即M ⎝⎛⎭⎫837,17.(2分)连结BF ,则直线BF :x 3+y1=1,即x +3y -3=0,而BF =a =2,点M 到直线BF 的距离为d =⎪⎪⎪⎪837+3×17-312+(3)2=2372=37.故S △MBF =12·BF ·d =12×2×37=37.(4分)(2) 解法1(点P 为主动点) ①设P(m ,-2),且m≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m , 则直线PM 的方程为y =-1m x -1,联立⎩⎨⎧y =-1m x -1,x 24+y 2=1化简得⎝⎛⎭⎫1+4m 2x 2+8m x =0,解得M ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4,(6分)所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,(8分)所以k 1·k 2=-3m ·14m =-34为定值.(10分)5、规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(4分)(2) 设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -2,x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1x -2,x24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,(8分) 所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(10分) (3) 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝⎛⎭⎫-65,-85,则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎫x +65, 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝⎛⎭⎫x +65,x 2+y 2=4解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q .(16分) (不考虑直线与x 轴垂直的情形扣1分)。

圆锥曲线定值,定点

圆锥曲线定值,定点

过圆锥曲线上定点和斜率和积为定值直线,则直线过定点(一)一般性推论:过圆锥曲线上一定点产生的两条直线斜率和积为定,则另外两点的连线过定点。

数学表达:若点定一上线曲锥圆为点定过线直值定者或值定⎩⎨⇒⎧∙=+=P k k k k PA PB PA PB AB点定一上线曲锥圆为值定者或值定点定过线直⎩⎨⇒∙=+=⎧P k k k k PA PB PA PB AB 其次法的使用要点:“齐次”即次数相等的意思,例如=++x cy f ax bxy 22)(称为二次齐式,即二次齐次式的意思,因为f x )(中每一项都是关于x 、y 的二次项。

当圆锥曲线遇到斜率之和或者斜率之积的问题,可以先平移图形,将公共点平移到原点,注意平移口诀是“左加右减,上减下加”,注意此处因为是在y 同侧进行加减,故为“上减下加”,而我们以往记的“上加下减”都是在y 的异侧。

例如要证明直线AP 与AQ 的斜率之和或者斜率之积为定值,可将公共点A 平移到原点,设平移后的直线为+=mx ny 1(为什么这样设?因为这样齐次化能更加方便解题),与圆锥曲线方程联立,一次项乘以+mx ny ,常数项乘以+mx ny 2)(,构造++=ay bxy cx 022,然后等式两边同时除以x 2(前面注明x 不等于0),得到⎝⎭⎪++=⎛⎫x x a b c y y 02,化简为++=ak bk c 02,可以直接利用韦达定理得出斜率之和或者斜率之积,即可得出答案,如果是过定点题目,还需要还原直线,之前如何平移,现在就如何反平移回去。

解题的方法步骤为: (1)平移直线; (2)联立方程并齐次化; (3)同除x 2:(4)利用韦达定理证明,如果过定点,还需要还原直线。

优点;大大减小了计算量,提高准确率,缺点:+=mx ny 1不能表示过原点的直线。

一. 构造法解整式问题在抛物线中的应用引题:证明:已知直线l 与抛物线 2p (p>0,p为常数)交于点A ,B 两点,若OA ⊥OB,则直线l 恒过定点(2p,0)设,B(x ,y ))x ,y (A 1122,⊥⇒∙=∙=-x x OA OB k k y y OA OB 11212设AB 直线方程为+=mx ny 1(截距式的变形式可以表示任意直线,该种设法可以利用1的妙用,快速制作齐次式)联立⎩=⎨⎧+=y pxmx ny 212第一步:构造齐次式-∙+=⇒--=y px ny pnxy pmx 2(mx )0y 220222易知A ,B 两点不与O 点重合,所以x 0令则==y p 0,x 2,所以直线过定点(2p,0) 常规证明方法(略)例1:(2017•新课标Ⅰ文)设A ,B 为曲线C :y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.第一步:平移抛物线,将抛物线沿→M O 方向平移,及左移2个单位,下移1个单位,及抛物线方程变为=+-y 4(x 2)112化简得+-x x 42联立方程=0⎩⎧+=-⎨-y y mx m x x 4142第二步:构造齐次式--∙-=⇒+-+=x mxy my 4(x y)m(x y)0(14m)x 840222,第四步平移回去:右2,上1,=-++=+y x x 28171.(2020春•江西月考)过抛物线E:y2=2px(p>0)上一点M(1,﹣2)作直线交抛物线E于另一点N.(Ⅰ)若直线MN的斜率为1,求线段|MN|的长;(Ⅱ)不过点M的动直线l交抛物线E于A,B两点,且以AB为直径的圆经过点M,问动直线l是否恒过定点.如果有求定点坐标,如果没有请说明理由.题型拓展:2.(2021•齐齐哈尔一模)已知抛物线C1:y2=2px(p>0)的焦点F是椭圆C2:x2+2y2=1的一个顶点.(1)求抛物线C1的方程;(2)若点P(1,2),M,N为抛物线C1上的不同两点,且PM⊥PN.求证:直线MN过定点.斜率和积为定值,直线过定点问题在椭圆中的数学模型建立k k PA PB ⋅=定值或者k k PA PB +=定值,直线过定点,P 点坐标之间的转化证明 将椭圆C 按向量--x y ,00)(平移得椭圆C x x ay y b'+++=2222:001)()(又点P x y ,00)(在椭圆xa yb+=22221上,所以x a y b +=2222001,代入上式得+++=a b a b x y x y x y 022********①。

圆锥曲线中的定点问题及解决方法

圆锥曲线中的定点问题及解决方法

圆锥曲线中的定点问题及解决方法1. 引言1.1 背景介绍圆锥曲线是几何学中一个重要的概念,指的是由一个平面与一个圆锥体相交而得到的曲线。

在数学中,圆锥曲线包括圆、椭圆、双曲线和抛物线四种类型。

这些曲线在几何学和代数学中有着广泛的应用,涉及到许多重要的定理和性质。

圆锥曲线中的定点问题是指关于曲线上或曲线与其他几何图形的交点位置和性质的问题。

这些问题在实际应用中具有重要意义,例如在天文学中描述行星轨道的形状,或在工程学中设计湖面上的浮标位置等。

研究圆锥曲线中的定点问题不仅可以加深对这些曲线的理解,更可以拓展数学知识的应用范围。

通过研究不同的解决方法,可以进一步提高解决问题的能力和技巧,为数学领域的发展贡献力量。

深入探讨圆锥曲线中的定点问题具有重要的研究意义和价值。

1.2 问题提出圆锥曲线中的定点问题是一个重要而复杂的数学问题,其研究有着深远的理论和应用意义。

在圆锥曲线中,定点问题是指在已知曲线的情况下,找到曲线上满足一定条件的点的位置。

这种问题涉及到几何、代数和分析等多个数学领域,需要综合运用不同的数学方法来求解。

定点问题在圆锥曲线中具有广泛的实际应用。

比如在工程领域中,定点问题可以帮助我们确定某个位置的几何特性,从而设计出更加精确的结构。

在物理学中,定点问题可以帮助我们分析物体的运动轨迹和速度方向。

在计算机图形学和机器人领域中,定点问题也有着重要的应用价值。

研究圆锥曲线中的定点问题不仅有助于深化数学理论,还能推动相关领域的发展和创新。

在本文中,我们将介绍不同的解决方法来解决圆锥曲线中的定点问题,探讨其适用场景和未来研究方向,以期为相关领域的研究工作提供一定的参考和启发。

1.3 研究意义在圆锥曲线中,定点问题具有重要的研究意义。

通过对定点问题的研究,我们可以深入理解圆锥曲线的性质和特点,进一步探索其数学规律和几何意义。

定点是曲线上的固定点,对于圆锥曲线而言,定点的位置和性质对曲线的形状和特征具有决定性影响。

圆锥曲线中的定点、定值问题(教师)

圆锥曲线中的定点、定值问题(教师)

圆锥曲线中的定点、定值问题【方法归纳】定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.如:定点问题①探索直线过定点时,可设出直线方程为,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点.②根据条件化为恒等式,求出定点.【典例分析】【定点问题】【例1】(2012.福建卷)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.【解析】(Ⅰ)∵过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.∴4a=8,∴a=2 ∵e=,∴c=1 ∴b2=a2-c2=3 ∴椭圆E的方程为.法一:法二:取k=0,m=,此时P(0,),Q(4,),y kx m=+,k m22221(b0)x yaa b+=>>12以PQ为直径的圆为(x-2)2+(y-)2=4,交x轴于点M1(1,0)或M2(3,0)取k=,m=2,此时P(1,),Q(4,0),以PQ为直径的圆为(x-)2+(y-)2=,交x轴于点M3(1,0)或M4(4,0)故若满足条件的点M存在,只能是M(1,0),证明如下∵∴故以PQ为直径的圆恒过x轴上的定点M(1,0)解法3:(导数求切线斜率)【定直线问题】【例2】(2013.安徽卷)设椭圆的焦点在轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.解: (Ⅰ).(Ⅱ) .由.12-32523445162222:11x yEa a+=-xE E12,F F P E2F P y Q11F P F Q⊥a p13858851,12,122222222=+=⇒+-==->xxacaacaa,椭圆方程为:),(),,),,0(),,(),0,(),0,(2221mcQFycxPFmQyxPcFcF-=-=-(则设)1,0(),1,0()1,0(12∈∈⇒∈⇒>-yxaa⎩⎨⎧=++=-⊥=+=)()(,//).,(),,(112211mycxcycxcmQFPFQFPFmcQFycxPF得:由所以动点P 过定直线.【定曲线问题】【例3】(2014·福建卷) 已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率.(2)如图1­6,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.解:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以b a =2,所以c 2-a 2a=2,故c =5a ,从而双曲线E 的离心率e =ca= 5.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB 的面积为8, 所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2, 此时双曲线E 的方程为x 24-y216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝ ⎛⎭⎪⎫-mk,0.记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x 得y 1=2m 2-k ,同理得y 2=2m 2+k .由S △OAB =12|OC |·|y 1-y 2|,得 12⎪⎪⎪⎪⎪⎪-m k ·⎪⎪⎪⎪⎪⎪2m2-k -2m 2+k =8,解得联立⎪⎪⎪⎩⎪⎪⎪⎨⎧+-==-=-+=-⇒=+-⇒22222222222222111.))((c a a c y x a y a x c y x y c x c x y x y x y x y x y y x x -=∴∈∈±=⇒=+-++-⇒1)1,0(),1,0(.)1(1121222222222 01=-+y x即m 2=4||4-k 2=4(k 2-4).由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 216=1得(4-k 2)x 2-2kmx -m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16). 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法二:(1)同方法一.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2). 依题意得-12<m <12.由⎩⎪⎨⎪⎧x =my +t ,y =2x 得y 1=2t 1-2m , 同理得y 2=-2t 1+2m .设直线l 与x 轴相交于点C ,则C (t ,0).由S △OAB =12|OC |·|y 1-y 2|=8,得12|t |·⎪⎪⎪⎪⎪⎪2t 1-2m +2t 1+2m =8.所以t 2=4|1-4m 2|=4(1-4m 2).由⎩⎪⎨⎪⎧x =my +t ,x 2a 2-y 24a2=1得(4m 2-1)y 2+8mty +4(t 2-a 2)=0. 因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0, 即4m 2a 2+t 2-a 2=0, 即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0, 所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法三:(1)同方法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).依题意得k >2或k <-2.由⎩⎪⎨⎪⎧y =kx +m ,4x 2-y 2=0得(4-k 2)x 2-2kmx -m 2=0, 因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k2,又因为△OAB 的面积为8,所以12 |OA |·|OB |· sin∠AOB =8,又易知sin∠AOB =45,所以25x 21+y 21·x 22+y 22=8,化简得x 1x 2=4.所以-m 24-k2=4,即m 2=4(k 2-4).由(1)得双曲线E 的方程为x 2a 2-y 24a 2=1,由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2-y 24a2=1得(4-k 2)x 2-2kmx -m 2-4a 2=0. 因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0, 即(k 2-4)(a 2-4)=0,所以a 2=4, 所以双曲线E 的方程为x 24-y 216=1.当l ⊥x 轴时,由△OAB 的面积等于8可得l :x =2,又易知l :x =2与双曲线E :x 24-y 216=1有且只有一个公共点.综上所述,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.【定量问题】【例4】(2014·江西卷) 如图1­7所示,已知双曲线C :x 2a2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.解:(1)设F (c ,0),因为b =1,所以c =a 2+1.由题意,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),所以B ⎝ ⎛⎭⎪⎫c2,-c 2a .又直线OA 的方程为y =1ax ,则A ⎝ ⎛⎭⎪⎫c ,c a ,所以k AB =c a -⎝ ⎛⎭⎪⎫-c 2a c -c 2=3a .又因为AB ⊥OB ,所以3a ·⎝ ⎛⎭⎪⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0(y 0≠0). 因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝ ⎛⎭⎪⎫2,2x 0-33y 0,直线l 与直线x =32的交点为N 32,32x 0-33y 0,则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝ ⎛⎭⎪⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2. 又P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得|MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以|MF ||NF |=23=233,为定值.【例5】(2013.江西卷)如图,椭圆经过点离心率,直线的方程为. (1) 求椭圆的方程;(2) 是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.解:(1)由在椭圆上得, ①依题设知,则 ②②代入①解得.故椭圆的方程为.(2)方法一:由题意可设的斜率为, 则直线的方程为 ③代入椭圆方程并整理,得,设,则有④在方程③中令得,的坐标为.从而. 注意到共线,则有,即有.2222+=1(>>0)x y C a b a b :3(1,),2P 1=2e l =4x C AB F P AB l M ,,PA PB PM 123,,.k k k λ123+=.k k k λλ3(1,)2P 221914a b +=2a c =223bc =2221,4,3c a b ===C 22143x y +=AB k AB (1)y k x =-223412x y +=2222(43)84(3)0k x k x k +-+-=1122(,),(,)A x yB x y 2212122284(3),4343k k x x x x k k -+==++4x =M (4,3)k 121231233331222,,11412y y k k k k k x x ---====----,,A F B AFBF k k k ==121211y ykx x ==--所以⑤④代入⑤得, 又,所以.故存在常数符合题意. 方法二:设,则直线的方程为:,令,求得, 从而直线的斜率为,联立 ,得,则直线的斜率为:,直线的斜率为:,所以,故存在常数符合题意.【突破提高】1212121212123331122()1111212y y y y k k x x x x x x --+=+=+-+------1212122322()1x x k x x x x +-=-⋅-++22122222823432214(3)8214343k k k k k k k k k k -++=-⋅=---+++312k k =-1232k k k +=2λ=000(,)(1)B x y x ≠FB 00(1)1y y x x =--4x =003(4,)1y M x -PM 0030212(1)y x k x -+=-0022(1)1143y y x x x y ⎧=-⎪-⎪⎨⎪+=⎪⎩0000583(,)2525x y A x x ---PA 00102252(1)y x k x -+=-PB 020232(1)y k x -=-00000123000225232122(1)2(1)1y x y y x k k k x x x -+--++=+==---2λ=1.若AB 是过椭圆中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与坐标轴不平行,,分别表示直线AM ,BM 的斜率,则=( )A. B. C. D.【解析】本题可用特殊值法.不妨设弦AB 为椭圆的短轴.M 为椭圆的右顶点,则A (0,b ),B (0,-b ),M (a ,0).所以.故选B .2.设e 1,e 2分别为具有公共焦点F 1与F 2的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足1·2=0,则e 21+e 22e 1e 22的值为________. 解析:设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,|F 1F 2|=2c , 由题意得|PF 1|+|PF 2|=2a 1,||PF 1|-|PF 2||=2a 2, ∴|PF 1|2+|PF 2|2=2a 21+2a 22. 又∵1·2=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2,即2a 21+2a 22=4c 2.∴⎝ ⎛⎭⎪⎫a 1c 2+⎝ ⎛⎭⎪⎫a 2c 2=2,即1e 21+1e 22=2,即e 21+e 22e 1e 22=2.3.过抛物线:(>0)的焦点作直线交抛物线于两点,若线段与的长分别为,则的值必等于( ).A .B .C .D .解法1:(特殊值法) 令直线与轴垂直,则有:,所以有解法2:(参数法) 如图1,设,且,分别垂直于准线于.,抛物线(>0)的焦点,准线.∴ :又由,消去得, ∴,22221(b 0)x y a a b +=>>PFPF PF PF m 2y ax =a F l ,P Q PF FQ ,p q 11p q --+2a 12a 4a 4a l x l 14y a =12p q a ⇒==114p q a --+=11(,)P x y 22(,)Q x y PM QN ,M N 114p PM y a ==+214q QN y a ==+2y ax =a 1(0,)4F a 14y a =-l 14y kx a =+l m x 222168(12)10a y a k y -++=212122121,216k y y y y a a ++==∴∴.4.已知点P 是双曲线 (a >0,b >0)右支上一点,F 1,F 2分别为双曲线的左、右焦点,H 为△PF 1F 2的内心。

圆锥曲线的定点定值问题

圆锥曲线的定点定值问题

圆锥曲线的定点定值问题(最新版)目录一、圆锥曲线的定点定值问题概述1.定点问题的定义与求解方法2.定值问题的定义与求解方法3.圆锥曲线中定点定值问题的重要性二、定点问题的求解方法1.引进参数法2.直接解法三、定值问题的求解方法1.函数与方程思想2.转化与化归思想3.数形结合思想四、圆锥曲线中定点定值问题的典型例题分析1.椭圆中的定点定值问题2.双曲线中的定点定值问题3.抛物线中的定点定值问题五、总结与展望1.圆锥曲线中定点定值问题的解题技巧与方法2.对学生逻辑思维能力与计算能力的培养正文一、圆锥曲线的定点定值问题概述圆锥曲线是解析几何中的重要内容,也是高考数学中的热点问题。

圆锥曲线中的定点定值问题,主要包括定点问题和定值问题。

定点问题是指在运动变化过程中,直线或曲线恒过平面内的某个或某几个定点,而定值问题则是指几何量在运动变化中保持不变。

这类问题对学生的逻辑思维能力和计算能力有较高的要求,是高考数学中的难点之一。

二、定点问题的求解方法1.引进参数法在解决定点问题时,我们可以引入适当的参数,将问题转化为关于参数的方程或不等式,然后求解参数的取值范围,进而得到定点的坐标。

2.直接解法对于一些简单的定点问题,我们可以直接通过解析几何中的公式和定理求解。

例如,当直线与圆相交时,直线上的定点可以通过求解直线与圆的交点得到。

三、定值问题的求解方法1.函数与方程思想在解决定值问题时,我们通常可以将问题转化为函数与方程的问题。

通过寻找合适的函数关系,我们可以得到定值的表达式,进而求解问题。

2.转化与化归思想在解决定值问题时,我们可以通过转化与化归的思想,将问题转化为更容易解决的形式。

例如,在解决椭圆中的定值问题时,我们可以将椭圆转化为圆,从而简化问题。

3.数形结合思想在解决定值问题时,我们可以利用数形结合的思想,通过几何图形的性质和公式,得到定值的表达式。

例如,在解决抛物线中的定值问题时,我们可以通过抛物线的几何性质,得到定值的表达式。

1_2_圆锥曲线定点定值问题之定比点差法

1_2_圆锥曲线定点定值问题之定比点差法

1_2_圆锥曲线定点定值问题之定比点差法一、圆锥曲线定点定值问题圆锥曲线定点定值问题是数学中的一个重要分支,它是求解由圆锥曲线上的点来确定曲线的定值问题。

这类问题常用于统计图形、机械工程、测绘学、几何拓扑等领域的应用。

圆锥曲线定点定值问题一般包括以下四个方面:1. 求取圆锥曲线的函数形式:即给定圆锥曲线的一些特征点(如圆心、焦点或直线),求出该曲线的函数表达式;2. 求取满足定点定值条件的曲线:即给定一组点,求出在这组点上取得指定值的曲线;3. 求取满足定值定点条件的曲线:即给定一组值,求出能使这组值在指定点上取得的曲线;4. 求取满足定点定值定切线条件的曲线:即给定曲线上的一组点及其对应的切线方向,求出在这些点上取得指定的值的曲线。

二、定比点差法方法,它基于圆锥曲线的定义,将曲线上的每两点之间的比率作为关键参数,从而构造出满足定值定点条件的曲线。

定比点差法的基本思想是:给定圆锥曲线上的N个点,根据定义求出每两点之间的比率,即点A(x1,y1)和点B(x2,y2)之间的比率为R=y1/y2,将R作为新的曲线的参数。

令新曲线的关于x的函数为f(x),则f(x1)=y1,f(x2)=y2,有f(x1)/f(x2)=R,即f(x2)=[f(x1)]/R,再令f(x3)=y3,则f(x3)=[f(x2)]/R,一般情况下,新曲线的函数可表示为:f(xn)=[f(xn-1)]/R其中n=2,3,…,N,即可求解出新曲线的函数f(x),此函数满足圆锥曲线定点定值问题的要求,即给定N个点的坐标,求出在这N个点上取得指定的值的曲线的函数。

定比点差法的主要优点是,它可以快速求解满足定点定值条件的曲线,并且不需要太多的计算量。

但是,该方法有一定的局限性,即只能用于求解给定点的曲线,无法求解给定值的曲线。

种优秀方法,由于其简单易行,使用比较广泛,是一个值得研究的重要问题。

圆锥曲线定点定值及其他常用结论个人整理,已经没错误

圆锥曲线定点定值及其他常用结论个人整理,已经没错误

圆锥曲线定点定值及其他常用结论一、直线过定点问题过定点模型:是圆锥曲线上的两动点,是一定点,其中分别为的倾斜角,则有下面的结论:、为定值直线恒过定点;、为定值直线恒过定点;、直线恒过定点.方法:要证明直线过定点,只需要找到与之间的关系即可.确定定点,可以证明任意两个斜率相等即可.二、定值问题基本思路:转化为与两点相关的斜率与的关系式的关系式代数式形式的定值(多个参数)结论:①若代数式表达式结果为分式,且为定值,则系数对应成比例;形如,若,则该式为定值,与无关;(注意是变量,具有任意性,是主元)②若代数式表达式结果为整式,则无关参数的系数为0.例如:,当即时,该式为定值与无关. (注意是变量,具有任意性,是主元)三、椭圆经典结论1、过椭圆(上任一点任意作两条倾斜角互补的直线交椭圆于两点,则直线有定向且(常数).(求偏导可得到)(类似结论适合于双曲线,抛物线)2、设椭圆()的两个焦点为(异于长轴端点)为椭圆上任意一点,在中,记,,,则有.3. 椭圆与直线有公共点的充要条件是4.已知椭圆(),为坐标原点,为椭圆上两动点,且.(对原点张直角)1); 2)的最大值为; 3)的最小值是.4)直线PQ必经过一个定点;5)点到直线的距离为定值:.5 . 过椭圆()的右焦点作直线交椭圆于两点,弦的垂直平分线交轴于,则.类比.过双曲线(a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则.6.设椭圆(a>b>0),M(m,0)或(0,m)为其对称轴上除中心,顶点外的任一点,过M引一条直线与椭圆相交于P、Q两点,则直线AP、AQ(AA为对称轴上的两顶点)的交点N在直线:(或)上.(用极点与极线直接写出来)7、椭圆中的过定点模型:是椭圆上异于的两动点,其中分别为的倾斜角,则可以得到下面几个充要的结论:(手电筒模型)直线恒过定点类比.给定双曲线C:,对C上任意给定的点,它的任一直角弦必须经过定点(.8、抛物线中的过定点模型:是抛物线上异于的两动点,其中分别为的倾斜角,则可以得到下面充要的结论:(手电筒模型)直线恒过定点特别地直线恒过定点.9、设点是椭圆()上异于长轴端点的任一点,为其焦点记,则 (1). (2).(双曲线(a>0,b>0)中,,其中θ=∠FPF.)10.椭圆的参数方程是,椭圆上的动点可设对于抛物线上的动点的坐标可设为,(抛物线独有的一点两设)以简化计算.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.(2)若渐近线方程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上)(4).双曲线焦点到渐近线的距离总是.顶点到渐近线的距离为(5).双曲线称为等轴双曲线,其渐近线方程为,离心率.抛物线常用设为过抛物线焦点的弦,,直线的倾斜角为,则1. 2.3. 4. 5 .圆锥曲线的切线问题(用极点与极线直接写出来)(证明需要求偏导)1.过圆C:(x-a)+(y-b)=R上一点P(x,y)的切线方程为(x-a)(x-a)+(y-b)(y-b)=R.2. 若在椭圆上,则以为切点的切线的椭圆的切线方程是.3.若在双曲(a>0,b>0)上,则过的双曲线的切线方程是.4.已知点M(x,y)在抛物线C:y=2px(p≠0)上时,M为切点的切线l:yy=p(x+x).(切点弦结论完全相同,用极点与极线直接写出来)圆锥曲线的中点弦问题(点差法)(广义的垂径定理)(也适合于相切情况)AB 是椭圆的不平行于对称轴的弦,M为AB的中点,则=e-1,即。

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。

圆锥曲线的定点、定值问题(解析版)

圆锥曲线的定点、定值问题(解析版)

2020上学期期末复习专题1 圆锥曲线的定点、定值问题(教师版)一.知识梳理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则: Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |= 1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·|y 1-y 2|= 1+1k2·(y 1+y 2)2-4y 1y 2. 3.定点问题(1)参数法:参数法解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k );②利用条件找到k 与过定点的曲线F (x ,y )=0之间的关系,得到关于k 与x ,y 的等式,再研究变化量与参数何时没有关系,找到定点.(2)由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.4.定值问题(1)直接消参求定值:常见定值问题的处理方法:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.(2)从特殊到一般求定值:常用处理技巧:①在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;②巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.二.题型归纳题型1 “设参→用参→消参”三步解决圆锥曲线中的定点问题【例1-1】已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线2y =2px (p >0)的焦点坐标为F (1,0),所以p2=1,所以p =2.所以抛物线C 的方程为2y =4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎪⎪⎭⎫ ⎝⎛t t ,42,B ⎪⎪⎭⎫⎝⎛-t t ,42. 因为直线OA ,OB 的斜率之积为-12,所以214422-=-⋅t t t t ,化简得2t =32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A ()A A ,y x ,B ()B B ,y x ,联立⎩⎨⎧+==bkx y x y 42,消去x ,化简得ky 2-4y +4b =0.所以B A y y =4bk ,因为直线OA ,OB 的斜率之积为-12,所以21-=⋅B B A A x y x y ,整理得B A x x +2B A y y =0.即024422=+⋅B A B A y y yy ,解得B A y y =0(舍去)或B A y y =-32.所以B A y y =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0).【跟踪训练1-1】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明:直线l 过定点,并求出该定点的坐标.【解】(1)由题意得,c =3,a b=2,a 2=b 2+c 2,∴a =2,b =1, ∴椭圆C 的标准方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立⎩⎨⎧y =kx +m ,x 2+4y 2=4,消去y ,可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1) =(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m =-35或m =1(舍去).∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为⎪⎭⎫ ⎝⎛-530,.【总结归纳】定点问题实质及求解步骤解析几何中的定点问题实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步:题型2 “设参→用参→消参”三步解决圆锥曲线中的定值问题【例2-1】设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NM 2=(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与 点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.[解] (1)设P(x ,y),M(x 0,y 0),则N(x 0,0).∵NP ―→= 2 NM ―→,∴(x -x 0,y)=2(0,y 0),∴x 0=x ,y 0=y 2.又点M 在椭圆上,∴142922=⎪⎭⎫ ⎝⎛+y x ,即x 29+y 28=1.∴点P 的轨迹E 的方程为x 29+y 28=1.(2)证明:由(1)知F 为椭圆x 29+y 28=1的右焦点,当直线l 1与x 轴重合时,|AB|=6,|CD|=2b 2a =163,∴1|AB|+1|CD|=1748.当直线l 1与x 轴垂直时,|AB|=163,|CD|=6,∴1|AB|+1|CD|=1748. 当直线l 1与x 轴不垂直也不重合时,可设直线l 1的方程为y =k(x -1)(k ≠0), 则直线l 2的方程为y =-1k(x -1),设A(x 1,y 1),B(x 2,y 2),联立⎩⎨⎧y =k x -1,x 29+y28=1消去y ,得(8+9k 2)x 2-18k 2x +9k 2-72=0,则Δ=(-18k 2)2-4(8+9k 2)(9k 2-72)=2 304(k 2+1)>0, x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2,∴|AB|= 1+k 2·x 1+x 22-4x 1x 2=481+k 28+9k 2.同理可得|CD|=481+k 29+8k 2.∴1|AB|+1|CD|=8+9k 248k 2+1+9+8k 248k 2+1=1748.综上可得1|AB|+1|CD|为定值. 【跟踪训练2-1】已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)如图所示,点D 为x 轴上一点,过点D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过点D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为定值,并求出该定值.【解】(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,b 2+c 2=a 2,解得⎩⎨⎧b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(2)法一:设D (x 0,0),M (x 0,y 0),N (x 0,-y 0),-2<x 0<2,所以k AM =y 0x 0+2,因为AM ⊥DE ,所以k DE =-2+x 0y 0,所以直线DE 的方程为y =-2+x 0y 0(x -x 0). 因为k BN =-y 0x 0-2,所以直线BN 的方程为y =-y 0x 0-2(x -2).由⎩⎨⎧y =-2+x0y(x -x 0),y =-y0x 0-2(x -2),解得E ⎝⎛⎭⎫45x 0+25,-45y 0, 所以S △BDE S △BDN =12|BD |·|y E |12|BD |·|y N |=⎪⎪⎪⎪-45y 0|-y 0|=45.故△BDE 与△BDN 的面积之比为定值45.法二:设M (2cos θ,sin θ)(θ≠k π,k ∈Z ),则D (2cos θ,0),N (2cos θ,-sin θ), 设BE ―→=λBN ―→,则DE ―→=DB ―→+BE ―→=DB ―→+λBN ―→=(2-2cos θ,0)+λ(2cos θ-2,-sin θ) =(2-2cos θ+2λcos θ-2λ,-λsin θ).又AM ―→=(2cos θ+2,sin θ),由AM ―→⊥DE ―→,得AM ―→·DE ―→=0,从而[(2-2cos θ)+λ(2cos θ-2)](2cos θ+2)-λsin 2θ=0,整理得4sin 2θ-4λsin 2θ-λsin 2θ=0, 即5λsin 2θ=4sin 2θ.,所以λ=45,所以S △BDE S △BDN =|BE ||BN |=45.故△BDE 与△BDN 的面积之比为定值45.【总结归纳】定值问题实质及求解步骤定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题.其求解步骤一般为:题型三 探索性问题例3.已知圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1). (1) 求圆M 的方程;(2) 设P 为圆M 上任一点,过点P 向圆O :x 2+y 2=1引切线,切点为Q .试探究:平面内是否存在一定点R ,使得PQPR 为定值.若存在,求出点R 的坐标;若不存在,请说明理由. 解析:(1) 因为圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1), 所以设圆心坐标为(m,2m -6),半径为r , 则圆的标准方程为(x -m )2+(y -2m +6)2=r 2.则(1-m )2+(2-2m +6)2=r 2且(4-m )2+(-1-2m +6)2=r 2, 即(m -1)2+(8-2m )2=r 2且(m -4)2+(5-2m )2=r 2, 解得m =4,r =3.所以圆M :(x -4)2+(y -2)2=9.(2) 设P (x ,y ),R (a ,b ),则(x -4)2+(y -2)2=9,即x 2+y 2=8x +4y -11. 又PQ 2=x 2+y 2-1,PR 2=(x -a )2+(y -b )2=x 2+y 2-2ax -2by +a 2+b 2, 故PQ 2=8x +4y -12,PR 2=(8-2a )x +(4-2b )y +a 2+b 2-11.又设PQPR =t 为定值,故8x +4y -12=t 2[(8-2a )x +(4-2b )y +a 2+b 2-11]. 因为上式对圆M 上任意点P (x ,y )都成立,可得⎩⎪⎨⎪⎧8=(8-2a )t 2,4=(4-2b )t 2,-12=(a 2+b 2-11)t 2,解得⎩⎪⎨⎪⎧a 1=2,b 1=1,t 1=2或⎩⎪⎪⎪⎨⎪⎪⎪⎧a 2=25,b 2=15,t 2=103.综上,存在点R (2,1)或R ⎝ ⎛⎭⎪⎫25,15满足题意.跟踪训练3:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎫1,32,离心率为32. (1) 求椭圆C 的方程;(2) 直线y =k (x -1)(k ≠0)与椭圆C 交于A ,B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点P ,Q ,试问:以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,请说明理由.解析:(1) 由题意得⎩⎪⎨⎪⎧ca =32,1a 2+34b 2=1,解得a =2,b =1.所以椭圆C 的方程是x 24+y 2=1.(2) 以线段PQ 为直径的圆过x 轴上的定点. 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1得(1+4k 2)x 2-8k 2x +4k 2-4=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.又因为点M 是椭圆C 的右顶点,所以点M (2,0).由题意可知直线AM 的方程为y =y 1x 1-2(x -2),故点P ⎝ ⎛⎭⎪⎪⎫0,-2y 1x 1-2. 直线BM 的方程为y =y 2x 2-2(x -2),故点Q ⎝ ⎛⎭⎪⎪⎫0,-2y 2x 2-2. 若以线段PQ 为直径的圆过x 轴上的定点N (x 0,0),则等价于PN →·QN →=0恒成立.又因为PN →=⎝⎛⎭⎪⎪⎫x 0,2y 1x 1-2,QN →=⎝⎛⎭⎪⎪⎫x 0,2y 2x 2-2,所以PN →·QN →=x 20+2y 1x 1-2·2y 2x 2-2=x 20+4y 1y 2(x 1-2)(x 2-2)=0恒成立. 又因为(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=4k 2-41+4k 2-28k 21+4k 2+4=4k 21+4k 2,y 1y 2=k (x 1-1)k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2⎝ ⎛⎭⎪⎪⎫4k2-41+4k 2-8k 21+4k 2+1=-3k 21+4k2,所以x 20+4y 1y 2(x 1-2)(x 2-2)=x 20+-12k 21+4k 24k 21+4k 2=x 20-3=0,解得x 0=±3. 故以线段PQ 为直径的圆过x 轴上的定点(±3,0).圆锥曲线定点定值问题作业1. 如图,平行四边形AMBN 的周长为8,点M ,N 的坐标分别为(-3,0),(3,0). (1) 求点A ,B 所在的曲线L 的方程;(2) 过L 上点C (-2,0)的直线l 与L 交于另一点D ,与y 轴交于点E ,且l ∥OA .求证:CD ·CEOA 2为定值.解析:(1) 因为四边形AMBN 是平行四边形,周长为8,所以A ,B 两点到M ,N 的距离之和均为4>23,可知所求曲线为椭圆. 由椭圆定义可知,a =2,c =3,b =1.曲线L 的方程为x24+y 2=1(y ≠0).(2) 由已知可知直线l 的斜率存在.因为直线l 过点C (-2,0),设直线l 的方程为y =k (x +2),代入曲线方程x 24+y 2=1(y ≠0),并整理得(1+4k 2)x 2+16k 2x +16k 2-4=0. 因为点C (-2,0)在曲线L 上,则D ⎝ ⎛⎭⎪⎪⎫-8k 2+21+4k2,4k 1+4k 2,E (0,2k ), 所以CD =41+k 21+4k2,CE =21+k 2. 因为OA ∥l ,所以设OA 的方程为y =kx ,代入曲线L 的方程,并整理得(1+4k 2)x 2=4. 所以x 2A =41+4k 2,y 2A =4k 21+4k 2,所以OA 2=4+4k 21+4k2,化简得CD ·CE OA 2=2,所以CD ·CE OA 2为定值.说明:本题考查用定义法求椭圆方程知识及直线与椭圆相交的有关线段的计算与证明.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴是短轴的两倍,点A ⎝ ⎛⎭⎪⎫3,12在椭圆C 上.不过原点的直线l 与椭圆C 相交于A ,B 两点,设直线OA ,l ,OB 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2恰好构成等比数列. (1) 求椭圆C 的方程;(2) 试判断OA 2+OB 2是否为定值.若是,求出这个值;若不是,请说明理由.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1. (2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.此时Δ=16(2-m 2)>0,即m ∈(-2,2),所以⎩⎪⎨⎪⎧x 1+x 2=±2m ,x 1x 2=2m 2-2.又OA 2+OB 2=x 21+y 21+x 22+y 22=34(x 21+x 22)+2=34[(x 1+x 2)2-2x 1x 2]+2=5, 所以OA 2+OB 2是定值,且为5.3.过椭圆x 2a 2+y 2b 2=1的右焦点F 作斜率k =-1的直线交椭圆于A ,B 两点,且OA →+OB →与a =⎝ ⎛⎭⎪⎫1,13共线.(1)求椭圆的离心率;(2)设P 为椭圆上任意一点,且OP →=mOA →+nOB →(m ,n ∈R ),证明:m 2+n 2为定值. 解 (1)设AB :y =-x +c ,直线AB 交椭圆于两点,A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧b 2x 2+a 2y 2=a 2b2y =-x +c⇒b 2x 2+a 2(-x +c )2=a 2b 2,(b 2+a 2)x 2-2a 2cx +a 2c 2-a 2b 2=0x 1+x 2=2a 2c a 2+b 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2, OA →+OB →=(x 1+x 2,y 1+y 2)与a =⎝ ⎛⎭⎪⎫1,13共线,3(y 1+y 2)-(x 1+x 2)=0,3(-x 1+c -x 2+c )-(x 1+x 2)=0,即 x 1+x 2=3c 2,a 2=3b 2,c =a 2-b 2=6a 3,e =c a =63.(2)证明:a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,设M (x ,y )为椭圆上任意一点,OM →=(x ,y ),OM →=mOA →+nOB →,(x ,y )=(mx 1+nx 2,my 1+ny 2),点M (x ,y )在椭圆上,(mx 1+nx 2)2+3(my 1+ny 2)2=3b 2,即m 2(x 21+3y 21)+n 2(x 22+3y 22)+2mn (x 1x 2+3y 1y 2)=3b 2. ∴x 1+x 2=3c 2,a 2=32c 2,b 2=12c 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2=38c 2,∴x 1x 2+3y 1y 2=x 1x 2+3(-x 1+c )(-x 2+c )=4x 1x 2-3c (x 1+x 2)+3c 2=32c 2-92c 2+3c 2=0,将x 21+3y 21=3b 2,x 22+3y 22=3b 2代入得 3b 2m 2+3b 2n 2=3b 2,即m 2+n 2=1.3.在直角坐标系xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点M (1,3)的直线与椭圆E 交于不同的A ,B 两点,交直线y =-14x 于点N ,若NA →=mAM →,NB →=nBM →,求证:m +n 为定值,并求出此定值. 解 (1)因为长轴长为8,所以2a =8,a =4, 又因为两个焦点与短轴的一个顶点构成等边三角形, 所以b =32a =23,由于椭圆焦点在x 轴上, 所以椭圆的标准方程为x 216+y 212=1. (2)设A (x 1,y 1),B (x 2,y 2),N ⎝⎛⎭⎫x 0,-14x 0, 由NA →=mAM →,得⎝⎛⎭⎫x 1-x 0,y 1+14x 0=m (1-x 1,3-y 1),所以x 1=m +x 0m +1,y 1=3m -14x 0m +1,所以A ⎝ ⎛⎭⎪⎪⎫m +x 0m +1,3m -14x 0m +1, 因为点A 在椭圆x 216+y 212=1上,所以得到⎝ ⎛⎭⎪⎫m +x 0m +1216+⎝ ⎛⎭⎪⎪⎫3m -14x 0m +1212=1,得到9m 2+96m +48-134x 20=0;同理,由NB →=nBM →,可得9n 2+96n +48-134x 20=0, 所以m ,n 可看作是关于x 的方程9x 2+96x +48-134x 20=0的两个根, 所以m +n =-969=-323,为定值.4. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,-3),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1) 求椭圆C 的标准方程;(2) 若直线l 上存在点P 满足PM ·PN =PF 2,且点P 在椭圆外,证明:点P 在定直线上.解析:(1) 设椭圆的焦距为2c .由椭圆经过点(0,-3)得b = 3. ①由点F 到左顶点的距离和到右准线的距离相等,得a +c =a 2c -c . ② 又a 2=b 2+c 2, ③由①②③可得a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2) 法一:当直线l 的斜率为0时,则M (2,0),N (-2,0),设P (x 0,y 0),则PM ·PN =|(x 0-2)(x 0+2)|.因为点P 在椭圆外,所以x 0-2,x 0+2同号,又PF 2=(x 0-1)2,所以|(x 0-2)(x 0+2)|=(x 0-1)2,解得x 0=52. 当直线l 的斜率不为0时,因为y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,PM =1+m 2|y 1-y 0|,PN =1+m 2|y 2-y 0|,PF =1+m 2|y 0|.因为点P 在椭圆外,所以y 1-y 0,y 2-y 0同号,所以PM ·PN =(1+m 2)(y 1-y 0)(y 2-y 0)=(1+m 2)[y 1y 2-y 0(y 1+y 2)+y 20]=(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4, 代入PM ·PN =PF 2得(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4=(1+m 2)y 20,整理得y 0=32m ,代入直线方程得x 0=52.所以点P 在定直线x =52上.法二:当直线l ⊥x 轴,则M ⎝ ⎛⎭⎪⎫1,32,N ⎝ ⎛⎭⎪⎫1,-32,则PM ·PN =⎪⎪⎪⎪⎪⎪y 0-32⎪⎪⎪⎪⎪⎪y 0+32.又PF 2=y 20,所以PM ·PN =PF 2不成立,不合题意. 当直线l 与x 轴不垂直时,设P (x 0,y 0),M (x 1,y 1),N (x 2,y 2).设直线l 的方程为y =k (x -1),与椭圆x 24+y 23=1联立并消去y 得 (3+4k 2)x 2-8k 2x +4k 2-12=0.因为Δ=64k 4-4(3+4k 2)(4k 2-12)=16k 4+108k 2+108>0, 所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,所以PM =1+k 2|x 1-x 0|,PN =1+k 2|x 2-x 0|,PF =1+k 2|x 0-1|. 因为点P 在椭圆外,所以x 1-x 0,x 2-x 0同号,所以PM ·PN =(1+k 2)(x 1-x 0)(x 2-x 0)=(1+k 2)[x 1x 2-x 0(x 1+x 2)+x 20] =(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2.代入PM ·PN =PF 2得(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2=(1+k 2)(x 20)(x 20-2x 0+1), 整理得x 0=52,所以点P 在定直线x =52上.。

圆锥曲线定点定值问题背后的定理

圆锥曲线定点定值问题背后的定理

圆锥曲线定点定值问题背后的定理
圆锥曲线定点定值问题是指在给定圆锥曲线上求出两个定点和一个定值,使得该圆锥曲线上的任意一点都满足一定的条件。

该问题的背后定理是费马点定理。

费马点定理是指在一个圆锥曲线上,存在三个点,其中一个为该曲线的焦点,另外两个点在该曲线上,这三个点构成的三角形面积最大。

这个定理是由法国数学家费马在17世纪提出的,被认为是代数几何中的一个重要定理。

圆锥曲线定点定值问题是费马点定理的一个扩展,其背后的定理也是费马点定理。

具体来说,圆锥曲线定点定值问题的条件是,给定圆锥曲线上的一点和一个定点,要求在该圆锥曲线上找到另外一个点,使得该三角形的面积最大。

这个问题的解法可以通过应用费马点定理来解决,即通过构造一个新的圆锥曲线,使得该曲线上的一个点和给定的定点以及另一个已知点构成一个三角形,然后通过求解该三角形的面积最大值来得到所需的点。

需要注意的是,圆锥曲线定点定值问题并不总是有解,这取决于给定的条件和曲线的类型。

在某些情况下,可能需要采用更加复杂的方法来解决该问题。

圆锥曲线专题(定点、定值问题)

圆锥曲线专题(定点、定值问题)

圆锥曲线专题——定点、定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型【例题】已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型圆锥曲线中的定点定值问题的四种模型定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。

直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。

技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。

如果能够熟识这些常见的结论,那么解题必然会事半功倍。

下面总结圆锥曲线中几种常见的几种定点模型:模型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标。

解:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340km +->212122284(3),3434mkm x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+Q以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BDk k ⋅=-, 1212122y y x x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++,整理得:2271640mmk k ++=,解得:1222,7k m k m=-=-,且满足22340k m +->当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((22222222ba b a y b a b a x +-+-。

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。

2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:b kx y +=或n my x +=、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。

二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。

三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(·1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。

四、常用的弦长公式:(1)若直线AB 的方程设为b kx y +=,()11y x A ,,()22y x B ,,则()a k x x x x k x x k AB ∆⋅+=-+⋅+=-⋅+=22122122121411(2)若直线AB 的方程设为n my x +=,()11y x A ,,()22y x B ,,则()am y y y y m y y m AB ∆⋅+=-+⋅+=-⋅+=22122122121411【注】上式中a 代表的是将直线方程带入圆锥曲线方程后,化简得出的关于x 或y 的一元二次方程的二次项系数。

圆锥曲线中定点问题的解题策略

圆锥曲线中定点问题的解题策略

圆锥曲线中定点问题的解题策略高玉荣(山东省安丘市第二中学ꎬ山东安丘262100)摘㊀要:圆锥曲线中的定点问题主要是指圆锥曲线试题中直线过定点或者圆过定点问题.本文结合具体例子给出圆锥曲线中定点问题的解题策略ꎬ以期为一线教师提供解题思路与方法.关键词:圆锥曲线ꎻ定点问题ꎻ直线ꎻ斜率ꎻ解题策略中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)09-0024-04收稿日期:2023-12-25作者简介:高玉荣(1968.5-)ꎬ男ꎬ山东省安丘人ꎬ中学一级教师ꎬ从事高中数学解题研究.㊀㊀圆锥曲线中的直线过定点问题ꎬ主要考查直线与圆锥曲线的位置关系以及化归思想㊁数形结合思想和数学运算求解能力等.圆锥曲线中定点问题的题型主要有:切点弦问题㊁斜率之和为定值问题㊁斜率之积为定值问题以及定点的存在性问题.笔者对圆锥曲线中的定点问题进行分类解析并给出解题策略.1解题策略(1)从特殊位置入手ꎬ找出定点ꎬ再证明该点适合题意.(2)解题的关键是设点ꎬ设线ꎬ直线与圆锥曲线联系ꎬ然后表示出直线的斜率ꎬ进而求直线方程并证明结论等.2两垂直弦的中点所在的直线例1㊀过椭圆x2a2+y2b2=1(a>b>0)的左焦点F(-cꎬ0)作两条互相垂直的弦AB㊁CDꎬ若弦ABꎬCD的中点分别为MꎬNꎬ那么直线MN恒过定点(-a2ca2+b2ꎬ0)[1].证明:设直线AB方程为x=ty-cꎬ直线CD方程为x=-1ty-cꎬ设M(x0ꎬy0)ꎬN(xᶄ0ꎬyᶄ0).把直线AB代入椭圆方程ꎬ得(b2t2+a2)y2-2b2cty-b4=0ꎬ则y0=y1+y22=b2ctb2t2+a2ꎬx0=ty0-c=-a2cb2t2+a2ꎬ同理ꎬ将-1t替代tꎬ得yᶄ0=-b2cta2t2+b2ꎬxᶄ0=-a2ct2a2t2+b2.从而kMN=y0-yᶄ0x0-xᶄ0=t(a2+b2)(t2+1)a2(t4-1)=(a2+b2)ta2(t2-1)ꎬ所以直线MN为y=(a2+b2)ta2(t2-1)(x+a2cb2t2+a2)+b2ctb2t2+a2ꎬ化简得a2(t2-1)ty=(a2+b2)x+a2cꎬ故直线MN过定点(-a2ca2+b2ꎬ0).3切点弦问题例2㊀已知椭圆C:x2a2+y2b2=1(a>b>0)的短轴长为2ꎬ椭圆上一点到两焦点的距离之和是6.(1)求椭圆C的方程ꎻ(2)若直线l的方程是x+y-6=0ꎬ点M是直线l上一点ꎬ过点M作椭圆C的切线MGꎬMHꎬ切点分别为GꎬHꎬ设切线的斜率都存在ꎬ试问:直线GH是否过定点?若过定点ꎬ求出该点的坐标ꎻ若不过ꎬ请说明理由[2].解㊀(1)依题意知ꎬa=3ꎬb=1ꎬ所以椭圆方程为x29+y2=1.(2)证明设G(x1ꎬy1)ꎬH(x2ꎬy2)ꎬM(x3ꎬy3)ꎬ直线MG的方程为y-y1=k(x-x1).由y-y1=k(x-x1)x2+9y2=9{ꎬ得(9k2+1)x2+18k(y1-kx1)x+9(y1-kx1)2-9=0ꎬ则ә=18k(y1-kx1)[]2-4(9k2+1)9(y1-kx1)2-9[]=0ꎬ化简得(y1-kx1)2=9k2+1ꎬ所以(x21-9)k2-2x1y1k+y21-1=0ꎬ又由方程只有一解ꎬ则k=x1y1x21-9=-x19y1ꎬ所以直线MG方程为y-y1=-x19y1(x-x1)ꎬ化简得x1x+9y1y=9ꎬ同理可得ꎬ直线MH方程为x2x+9y2y=9.又因为两条切线都经过点M(x3ꎬy3)ꎬ所以x1x3+9y1y3=9x2x3+9y2y3=9{ꎬ所以直线GH方程为x3x+9y3y=9.又x3+y3-6=0ꎬ所以直线GH方程为6x-9+(9y-x)y3=0ꎬ令6x-9=09y-x=0{ꎬ得x=32y=16ìîíïïïïꎬ所以直线GH恒过定点32ꎬ16æèçöø÷.点评㊀圆锥曲线的切点弦方程的一般结论如下[3]:P(x0ꎬy0)分别是抛物线y2=2px㊁椭圆x2a2+y2b2=1和双曲线x2a2-y2b2=1外的一点ꎬ则过P(x0ꎬy0)作曲线的切线ꎬ切点为AꎬBꎬ则直线AB的方程分别是y0y=p(x+x0)ꎬx0xa2+y0yb2=1ꎬx0xa2-y0yb2=1.利用切点弦的结论ꎬ快速解决下面的例3.例3㊀动点P(x0ꎬy0)在直线Ax+By+C=0上ꎬ由P引椭圆x2a2+y2b2=1的两条切线ꎬ切点分别是MꎬNꎬ则直线MN必过定点G(-a2Cꎬ-b2BAC).证明㊀由题意得Ax0+By0+C=0ꎬ①MN是椭圆的切点弦方程ꎬ故其方程为x0xa2+y0yb2=1ꎬ即b2x0x+a2y0y=a2b2ꎬ②将①代入②消去x0得(Aa2y-Bb2x)y0=a2b2+Cb2xꎬ由于y0的任意性ꎬ故有Aa2y-Bb2x=0a2b2+Cb2x=0{ꎬ解得x=-a2Cꎬy=-b2BAC.所以直线MN必过定点G(-a2Cꎬ-b2BAC).4斜率之积为定值例4㊀已知双曲线C:x2a2-y2b2=1(a>0ꎬb>0)的两条渐近线互相垂直ꎬ且过点D2ꎬ1().(1)求双曲线C的方程ꎻ(2)设P为双曲线的左顶点ꎬ直线l过坐标原点且斜率不为0ꎬl与双曲线C交于AꎬB两点ꎬ直线m过x轴上一点Q(异于点P)ꎬ且与直线l的倾斜角互补ꎬm与直线PAꎬPB分别交于MꎬN(MꎬN不在坐标轴上)两点ꎬ若直线OMꎬON的斜率之积为定值ꎬ求点Q的坐标.解㊀(1)略.(2)(方法1)设点.设A(x0ꎬy0)ꎬM(x1ꎬy1)ꎬN(x2ꎬy2)ꎬQ(tꎬ0)ꎬ由(1)知P(-1ꎬ0)ꎬ设直线OMꎬON的斜率分别为k1ꎬk2ꎬ因为AꎬPꎬM三点共线ꎬ所以kAP=kMPꎬ即y0x0+1=y1x1+1.因为直线m过x轴上一点Q(异于点P)ꎬ且与直线l的倾斜角互补ꎬ所以km=-klꎬ即kMQ=-kOAꎬ所以y1x1-t=-y0x0.联立y0x0+1=y1x1+1y1x1-t=-y0x0ìîíïïïï可得x1=(t-1)x0+t2x0+1y1=(t+1)y02x0+1ìîíïïïïꎬ所以k1=y1x1=(t+1)y02x0+1(t-1)x0+t2x0+1=(t+1)y0(t-1)x0+tꎬ同理可得k2=(t+1)(-y0)(t-1)(-x0)+t.因为直线OMꎬON的斜率之积为定值ꎬ设定值为cꎬ则k1k2=-(t+1)2y20t2-(t-1)2x20=-(t+1)2y20t2-(t-1)2(y20+1)=cꎬ整理可得(t+1)2-c(t-1)2[]y20+c(2t-1)=0ꎬ其中tʂ1.因为上式对任意的y0都成立ꎬ所以2t-1=0(t+1)2-c(t-1)2=0{ꎬ可得t=12ꎬc=9ꎬ所以点Q的坐标为12ꎬ0æèçöø÷.(方法2)设线[4].设A(x0ꎬy0)ꎬM(x1ꎬy1)ꎬN(x2ꎬy2)ꎬQ(tꎬ0)ꎬ由(1)知P(-1ꎬ0)ꎬ因为kPAkPB=y0x0+1 y0x0-1=y20x20-1=1.不妨设直线PA的斜率为kꎬ则直线PB的斜率为1kꎬ联立y=k(x+1)x2-y2=1{得(k2-1)x2+2k2x+k2+1=0ꎬ所以-1 x0=k2+1k2-1ꎬ于是x0=-k2+1k2-1ꎬy0=k-k2+1k2-1+1æèçöø÷=-2kk2-1ꎬ所以kAB=y0x0=2kk2+1ꎬ于是直线m的方程为y=-2kk2+1(x-t)ꎬ联立y=-2kk2+1(x-t)y=k(x+1){ꎬ解得x=(2t-1)-k23+k2y=2(t+1)k3+k2ìîíïïïïꎬ所以kOM=2(t+1)k(2t-1)-k2.同理ꎬkON=2(t+1)1k(2t-1)-1kæèçöø÷2=2(t+1)k(2t-1)k2-1.因为直线OMꎬON的斜率之积为定值ꎬ设定值为cꎬ则2(t+1)k(2t-1)-k2 2(t+1)k(2t-1)k2-1=cꎬ化简得c(2t-1)k4+4(t+1)2-c(4t2-4t+2)[]k2+c(2t-1)=0(tʂ1).因为上式对任意的实数k都成立ꎬ所以c(2t-1)=04(t+1)2-c(4t2-4t+2)=0{ꎬ解得t=12c=9{ꎬ所以点Q的坐标为12ꎬ0æèçöø÷.5定点的存在性问题例5㊀如图1ꎬ已知椭圆C:x2a2+y2b2=1a>b>0()的左顶点为A-2ꎬ0()ꎬ焦距为23.动圆D的圆心坐标是0ꎬ2()ꎬ过点A作圆D的两条切线分别交椭圆于M和N两点ꎬ记直线AM㊁AN的斜率分别为k1和k2.(1)求证:k1k2=1ꎻ(2)若O为坐标原点ꎬ作OPʅMNꎬ垂足为P.是否存在定点Qꎬ使PQ为定值?解㊀(1)由题意知ꎬ椭圆C的左顶点为A-2ꎬ0()ꎬ焦距为23ꎬ可得a=22c=23a2=b2+c2ìîíïïïïꎬ解得a2=4ꎬb2=1ꎬ所以故椭圆C的方程为x24+y2=1ꎬ设过点A与圆D的切线的直线为y=kx+2()ꎬ动圆的半径为rꎬ则2k-2k2+1=rꎬ化简得4-r2()k2-8k+4-r2=0ꎬ所以k1和k2是方程4-r2()k2-8k+4-r2=0的两根ꎬ由韦达定理知ꎬk1k2=1.(2)设点Mx1ꎬy1()ꎬNx2ꎬy2()ꎬ联立方程组y=kx+2()x24+y2=1{ꎬ整理得1+4k2()x2+16k2x+16k2-4=0ꎬ则-2()x1=16k2-44k2+1ꎬ得x1=2-8k24k2+1ꎬy1=4k4k2+1ꎬ所以M2-8k24k2+1ꎬ4k4k2+1æèçöø÷因为k1k2=1ꎬ所以将k换成1kꎬ可得N2k2-8k2+4ꎬ4kk2+4æèçöø÷ꎬ则直线MN的斜率k=4k4k2+1-4kk2+42-8k24k2+1-2k2-8k2+4=3k4k2+1()所以直线MN的方程为y-4k4k2+1=3k4k2+1()x-2-8k24k2+1æèçöø÷如图1ꎬ由椭圆的对称性[5]可知ꎬ直线MN必过轴上一定点Ex0ꎬ0()所以0-4k4k2+1=3k4k2+1()x0-2-8k24k2+1æèçöø÷ꎬ化简得40+12x0()k2+3x0+10=0这是一个与k无关的方程ꎬ所以x0=-103ꎬ即直线MN过定点E-103ꎬ0æèçöø÷.因为OPʅMNꎬ所以点P的轨迹是以OE为直径的圆上的一段弧ꎬ故存在点Q-53ꎬ0æèçöø÷ꎬ使得PQ为定值.点评㊀对于圆锥曲线中的定点㊁定值问题的求图1㊀例5题图解策略:(1)对于定点㊁定值问题ꎬ可考虑能否用特殊点或特殊值求得定点或定值ꎬ再把结论推广到一般结论ꎻ(2)运用函数与方程的思想方法进行解答ꎬ一般步骤:①选择适当的变量ꎻ②把要证明的定点㊁定值的量表示为上述变量的函数或方程ꎻ③把定点㊁定值的量化成与变量无关的结构形式ꎬ从而加以判定或证明.6结束语圆锥曲线中的定点问题是高考的难题ꎬ令很多考生望而生畏.破解圆锥曲线中定点问题的策略主要是通法(即设点㊁设线㊁联立㊁韦达等)ꎬ只不过还需要熟悉一些常用的结论ꎬ比如切点弦方程㊁两点直径圆㊁同构思想㊁齐次化思想等.在解题时ꎬ熟悉通法与常用的数学思想最为关键ꎬ然后进行分类㊁总结ꎬ再加强训练ꎬ假以时日ꎬ定能提高学习效率与解题能力.参考文献:[1]李鸿昌.高中数学一点一题型(新高考版)[M].合肥:中国科学技术大学出版社ꎬ2022:7.[2]秦俭ꎬ林方.同构思想在处理双切线问题中的应用[J].数学通讯ꎬ2022(07):28-32.[3]李鸿昌.高考题的高数探源与初等解法[M].合肥:中国科学技术大学出版社ꎬ2022:4.[4]李鸿昌.圆锥曲线中 非对称 问题的成因及破解策略[J].数学通讯ꎬ2022(22):32-35.[5]李鸿昌.二次曲线系在圆锥曲线四点共圆问题中的应用[J].数理化解题研究ꎬ2022(07):92-94.[责任编辑:李㊀璟]。

圆锥曲线中的定点、定值问题

圆锥曲线中的定点、定值问题

圆锥曲线中的定点、定值问题
1、几个常见的定点模型
若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.
(1)对于椭圆()上异于右顶点的两动点,,
以为直径的圆经过右顶点,则直线过定点.
同理,当以为直径的圆过左顶点时,直线过定点.
(2)对于双曲线上异于右顶点的两动点,,以为直径的圆经过右顶点,则直线过定点.同理,对于左顶点,则定点为.
(3)对于抛物线上异于顶点的两动点,,
若,则弦所在直线过点.
同理,抛物线上异于顶点的两动点,,若,则直线过定点.
2、几个常见的定值模型
在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点(非顶点)与曲线上的两动点,满足直线与的斜率互为相反数(倾斜角互补),则直线的斜率为定值.
(1)在椭圆中:已知椭圆,定点()在椭圆上,设,是椭圆上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(2)在双曲线:中,定点()在双曲线上,设,是双曲线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(3)在抛物线:,定点()在抛物线上,设,是抛物线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
3、解题导语
解决定点、定值问题的关键是检测数学运算的能力,所以只
要细致、耐心的计算就可以得到答案。

又因为此种问题找得分点比较容易,所以千万不要放弃。

圆锥曲线中的定点、定值问题的结论及多种证明方法 高考数学

圆锥曲线中的定点、定值问题的结论及多种证明方法 高考数学
得: AB的方程为化为: 即 由得 即当时,即直线AB恒过定点( ).
七、圆锥曲线中的平行弦的问题
在前面一、推论:“若圆锥曲线为圆,直线AB交C于A、B两点,的斜率分别为,当时,为定值,”给出了平移图像法、一般法、参数方程法等多种证明方法。现在我们对一、推论
31.采用另一种思维方式探究如下:设点是圆上的一定点,过点P作x轴的
2. 当 时, 【1】化为: 。即 时,为定值,,
3.当)时,,得, ,,即 ,
,即 。 得:
; 【2】
即: 或 (因为直线AB不过点P,舍去)AB的方程为化为: 即 由得 即直线AB恒过定点( )。
3. 当时, 由 【2】化为: , , , 即:。(因为直线AB不过点P,舍去)或;,即 为定值.
1.当时,, , ,
,即: , ,
化为:, (因为直线AB不过点P,舍去)或。, ; 【6】AB的方程为化为: 即 由得 即当时,直线AB恒过定点( )。
2.当 时, 【6】化为:; 即当时,为定值,。
3.当时, 即, ,,即 ,
, ; 【7】 ,化为:, (因为直线AB不过点P,舍去)或。由,
2.当时,直线AB恒过定点(
3.当时,为定值
4.当时,即直线AB恒过定点( ). 及其证法已知点(其中 是圆锥曲线上的一个定点,过点作直线分别与圆锥曲线C相交于点A、 则必定存在以下结论:
二、椭圆、双曲线、抛物线、圆中的定点、定值问题的统一结论
1.当时,为定值,
2.当时,直线AB恒过定点( )
圆锥曲线中的定点、定值问题的
结论及多种证明方法
主讲人:某某某老师
某某学校
山东东营 徐新华 大家都知道,圆锥曲线的很多重要结论,特别是圆锥曲线的定点、定值问题并没有列入高中数学教材,但它们一直确是高考数学试题中考察的重要内容。本文件中,从多个角度、采用多种方法对圆锥曲线的定点、定值问题的结论作出了证明,并力求对证明过程给予最大化的展示。需要说明的是,个别证法有相当大的难度,其证明过程也极为复杂,因此叙述也就比较详细具体。

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值、范围和最值问题会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建“几何法”求某些量的最值.一、主要知识及主要方法:1.观题形式出现,特殊方法往往比较奏效。

2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。

3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.二、精选例题分析【举例1】 在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同动点A 、B 满足AO BO ⊥.(Ⅰ)求AOB △得重心G 的轨迹方程;(Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【举例2】已知椭圆22142x y +=上的两个动点,P Q 及定点1,2M ⎛ ⎝⎭,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ;()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标.【举例3】(06全国Ⅱ改编)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF FB λ=(0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为M 。

(Ⅰ)证明FM AB ⋅为定值;(Ⅱ)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值.问题4.直线m :1y kx =+和双曲线221x y -=的左支交于A 、B 两点,直线l 过点()2,0P -和线段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.(四)课后作业:1.已知椭圆22221x y a b+=(0a b >>)的右焦点为F ,过F 作直线与椭圆相交于A 、B 两点,若有2BF AF =,求椭圆离心率的取值范围.2.过抛物线22y px =的顶点任意作两条互相垂直的弦OA 、OB求证:AB 交抛物线的对称轴上一定点.F B C1A 1B 1C B C A3.如图,在双曲线2211213y x -=的上支上有三点()11,A x y , ()2,6B x ,()33,C x y ,它们与点()0,5F 的距离成等差数列.()1求13y y +的值;()2证明:线段AC 的垂直平分线经过某一定点,并求此点坐标.(六)走向高考:1.已知椭圆1C 的方程为1422=+y x ,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(Ⅰ)求双曲线2C 的方程;(Ⅱ)若直线l :y kx =+1C 及双曲线2C 都恒有两个不同的交点,且l 与2C 的两个交点A 和B满足6<⋅OB OA (其中O 为原点),求k 的取值范围.2.(06江西)P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++= 和()2251x y -+=上的点,则PM PN -的最大值为.A 6 .B 7 .C 8 .D 93.(07重庆)如图,中心在原点O 的椭圆的右焦点为()3,0F ,右准线l 的方程为:12x =.()1求椭圆的方程;()2在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠证明:123111FP FP FP ++为定值,并求此定值.4.(05全国Ⅰ)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB +与(3,1)a =-共线。

圆锥曲线定点定值问题方法总结

圆锥曲线定点定值问题方法总结

圆锥曲线定点定值问题方法总结
圆锥曲线定点定值问题是复变函数理论中的一个重要研究话题,其研究具有重要的理论意义和实用价值。

近年来,以Wolfgang Schneider为首的复变函数研究人员在此领域取得了众多的研究成果,发现了大量的新思想、模型和方法,他们的成果在数学研究上得到了广泛的认可和应用。

本文通过对近年来国内外研究者研究成果的分析,从三个方面总结了圆锥曲线定点定值问题的研究方法。

首先,对圆锥曲线定点定值问题的定义和基本特性进行了归纳总结,将它归纳为一般性的一类问题。

其次,分析和总结了现有研究方法,如统计解析方法(Sanov-Kilmov技术)、可化简技术和分析技术等,为解决这一类复杂问题提供了参考依据。

最后,介绍了近年来取得的一些研究成果,重点综述了圆锥曲线等数学模型的建模和应用,以及研究中使用的新方法,如拉格朗日变换、Hilbert空间和维数空间理论等。

总之,近年来,在 Wolfgan Schneider和其他研究者共同努力下,圆锥曲线定点定值问题的研究取得了重大进展,这一领域的研究提供了理论支持和可行性方案,为进一步探索复变函数理论、开发新数学模型和解决复杂问题提供了有益的借鉴。

本文的研究成果可以作为今后研究复变函数理论及其在工程实
践中的应用的重要参考依据。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线定点定值
垂径弦
1, 已知椭圆22
:143
x y C +=的左顶点为A ,直线l 与椭圆C 分别相交于M ,N 两点。

(1) 若直线l 过椭圆C 右焦点且6AM AN ⋅= ,求直线l 的方程;
(2) 若直线l 垂直于x 轴,P 是椭圆上不与椭圆顶点重合的任意一点,直线MP ,NP 分
别交x 轴于点()(),0,,0E m F n ,探究m n 是否为定值;若为定值,求出该定值;若不为定值,请说明理由。

(1
))1y x =-;(2)4m n =
定点弦
2, 已知椭圆()2222:10x y C a b a b +=>>
,点(P 在椭圆上。

(1) 求椭圆C 的方程;
(2) 设椭圆C 的左、右顶点分别为A 、B ,过点Q ()2,0的动直线l 与椭圆C 相交于M 、
N 两点,是否存在定直线':l x t =,使得'
l 与直线AN 的交点G 总在直线BM 上?若存在,求出一个满足条件的t 值;若不存在,请说明理由。

(1)22
1164
x y +=;(2)':8l x =。

3, 地方。

相关文档
最新文档