圆锥曲线定点、定直线、定值问题
圆锥曲线中的定点、定直线、定值问题
圆锥曲线中的定点、定直线、定值问题例题分析1、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程; (2)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.2、已知椭圆C的离心率e =,长轴的左右端点分别为()12,0A -,()22,0A 。
(1)求椭圆C 的方程;(2)设直线1x my =+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S 。
试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。
3、已知椭圆E 的中心在原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小1,离心率为e =(1)求椭圆E 的方程;(2)过点()1,0作直线l 交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒4、已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离心率e =F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点。
(1)求椭圆的标准方程;(2)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值范围;(3)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由。
课堂练习1.抛物线y =ax 2与直线y =kx +b (k ≠0)交于A ,B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有( )A .x 3=x 1+x 2B .x 1x 2=x 1x 3+x 2x 3C .x 1+x 2+x 3=0D .x 1x 2+x 2x 3+x 3x 1=0 2.已知A ,B ,C 三点在曲线y =x 上,其横坐标依次为1,m,4(1<m <4),当△ABC 的面积最大时,m 等于( )A .3 B.94 C.52 D.323.过抛物线y 2=2px (p >0)上一定点M (x 0,y 0)(y 0≠0),作两条直线分别交抛物线于A (x 1,y 1)、B (x 2,y 2),当MA 与MB 的斜率存在且倾斜角互补时,则y 1+y 2y 0等于( )A .-2B .2C .4D .-44.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线的距离之和的最小值是( )A .5B .8 C.17-1 D.5+25.已知点M 是抛物线y 2=4x 上的一点,F 为抛物线的焦点,A 在圆C :(x -4)2+(y -1)2=1上,则|MA |+|MF |的最小值为________.6.若抛物线y 2=4x 的焦点为F ,过F 且斜率为1的直线交抛物线于A ,B 两点,动点P 在曲线y 2=-4x (y ≥0)上,则△P AB 的面积的最小值为________.7. 已知椭圆C 的中心在原点,一个焦点为F (0,2),且长轴长与短轴长的比是2:1.(1)求椭圆C 的方程;(2)若椭圆C 上在第一象限的一点P 的横坐标为1,过点P 作倾斜角互补的两条不同的直线P A ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率为定值;(3)在(2)的条件下,求△P AB 面积的最大值.8.已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点,在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说明理由.9.已知椭圆C 的左、右焦点坐标分别是(-2,0)、(2,0),离心率是63.直线y =t 与椭圆C 交于不同的两点M ,N ,以线段MN 为直线作圆P ,圆心为P .(1)求椭圆C 的方程;(2)若圆P 与x 轴相切,求圆心P 的坐标;(3)设Q (x ,y )是圆P 上的动点,当t 变化时,求y 的最大值.10.已知定点0,0()M x y 在抛物线m :22y px =(p >0)上,动点,A B m ∈且0MA MB ⋅=.求证:弦AB 必过一定点.。
高考数学复习:圆锥曲线的定点、定值、定直线
高考数学复习:圆锥曲线的定点、定值、定直线【热点聚焦】纵观近几年的高考试题,圆锥曲线的定点、定值、定直线问题是热点之一.从命题的类型看,主要是大题.一般说来,考查直线与椭圆、双曲线、抛物线的位置关系问题,综合性较强,涉及方程组联立,根的判别式、根与系数的关系、弦长、面积、参数、几何量为定值,或定点在某直线上、定直线过某点等.难度往往大些.【重点知识回眸】(一)定值问题1.定义:定值问题是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.3.常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.4.定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算(二)定点问题1.求解圆锥曲线中的定点问题的两种思路:(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组()0g()0f x y x y =⎧⎨=⎩,,;③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,则可以特殊解决.2.求解圆锥曲线中的定点问题的方法(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y .常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号内的部分为零即可②若等式为含k 的分式,00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)3.一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线).然后再验证该点(或该直线)对一般情况是否符合.属于“先猜再证”.(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件.所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点.尤其在含参数的直线方程中,要能够找到定点,抓住关键条件.例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转.(三)定直线问题探求圆锥曲线中的定直线问题的两种方法:方法一是参数法,即先利用题设条件探求出动点T 的坐标(包含参数),再消去参数,即得动点T 在定直线上;方法二是相关点法,即先设出动点T 的坐标为(x,y),根据题设条件得到已知曲线上的动点R 的坐标,再将动点R 的坐标代入已知的曲线方程,即得动点T 在定直线上.【典型考题解析】热点一定值问题【典例1】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.【典例2】如图,已知抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||MN MN -为定值,并求此定值.【典例3】已知抛物线C :22(0)y px p =>的焦点为F ,过F 且斜率为43的直线l 与抛物线C 交于A ,B 两点,B 在x 轴的上方,且点B 的横坐标为4.(1)求抛物线C 的标准方程;(2)设点P 为抛物线C 上异于A ,B 的点,直线PA 与PB 分别交抛物线C 的准线于E ,G 两点,x 轴与准线的交点为H ,求证:HG HE ⋅为定值,并求出定值.【典例4】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH = .证明:直线HN 过定点.【典例5】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【典例6】已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).【典例7】设椭圆的焦点在x 轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.【典例8】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅= ,证明:直线PQ 过定点.【典例9】设12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右两个焦点,O 为坐标原点,若点P 在双曲线C 的右支上,且1122,OP OF PF F == 的面积为3.(1)求双曲线C 的渐近线方程;(2)若双曲线C 的两顶点分别为()()12,0,,0A a A a -,过点2F 的直线l 与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.1.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2.在平面直角坐标系中,动点(),M x y 与定点()5,0F 的距离和M 到定直线16:5l x =的距离的比是常数54,设动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设()2,0P ,垂直于x 轴的直线与曲线C 相交于,A B 两点,直线AP 和曲线C 交于另一点D ,求证:直线BD 过定点.3.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为32,右焦点F.(1)求双曲线C 的方程;(2)若12,A A 分别是C 的左、右顶点,过F 的直线与C 交于,M N 两点(不同于12,A A ).记直线12,A M A N 的斜率分别为12,k k ,请问12k k 是否为定值?若是定值,求出该定值;若不是,请说明理由.4.已知椭圆C :()222210x y a b a b+=>>的左焦点为()11,0F -,上、下顶点分别为A ,B ,190AF B ∠=︒.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM OP OQ =+uuu r uu u r uuu r ,证明:四边形OPMQ 的面积为定值.5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.6.已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.7.在直角坐标系xOy 中,已知定点(0,1)F ,定直线:3l y =-,动点M 到直线l 的距离比动点M 到点F 的距离大2.记动点M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设0(2,)P y 在C 上,不过点P 的动直线1l 与C 交于A ,B 两点,若90APB ∠=︒,证明:直线1l 恒过定点.8.椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,M 为直线3x =-上任意一点,过F 作MF 的垂线交椭圆C 于点P ,Q .证明:OM 经过线段PQ 的中点N .(其中O 为坐标原点)9.已知椭圆E :()222210x y a b a b +=>>的离心率为2,短轴长为2.(1)求E 的方程;(2)过点()4,0M -且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MB NBMC NC =,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为1k ,2k ,求证:12k k 为定值.10.已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭ ,问:l 是否过一定点?若过定点,求出该定点的坐标11.已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,圆O :222x y a +=,过F 且垂直于x 轴的直线被椭圆C 和圆O.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线1l ,2l ,记1l ,2l 的斜率分别为1k ,2k ,直线OP 的斜率为3k ,证明:()123k k k +为定值.12.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.。
圆锥曲线定点、定直线、定值问题精编版
定点、定直线、定值专题1、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为22221(0)x y a b a b +=>>3,1a c a c +=-=,22,1,3a c b ===221.43x y ∴+= (II)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->.212122284(3),.3434mk m x x x x k k-⇒+=-⋅=++22221212121223(4)()()().34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122y yx x ∴⋅=---, (最好是用向量点乘来)1212122()40y y x x x x +-++=,2222223(4)4(3)1640343434m k m mkk k k --+++=+++,2271640m mk k ++=,解得1222,7km k m =-=-,且满足22340k m +->. 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0).7综上可知,直线l 过定点,定点坐标为2(,0).72、已知椭圆C的离心率e =,长轴的左右端点分别为()1A 2,0-,()2A 2,0。
2022年高考数学专题圆锥曲线中的“三定问题”(定点、定值、定直线)
圆锥曲线中的“三定问题”(定点、定值、定直线)1.定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.2.定点问题解决步骤:①设直线代入二次曲线方程,整理成一元二次方程;②根与系数关系列出两根和及两根积;③写出定点满足的关系,整体代入两根和及两根积;④整理③所得表达式探求其恒成立的条件.3.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.4.存在型定值问题的求解,解答的一般思路如下:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.5.求定线问题常见的方法有两种:①从特殊入手,求出定直线,再证明这条线与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.1.在平面直角坐标系xOy 中,已知动点P 到 0,1F 的距离比它到直线2y 的距离小1. (1)求动点P 的轨迹C 的方程;(2)过点F 的直线与曲线C 交于A ,B 两点, 2,1Q ,记直线QA ,QB 的斜率分别为1k ,2k ,求证:1211k k为定值.2.已知抛物线y2=2px(p>0)的焦点F到准线的距离为2.(1)求抛物线的方程;(2)过点P(1,1)作两条动直线l1,l2分别交抛物线于点A,B,C,D.设以AB为直径的圆和以CD为直径的圆的公共弦所在直线为m,试判断直线m是否经过定点,并说明理由.3.已知椭圆22221(0)x y a b a b 的一个焦点到双曲线2212x y 渐近线的距离为3,且点2M 在椭圆上.(1)求椭圆的方程;(2)若四边形ABCD 的顶点在椭圆上,且对角线AC 、BD 过原点O ,直线AC 和BD 的斜率之积-22b a,证明:四边形ABCD 的面积为定值.4.已知点(1,2)P 在抛物线2:2C y px 上,过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A 、B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO ,QN QO uuu r uuu r ,试判断11+ 是否为定值,若是,求11+ 值;若不是,求11+的取值范围.5.已知双曲线的对称中心在直角坐标系的坐标原点,焦点在坐标轴上,双曲线的一条渐近线的方程为4,6,过双曲线上的一点P(P在第一象限)作斜率不为l,l与直线y ,且双曲线经过点x 交于点Q且l与双曲线有且只有一个交点.1(1)求双曲线的标准方程;(2)以PQ为直径的圆是否经过一个定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.6.已知双曲线C :22221x y a b 0,0a b 的两条渐近线互相垂直,且过点D.(1)求双曲线C 的方程;(2)设P 为双曲线的左顶点,直线l 过坐标原点且斜率不为0,l 与双曲线C 交于A ,B 两点,直线m 过x 轴上一点Q (异于点P ),且与直线l 的倾斜角互补,m 与直线PA ,PB 分别交于,M N (,M N 不在坐标轴上)两点,若直线OM ,ON 的斜率之积为定值,求点Q 的坐标.7.已知椭圆2222:1x y C a b,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为2x a ,过点M 作ME 垂直于直线m 交直线m 于点E . (1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标;②点O 为坐标原点,求OEN 面积的最大值.22a b 122一点.(1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t 引两条切线,分别交椭圆C 于点,P Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k 为定值.22a b 12221:()1F x c y 与圆222:()9F x c y 相交,两圆交点在椭圆E 上.(1)求椭圆E 的方程;(2)设直线l 不经过 0,1P 点且与椭圆E 相交于,A B 两点,若直线PA 与直线PB 的斜率之和为2 ,证明:直线l 过定点.10.已知抛物线2:4C y x 的焦点为F ,斜率为k 的直线与抛物线C 交于A 、B 两点,与x 轴交于 ,0P a (1)当1k ,3a 时.求AF BF 的值;(2)当点P 、F 重合时,过点A 的圆 2220x y r r 与抛物线C 交于另外一点D .试问直线BD 是否过x轴上的定点Q ?若是,请求出点Q 坐标;若不是,请说明理由.11.已知抛物线22(0)y px p 上一点 4,t 到其焦点的距离为5. (1)求p 与t 的值;(2)过点 21M ,作斜率存在的直线l 与拋物线交于,A B 两点(异于原点O ),N 为M 在x 轴上的投影,连接AN 与BN 分别交抛物线于,P Q ,问:直线PQ 是否过定点,若存在,求出该定点,若不存在,请说明理由.12.已知抛物线 21:20C y px p 的焦点是椭圆 22222:10x y C a b a b的右焦点,且两条曲线的一个交点为 000,2p E x y x,若E 到1C 的准线的距离为53,到2C 的两焦点的距离之和为4.(1)求椭圆2C 的方程;(2)过椭圆2C 的右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C ,点B ,D ,且12l l ,M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.13.已知抛物线C : 220y px p 的焦点到准线的距离是12.(1)求抛物线方程;(2)设点 ,1P m 是该抛物线上一定点,过点P 作圆O : 2222x y r (其中01r )的两条切线分别交抛物线C 于点A ,B ,连接AB .探究:直线AB 是否过一定点,若过,求出该定点坐标;若不经过定点,请说明理由.14.已知抛物线 2:20C y px p 的焦点为F ,点M 在抛物线C 上,O 为坐标原点,OMF 是以OF 为底边的等腰三角形,且OMF 的面积为 (1)求抛物线C 的方程.(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点.若是,求出所过定点的坐标;若否,请说明理由.15.如图,已知抛物线 2:20C y px p 与圆 22:412M x y 相交于A ,B ,C ,D 四点.(1)若8OA OD ,求抛物线C 的方程;(2)试探究直线AC 是否经过定点,若是,求出定点坐标;若不是,请说明理由.16.已知抛物线 2:20C y px p 上一点01,4y到焦点的距离为54.(1)求抛物线C 的标准方程;(2)若点A ,B 为抛物线位于x 轴上方不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足1212444k k k k ,求证:直线AB 过定点.17.如图,已知抛物线2:2(0)C y px p 与圆22:(4)12M x y 相交于A ,B ,C ,D 四点. (1)若以线段AD 为直径的圆经过点M ,求抛物线C 的方程;(2)设四边形ABCD 两条对角线的交点为E ,点E 是否为定点?若是,求出点E 的坐标;若不是,请说明理由.18.设双曲线22221x y a b ,其虚轴长为(1)求双曲线C 的方程;(2)过点 3,1P 的动直线与双曲线的左右两支曲线分别交于点A 、B ,在线段AB 上取点M 使得AM APMB PB,证明:点M 落在某一定直线上.19.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b 的左右焦点分别为F 1(-c ,0),F 2(c ,0),离心率为e ,且点(e ,3),b )都在双曲线C 上. (1)求双曲线C 的标准方程;(2)若A ,B 是双曲线C 上位于x 轴上方的两点,且AF 1//BF 2.证明:1211AF BF 为定值.20.已知双曲线2222:1(0,0)x y C a b a b2,1F ,2F为其左右焦点,Q 为其上任一点,且满足120QF QF,122QF QF .(1)求双曲线C 的方程;(2)已知M ,N 是双曲线C 上关于x 轴对称的两点,点P 是C 上异于M ,N 的任意一点,直线PM 、PN 分别交x 轴于点T 、S ,试问:||||OS OT 是否为定值,若不是定值,说明理由,若是定值,请求出定值(其中O 是坐标原点).21.已知双曲线 2222:10,0x y C a b a b ,四点13M , 2M ,32,3M ,43M中恰有三点在C 上. (1)求C 的方程;(2)过点 3,0的直线l 交C 于P ,Q 两点,过点P 作直线1x 的垂线,垂足为A .证明:直线AQ 过定点.22.已知动点P 与定点(1,0)F 的距离和它到定直线:4l x 的距离之比为12,记P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(4,0)M 的直线与曲线C 交于,A B 两点,,R Q 分别为曲线C 与x 轴的两个交点,直线,AR BQ 交于点N ,求证:点N 在定直线上.23.在平面直角坐标系xOy 中,椭圆C : 22210xy a a的左右顶点为A ,B ,上顶点K 满足3AK KB .(1)求C 的标准方程:(2)过点 1,0的直线与椭圆C 交于M ,N 两点.设直线MA 和直线NB 相交于点P ,直线NA 和直线MB 相交于点Q ,直线PQ 与x 轴交于S .①求直线PQ 的方程; ②证明:SP SQ 是定值.24.已知椭圆C : 222210x y a b a b ,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,四边形1122A B A B 的面积为(1)求椭圆C 的方程;(2)过点 0,1D 且斜率存在的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.25.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB uu u r uu r ,3AF FB. (1)求椭圆C 的方程;(2)不过点A 的直线l 交椭圆C 于M 、N 两点,记直线l 、AM 、AN 的斜率分别为k 、1k 、2k .若 121k k k ,证明直线l 过定点,并求出定点的坐标.26.已知O 为坐标原点,椭圆2222Γ:1(0)x y a b a b 的右顶点为A ,动直线1:(1)l y x m 与相交于,B C 两点,点B 关于x 轴的对称点为B ,点B 到 的两焦点的距离之和为4.(1)求 的标准方程;(2)若直线B C 与x 轴交于点M ,,OAC AMC 的面积分别为12,S S ,问12S S 是否为定值?若是,求出该定值;若不是,请说明理由.。
圆锥曲线定点、定直线、定值问题
定点、定直线、定值专题1、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为22221(0)x y a b a b +=>>3,1a c a c +=-=,22,1,3a c b ===221.43x y ∴+= (II)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->.212122284(3),.3434mk m x x x x k k-⇒+=-⋅=++22221212121223(4)()()().34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122y yx x ∴⋅=---, (最好是用向量点乘来)1212122()40y y x x x x +-++=,`2222223(4)4(3)1640343434m k m mkk k k --+++=+++,2271640m mk k ++=,解得1222,7km k m =-=-,且满足22340k m +->. 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0).7综上可知,直线l 过定点,定点坐标为2(,0).72、已知椭圆C的离心率e =,长轴的左右端点分别为()1A 2,0-,()2A 2,0。
圆锥曲线定值,定点
过圆锥曲线上定点和斜率和积为定值直线,则直线过定点(一)一般性推论:过圆锥曲线上一定点产生的两条直线斜率和积为定,则另外两点的连线过定点。
数学表达:若点定一上线曲锥圆为点定过线直值定者或值定⎩⎨⇒⎧∙=+=P k k k k PA PB PA PB AB点定一上线曲锥圆为值定者或值定点定过线直⎩⎨⇒∙=+=⎧P k k k k PA PB PA PB AB 其次法的使用要点:“齐次”即次数相等的意思,例如=++x cy f ax bxy 22)(称为二次齐式,即二次齐次式的意思,因为f x )(中每一项都是关于x 、y 的二次项。
当圆锥曲线遇到斜率之和或者斜率之积的问题,可以先平移图形,将公共点平移到原点,注意平移口诀是“左加右减,上减下加”,注意此处因为是在y 同侧进行加减,故为“上减下加”,而我们以往记的“上加下减”都是在y 的异侧。
例如要证明直线AP 与AQ 的斜率之和或者斜率之积为定值,可将公共点A 平移到原点,设平移后的直线为+=mx ny 1(为什么这样设?因为这样齐次化能更加方便解题),与圆锥曲线方程联立,一次项乘以+mx ny ,常数项乘以+mx ny 2)(,构造++=ay bxy cx 022,然后等式两边同时除以x 2(前面注明x 不等于0),得到⎝⎭⎪++=⎛⎫x x a b c y y 02,化简为++=ak bk c 02,可以直接利用韦达定理得出斜率之和或者斜率之积,即可得出答案,如果是过定点题目,还需要还原直线,之前如何平移,现在就如何反平移回去。
解题的方法步骤为: (1)平移直线; (2)联立方程并齐次化; (3)同除x 2:(4)利用韦达定理证明,如果过定点,还需要还原直线。
优点;大大减小了计算量,提高准确率,缺点:+=mx ny 1不能表示过原点的直线。
一. 构造法解整式问题在抛物线中的应用引题:证明:已知直线l 与抛物线 2p (p>0,p为常数)交于点A ,B 两点,若OA ⊥OB,则直线l 恒过定点(2p,0)设,B(x ,y ))x ,y (A 1122,⊥⇒∙=∙=-x x OA OB k k y y OA OB 11212设AB 直线方程为+=mx ny 1(截距式的变形式可以表示任意直线,该种设法可以利用1的妙用,快速制作齐次式)联立⎩=⎨⎧+=y pxmx ny 212第一步:构造齐次式-∙+=⇒--=y px ny pnxy pmx 2(mx )0y 220222易知A ,B 两点不与O 点重合,所以x 0令则==y p 0,x 2,所以直线过定点(2p,0) 常规证明方法(略)例1:(2017•新课标Ⅰ文)设A ,B 为曲线C :y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.第一步:平移抛物线,将抛物线沿→M O 方向平移,及左移2个单位,下移1个单位,及抛物线方程变为=+-y 4(x 2)112化简得+-x x 42联立方程=0⎩⎧+=-⎨-y y mx m x x 4142第二步:构造齐次式--∙-=⇒+-+=x mxy my 4(x y)m(x y)0(14m)x 840222,第四步平移回去:右2,上1,=-++=+y x x 28171.(2020春•江西月考)过抛物线E:y2=2px(p>0)上一点M(1,﹣2)作直线交抛物线E于另一点N.(Ⅰ)若直线MN的斜率为1,求线段|MN|的长;(Ⅱ)不过点M的动直线l交抛物线E于A,B两点,且以AB为直径的圆经过点M,问动直线l是否恒过定点.如果有求定点坐标,如果没有请说明理由.题型拓展:2.(2021•齐齐哈尔一模)已知抛物线C1:y2=2px(p>0)的焦点F是椭圆C2:x2+2y2=1的一个顶点.(1)求抛物线C1的方程;(2)若点P(1,2),M,N为抛物线C1上的不同两点,且PM⊥PN.求证:直线MN过定点.斜率和积为定值,直线过定点问题在椭圆中的数学模型建立k k PA PB ⋅=定值或者k k PA PB +=定值,直线过定点,P 点坐标之间的转化证明 将椭圆C 按向量--x y ,00)(平移得椭圆C x x ay y b'+++=2222:001)()(又点P x y ,00)(在椭圆xa yb+=22221上,所以x a y b +=2222001,代入上式得+++=a b a b x y x y x y 022********①。
圆锥曲线中的定点, 定值问题
(2) 当点 P 异于点 B 时,求证:OP OQ 为定值.
2
2
即kx1+m+kx2+m=0. x1-1 x2-1
化简得 2kx1x2+(m-k)(x1+x2)-2m=0,
所以 2k·2m2-2-4kmm-k-2m=0, 2k2+1 2k2+1
整理得 m=-2k.
故直线 MN 的方程为 y=k(x-2),
因此直线 MN 过定点,该定点的坐标为(2,0).
x2 2.如图,椭圆 E: a2
y2 b2
1(a b 0) 的左焦点为 F1 ,右焦点为 F2 ,离心率 e
1 2
,
过 F1 的直线交椭圆于 A, B 两点,且 △ABF2 的周长为 8.
(Ⅰ)求椭圆 E 的方程.
(Ⅱ)设动直线 l:y=kx+m 与椭圆 E 有且只有一个公共点 P,且与直线 x 4 相交于点 Q.试
解得 n=2k 或 n=2k. 7
当 n=2k 时,直线 MN 的方程为 y=k(x+2),过点 A,与题意不符,舍去;
当
n=2k
பைடு நூலகம்
时,n2-4k2-3<0,直线
MN
的方程为 y=k
x+2 7
,显然过点
Q
-2,0 7
.
7
综上,直线 MN 一定经过 x 轴上一定点 Q
-2,0 7
.
例 2.
已知椭圆 C:ax22+by22=1(a>b>0)的离心率 e=
其中 c= a2-b2,
椭圆 C 的左、右焦点分别为 F1(-c,0),F2(c,0).
又∵点 F2 在线段 PF1 的中垂线上, ∴|F1F2|=|PF2|,∴(2c)2=( 3)2+(2-c)2, 解得 c=1,∴a2=2,b2=1. ∴椭圆的方程为x2+y2=1.
专题22 圆锥曲线中的定点、定值、定直线问题 微点1 圆锥曲线中的定点问题试题及答案
专题22 圆锥曲线中的定点、定值、定直线问题微点1 圆锥曲线中的定点问题专题22 圆锥曲线中的定点、定值、定值线问题 微点1 圆锥曲线中的定点问题 【微点综述】定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.证明直线(曲线)过定点的基本思想是是确定方程,即使用一个参数表示直线(曲线)方程,根据方程的成立与参数值无关得出,x y 的方程组,以方程组的解为坐标的点就是直线(曲线)所过的定点.核心方程是指已知条件中的等量关系. 一、圆锥曲线中的定点问题一般情况下,若方程(),0f x y =中含有一个或者多个参数,当x 取某个常数0x 时,求得的y 也是一个与参数无关的常数0y ,这样就可以说方程(),0f x y =对应的曲线经过定点()00,x y .有时圆锥曲线中的定点问题,可以充分考虑几何性质,从特殊情况出发,对可能的定点有初步的判断,争取确定出定点,这样可以转化为有方向、有目标的一般性证明题,从而找到解决问题的突破口. 二、处理定点问题两个基本策略:(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.三、解题流程与方法总结 1.单参数法①设动直线PM 方程为y =k (x -x0)+y0;①联立直线与椭圆(抛物线),解出点M 的坐标为(A (k ),B (k )),同理(由核心方程代换),得出点N 的坐标为(C (k ),D (k ));①写出动直线MN 方程,并整理成kf (x ,y )+g (x ,y )=0;①根据直线过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组①方程组的解为坐标的点就是直线所过的定点.2.双参数法①设动直线MN方程(斜率存在)为y=kx+t;①由核心方程得到f(k,t)=0(常用韦达定理);①把t用k表示或把k用t表示,即kf(x,y)+g(x,y)=0(或tf(x,y)+g(x,y)=0);①根据直线过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组①方程组的解为坐标的点就是直线所过的定点.四、典型例题精析1.直线过定点问题(1)直线过定点问题的解题模型(2)求解动直线过定点问题,一般可先设出直线的一般方程:y kx b=+,然后利用题中条件整理出,k b的关系,若(),b km n m n=+为常数,代入y kx b=+得()y k x m n=++,则该直线过定点(),m n-.1.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,P4(1,C上.(①)求C的方程;(①)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.2.已知椭圆()2222:10x y C a b a b +=>>,点()0,1P 和点(),A m n (0)m ≠都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示).(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由. 例3.(2022届黑龙江省哈尔滨市高三上学期检测)3.已知抛物线的顶点为原点,焦点F 在x 轴的正半轴,F 到直线20x y -+=的距离为点()()000,0N x y y >为此抛物线上的一点,52NF =.直线l 与抛物线交于异于N 的两点A ,B ,且2NA NB k k ⋅=-. (1)求抛物线方程和N 点坐标;(2)求证:直线AB 过定点,并求该定点坐标.4.如图所示,设椭圆M :22221(0)x y a b a b +=>>的左顶点为A ,中心为O ,若椭圆M 过点11(,)22P -,且AP ①OP .(1)求椭圆M 的方程;(2)若①APQ 的顶点Q 也在椭圆M 上,试求①APQ 面积的最大值;(3)过点A 作两条斜率分别为k 1,k 2的直线交椭圆M 于D ,E 两点,且k 1k 2=1,求证:直线DE 过定点.例5.(2022届北京大学附属中学高三12月月考)5.已知点()11,0F -,()21,0F ,曲线C 上的动点M 满足12122MF MF F F +=. (1)求曲线C 的方程;(2)若直线1MF 与曲线C 相交于另一点N ,当直线MN 不垂直于x 轴时,点M 关于x 轴的对称点为P ,证明:直线PN 恒过一定点.6.椭圆C 的焦点为()1F ,)2F ,且点)M在椭圆C 上.过点()0,1P 的动直线l 与椭圆相交于A ,B 两点,点B 关于y 轴的对称点为点D (不同于点A ).(1)求椭圆C 的标准方程;(2)证明:直线AD 恒过定点,并求出定点坐标. 2.圆过定点问题圆过定点问题的常见类型是以AB 为直径的圆过定点P ,求解思路是把问题转化为PA PB ⊥,也可以转化为0PA PB ⋅=例7.(2022届广西“智桂杯”高三上学期大联考)7.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(10)F ,,与x 轴不重合的直线l 过焦点F ,l 与椭圆C 交于A ,B 两点,当直线l 垂直于x 轴时,3AB =.(1)求椭圆C 的标准方程;(2)设椭圆C 的左顶点为P ,PA ,PB 的延长线分别交直线4x =于M ,N 两点,证明:以MN 为直径的圆过定点. 3.与定点问题有关的基本结论(1)若直线l 与抛物线22y px =交于点,A B ,则OA OB ⊥⇔直线l 过定点()2,0P p ; (2)若直线l 与抛物线22y px =交于点,A B ,则OA OB k k m ⋅=⇔直线l 过定点()P p +;(3)设点()2002,2P pt pt 是抛物线22y px =上一定点,,M N 是该抛物线上的动点,则PM PN ⊥⇔直线MN 过定点()20022,2Q p pt pt +-.(4)设点()00,A x y 是抛物线22y px =上一定点,,M N 是该抛物线上的动点,则AM AN k k m ⋅=⇔直线MN 过定点002,p P x y m ⎛⎫-- ⎪⎝⎭; (5)过椭圆()222210x y a b a b+=>>的左顶点P 作两条互相垂直的直线与该椭圆交于点,A B ,则PA PB ⊥⇔直线AB 过点()2222,0a a b Q a b ⎛⎫- ⎪- ⎪+⎝⎭;(6)过椭圆()222210,0x y a b a b-=>>的左顶点P 作两条互相垂直的直线与该椭圆交于点,A B ,则PA PB ⊥⇔直线AB 过点()2222,0a a b Q a b ⎛⎫+ ⎪- ⎪-⎝⎭;(7)设点(),P m n 是椭圆C :()222210x y a b a b+=>>上一定点,点A ,B 是椭圆C 上不同于P 的两点,若()0PA PB k k λλ+=≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--- ⎪⎝⎭;(8)设点(),P m n 是双曲线C :()222210,0x y a b a b-=>>一定点,点A ,B 是双曲线C 上不同于P 的两点,若()0PA PB k k λλ+=≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--+ ⎪⎝⎭.例8.(2022届海南华侨中学高三上学期月考)8.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点()0,1M -是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆的方程;(2)过点M 分别作直线,MA MB 交椭圆于,A B 两点,设两直线的斜率分别为12,k k ,且124k k +=,求证:直线AB 过定点1,12⎛⎫⎪⎝⎭.例9.(2022届辽宁省名校联盟高三上学期12月联考)9.已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52p MF =. (1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由. 【强化训练】10.已知椭圆2222:1(0)x y C a b a b +=>>(2,0)在椭圆C 上.(1)求椭圆C 的标准方程;(2)过点(1,0)P 的直线(不与坐标轴垂直)与椭圆交于A 、B 两点,设点B 关于x 轴对称点为B '. 直线AB '与x 轴的交点Q 是否为定点?请说明理由.11.已知椭圆()2222:10x y C a b a b +=>>经过点⎛ ⎝⎭ (1)求椭圆C 的方程.(2)直线()1(0)y k x k =≠-与椭圆C 交于A ,B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点P ,Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标.若不是,说明理由. 12.已知抛物线C :x 2=−2py 经过点(2,−1). (①)求抛物线C 的方程及其准线方程;(①)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.13.双曲线C :22221x y a b -=(0a >,0b >)的一条渐近线l 的倾斜角为π6,过左、右焦点1F ,2F 分别作l 的垂线,两垂足间的距离为 (1)求双曲线C 的方程;(2)过点P (1,0)且斜率不为0的直线1l 与双曲线C 交于M ,N 两点,记N 关于x 轴的对称点为Q ,证明直线MQ 过x 轴上的定点. (2022届河南省焦作市高三上学期开学考试)14.在PAB 中,已知()2,0A -、()2,0B ,直线PA 与PB 的斜率之积为34-,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设Q 为曲线C 上一点,直线AP 与BQ 交点的横坐标为4,求证:直线PQ 过定点. (2022届陕西省西安市高三上学期模拟)15.已知与圆22:(1)3C x y ++=相切的直线l ,过抛物线2:2(0)E x py p =>的焦点F ,且直线l 的倾斜角为23π. (1)求抛物线E 的方程;(2)直线1l 与抛物线E 交于点A ,B 两点,且A ,B 关于直线y x =+对称,在12y x=-上是否存在点N ,使得以AB 为直径的圆恰好过点N ,若存在,求出点N 的坐标;否则,请说明理由.(2022届河南省名校联盟高三上学期阶段性测试)16.已知椭圆22:143x y C +=的右焦点为F ,直线l 与椭圆C 交于A ,B 两点.(1)若AM MB =,且直线l 的斜率为4,求直线OM (点O 为坐标原点)的斜率. (2)若直线FA ,FB 的斜率互为相反数,且直线l 不与x 轴垂直,探究:直线l 是否过定点?若是,求出该定点坐标;若不是,请说明理由.17.过点(0,2)D 的任一直线l 与抛物线220C :x py(p )=>交于两点,A B ,且4OA OB =-. (1)求p 的值.(2)已知,M N 为抛物线C 上的两点,分别过,M N 作抛物线C 的切线12l l 和,且12l l ⊥,求证:直线MN 过定点.(2022届上海市进才中学高三上学期12月联考)18.在平面直角坐标系xOy 中,动点M 到直线4x =的距离等于点M 到点(1,0)D 的距离的2倍,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知斜率为12的直线l 与曲线C 交于A 、B 两个不同点,若直线l 不过点31,2P ⎛⎫ ⎪⎝⎭,设直线PA PB 、的斜率分别为PA PB k k 、,求PA PB k k +的值;(3)设点Q 为曲线C 的上顶点,点E 、F 是C 上异于点Q 的任意两点,以EF 为直径的圆恰过Q 点,试判断直线EF 是否经过定点?若经过定点,请求出定点坐标;若不经过定点,请说明理由.19.在平面直角坐标系xOy 中,M 为直线y =x -2上一动点,过点M 作抛物线C :x 2=y 的两条切线MA ,MB ,切点分别为A ,B ,N 为AB 的中点. (1)证明:MN ①x 轴.(2)直线AB 是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由. (2022届广东省茂名市五校联盟高三上学期联考)20.已知椭圆C :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F .,点P 在y 轴正半轴上,12PF F △为直角三角形且面积等于2. (1)求椭圆C 的标准方程;(2)已知斜率存在且不为0的直线l 与椭圆C 交于A ,B 两点,当点A 关于y 轴的对称点在直线PB 上时,直线l 是否过定点?若过定点,求出此定点;若不过,请说明理由. (2022届江苏省南通市高三上学期期末)21.在平面直角坐标系xOy 中,已知双曲线C :22x a -22y b=1(a 、b 为正常数..)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1·k 2的值;(2)若AMPQ =12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.22.已知抛物线()2:20C y px p =>的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,当l x ⊥轴时,2AB =. (1)求抛物线C 的方程;(2)若直线l 交y 轴于点D ,过点D 且垂直于y 轴的直线交抛物线C 于点P ,直线PF 交抛物线C 于另一点Q .①是否存在定点M ,使得四边形AQBM 为平行四边形?若存在,求出定点M 的坐标;若不存在,请说明理由. ①求证:QAF QBF S S △△为定值.参考答案:1.(1) 2214x y +=.(2)证明见解析.【详解】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x 轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩. 故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且2t <,可得A ,B 的坐标分别为(t,(t,.则121k k +==-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得()222418440kx kmx m +++-=由题设可知()22=16410k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ ()()12121221kx x m x x x x +-+=.由题设121k k +=-,故()()()12122110k x x m x x ++-+=. 即()()22244821104141m km k m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即()1122m y x ++=--, 所以l 过定点(2,1-)点睛:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.2.(1)2212x y +=,点M 的坐标为,01m n ⎛⎫⎪-⎝⎭ (2)存在,(0,Q【分析】(1)根据椭圆的离心率以及过点P (0,1),可以得出a ,b ,c 的方程,求出2a ,2b 得出椭圆的方程.(2)设点Q 的坐标是()00,Q y ,由条件OQM ONQ ∠=∠转化到正切值的关系,进而转化为斜率求得0y . (1)由题意知,代入点()0,1P ,得2101b+=,①21b =.2212c a =,则2212c a =.由222a b c =+,得2222a b ==.①椭圆C 的方程是2212x y +=.由点()0,1P 和(),A m n 的坐标,得出直线P A 的方程为11n y x m-=+. 令0y =,得1m x n =-,①点M 的坐标为,01m n ⎛⎫⎪-⎝⎭. (2)点(),A m n 在椭圆上,有2212m n +=. 点B 的坐标为(,)m n -,直线PB 的方程为11n y x m+=+-. 令0y =,得1m x n =+,①点N 的坐标为,01m n ⎛⎫⎪+⎝⎭. 设点Q 的坐标是()00,Q y ,则()001tan 1mm n OQM y n y -∠==-,00(1)tan 1y n y ONQ m m n+∠==+. ①OQM ONQ ∠=∠,①tan tan OQM ONQ ∠=∠,即00(1)(1)n y mn y m+=-.①2222022221112m m m y n n m ====--.①0y =点Q的坐标为(0,,①在y轴上存在点(0,Q ,使得OQM ONQ ∠=∠. 3.(1)22y x =,()2,2N (2)证明见解析,定点()3,2-【分析】(1)设抛物线的标准方程为22y px =,利用点到直线距离公式可求出p ,再利用焦半径公式可求出N 点坐标;(2)设直线的方程为x ty b =+,与抛物线联立,利用韦达定理计算2NA NB k k ⋅=-,可得,t b 关系,然后代入直线方程可得定点.【详解】(1)设抛物线的标准方程为22y px =,0p >,其焦点为,02p F ⎛⎫ ⎪⎝⎭= ①1p =所以抛物线的方程为22y x =.0522p NF x ∴=+=,所以02x =,所以24y =. 因为00y >,所以02y =,所以()2,2N .(2)由题意知,直线的斜率不为0,设直线的方程为x ty b =+(t R ∈),联立方程22,,y x x ty b ⎧=⎨=+⎩得2220.y ty b --=设两个交点211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫⎪⎝⎭(12y ≠±,22y ≠±).所以21212Δ480,2,2,t b y y t y y b ⎧=+>⎪+=⎨⎪=-⎩ 所以NA NBk k ⋅=()()122212122242222222y y y y y y --==-++--, 即()()()12121222242442y y y y y y b t ++=+++=-++=-整理得23b t =+,此时()24460t t ∆=++>恒成立,此时直线l 的方程为23x ty t =++,可化为()32x t y -=+, 从而直线过定点()3,2-.4.(1)22113y x +=. 14(3)证明见解析【分析】(1)根据题意可得kAP ·kOP =-1,可求出a ,再由椭圆M 过点P ,将点P 坐标代入椭圆方程可求出2b ,从而可求出椭圆方程,(2)求出直线AP 的方程,设cos Q θθ⎛⎫ ⎪ ⎪⎝⎭,再求出点Q 到直线AP 的距离,从而可表示出①APQ 面积,再利用三角函数的性质可求得结果,(3)解法1:单参数法,由题意易得,直线AD 的方程为y =k 1(x +1),代入x 2+3y 2=1,可求出点D 的坐标,同理求出点E 的坐标,从而可表示出直线DE 的方程,从而可求得结果,解法2:设直线DE 的方程为x =ty +s ,将其代入x 2+3y 2=1,利用根与系数关系,再由k 1k 2=1,可求出s ,从而可求得结果.【详解】(1)由AP ①OP ,可知kAP ·kOP =-1. 又点A 的坐标为(-a ,0),所以112211122a ⋅=--+-,解得a =1.又因为椭圆M 过点P ,所以211144b+=,解得213b =,所以椭圆M 的方程为22113y x +=. (2)由题意易求直线AP 的方程为01110122y x -+=--+,即x -y +1=0.因为点Q 在椭圆M上,故可设cos Q θθ⎛⎫ ⎪ ⎪⎝⎭,又AP =所以1112464APQSπθ⎛⎫==++ ⎪⎝⎭, 当π2π(Z)6k k θ+=∈,即π2π(Z)6k k θ=-∈时,cos 16πθ⎛⎫+= ⎪⎝⎭,APQS14. (3)法一:单参数法由题意易得,直线AD 的方程为y =k 1(x +1),代入x 2+3y 2=1,消去y ,得2222111(31)6310k x k x k +++-=,设D (xD ,yD ),则212131(1)31D k x k --⋅=+,即21211313D k x k -=+,所以2111221113211313D k k y k k k ⎛⎫-=+= ⎪++⎝⎭.设E (xE ,yE ),同理可得22221313E k x k -=+,222213E k y k =+.又k 1k 2=1且k 1≠k 2,可得211k k =且k 1≠±1, 所以211221132,33E E k kx y k k -==++, 所以112211122211122112231323133(1)313E D DEE D k k y y k k k k k k x x k k k --++===---+-++ 故直线DE 的方程为21112221112213133(1)13k k k y x k k k ⎛⎫--=- ⎪+++⎝⎭.令y =0,可得22112211133(1)21313k k x k k -+=-=-++. 故直线DE 过定点(-2,0). 法二:双参数法设D (xD ,yD ),E (xE ,yE ).若直线DE 垂直于y 轴,则xE =-xD ,yE =yD ,此时221222111133D E D D D E D D y y y y k k x x x y =⋅===++-与题设矛盾, 若DE 不垂直于y 轴,可设直线DE 的方程为x =ty +s ,将其代入x 2+3y 2=1,消去x , 得(t 2+3)y 2+2tsy +s 2-1=0,则22221,33D E D E ts s y y y y t t --+==++. 又12111(1)(1)D E D ED E D E y y y y k k x x ty s ty s =⋅==++++++, 可得(t 2-1)yDyE +t (s +1)(yD +yE )+(s +1)2=0, 所以2222212(1)(1)(1)033s tst t s s t t ---⋅++⋅++=++, 2222(1)(1)(1)(2)(1)(3)0t s t s ts s t -⋅-++⋅-+++=,化简得(1)(24)0s s ++=, 解得s =-2或s =-1.又DE 不过点A ,即s ≠-1,所以s =-2.所以DE 的方程为x =ty -2. 故直线DE 过定点(-2,0). 5.(1)22143x y +=;(2)证明见解析.【分析】(1)由题意得出12124MF MF F F +=>,根据椭圆的定义可知曲线C 是以1F ,2F 为焦点,长轴长为4的椭圆,从而可求出椭圆方程;(2)设直线MN 的方程为()1y k x =+或1x ty =-,把直线方程与椭圆方程联立,消元,写韦达;根据点M 的坐标写出点P 的坐标,从而求出直线PN 的方程,证明直线PN 与x 轴的交点为定点即可. (1)因为122F F =,12124MF MF F F +=>,所以曲线C 是以1F ,2F 为焦点,长轴长为4的椭圆, 所以2a =,1c =,b == 所以曲线C 的方程为22143x y +=. (2)解法一:因为直线MN 不与x 轴垂直,所以设直线MN 的方程为()1y k x =+由()221143y k x x y ⎧=+⎪⎨+=⎪⎩,得()()2222348430k x k x k +++-=,因为点1F 在曲线C 内,所以0∆>恒成立,设()11,M x y ,()22,N x y ,则2122834k x x k +=-+,()21224334k x x k -=+. 因为点P 与点M 关于x 轴对称,所以()11,P x y -. 所以直线PN 的斜率2121+=-PN y y k x x ,直线PN 的方程是()211121y y y y x x x x ++=--.令0y =,得()211211212121x x y x y x y x xy y y y -+=+=++()()()211221112x k x x k x k x x ⋅++⋅+=++()12122122x x x x x x ++++=()2222224382343448234k k k k k k -⎛⎫⨯+- ⎪++⎝⎭==--++. 所以此时直线PN 过定点()4,0-.当直线MN 与x 轴重合时,直线PN 为x 轴,显然过点()4,0-. 综上所述,直线MN 恒过定点()4,0-.解法二:当MN 不与x 轴重合时,设直线MN 的方程为1x ty =-,由221143x ty x y =-⎧⎪⎨+=⎪⎩,得()2234690t y ty +--=,()()()()2226434914410t t t ∆=--⨯+⨯-=+>.设()11,M x y ,()22,N x y ,设122634ty y t +=+,122934y y t =-+. 因为点P 与点M 关于x 轴对称,所以()11,P x y -. 所以直线PN 的斜率2121+=-PN y y k x x ,直线PN 的方程是()211121y y y y x x x x ++=-- 令0y =,得()()()211211112121111ty ty y x x y x xty y y y y ---⎡⎤-⎣⎦=+=+-++122121ty y y y =-+ 22923414634t t t t ⎛⎫- ⎪+⎝⎭=-=-+, 所以此时直线PN 过定点()4,0-.当直线MN 与x 轴重合时,直线PN 为x 轴,显然过点()4,0-. 综上所述,直线MN 恒过定点()4,0-.6.(1)22142x y +=(2)证明见解析,定点坐标为()0,2【分析】(1)计算1224a MF MF =+=,得到椭圆方程.(2)考虑斜率存在和不存在两种情况,联立方程得到根与系数的关系,通过特殊直线得到定点为2(0)Q ,,再计算斜率相等得到证明. (1)设椭圆C 的标准方程为22221(0)x y a b a b+=>>,由已知得124c a MF MF ==+=.所以2a =,2222b a c =-=,所以椭圆C 的标准方程为22142x y +=. (2)当直线l 的斜率存在时,设直线l 的方程为1(0)y kx k =+≠.由221421x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-=. 设11(,)A x y ,22(,)B x y ,22(,)D x y -,则()22122122Δ16821042122k k k x x k x x k x ⎧=++>⎪⎪⎪+=-⎨+⎪⎪=-⎪+⎩,特殊地,当A 的坐标为(2)0,时,12k =-,所以2423x =-,223x =-,143y =, 即24,33B ⎛⎫- ⎪⎝⎭,所以点B 关于y 轴的对称点为24,33⎛⎫⎪⎝⎭D ,则直线AD 的方程为2y x =-+.当直线l 的斜率不存在时,直线AD 的方程为0x =.如果存在定点Q 满足条件,则为两直线交点2(0)Q ,, 111112111QA y y k k x x x ---===-,22221QD y k k x x -==-+-, 又因为121212112()2220.QA QD x x k k k k k k x x x x +-=-+=-=-= 所以QA QD k k =,即,,A D Q 三点共线,故直线AD 恒过定点,定点坐标为(0)2,. 7.(1)22143x y +=;(2)证明见解析.【分析】(1)根据给定条件结合椭圆通径的意义及222a b c =+计算即可得解.(2)设出直线l 方程,再与椭圆C 的方程联立,用点A ,B 的纵坐标表示出点M ,N 的纵坐标,然后借助韦达定理、向量数量积计算即可作答. (1)椭圆2222:1(0)x y C a b a b+=>>的右焦点(1,0)F ,则半焦距1c =,当l x ⊥轴时,弦AB 为椭圆的通径,即22||b AB a=,则有223b a =,即232b a =, 而222a b c =+,于是得23102--=a a ,又0a >,解得2a =,b =所以椭圆C 的方程为:22143x y +=. (2)依题意,直线AB 不垂直于y 轴,且过焦点(1,0)F ,设AB 的方程为1x my =+,()11,A x y ,()22,B x y ,由2234121x y x my ⎧+=⎨=+⎩得()2234690m y my ++-=,122634m y y m -+=+,122934y y m -=+, 因点(2,0)P -,则直线PA 的方程为11(2)2y y x x =++,令4x =,得116(4,)2y M x +, 同理可得226(4,)2y N x +,于是有122166),)22(3,(3,FM FN y y x x ==++,则()()()121212212121212663636999223339y y y y y y FM FN x x my my m y y m y y ⋅=+⋅=+=++++++++2222293636(9)349909183693434m m m m m -⋅⨯-+=+=+=--++++, 因此,FM FN ⊥,即F 在以MN 为直径的圆上, 所以以MN 为直径的圆过定点(1,0)F .【点睛】方法点睛:涉及过定点()00,x y 且不垂直于某条坐标轴的直线方程设法,若直线不垂直于x 轴,可设其方程为: ()00y y k x x -=-; 若直线不垂直于y 轴,可设其方程为:.()00x x m y y -=-. 8.(1)2212x y +=(2)证明见解析【分析】(1)根据题意列方程组求得,a b ,即可得到椭圆的标准方程; (2)设()()1122,,,A x y B x y ,分直线AB 斜率存在与不存在两种情况证明.当直线AB 的斜率存在时,设AB :y kx m =+,联立椭圆方程消元后利用韦达定理及判别式求得22212122242221,,2121km m k m x x x x k k -+>+=-⋅=++,由124k k +=求得12k m =-,代入直线方程可证得直线过定点1,12⎛⎫⎪⎝⎭,再考虑直线AB 的斜率不存在时情况,易证得结果.(1)由题意可得2221b c b a b c =⎧⎪=⎨⎪=+⎩,解得1,a b ⎧=⎪⎨=⎪⎩ 所以椭圆的方程为2212x y +=.(2)设()()1122,,,A x y B x y .①当直线AB 斜率存在时,设直线AB 方程为y kx m =+, 联立2212y kx m x y =+⎧⎪⎨+=⎪⎩得()222214220k x kmx m +++-=. 由()()()222222Δ16421228210k m k m k m =-+-=-+>,得2221k m +>.所以2121222422,2121km m x x x x k k -+=-⋅=++.所以12121212121111y y kx m kx m k k x x x x +++++++=+=+()1212214x xk m x x +=++=, 即2241km k m -=-,所以21km k m =--,即()()2122km k m km k m =--=--+, 所以12k m =-,所以11122k y kx m kx k x ⎛⎫=+=+-=-+ ⎪⎝⎭,所以直线AB 过定点1,12⎛⎫⎪⎝⎭.①当直线AB 斜率不存在时,()()1111,,,A x y B x y -,则11121111124y y k k x x x +-++=+==,所以112x =,则直线AB 也过定点1,12⎛⎫⎪⎝⎭.综合①①,可得直线AB 过定点1,12⎛⎫⎪⎝⎭.9.(1)M 的坐标为()4,4,C 的方程为24y x =; (2)直线l 过定点()0,4-.【分析】(1)利用抛物线定义求出0x ,进而求出p 值即可得解.(2)设出直线l 的方程x my n =+,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系即可作答.【详解】(1)抛物线2:2C y px =的准线:2px =-,于是得0522p p MF x =+=,解得02x p =, 而点M 在C 上,即2164p =,解得2p =±,又0p >,则2p =, 所以M 的坐标为()4,4,C 的方程为24y x =.(2)设()()1122,,,A x y B x y ,直线l 的方程为x my n =+,由24x my n y x=+⎧⎨=⎩消去x 并整理得:2440y my n --=,则()2160m n ∆=+>,124y y m +=,124y y n =-,因此,121222121212444444144444444MA MB y y y y k k y y x x y y ----⋅=⋅=⋅=⋅=--++--, 化简得()121240y y y y ++=,即4n m =,代入l 方程得4x my m =+,即()40x m y -+=,则直线l 过定点()0,4-,所以直线l 过定点()0,4-.【点睛】思路点睛:直线与圆锥曲线相交,直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题. 10.(1)2214x y +=;(2)()4,0Q .【分析】(1(2,0)在椭圆C上,由2222c e a a a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩求解;(2)设()()()()112222,,,,,,,0A x y B x y B x y Q n '-,直线AB 的方程为()()10y k x k =-≠,与椭圆方程联立,则直线AB '的方程()121112y y y y x x x x +-=--,令0y =,结合韦达定理求解. 【详解】(1)因为椭圆2222:1(0)x y C a b a b +=>>(2,0)在椭圆C 上,所以2222c e a a a b c⎧==⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得21a b =⎧⎨=⎩,所以椭圆C 的标准方程2214x y +=;(2)()()()()112222,,,,,,,0A x y B x y B x y Q n '-, 直线AB 的方程为()()10y k x k =-≠,联立()22114y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 得()2222148440k x k x k +-+-=, 由韦达定理得22121222844,1414k k x x x x k k -+=⋅=++, 直线AB '的方程为()121112y y y y x x x x +-=--, 令0y =,得()112122111212y x x x y x y n x y y y y -+=-+=++,又()()1122=1,=1y k x y k x --, 所以()()11212121121242y x x x x x x n x y y x x --+=-+==++-,所以直线AB '与x 轴的交点Q 是定点,其坐标是()4,0Q . 11.(1)2214x y +=(2)是,以线段PQ 为直径的圆过x轴上的定点(.【分析】(1)由椭圆2222:1(0)x y C a b a b +=>>经过点可求椭圆C 的方程;(2)直线(1)(0)y k x k =-≠代入椭圆方程,求出P ,Q 的坐标,利用以线段PQ 为直径的圆过x 轴上的定点0(N x ,0),则等价于0PN QN ⋅=恒成立,即可得出结论.【详解】(1)解:由题意得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2a =,1b =.①椭圆C 的方程是2214x y +=.(2)解:以线段PQ 为直径的圆过x 轴上的定点.直线(1)(0)y k x k =-≠代入椭圆可得2222(14)8440k x k x k +-+-=. 设1(A x ,1)y ,2(B x ,2)y ,则有2122814k x x k +=+,21224414k x x k -=+.又因为点M 是椭圆C 的右顶点,所以点(2,0)M . 由题意可知直线AM 的方程为11(2)2y y x x =--,故点11(0,2)2y x P --. 直线BM 的方程为22(2)2y y x x =--,故点222(0,)2y Q x --.若以线段PQ 为直径的圆过x 轴上的定点0(N x ,0),则等价于0PN QN =恒成立. 又因为0(PN x =,112)2y x -,0(QN x =,222)2y x -, 所以21201222022y y PN QN x x x ⋅=+⋅=--恒成立. 又因为212121224(2)(2)2()414k x x x x x x k --=-++=+,()()221212231114k y y k x x k -=--=+,所以22120012223022y y x x x x +⋅=-=--,解得0x = 故以线段PQ 为直径的圆过x轴上的定点(0). 12.(①) 24x y =-,1y =; (①)见解析.【分析】(①)由题意结合点的坐标可得抛物线方程,进一步可得准线方程;(①)联立准线方程和抛物线方程,结合韦达定理可得圆心坐标和圆的半径,从而确定圆的方程,最后令x =0即可证得题中的结论.【详解】(①)将点2,1代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程为:24x y =-,其准线方程为:1y =. (①)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=. 故:12124,4x x k x x +=-=-.设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-,直线OM 的方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭, 易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+- ⎪⎝⎭,圆的半径为:1222x x -, 且:()1212122222x x k x x x x ++==,12222x x -==则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=, 即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.【点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的方程的求解及其应用等知识,意在考查学生的转化能力和计算求解能力.13.(1)2213x y -=;(2)证明见解析.【分析】(1)根据渐近线的倾斜角可得3a b ,由已知及点线距离公式求参数,进而写出双曲线C 的方程;(2)设1l 为()1y k x =-且0k ≠、()11,M x y ,()22,N x y (12x x ≠),联立双曲线方程应用韦达定理、两点式求MQ k ,再由点斜式写出MQ 的方程,令0y =化简求x ,即可证明定点. (1)依题意,渐近线l 为by x a=,即0bx ay -=.由πtan 6b a ==3a b .①1F ,2F 到渐近线lbcb c==,12OF OF c ==, ①两垂足间的距离为2a ==a =1b =. ①双曲线C 的方程为2213x y -=.(2)依题意,得直线1l 的斜率存在且不为0.设1l 为()1y k x =-且0k ≠,代入双曲线C 的方程中,消去y ,整理得()2222136330k xk x k -+--=.①直线1l 与双曲线C 交于两点,①()()()222221306413330k k k k ⎧-≠⎪⎨∆=---->⎪⎩,解得212k <且213k ≠. 设()11,M x y ,()22,N x y (12x x ≠),则()22,Q x y -,2122613k x x k +=--,21223313k x x k +=--,则()1212121212122MQ k x x k y y kx k kx k k x x x x x x +-+-+-===---, ①直线MQ 的方程为()()1211122k x x ky y x x x x +--=--,令0y =,则()()1121122y x x x x k x x k --=++-()()()()11212111222kx k x x k x x x kx k x x k---++-=+-()()221121211211222kx kx x kx kx kx kx x kx k x x k---+++-=+-()()12121222kx x k x x k x x k-+=+-222222336213136213k k k k k k k k k k ⎛⎫+-⋅--⋅ ⎪--⎝⎭=-⋅--33336663626k k k k k k --+==--+. ①直线MQ 过x 轴上的定点(3,0). 14.(1)()221243x y x +=≠±;(2)证明见解析.【分析】(1)设点P 的坐标为(),x y ,利用斜率公式结合已知条件可求得曲线C 的方程,并注明2x ≠±;(2)设直线AP 与BQ 交点为()4,M m ,求出点P 、Q 的方程,对直线PQ 的斜率是否存在进行分类讨论,写出直线PQ 的坐标,即可得出直线PQ 所过定点的坐标. (1)解:设点P 的坐标为(),x y , 直线PA 与PB 的斜率分别为2PA y k x =+,2PB yk x =-,其中2x ≠±, 由已知得3224y y x x ⋅=-+-,化简得22143x y +=,由已知得2x ≠±, 故曲线C 的方程为()221243x y x +=≠±. (2)证明:设直线AP 与BQ 交点为()4,M m ,则直线AP 的方程为()26my x =+, 由()22263412m y x x y ⎧=+⎪⎨⎪+=⎩得()222227441080m x m x m +++-=, 设(),P P P x y ,则224108227P m x m --=+,即2254227P m x m -=+,()2182627P P m my x m =+=+, 同理,直线BQ 的方程为()22my x =-,与椭圆方程联立,消去y 整理得()2222344120m x m x m +-+-=,设(),Q Q Q x y ,则2241223Q m x m -=+,即22263Q m x m -=+,()26223Q Q m m y x m -=-=+. 当3m ≠±时,直线PQ 的斜率为269P Q PQ P Qy y mk x x m -==---, 此时直线PQ 的方程为22226626393m m m y x m m m ⎛⎫-+=-- ⎪+-+⎝⎭, 化简得:()2619my x m =---,故直线PQ 过定点()1,0. 当3m =±时,可得1P Q x x ==,所以直线PQ 也过定点()1,0. 综上所述:直线PQ 过定点()1,0.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.15.(1)2x =(2)存在,(N -或N【分析】(1)根据点斜式设出直线方程,再由与圆相切求解即可;(2)利用点差法求出AB 中点M ,得出直线方程,再由圆的性质利用1||||2MN AB =求解即可. (1)抛物线焦点为(0,)2p,直线l斜率2tan 3k π==所以直线方程为2p y =+,由圆与直线相切可得,|22p =由0p >可解得p =所以抛物线方程为2x =. (2)设1111(,),(,)A x y B x y ,因为A ,B关于直线y x =+所以设AB 中点00(,)M x y在y x =+1k =-,由222211x x ⎧=⎪⎨=⎪⎩相减可得,21211y y k x x -===--,所以1202x x x +==- 又00(,)M x y在y x =+所以0y =所以直线1l的方程为0x y +,联立抛物线消元得2120x +-=,121212x x x x ∴+=-=-,||AB ∴= 若存在点N 00(2,)y y -, 则1||||2MN AB =,即2200(2)48y y -+=,解得0y =0y =即存在点(N -或N 满足条件. 【点睛】方法点睛:存在性问题,一般假设符合条件的点存在,本题以以AB 为直径的圆恰好过点N ,可考虑,NA NB 垂直建立关系,也可考虑1||||2NM AB =建立关系求解. 16.(1)316-; (2)过定点,(4,0)﹒【分析】(1)由AM MB =值M 为AB 中点,由点差法即可得OM 的斜率;(2)根据椭圆对称性,结合已知条件可知l 过定点时,定点应该在x 轴上,设定点为(t ,0),写出直线方程,联立直线与椭圆方程根据韦达定理得到根与系数的关系,再由直线FA ,FB 的斜率互为相反数列出方程,即可求得定点坐标﹒ (1)设()11,A x y ,()22,B x y ,依题意,M 为线段AB 的中点,①A ,B 在椭圆C 上,故221122221,431,43x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减可得()()()()12121212043x x x x y y y y +-+-+=,则()()()()12121212304y y y y x x x x +-+=+-, 故3404OM k +=,解得316OM k =-. (2)假设定点存在,根据椭圆对称性,可知该直线所过定点在x 轴上,设定点坐标为(,0)t , 则直线l 的方程为()y k x t =-,联立22(),143y k x t x y =-⎧⎪⎨+=⎪⎩,消去y 整理得()222223484120k x k tx k t +-+-=,则2122834k tx x k+=+,2212241234k t x x k -=+. 设直线FA ,FB 的斜率分别为1k ,2k ,由题可知(1,0)F , 则12121211y yk k x x +=+-- ()()121211k x t k x t x x --=+--()()()()()()1221121111x t x x t x kx x --+--=--()()121212122(1)21x x t x x tkx x x x -+++=-++0=.即222222222222412882488682(1)20343434k t k t k t k t k t t k t t t k k k ----++⋅-++==+++,①2460t -+=,4t =, 即直线l 过定点(4,0).【点睛】解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.17.(1)2p = (2)证明见解析【分析】(1) 设1122(,),(,)A x y B x y ,直线l 的方程为2y kx =+,与抛物线方程联立, 可求1212,x x x x +⋅,由4OA OB =-列方程求p 的值;(2) 设3344(,),(,)M x y N x y 利用导数的几何意义求切线12l l 和的方程,根据12l l ⊥可得344x x =-,化简直线MN 的方程,证明直线MN 过定点. (1)设1122(,),(,)A x y B x y ,直线l 的方程为2y kx =+,与抛物线方程联立,。
圆锥曲线中的定点、定值和定直线问题(解析)
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,由y =x -2x 2-4y 2=4解得x =2或x =103,因此点E ,F 的横坐标x E ,x F 有x E =x F =103,即直线EF 过定点M 103,0 ,综上得直线EF 过定点M 103,0 ,由于DG ⊥EF ,即点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.【点睛】思路点睛:与圆锥曲线相交的直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.【答案】(1)x 2-y 23=1;(2)证明见解析;(3)存在λ=2,理由见解析.【分析】(1)根据离心率,以及a ,结合b 2=c 2-a 2,即可求得曲线C 方程;(2)设出直线PQ 的方程,联立双曲线方程,得到关于点P ,Q 坐标的韦达定理;再分别求得AP ,AQ 的方程,以及点M ,N 的坐标,利用数量积的坐标运算,即可证明;(3)求得直线PQ 不存在斜率时满足的λ,当斜率存在时,将所求问题,转化为直线PA ,PF 2斜率之间的关系,结合点P 的坐标满足曲线C 方程,求解即可.【详解】(1)由题可得a =1,ca =2,故可得c =2,则b 2=c 2-a 2=4-1=3,故C 的标准方程为x 2-y23=1.(2)由(1)中所求可得点A ,F 2的坐标分别为-1,0 ,(2,0),又双曲线渐近线为y =±3x ,显然直线PQ 的斜率不为零,故设其方程为x =my +2,m ≠±33,联立双曲线方程x 2-y 23=1可得:3m 2-1 y 2+12my +9=0,设点P ,Q 的坐标分别为x 1,y 1 ,(x 2,y 2),则y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,x 1+x 2=m y 1+y 2 +4=-43m 2-1,x 1x 2=m 2y 1y 2+2m y 1+y 2 +4=-3m 2-43m 2-1;又直线AP 方程为:y =y 1x 1+1(x +1),令x =12,则y =32⋅y 1x 1+1,故点M 的坐标为12,32⋅y 1x 1+1;直线AQ 方程为:y =y 2x 2+1(x +1),令x =12,则y =32⋅y 2x 2+1,故点N 的坐标为12,32⋅y 2x 2+1;则MF 2 ⋅NF 2 =32,-32⋅y 1x 1+1 ⋅32,-32⋅y 2x 2+1=94+94⋅y 1y 2x 1x 2+x 1+x 2+1=94+94⋅93m 2-1-3m 2-43m 2-1-43m 2-1+1=94+94⋅9-9=0故MF 2 ⋅NF 2为定值0.(3)当直线PQ 斜率不存在时,对曲线C :x 2-y 23=1,令x =2,解得y =±3,故点P 的坐标为(2,3),此时∠PF 2A =90°,在三角形PF 2A 中,AF 2 =3,PF 2 =3,故可得∠PAF 2=45°,则存在常数λ=2,使得∠PF 2A =2∠PAF 2成立;当直线PQ 斜率存在时,不妨设点P 的坐标为(x ,y ),x ≠2,直线PF 2的倾斜角为α,直线PA 的倾斜角为β,则∠PF 2A =π-α,∠PAF 2=β,假设存在常数λ=2,使得∠PF 2A =2∠PAF 2成立,即π-α=2β,则一定有:tan π-α =-tan α=tan2β=2tan β1-tan 2β,也即-k PF2=2k PA 1-k 2PA;又-k PF 2=-yx -2;2k PA 1-k 2PA=2yx +11-y 2x +12=2y (x +1)x +1 2-y2;又点P 的坐标满足x 2-y 23=1,则y 2=3x 2-3,故2k PA1-k 2PA=2y x +1 x +1 2-y 2=2y x +1 x +1 2-3x 2+3=2y (x +1)-2x 2+2x +4=2y (x +1)-2(x -2)(x +1)=-y x -2=-k PF 2;故假设成立,存在实数常数λ=2,使得∠PF 2A =2∠PAF 2成立;综上所述,存在常数λ=2,使得∠PF 2A =2∠PAF 2恒成立.【点睛】关键点点睛:本题考察双曲线中定值以及存在常数满足条件的问题;其中第二问证明的关键是能够快速,准确的进行计算;第三问处理的关键是要投石问路,找到特殊情况下的参数值,再验证非特殊情况下依旧成立,同时还要注意本小题中把角度关系,转化为斜率关系;属综合困难题.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.【答案】(1)x 2=12y(2)证明见详解【分析】(1)设M x ,y ,由题意可得y +14=x 2+y -18 2+18,化简整理即可;(2)设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,结合导数的几何意义分析可得x 1,x 2为方程2x 2-4tx +t -1=0的两根,结合韦达定理求直线AB 的方程,即可得结果.【详解】(1)设M x ,y ,则MF =x 2+y -18 2,d =y +14 ,因为d =MF +18,即y +14 =x 2+y -18 2+18,当y +14≥0,即y ≥-14时,则y +14=x 2+y -18 2+18,整理得x 2=12y ;当y +14<0,即y <-14时,则-y -14=x 2+y -18 2+18,整理得x 2=y +18<0,不成立;综上所述:M 点的轨迹C 的方程x 2=12y .(2)由(1)可知:曲线C :x 2=12y ,即y =2x 2,则y =4x ,设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,可知切线QA 的斜率为4x 1,所以切线QA :y -2x 21=4x 1x -x 1 ,则t -1-2x 21=4x 1t -x 1 ,整理得2x 21-4tx 1+t -1=0,同理由切线QB 可得:2x 22-4tx 2+t -1=0,可知:x 1,x 2为方程2x 2-4tx +t -1=0的两根,则x 1+x 2=2t ,x 1x 2=t -12,可得直线AB 的斜率k AB =2x 21-2x 22x 1-x 2=2x 1+x 2 =4t ,设AB 的中点为N x 0,y 0 ,则x 0=x 1+x 22=t ,y 0=2x 21+2x 222=x 1+x 2 2-2x 1x 2=4t 2-t +1,即N t ,4t 2-t +1 ,所以直线AB :y -4t 2-t +1 =4t x -t ,整理得y -1=4t x -14,所以直线AB 恒过定点P 14,1 .【点睛】方法点睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk +n ,得y =k x +m +n ,故动直线过定点-m ,n ;(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB,证明点N 在定直线上,并求该定直线的方程.【答案】(1)x 2=12y ;(2)证明见解析,y =3.【分析】(1)设直线l 1的方程为y =x +p2,再根据直线和圆相切求出p 的值得解;(2)依题意设M (m ,-3),求出切线l 2的方程和B 点坐标,求出MN =x 1-2m ,6 ,ON=x 1-m ,3 即可求解作答.【详解】(1)依题意得,物线C 1:x 2=2py 的焦点坐标为0,p 2 ,设直线l 1的方程为y =x +p2,而圆C 2:x +1 2+y 2=2的圆心C 2(-1,0),半径r =2,由直线l 1与圆C 2相切,得d =-1+p212+-12=2,又p >0,解得p =6,所以抛物线C 1的方程为x 2=12y .(2)由(1)知抛物线C 1:x 2=12y 的准线为y =-3,设M (m ,-3),由y =x 212,求导得y =x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,于是切线l 2的方程为y =16x 1x -x 1 +y 1,令x =0,得y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即l 2交y 轴于点B (0,-y 1),因此MA =(x 1-m ,y 1+3),MB =-m ,-y 1+3 ,MN =MA +MB =x 1-2m ,6 ,则ON =OM +MN=x 1-m ,3 ,设N 点坐标为(x ,y ),从而y =3,所以点N 在定直线y =3上.3已知直线l 1:x -y +1=0过椭圆C :x 24+y 2b2=1(b >0)的左焦点,且与抛物线M :y 2=2px (p >0)相切.(1)求椭圆C 及抛物线M 的标准方程;(2)直线l 2过抛物线M 的焦点且与抛物线M 交于A ,B 两点,直线OA ,OB 与椭圆的过右顶点的切线交于M ,N 两点.判断以MN 为直径的圆与椭圆C 是否恒交于定点P ,若存在,求出定点P 的坐标;若不存在,请说明理由.【答案】(1)x 24+y 23=1,y 2=4x(2)存在,-2,0【分析】(1)由直线l 1过椭圆C 的左焦点,求出c 得出椭圆方程,利用直线l 1与抛物线M 相切,联立两个方程,通过判别式为零进行求解;(2)分成直线l 2斜率存在与不存在两种情况进行讨论,斜率存在时可设直线方程y =k x -1 ,与椭圆方程联立得出韦达定理,表示M ,N 两点坐标,利用PM ⋅PN=0进行求解.【详解】(1)由y 2=2px x -y +1=0 ,得x 2+2-2p x +1=0,因为直线x -y +1=0与抛物线M 只有1个公共点,所以Δ=2-2p 2-4=0,解得p =2,故抛物线C 的方程为y 2=4x .由直线x -y +1=0过椭圆C 的左焦点得得c =1,所以,4-b 2=1,b 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)如图1,设A x 1,y 1 ,B x 2,y 2 ,当直线l 2斜率存在时,可设直线方程:y =k x -1由y 2=4x y =k x -1 得k 2x 2-2k 2+4 x +k 2=0,所以Δ=2k 2+4 2-4k 4=16k 2+16>0,x 1+x 2=2k 2+4k2,x 1x 2=1. 所以y 1y 2=k 2x 1-1 x 2-1 =k 2x 1x 2-x 1+x 2 +1 =-4,x 2y 1+x 1y 2=kx 2x 1-1 +kx 1x 2-1 =k 2x 1x 2-x 1+x 2 =-4k,直线OA 的方程为y =y 1x 1x ,同理可得,直线OB 的方程为y =y 2x 2x ,令x =2得,M 2,2y 1x 1 ,N 2,2y 2x 2,假设椭圆C 上存在点P x 0,y 0 ,恒有PM ⊥PN .则PM ⋅PN =2-x 0,2y 1x 1-y 0 ⋅2-x 0,2y 2x 2-y 0=0即2-x 0 2+2y 1x 1-y 0 2y 2x 2-y 0=0,即2-x 0 2+y 20-2x 2y 1+2x 1y 2x 1x 2y 0+4y 1y 2x 1x 2=0,即2-x 0 2+y 20+8ky 0-16=0,令y 0=0,可得x 0=6或x 0=-2.由于点6,0 不在椭圆C 上,点-2,0 在椭圆D 上,所以椭圆C 上存在点P -2,0 ,使PM ⊥PN 恒成立如图2,当直线斜率不存在时,直线过抛物线的右焦点,则直线方程为x =1,与抛物线交于A 1,2 ,B 1,-2 ,则直线OA 方程为:y =2x ,直线OB 方程为:y =-2x ,椭圆的过右顶点的切线方程为x =2,切线方程x =2与直线OA 交于M 2,4 ,与直线OB 交于N 2,-4 ,由上面斜率存在可知恒过P -2,0 ,经验证满足PM ⋅PN=0,所以当斜率不存在时候也满足以MN 为直径的圆恒过定点-2,0 .4在平面直角坐标系中,已知圆心为点Q 的动圆恒过点F (0,1),且与直线y =-1相切,设动圆的圆心Q 的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P 为直线l :y =y 0y 0<0 上一个动点,过点P 作曲线Γ的切线,切点分别为A ,B ,过点P 作AB 的垂线,垂足为H ,是否存在实数y 0,使点P 在直线l 上移动时,垂足H 恒为定点?若不存在,说明理由;若存在,求出y 0的值,并求定点H 的坐标.【答案】(1)x 2=4y(2)存在这样的y 0,当y 0=-1时,H 坐标为(0,1).【分析】(1)依题意,由几何法即可得出圆心的轨迹Γ是以F (0,1)为焦点,l :y =-1为准线的抛物线.(2)设直线AP 的方程y -y 1=k x -x 1 ,对抛物线方程求导化简也可得直线AP 的方程,由恒等思想可得y 0+y 1=x 1x 02,y 0+y 2=x 2x 02,构造直线方程为y +y 0=x 0x2,故AB 两点代入化简可得恒过点0,-y 0 ,再由PH ⊥AB 得x =-x02y -y 0-2 ,PH 恒过点0,y 0+2 ,从而可得结论.。
圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题
圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。
解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。
谈谈三类圆锥曲线问题的解法
解题宝典在解答圆锥曲线问题时,我们经常会遇到定点问题、定值问题、定直线问题.这三类问题往往较为复杂,需在动点、动直线、动曲线的运动变化中找出一些不变的元素,据此建立关系式,求得问题的答案.下面结合实例,谈一谈这三类问题的解法.一、定点问题圆锥曲线中的定点问题一般是指根据题意判定某条曲线、直线恒过定点.在解题时,要先根据题意求出含有参数的曲线(直线)方程;然后将参数视为主元,将问题看作方程有无数个解的问题;再令方程中含有x 、y 的项的系数为零,建立方程(组),即可通过解方程(组),求得定点的坐标.例1.如图1,已知椭圆C 1:x2a2+y2b2=1(a >b >0)的右焦点F 2与抛物线C 2:y 2=4x 的焦点重合,椭圆C 1与抛物线C 2在第一象限的交点为P ,且|PF 2|=53.圆C 3的圆心T 是抛物线C 2上的动点,圆C 3与y 轴交于M ,N 两点,|MN |=4.(1)求椭圆C 1的方程;(2)证明:无论点T 运动到何处,圆C 3恒过椭圆C 1上的一个定点.解:(1)椭圆C 1的方程为x 24+y 23=1;(过程略)(2)设点T 的坐标为(x 0,y 0),圆C 3的半径为r ,∵圆C 3与y 轴交于M ,N 两点,且|MN |=4,∴|MN |=2r 2-x 20=4,∴r =4+x 20.∴圆C 3的方程为(x -x 0)2+(y -y 0)2=4+x 20,()∗∵点T 是抛物线C 2:y 2=4x 上的动点,∴y 20=4x 0(x 0≥0),∴x 0=14y 20,将上式代入()∗中,消去x 0得:(1-x 2)y 20-2yy 0+(x 2+y 2-4)=0,()∗∗由题意可知方程()∗∗对任意实数y 0恒成立,∴ìíîïïïï1-x 2=0,-2y =0,x 2+y 2-4=0,解得{x =2,y =0,∴圆(x -x 0)2+(y -y 0)2=4+x 20过定点(2,0),∵点(2,0)在椭圆C 1:x 24+y23=1上,∴无论点T 运动到何处,圆C 3恒过椭圆C 1上的一个定点()2,0.我们先设出T 点的坐标;然后将其代入抛物线C 2和圆C 3的方程,建立关于x 、y 的方程:(1-x 2)y 20-2yy 0+(x 2+y 2-4)=0;再将其看作方程有无数个解的问题,据此建立方程组,求得x 、y 的值,即可求出定点的坐标.二、定值问题解答圆锥曲线中的定值问题主要有两种思路:(1)从特殊情形入手,先根据特殊位置、数值求出定值,再证明这个值与变量无关;(2)根据题设条件建立关系式,直接进行推理、计算,并在计算、推理的过程中消去变量,从而得到定值.例2.如图2,已知抛物线C 1:y 2=2px (p >0)的焦点和椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点F 重合,过点F 作直线l 交抛物线C 1于M ,N ,交椭圆C 2于P ,Q .当l 垂直于x 轴时,||MN =4,||PQ =3.(1)求C 1和C 2的方程;(2)问是否存在常数m ,使1||MN +m||PQ 为定值?若存在,求出m 的值;若不存在,请说明理由.解:(1)抛物线C 1的方程为y 2=4x ,椭圆C 2的方程为x 24+y 23=1;(过程略)(2)假设存在常数m ,使1||MN +m ||PQ 为定值.设直线l 的方程为:x =ny +1,M ()x 1,y 1,N ()x 2,y 2,联立方程可得{x =ny +1,y 2=4x ,消去x 得y 2-4ny -4=0,则Δ=16n 2+16>0,且{y 1+y 2=4n ,y 1y 2=-4,费美能夏建跃图1图240解题宝典故||MN =1+n 2||y 1-y 2=1+n 2()y1+y 22-4y 1y 2=1+n 216n 2+16=4()n 2+1.设P ()x 3,y 3,Q ()x 4,y 4,联立方程可得ìíîïïx =ny +1,x 24+y 23=1,消去x 得()3n 2+4y 2+6ny -9=0.则Δ=144()n 2+1>0,且ìíîïïy 3+y 4=-6n 3n 2+4,y 3y 4=-93n 2+4,故||PQ =1+n 2||y 3-y 4=1+n 2()y3+y 42-4y 3y 4=12()n 2+13n 2+4.所以1||MN +m ||PQ =14()n 2+1+m ()3n 2+412()n 2+1=3m 12×n 2n 2+1+4m +312×1n 2+1.要使1||MN +m ||PQ 为定值,需使3m 12=4m +312,解得m =-3,故存在常数m =-3,使1||MN +m ||PQ 为定值-34.先根据韦达定理,将所求的表达式1||MN +m ||PQ 用m 、n 表示出来;然后对其化简,消去变量n ,即可断定1||MN +m ||PQ 为定值.三、定直线问题求解圆锥曲线中的定直线问题有两种思路:(1)从特殊情形入手,如特殊位置、特殊点等,求出定直线的方程;再证明这条直线与变量无关;(2)先根据解题需求引入参数k ,并建立方程,一般将题目中给出的曲线方程(直线)中的常数k 当成变量,将变量x 、y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;然后根据曲线(直线)过定点时与参数没有关系,即方程对参数的任意值都成立,得到关于x 、y 的式子,则该式就是曲线恒过的定直线.例3.如图3,已知椭圆C :x 2a 2+y 2b2=1()a >b >0过点Q æèöø1,32,且离心率为12.(1)求椭圆C 的方程;(2)过点P ()1,2的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足||AP ∙||MB =||AM ∙||PB ,证明:点M 总在某定直线上.解:(1)椭圆C 的方程为x 24+y 23=1;(过程略)(2)设点A ()x 1,y 1,B ()x 2,y 2,M ()x ,y ,因为||AP ∙||MB =||AM ∙||PB ,记λ=||AP ||PB =||AM ||MB ,则λ>0且λ≠1,因为点P 在椭圆外,且P ,A ,M ,B 四点共线,所以 AP =-λ PB , AM =λ MB ,所以()1-x 1,2-y 1=λ()1-x 2,2-y 2,即()x -x 1,y -y 1=λ()x 2-x ,y 2-y ,所以ìíî1-x 1=λ()1-x 2,2-y 1=λ()2-y 2,ìíîx -x 1=λ()x 2-x ,y -y 1=λ()y 2-y ,所以ìíîïïïïx 1-λx 21-λ=1,y 1-λy 21-λ=2,ìíîïïïïx =x 1+λx 21+λ,y =y 1+λy 21+λ,又因为ìíîïïïïx 214+y 213=1,x 224+y 223=1,则ìíîïïïïx 214+y 213=1,λ2x 224+λ2y 223=λ2,将上述两式作差可得x 21-λ2x 224+y 21-λ2y 223=1-λ2,即()x 1-λx 2()x 1+λx 24()1-λ()1+λ+()y 1-λy 2()y 1+λy 23()1-λ()1+λ=1,即x 4+2y 3=1,即3x +8y -12=0,故点M 总在定直线3x +8y -12=0上.我们需先引入参数λ,根据线段长之比相等,利用点差法来建立关系式,求出点M 的轨迹方程:()x 1-λx 2()x 1+λx 24()1-λ()1+λ+()y 1-λy 2()y 1+λy 23()1-λ()1+λ=1;然后根据方程对任意参数值都成立,来建立方程,从而求得定直线的方程.同学们在解答定点、定值、定直线问题时,要注意三点:(1)灵活运用数形结合思想、方程思想来建立关系式;(2)采用设而不求法和整体代换法,对关系式进行化简、变形;(3)注意培养直观想象、逻辑推理和数学运算能力.(作者单位:费美能,江苏省淮安中学;夏建跃,江苏省淮安市楚州中学)图341。
圆锥曲线中的定值、定点、定直线问题大题分类精练(学生版)
圆锥曲线中的定值、定点、定直线问题目录题型1 圆锥曲线中的定值问题题型2 圆锥曲线中的定点问题题型3 圆锥曲线中的定直线问题题型归纳【题型1圆锥曲线中的定值问题】1(2023·江西·高三南昌第三中学校考阶段练习)设x ,y ∈R ,向量i ,j分别为平面直角坐标内x轴,y 轴正方向上的单位向量,若向量a =x +3 i +y j ,b =x -3 i +y j ,且a+b =4.(1)求点M x ,y 的轨迹C 的方程;(2)设椭圆E :x 216+y 24=1,曲线C 的切线y =kx +m 交椭圆E 于A 、B 两点,试证:△OAB 的面积为定值.2(2023·全国·模拟预测)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),其离心率为32,直线y =12被椭圆截得的弦长为23.(1)求椭圆C 的标准方程.(2)圆x 2+y 2=45的切线交椭圆C 于A ,B 两点,切点为N ,求证:AN ⋅NB 是定值.3(2023·内蒙古·高三校联考阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,离心率e =12,过点1,32.(1)求C 的方程;(2)直线l 过点M 0,1 ,交椭圆于A 、B 两点,记N 0,3 ,并设直线NA 、直线NB 的斜率分别为k NA 、k NB ,证明:k NA +k NB =0.4(2023·辽宁大连·高三大连市金州高级中学校考期中)已知抛物线C 1的顶点在原点,对称轴为坐标轴,且过-1,1 ,1,2 ,2,-2 ,-1,-2 四点中的两点.(1)求抛物线C 1的方程;(2)若直线l 与抛物线C 1交于M ,N 两点,与抛物线C 2:y 2=4x 交于P ,Q 两点,M ,P 在第一象限,N ,Q 在第四象限,且NQ MP=2,求PQ MN的值.5(2023·河北保定·统考二模)已知椭圆C的中心在原点,焦点在x轴上,长轴长为短轴长的2倍,若椭圆C经过点P2,2,(1)求椭圆C的方程;(2)若A,B是椭圆上不同于点P的两个动点,直线PA,PB与x轴围成底边在x轴上的等腰三角形,证明:直线AB的斜率为定值.6(2023·上海·高三上海市进才中学校考期中)双曲线C:x2a2-y2b2=1a>0,b>0的离心率为3,圆O:x2+y2=2与x轴正半轴交于点A,点T2,2在双曲线C上.(1)求双曲线C的方程;(2)过点T作圆O的切线交双曲线C于两点M、N,试求MN的长度;(3)设圆O上任意一点P处的切线交双曲线C于两点M、N,试判断PM⋅PN是否为定值?若为定值,求出该定值;若不是定值,请说明理由.7(2023·全国·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个顶点为A 2,0 ,D ,E 是C 上关于原点O 对称的两点,且直线AD ,AE 的斜率之积为14.(1)求C 的标准方程.(2)设Q 是C 上任意一点,过Q 作与C 的两条渐近线平行的直线,与x 轴分别交于点M ,N ,判断x 轴上是否存在点G ,使得GM GN 为定值.【题型2圆锥曲线中的定点问题】8(2023·湖南·校联考模拟预测)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的长轴长为26,且其离心率小于22,P 为椭圆C 上一点,F 1、F 2分别为椭圆C 的左、右焦点,△F 1PF 2的面积的最大值为22.(1)求椭圆C 的标准方程;(2)A 为椭圆C 的上顶点,过点D 0,-1 且斜率为k 的直线l 与椭圆C 交于M ,N 两点,直线l 1为过点D 且与AM 平行的直线,设l 1与直线y =-52的交点为Q .证明:直线QN 过定点.9(2023·云南大理·统考一模)已知双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 ,其渐近线方程为x ±2y=0,点22,1 在Γ上.(1)求双曲线Γ的方程;(2)过点A 2,0 的两条直线AP ,AQ 分别与双曲线Γ交于P ,Q 两点(不与点A 重合),且两条直线的斜率之和为1,求证:直线PQ 过定点.10(2023·江西南昌·高三江西师大附中校考期中)在平面直角坐标系XOY 中,已知两定点P (1,1)、Q (1,4),点R 满足OR =13OQ +23OP且在焦点在x 轴正半轴的抛物线E 上. 过Q 作一斜率存在的直线交E 于A 、B 两点,连接BP 交抛物线E 于点C .(1)求抛物线E 的标准方程;(2)判断直线AC 是否恒过定点,若是请求出该定点坐标,若不是请说明理由.11(2023·广东惠州·高三校考阶段练习)在平面直角坐标系xOy 中,顶点在原点,以坐标轴为对称轴的抛物线C 经过点2,4 .(1)求C 的方程;(2)若C 关于x 轴对称,焦点为F ,过点4,2 且与x 轴不垂直的直线l 交C 于M ,N 两点,直线MF 交C 于另一点A ,直线NF 交C 于另一点B ,求证:直线AB 过定点.12(2023·福建泉州·统考模拟预测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率是22,上、下顶点分别为A ,B .圆O :x 2+y 2=2与x 轴正半轴的交点为P ,且PA ⋅PB=-1.(1)求E 的方程;(2)直线l 与圆O 相切且与E 相交于M ,N 两点,证明:以MN 为直径的圆恒过定点.13(2023·云南昆明·昆明一中校考模拟预测)已知双曲线C:x2a2-y2b2=1a>0,b>0的左右焦点分别为F1,F2,左顶点的坐标为-2,0,离心率为7 2.(1)求双曲线C的方程;(2)A1,A2分别是双曲线的左右顶点,T是双曲线C上异于A1,A2的一个动点,直线TA1,TA2分别于直线x=1交于Q1,Q2两点,问以Q1,Q2为直径的圆是否过定点,若是,求出此定点;若不是,请说明理由.14(2023·江西九江·统考一模)已知过点P(2,0)的直线l与抛物线E:y2=2px(p>0)交于A,B两点,过线段AB的中点M作直线MN⊥y轴,垂足为N,且PM⊥PN.(1)求抛物线E的方程;(2)若C为E上异于点A,B的任意一点,且直线AC,BC与直线x=-2交于点D,R,证明:以DR为直径的圆过定点.【题型3圆锥曲线中的定直线问题】15(2023·四川成都·校联考二模)已知A 1-3,0 和A 23,0 是椭圆η:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线l 与椭圆η相交于M ,N 两点,直线l 不经过坐标原点O ,且不与坐标轴平行,直线A 1M 与直线A 2M 的斜率之积为-59.(1)求椭圆η的标准方程;(2)若直线OM 与椭圆η的另外一个交点为S ,直线A 1S 与直线A 2N 相交于点P ,直线PO 与直线l 相交于点Q ,证明:点Q 在一条定直线上,并求出该定直线的方程.16(2023·江苏常州·校考一模)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的短轴长为22,离心率为22.(1)求椭圆C 的方程;(2)过点P 4,1 的动直线l 与椭圆C 相交于不同的A ,B 两点,在线段AB 上取点Q ,满足AP ⋅QB =AQ ⋅PB ,证明:点Q 总在某定直线上.17(2023·广东广州·高三统考阶段练习)已知在平面直角坐标系中,动点Q x ,y 到F 3,0 的距离与它到直线x =53的距离之比为355,Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点P 53,1作直线l 与曲线C 交于不同的两点M 、N (M 、N 在y 轴右侧),在线段MN 上取异于点M 、N 的点H ,且满足MP PN=MH HN,证明:点H 恒在一条直线上.18(2023·全国·高三专题练习)已知双曲线E :x 2a 2-y 24=1a >0 的中心为原点O ,左、右焦点分别为F 1,F 2,离心率为355.(1)求实数a 的值.(2)若点P 坐标为0,4 ,过点P 作动直线l 与双曲线右支交于不同的两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM PN=MH HN.证明:点H 恒在一条定直线上.19(2023·吉林长春·统考一模)过抛物线E:y2=2px(p>0)焦点F,斜率为-1的直线l与抛物线交于A、B两点,|AB|=8.(1)求抛物线E的方程;(2)过焦点F的直线l ,交抛物线E于C、D两点,直线AC与BD的交点是否在一条直线上.若是,求出该直线的方程;否则,说明理由.20(2023·全国·模拟预测)已知在平面直角坐标系xOy中,抛物线M:y=mx2的焦点F与椭圆C:x2 a2+y2b2=1a>b>0的一个顶点重合,抛物线M经过点Q1,14,点P是椭圆C上任意一点,椭圆C的左、右焦点分别为F1,F2,且∠F1PF2的最大值为2π3.(1)求椭圆C和抛物线M的标准方程;(2)过抛物线M上在第一象限内的一点N作抛物线M的切线,交椭圆C于A,B两点,线段AB的中点为G,过点N作垂直于x轴的直线,与直线OG交于点E,求证:点E在定直线上.。
【高中数学】圆锥曲线中的定值与最值问题
圆锥曲线中的定值与最值问题一.圆锥曲线中的定点、定值、定直线问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点.解决这个难点的基本思想是函数思想,可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系等不受变量所影响的一个值,就是要求的定值.具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去变量即得定值.在圆锥曲线中,某些几何量在特定的关系结构中,不受相关变元的制约而恒定不变,则称该变量具有定值特征.解答此类问题的基本策略有以下两种:1、把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无关.2、把相关几何量用曲线系里的参变量表示,再证明结论与求参数无关.例1:过抛物线m :2y ax =(a >0)的焦点F 作直线l 交抛物线于,P Q 两点,若线段PF 与FQ 的长分别为,p q ,则11p q --+的值必等于( ). A.2a B.12aC.4aD.4a解法1:(特殊值法)令直线l 与x 轴垂直,则有l :14y a=12p q a ⇒==,所以有114p q a --+=解法2:(参数法)如图1,设11(,)P x y ,22(,)Q x y 且PM ,QN 分别垂直于准线于,M N .114p PM y a ==+,214q QN y a ==+抛物线2y ax =(a >0)的焦点1(0,)4F a,准线14y a =-. ∴ l :14y kx a =+又由m l ⋂,消去x 得222168(12)10a y a k y -++=∴212122121,216k y y y y a a ++==, ∴221212221111,()4164k k p q pq y y y y a a a a +++==+++=∴114p q a --+=. 例2:过抛物线22y px =(p >0)上一定点000(,)(P x y y >0),作两条直线分别交抛物线于11(,)A x y ,22(,)B x y ,求证:PA 与PB 的斜率存在且倾斜角互补时,直线AB 的斜率为非零常数.【解析】设直线PA 的斜率为PA K ,直线PB 的斜率为PB K .由2112y px = 2002y px =相减得,101010()()2()y y y y p x x -+=- 故1010102PAy y p K x x y y -==-+ 10()x x ≠同理可得,2020202PB y y p K x x y y -==-+ 20()x x ≠由,PA PB 倾斜角互补知:PA PB K K =-∴102022p p y y y y =-++∴ 1202y y y +=-由2222y px = 2112y px =相减得,212121()()2()y y y y p x x -+=-∴ 21211200222AB y y p p p K x x y y y y -====--+-∴直线AB 的斜率为非零常数. 例3:已知定点0,0()M x y 在抛物线m :22y px =(p >0)上,动点,A B m ∈且0=•MB MA .求证:弦AB 必过一定点.【解析】设AB 所在直线方程为:x my n =+.与抛物线方程22y px =联立,消去x 得2220y pmy pn --=.设11(,)A x y ,22(,)B x y 则122y y pm +=① 122y y pn =-②由已知0=•MB MA 得,1MA MB K K =-.即102010201y y y y x x x x --=---g ③∵221010101011()()()22x x y y y y y y p p -=-=-+ 222020202011()()()22x x y y y y y y p p-=-=-+∴③式可化为1020221p py y y y =-++g ,即221201204[()]p y y y y y y =-+++.将①②代入得,002n p my x =++.直线AB 方程化为:00002()2x my p x my m y y x p =+++=+++.∴直线AB 恒过点00(2,)x p y +-.【例4】(2012·湖南)在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.[审题视点] (1)直接根据曲线与方程的概念求解,或者转化为根据抛物线的定义求解均可;(2)首先建立圆的两条切线的斜率与点的坐标之间的关系,其次把圆的切线方程与抛物线方程联立消元,根据根与系数的关系得出纵坐标之和和纵坐标之积,最后从整体上消去参数(圆的切线斜率)即可得证.(1)解 法一 设M 的坐标为(x ,y ),由已知得|x +2|=x -52+y 2-3.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以x -52+y 2=x +5.化简得曲线C 1的方程为y 2=20x .法二 由题设知,曲线C 1上任意一点M 到圆心C 2(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)证明 当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0),又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是|5k +y 0+4k |k 2+1=3.整理得72k 2+18y 0k +y 20-9=0.①设过P 所作的两条切线PA ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根,故k 1+k 2=-18y 072=-y 04.②由⎩⎪⎨⎪⎧k 1x -y +y 0+4k 1=0,y 2=20x 得k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以y 1y 2=20y 0+4k 1k 1.④同理可得y 3y 4=20y 0+4k 2k 2.⑤于是由②,④,⑤三式得y 1y 2y 3y 4=400y 0+4k 1y 0+4k 2k 1k 2=400[y 20+4k 1+k 2y 0+16k 1k 2]k 1k 2=400y 20-y 20+16k 1k 2k 1k 2=6 400.所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400. 【例5】已知椭圆C 的离心率3e =,长轴的左右端点分别为()1A 2,0-,()2A 2,0。
圆锥曲线中的定值定点定直线的基本方法和技巧
解析几何中的基本方法和技巧第二章 圆锥曲线中的定值定点定线问题解析几何中的定点、定值、定直线问题一直是高考中值得关注的问题。
它的基本形式是在若干个相关几何量变化过程中,某些量却是恒定不变的。
第一节 定值问题一、与圆类比的定值问题 1、与垂径定理类比【例】已知直线l 与椭圆22221(0)x y a b a b+=>>交于,A B 两点,线段AB 中点为M ,O 为坐标原点,求证:AB OM K K ⋅为定值。
证明:(点差法)设1122(,),(,)A x y B x y ,00(,)M x y所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得1212121222()()()()0x x x x y y y y a b -+-++= 即1212121222()()()()x x x x y y y y a b -+-+=-所以22121202212120y y b x x b x x x a y y a y -+=-=--+ 所以22AB OMb K K a⋅=-2、直径所对的圆周角为直角【例】已知椭圆22221(0)x y a b a b+=>>的左、右顶点为,A B ,P 为椭圆上不同于,A B 的任一点,求证:PA PB K K ⋅为定值。
【证明】证明定值问题的本质是消元。
因为椭圆22221(0)x y a b a b+=>>的左、右顶点为,A B ,所以(,0),(,0)A a B a -,设00(,)P x y所以200022000PA PBy y y K K x a x a x a ⋅=⋅=+-- 因为2200221x y a b+=,2222002()b y x a a -=-所以22PA PB b K K a⋅=-变式:如图,椭圆C :()221212x y m m m +=>+-的离心率2e =,椭圆C 的左、右顶点分别为A ,B ,又P ,M ,N 为椭圆C 上非顶点的三点.设直线PA ,PB 的斜率分别为1k ,2k .(1)求椭圆C 的方程,并求12k k ⋅的值;(2)若//AP ON ,//BP OM ,判断OMN 的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【解】(1)由题意得()()123c m m =+--=,又32c e a ==,所以2a =,221b a c =-=, 即椭圆C :2214x y +=.设()00,P x y ,则222200001144x x y y ==-+⇒, 又()2,0A -,()2,0B ,则()()20201220001142244x y k k x x x -⋅===--+-. (2)设直线MN 的方程为()0y kx t k =+≠,()11,M x y ,()22,N x y ,22,1,4y kx t x y =+⎧⎪⎨+=⎪⎩()222418440k x ktx t ⇒+++-=, 122841kt x x k +=-+,21224441t x x k -=+, ()()12121212121211404044AP BP y y k k y y x x kx t kx t x x x x ⋅=-⇒⋅=-⇒+=⇒+++=,()()22121241440k x x kt x x t ++++=,()22222448414404141t ktk kt t k k -+⋅-⋅+=++即()()()2222224144324410k t k t tk+--++=,即2281640t k --=22241t k ⇒-= 22241t k ⇒=+,()()()()2222121212114MN k x x k x x x x ⎡⎤=+-=+⋅+-⎣⎦()22222844144141kt t k k k ⎡⎤-⎛⎫=+⋅--⋅⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦()()222222264161614141k t t k k k ⎡⎤-⎢⎥=+⋅-⎢⎥++⎣⎦======O 到直线MN 的距离d =,所以112OMNS=⋅==. ∴OMN 的面积为定值1.二、与圆锥曲线顶点有关的定值【例】直线l 过抛物线M :22y =px 的焦点交M 于A ,B 两点,O 为原点,则K OA ·K OB _________. 解题策略:将直线方程(注意直线过x 轴上一点的设法)和抛物线方程联立,由韦达定理得到y 1+y 2,y 1y 2,再由直线方程得到12x x ,最后将K OA ·K OB 转化为1212y y x x 。
2024高考数学常考题型 圆锥曲线中定点定值定直线问题(解析版)
第23讲圆锥曲线中定点定值定直线问题【考点分析】考点一:直线过定点问题①设直线为m kx y +=,根据题目给出的条件找出m 与k 之间的关系即可②求出两点的坐标(一般含参数),再求出直线的斜率,利用点斜式写出直线的方程,再化为()()n m x k f y +-=的形式,即可求出定点。
考点二:定值问题探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.③求斜率,面积等定值问题,把斜率之和,之积,面积化为坐标之间的关系,再用韦达定理带入化简一般即可得到定值考点三:定直线问题①一般设出点的坐标,写出两条直线的方程,两直线的交点及两个直线中的y x ,相同,然后再用韦达定理带入化简即可得y x ,的关系即为定直线【题型目录】题型一:直线圆过定点问题题型二:斜率面积等定值问题题型三:定直线问题【典型例题】题型一:直线过定点问题【例1】已知点()1,1P 在椭圆()2222:10x y C a b a b+=>>上,椭圆C 的左右焦点分别为1F ,2F ,12PF F △的面(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线PA ,PB 均与圆()222:01O x y r r +=<<相切,记直线PA ,PB 的斜率分别为1k ,2k .(i )证明:121k k =;(ii )证明:直线AB 过定点.若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点P ,舍去.若330m k ++=,则直线():3333AB ykx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【例2】已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.【例3】已知椭圆22:1(0)C a b a b+=>>的上顶点为P ,右顶点为Q ,其中POQ △的面积为1(O 为原点),椭圆C(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=,求证:直线l 过定点.【例4】已知椭圆C :221(0)x y a b a b+=>>过点()2,0A -.右焦点为F ,纵坐标为2的点M 在C 上,且AF ⊥MF .(1)求C 的方程;(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.【点睛】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.【例5】已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【题型专练】1.已知椭圆()2222:10x y C a b a b+=>>的短轴长为A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.2.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.3.已知椭圆22:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的两个端点恰好为正方形的四个顶点,点2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.4.焦距为2c 的椭圆2222:1x y a bΓ+=(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆2222:1x y a b Γ+=(a >b >0)是“等差椭圆”,求b a的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.题型二:斜率面积等定值问题【例1】动点M 与定点(1,0)A 的距离和M 到定直线4x =的距离之比是常数12.(1)求动点M 的轨迹G 的方程;(2)经过定点(2,1)M -的直线l 交曲线G 于A ,B 两点,设(2,0)P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +恒为定值.【例2】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点()0,1Q x 在椭圆上且位于第一象限,12QF F 121QFQF ⋅=-.(1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于点Q 的两动点,记QM ,QN 的倾斜角分别为α,β,当αβπ+=时,试问直线MN 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】已知点()2,1P -在椭圆2222:1(0)x yC a b a b +=>>上,C的长轴长为:l y kx m =+与C 交于,A B 两点,直线,PA PB 的斜率之积为14.(1)求证:k 为定值;(2)若直线l 与x 轴交于点Q ,求22||QA QB +的值.【例4】已知椭圆()22:10x y C a b a b+=>>的离心率23e =,且椭圆C 的右顶点与抛物线212y x =的焦点重合.(1)求椭圆C 的方程.(2)若椭圆C 的左、右顶点分别为12,A A ,直线():1l y k x =-与椭圆C 交于E ,D 两点,且点E 的纵坐标大于0,直线12,A E A D 与y 轴分别交于()()0,,0,P Q P y Q y 两点,问:P Qy y 的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例5】已知椭圆()22:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.【例6】已知P 为圆22:4M x y +=上一动点,过点P 作x 轴的垂线段,PD D 为垂足,若点Q 满足DQ =.(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点()1,0N -作曲线C 的两条互相垂直的弦,两条弦的中点分别为E F 、,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,请说明理由..【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.【例7】已知椭圆C :()222210x y a b a b+=>>的右焦点为,F P 在椭圆C 上,PF 的最大值与最小值分别是6和2.(1)求椭圆C 的标准方程.(2)若椭圆C 的左顶点为A ,过点F 的直线l 与椭圆C 交于,B D (异于点A )两点,直线,AB AD 分别与直线8x =交于,M N 两点,试问MFN ∠是否为定值?若是,求出该定值;若不是,请说明理由.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.【点睛】方法点睛:探究性问题求解的思路及策略:(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.2.已知椭圆C :()222210x y a b a b+=>>过点()2,1D ,且该椭圆长轴长是短轴长的二倍.(1)求椭圆C 的方程;(2)设点D 关于原点对称的点为A ,过点()4,0B -且斜率存在的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q ,求证PBBQ为定值.3.如下图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于11(,)A x y ,22(,)B x y .(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12+y y y 的值,并证明直线AB 的斜率是非零常数.4.如图,椭圆214x y +=的左右焦点分别为1F ,2F ,点()00,P x y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点()10,A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011y y =.(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M 的坐标及该定值;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在点4,03M ⎛⎫⎪⎝⎭,可使得直线MP 与MQ 的斜率之积为定值,该定值为920-.【分析】(1)设()00,P x y 、圆的方程222()(0)x y b r r +-=>,代入()3,0-、()00,x y 及()10,A y 可解得101y y =,即可证;(2)设(,0)(3)M m m ≠,由A ,P ,Q 三点共线AP AQ k k =得Q y ,即可表示出MP MQ k k ⋅讨论定值是否存在.【详解】(1)由2214x y +=可得()13,0F -,()23,0F 设()00,P x y ,则220044x y +=,设圆的方程为2220()(0)+-=>x y b r r ,代入()13,0F -及()00,x y ,得()2202220003b rx y b r⎧+=⎪⎨+-=⎪⎩,两式相减,得22220000000003443113222⎛⎫+--+-===- ⎪⎝⎭x y y y b y y y y ,所以圆的方程为022230+--=x y b y 即22001330x y y y y ⎛⎫++--= ⎪⎝⎭,令0x =,得2001330y y y y ⎛⎫+--= ⎪⎝⎭,由10y >,可得101y y =,即011y y =.5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.6.已知椭圆22Γ:1a b+=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.7.已知平面上一动点P 到()2,0F 的距离与到直线6x =的距离之比为3.(1)求动点P 的轨迹方程C ;(2)曲线C 上的两点()11,A x y ,()22,B x y ,平面上点()2,0E -,连结PE ,PF 并延长,分别交曲线C 于点A ,B ,若1PE EA λ= ,2PF FB λ=,问,12λλ+是否为定值,若是,请求出该定值,若不是,请说明理由.8.已知椭圆2:14x C y +=,过点0,2M ⎛⎫- ⎪⎝⎭直线1l ,2l 的斜率为1k ,2k ,1l 与椭圆交于()11,A x y ,()22,B x y 两点,2l 与椭圆交于()33,C x y ,()44,D x y 两点,且A ,B ,C ,D 任意两点的连线都不与坐标轴平行,直线12y =-交直线AC ,BD 于P ,Q .(1)求证:1122341234k x x k x x x x x x =++;(2)PM QM的值是否是定值,若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析9.已知椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F 且离心率为12,椭圆C 的长轴长为4.(1)求椭圆C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,过点B 作x 轴的垂线1l ,D 为1l 上异于点B 的一点,以线段BD 为直径作圆E ,若过点2F 的直线2l (异于x 轴)与圆E 相切于点H ,且2l 与直线AD 相交于点,P 试判断1PF PH +是否为定值,并说明理由.))可知()()()222,0,2,0,1,0A B F F H -=,112212PF PH PF PF F H PF PF +=+-=+()()2,0,E m m ≠则()2,2,D m 圆E 的半径为则直线AD 直线方程为(2)2my x =+,的方程为1,x ty =+10.已知椭圆()22:10x y C a b a b+=>>的左顶点和上顶点分别为A 、B ,直线AB 与圆22:3O x y +=相切,切点为M ,且2AM MB =.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于E 、F 两点,试判断:PE PF ⋅是否为定值?若是,求出该值,并证明;若不是,请说明理由.11.已知椭圆22:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.题型三:定直线问题【例1】已知如图,长为宽为12的矩形ABCD,以为,A B焦点的椭圆2222:1x yMa b+=恰好过,C D两点,(1)求椭圆M的标准方程;(2)根据(1)所得椭圆M的标准方程,若AB是椭圆M的左右顶点,过点(1,0)的动直线l交椭圆M与CD两点,试探究直线AC与BD的交点是否在一定直线上,若在,请求出该直线方程,若不在,请说明理由.【例2】已知椭圆:C22221x ya b+=(0a b>>)的离心率为23,且⎭为C上一点.(1)求C的标准方程;(2)点A,B分别为C的左、右顶点,M,N为C上异于A,B的两点,直线MN不与坐标轴平行且不过坐标原点O,点M关于原点O的对称点为M',若直线AM'与直线BN相交于点P,直线OP与直线MN相交于点Q,证明:点Q位于定直线上.【例3】已知1F 为椭圆2222:1(0)x y C a b a b+=>>的左焦点,直线y =与C 交于A ,B 两点,且1ABF 的周长为4+ 2.(1)求C 的标准方程;(2)若(2,1)P 关于原点的对称点为Q ,不经过点P 且斜率为12的直线l 与C 交于点D ,E ,直线PD 与QE 交于点M ,证明:点M 在定直线上.【答案】(1)22182x y +=(2)证明见解析【分析】(1)将22y b =代入曲线C 的方程中求得||2AB a =,继而由三角形的面积公式得4ab =.再由椭圆的对称性和椭圆的定义得()22442a +=+,由此可求得C 的标准方程;(2)设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,得出直线PD 的方程,直线QE 的方程,联立直线PD 与直线QE 的方程,求得点M 的坐标,继而求得12M M y x =-,可得证.(1)解:将22y b =代入2222:1(0)x y C a b a b +=>>中,解得22x a =±,则||2AB a =,所以1ABF 的面积为1222222ab a b ⨯⨯==,所以4ab =.①设C 的右焦点为2F ,连接2AF ,由椭圆的对称性可知12BF AF =,所以1ABF 的周长为()1112||||22AB AF BF AB AF AF a ++=++=+,所以()22442a +=+,②由①②解得22a =,2b =,所以C 的标准方程为22182x y +=.(2)解:设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,【题型专练】1.已知椭圆C :()222210x y a b a b +=>>2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①1k k 为定值;②点M 在定直线上.2.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.3.已知椭圆C :()222210x y a b a b +=>>的离心率为2,左顶点为1A ,左焦点为1F ,上顶点为1B ,下顶点为2B ,M 为C 上一动点,11M AF △1.(1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q ,证明:点Q 在一条平行于x 轴的直线上.。
圆锥曲线中的定点、定值问题
圆锥曲线中的定点、定值问题
1、几个常见的定点模型
若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.
(1)对于椭圆()上异于右顶点的两动点,,
以为直径的圆经过右顶点,则直线过定点.
同理,当以为直径的圆过左顶点时,直线过定点.
(2)对于双曲线上异于右顶点的两动点,,以为直径的圆经过右顶点,则直线过定点.同理,对于左顶点,则定点为.
(3)对于抛物线上异于顶点的两动点,,
若,则弦所在直线过点.
同理,抛物线上异于顶点的两动点,,若,则直线过定点.
2、几个常见的定值模型
在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点(非顶点)与曲线上的两动点,满足直线与的斜率互为相反数(倾斜角互补),则直线的斜率为定值.
(1)在椭圆中:已知椭圆,定点()在椭圆上,设,是椭圆上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(2)在双曲线:中,定点()在双曲线上,设,是双曲线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(3)在抛物线:,定点()在抛物线上,设,是抛物线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
3、解题导语
解决定点、定值问题的关键是检测数学运算的能力,所以只
要细致、耐心的计算就可以得到答案。
又因为此种问题找得分点比较容易,所以千万不要放弃。
圆锥曲线中的定点、定值问题的结论及多种证明方法 高考数学
七、圆锥曲线中的平行弦的问题
在前面一、推论:“若圆锥曲线为圆,直线AB交C于A、B两点,的斜率分别为,当时,为定值,”给出了平移图像法、一般法、参数方程法等多种证明方法。现在我们对一、推论
31.采用另一种思维方式探究如下:设点是圆上的一定点,过点P作x轴的
2. 当 时, 【1】化为: 。即 时,为定值,,
3.当)时,,得, ,,即 ,
,即 。 得:
; 【2】
即: 或 (因为直线AB不过点P,舍去)AB的方程为化为: 即 由得 即直线AB恒过定点( )。
3. 当时, 由 【2】化为: , , , 即:。(因为直线AB不过点P,舍去)或;,即 为定值.
1.当时,, , ,
,即: , ,
化为:, (因为直线AB不过点P,舍去)或。, ; 【6】AB的方程为化为: 即 由得 即当时,直线AB恒过定点( )。
2.当 时, 【6】化为:; 即当时,为定值,。
3.当时, 即, ,,即 ,
, ; 【7】 ,化为:, (因为直线AB不过点P,舍去)或。由,
2.当时,直线AB恒过定点(
3.当时,为定值
4.当时,即直线AB恒过定点( ). 及其证法已知点(其中 是圆锥曲线上的一个定点,过点作直线分别与圆锥曲线C相交于点A、 则必定存在以下结论:
二、椭圆、双曲线、抛物线、圆中的定点、定值问题的统一结论
1.当时,为定值,
2.当时,直线AB恒过定点( )
圆锥曲线中的定点、定值问题的
结论及多种证明方法
主讲人:某某某老师
某某学校
山东东营 徐新华 大家都知道,圆锥曲线的很多重要结论,特别是圆锥曲线的定点、定值问题并没有列入高中数学教材,但它们一直确是高考数学试题中考察的重要内容。本文件中,从多个角度、采用多种方法对圆锥曲线的定点、定值问题的结论作出了证明,并力求对证明过程给予最大化的展示。需要说明的是,个别证法有相当大的难度,其证明过程也极为复杂,因此叙述也就比较详细具体。
2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定点、定直线、定值专题1、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为22221(0)x y a b a b +=>>3,1a c a c +=-=,22,1,3a c b ===221.43x y ∴+= (II)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->.212122284(3),.3434mk m x x x x k k-⇒+=-⋅=++22221212121223(4)()()().34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122y yx x ∴⋅=---, (最好是用向量点乘来)1212122()40y y x x x x +-++=,2222223(4)4(3)1640343434m k m mkk k k --+++=+++,2271640m mk k ++=,解得1222,7km k m =-=-,且满足22340k m +->. 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0).7综上可知,直线l 过定点,定点坐标为2(,0).72、已知椭圆C的离心率e =,长轴的左右端点分别为()1A 2,0-,()2A 2,0。
(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S 。
试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。
解法一:(Ⅰ)设椭圆C 的方程为()2222x y 1a b 0a b +=>>。
…………………1分∵a 2=,c e a ==c =222b a c 1=-=。
……………… 4分∴椭圆C 的方程为222x y 14+=。
……………………………………… 5分(Ⅱ)取m 0,=得P ,Q 1,⎛⎛ ⎝⎭⎝⎭,直线1A P的方程是y =+ 直线2A Q的方程是y =交点为(1S . …………7分,若P 1,,Q ⎛⎛ ⎝⎭⎝⎭,由对称性可知交点为(2S 4,. 若点S 在同一条直线上,则直线只能为:x 4=。
…………………8分以下证明对于任意的m,直线1A P 与直线2A Q 的交点S 均在直线:x 4=上。
事实上,由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=,记()()1122P x ,y ,Q x ,y ,则1212222m 3y y ,y y m 4m 4--+==++。
………… 9分设1A P 与交于点00S (4,y ),由011y y ,42x 2=++得1016y y .x 2=+设2A Q 与交于点00S (4,y ),''由022y y ,42x 2'=--得2022y y .x 2'=- (10)1200126y 2y y y x 2x 2'-=-+-()()()()1221126y my 12y my 3x 2x 2--+=+-()()()1212124my y 6y y x 2x 2-+=+- ()()221212m 12mm 4m 40x 2x 2---++==+-,……12分 ∴00y y '=,即0S 与0S '重合,这说明,当m 变化时,点S 恒在定直线:x 4=上。
13分解法二:(Ⅱ)取m 0,=得P ,Q 1,⎛⎛ ⎝⎭⎝⎭,直线1A P的方程是y 直线2A Q的方程是y =交点为(1S . ………………………………………… 7分 取m 1,=得()83P ,,Q 0,155⎛⎫- ⎪⎝⎭,直线1A P 的方程是11y x ,63=+直线2A Q 的方程是1y x 1,2=-交点为()2S 4,1.∴若交点S 在同一条直线上,则直线只能为:x 4=。
……………8分以下证明对于任意的m,直线1A P 与直线2A Q 的交点S 均在直线:x 4=上。
事实上,由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m4y 2my 30++-=,记()()1122P x ,y ,Q x ,y ,则1212222m 3y y ,y y m 4m 4--+==++。
………………9分 1A P 的方程是()11y y x 2,x 2=++2A Q 的方程是()22y y x 2,x 2=--消去y,得()()1212y yx 2x 2x 2x 2+=-+-…①以下用分析法证明x 4=时,①式恒成立。
要证明①式恒成立,只需证明12126y 2y ,x 2x 2=+-即证()()12213y my 1y my 3,-=+即证()12122my y 3y y .=+………………②∵()1212226m 6m2my y 3y y 0,m 4m 4---+=-=++∴②式恒成立。
这说明,当m 变化时,点S 恒在定直线:x 4=上。
解法三:(Ⅱ)由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=。
记()()1122P x ,y ,Q x ,y ,则1212222m 3y y ,y y m 4m 4--+==++。
…………… 6分 1A P 的方程是()11y y x 2,x 2=++2A Q 的方程是()22yy x 2,x 2=-- ……7分由()()1122y y x 2,x 2y y x 2,x 2⎧=+⎪+⎪⎨⎪=-⎪-⎩得()()1212y y x 2x 2,x 2x 2+=-+- …………………9分即()()()()21122112y x 2y x 2x 2y x 2y x 2++-=+--()()()()21122112y my 3y my 12y my 3y my 1++-=+--1221212my y 3y y 23y y +-=+ 112211232m 2m 3y y m 4m 424.2m 3y y m 4--⎛⎫+-- ⎪++⎝⎭==-⎛⎫-+ ⎪+⎝⎭………………………………12分这说明,当m 变化时,点S 恒在定直线:x 4=上。
……………… 13分3、已知椭圆E 的中心在原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小值1,离心率为e(Ⅰ)求椭圆E 的方程; (Ⅱ)过点()1,0作直线交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒解:(I )设椭圆E 的方程为2222x y 1a b +=,由已知得:a c 1c a⎧-=⎪⎨=⎪⎩ 。
2分a c 1⎧=⎪∴⎨=⎪⎩222b a c 1=-=∴椭圆E 的方程为22x y 12+=。
3分 (Ⅱ)法一:假设存在符合条件的点M(m,0),又设1122P(x ,y ),Q(x ,y ),则:11221212MP (x m,y ),MQ (x m,y ),MP MQ (x m)(x m)y y =-=-⋅=-⋅-+2121212x x m(x x )m y y =-+++。
5分①当直线l 的斜率存在时,设直线l 的方程为:y k(x 1)=-,则由22x y 12y k(x 1)⎧+=⎪⎨⎪=-⎩得222x 2k (x 1)20+--= 2222(2k 1)x 4k x (2k 2)0+-+-=221212224k 2k 2x x ,x x 2k 12k 1-+=⋅=++ 7分222121212122k y y k (x 1)(x 1)k [x x (x x )1]2k 1=--=-++=-+ 所以22222222k 24k k MP MQ m m 2k 12k 12k 1-⋅=-⋅+-+++2222(2m 4m 1)k (m 2)2k 1-++-=+ 9分 对于任意的k 值,MP MQ ⋅为定值,所以222m 4m 12(m 2)-+=-,得5m 4=,所以57M(,0),MP MQ 416⋅=-; 11分②当直线l 的斜率不存在时,直线1212121l:x 1,x x 2,x x 1,y y 2=+===-由5m 4=得7MP MQ 16⋅=-综上述①②知,符合条件的点M 存在,起坐标为5(,0)4﹒ 13分法二:假设存在点M(m,0),又设1122P(x ,y ),Q(x ,y ),则:1122MP (x m,y ),MQ (x m,y )=-=-1212MP MQ (x m)(x m)y y ⋅=-⋅-+=2121212x x m(x x )m y y -+++….5分①当直线l 的斜率不为0时,设直线l 的方程为x ty 1=+,由22x y 12x ty 1⎧+=⎪⎨⎪=+⎩得22(t 2)y 2ty 10++-=1212222t 1y y ,y y t 2t 2--∴+=⋅=++ 7分 222212122121222t 2t t 22t 2x x (ty 1)(ty 1)t y y t(y y )1t 2t 2--++-+=+⋅+=+++==++ 221212222t 2t 44x x t(y y )2t 2t 2-+++=++==++ 222222t 24m 1MP MQ m t 2t 2t 2-+∴⋅=-+-+++2222(m 2)t 2m 4m 1t 2-+-+=+ 9分 设MP MQ ⋅=λ则2222(m 2)t 2m 4m 1t 2-+-+=λ+2222222(m 2)t 2m 4m 1(t 2)(m 2)t 2m 4m 120∴-+-+=λ+∴--λ+-+-λ=22m 202m 4m 120⎧--λ=⎪∴⎨-+-λ=⎪⎩5m 4716⎧=⎪⎪∴⎨⎪λ=-⎪⎩5M(,0)4∴ 11分 ②当直线l 的斜率为0时,直线l:y 0=,由5M(,0)4得:55257MP MQ (2)()2441616⋅=⋅=-=-综上述①②知,符合条件的点M 存在,其坐标为5(,0)4。