大学物理2-1第二章(质点动力学)习题答案

合集下载

大学物理第2章质点动力学习题解答

大学物理第2章质点动力学习题解答

大学物理第2章质点动力学习题解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第2章 质点动力学习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。

解:∵j i dt r d a ˆ6ˆ12/22+== , j i a m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。

F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。

证明:∵r j t b it a dt r d a 2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。

2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g ,f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μf 1N 1m 1TaFN 2 m 2TaN 1 f 1 f 22-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。

大学物理_第2章_质点动力学_习题答案

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr vg rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理第2章_质点动力学_知识框架图和解题指导和习题

大学物理第2章_质点动力学_知识框架图和解题指导和习题

第2章 质点动力学一、基本要求1.理解冲量、动量,功和能等基本概念;2.会用微积分方法计算变力做功,理解保守力作功的特点;3.掌握运用动量守恒定律和机械能守恒定律分析简单系统在平面内运动的力学问题的思想和方法.二、基本内容(一)本章重点和难点:重点:动量守恒定律和能量守恒定律的条件审核、综合性力学问题的分析求解。

难点:微积分方法求解变力做功. (二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧公式只有保守内力做功条件能量守恒定律公式合外力为条件动量守恒定律守恒定律动能定理动量定理基本定理能功冲量动量基本物理量)()0((三)容易混淆的概念: 1。

动量和冲量动量是质点的质量与速度的乘积;冲量是合外力随时间的累积效应,合外力的冲量等于动量增量。

2。

保守力和非保守力保守力是做功只与始末位置有关而与具体路径无关的力,沿闭合路径运动一周保守力做功为0;非保守力是做功与具体路径有关的力.(四)主要内容: 1.动量、冲量 动量:p mv = 冲量:⎰⋅=21t t dt F I2.动量定理:质点动量定理:⎰∆=-=⋅=2112t t v m P P dt F I质点系动量定理:dtPd F=3.动量守恒定律:当系统所受合外力为零时,即0=ex F时,或inex F F系统的总动量保持不变,即:∑===n i i i C v m P 14.变力做功:dr F r d F W BAB A⎰⎰=⋅=θcos (θ为)之间夹角与r d F直角坐标系中:)d d d ( z F y F x F W z y BAx ++=⎰5.动能定理:(1)质点动能定理:k1k221222121E E mv mv W -=-=(质点所受合外力做功等于质点动能增量。

)(2)质点系动能定理:∑∑==-=+ni n i E E W W1kio1ki inex(质点系所受外力做功和内力做功之和等于质点系动能增量。

大学物理章质点动力学习题答案

大学物理章质点动力学习题答案

第二章 质点动 力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数;解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式2代入式1得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r ;解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩习题2-2图擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件;解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m,用质量不计的滑轮和细绳连接,并不计摩擦,则A和B 的加速度大小各为多少 ; 解:如图由受力分析得(1)(2)2(3)2(4)ggA AB B A B A BA B mg T ma T mg ma a a T T a a -=-===1解得=-52=-52-5如本题图所示,已知两物体A 、B 的质量均为m=,物体A 以加速度a =s 2 运动,求物体B 与桌面间的摩擦力;滑轮与连接绳的质量不计解:分别对物体和滑轮受力分析如图,由牛顿定律和动力学方程得,()()()1f 111f (1)''(2)2'(3)'2(4)5'6'7(4)7.22A T A TB T T A B T T T T m g F m a F F m a a a F F m m m F F F F mg m m aF N-=-======-+===解得2-6质量为M 的三角形木块,放在光滑的水平桌面上,另一质量为m 的木块放在斜面上如本题图所示;如果所有接触面的摩擦均可忽略不计,求M 的加速度和m 相对M 的加速度;AB 习题2-4图习题2-5图aθ习题2-3图ma AmgT A T B a Bmg解:如图m 相对M 的相对加速度为m a ',则 cos ,sin ,mxm my m a a a a θθ''''== 在水平方向,cos mxmx Mx mx mxMx m M a a a a a a a a θ'=-''∴=+=-+在竖直方向sin mymy myma a a a θ'='∴=由牛顿定律可得,sin cos cos sin sin mx mM my m MN ma ma ma mg N ma ma N Ma θθθθθ'-==-+'-===解得θ+θθ=2sin cos sin m M mg a M , 2()sin sin m M m g a M m θθ++= 2-7在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球;当钢球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高解:取钢球为隔离体,受力分析如图所示,在图示坐标中列动力学方程得,2sin sin cos cos ()/n F ma mR F mg R h Rθωθθθ====-解得钢球距碗底的高度2ω-=g R h2-8光滑的水平面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦系数为μ;物体的初速率为v 0,求:1t 时刻物体的速率;2当物体速率从v 0减少到v 0/2时,物体所经历的时间及经过的路程;解:1设物体质量为m,取图示的自然坐标系,由牛顿定律得,02222tv 2v (1)(2)(3)4dv 4dt u v N n f t f Nv F ma m R dv F m a m dtF uF v dvu R dt ===-=-=-⎰⎰0由上三式可得=()R 对()式积分得=-习题2-6图00Rv v R v tμ∴=+(2) 当物体速率从v 0减少到v 0/2时,由上式00Rv vR v tμ∴=+可得物体所经历的时间0t R v μ'=经过的路程t t 000vdt dt ln 2Rv Rs R v t μμ''=+⎰⎰==2-9从实验知道,当物体速度不太大时,可以认为空气的阻力正比于物体的瞬时速度,设其比例常数为k;将质量为m 的物体以竖直向上的初速度v 0抛出; 1试证明物体的速度为t m ktm ke v e kmg v --+-=0)1(2证明物体将达到的最大高度为)1ln(020mgkv k g m k mv H +-=3证明到达最大高度的时间为)1ln(0mgkv k mt H +=证明:由牛顿定律可得0000220200ln (1)(2),()ln(13tvv mmt t k kx mg mg kv mdv dt mg kvmg kv m mg t v e v e k mg kv kmvdvdx mg kvmg kv u du kdvk mgdu k mgdudx mdu dx mdu m u m u mv kv m g x k k mg m t k --+-=++∴==-++=-++==∴=-+=-+∴=-+=⎰⎰⎰⎰dv(1)-mg-kv=m ,dt,dv -mg-kv=mv ,dx 令,)()0ln0t ln mg kv mg kvmg kv m v k mg k +++∴=+当时,=即为到达最高点的时间2-10质量为m 的跳水运动员,从距水面距离为h 的高台上由静止跳下落入水中;把跳水运动员视为质点,并略去空气阻力;运动员入水后垂直下沉,水对其阻力为-b v 2,其中b 为一常yf =-kvmgv量;若以水面上一点为坐标原点O,竖直向下为Oy 轴,求:1运动员在水中的速率v 与y 的函数关系;2跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1/10假定跳水运动员在水中的浮力与所受的重力大小恰好相等解:运动员入水可视为自由落体运动,所以入水时的速度为0v =入水后如图由牛顿定律的0220//0100mg-f-F=ma mg=F f=bv dv a=dt v dy (2)0.4,0.1m vy ln 5.76m b y v v by m by m dv v dy dvb mv dyb dv m vv v e m v v v ---=∴-=-=====⎰⎰b将已知条件代入上式得,m=-=2-11一物体自地球表面以速率v 0竖直上抛;假定空气对物体阻力的值为f =-km v 2,其中k 为常量,m 为物体质量;试求:1该物体能上升的高度;2物体返回地面时速度的值;解:分别对物体上抛和下落时作受力分析如图,h120m 1ln()2v 01ln()2(2)m v=v 1gyvv vvdv dy g k g k y k g k g k k g vdvdy g k k =-++∴=-+∴+=-∴+⎰⎰⎰⎰222220max 222-/0dv mvdv (1)-mg-k v =m=,dt dy v v v 物体达到最高点时,=,故v h=y =dv mvdv下落过程中,-mg+k v =m=dt dy-v v ()2-12长为60cm 的绳子悬挂在天花板上,下方系一质量为1kg 的小球,已知绳子能承受的最大张力为20N ;试求要多大的水平冲量作用在原来静止的小球上才能将绳子打断解:由动量定理得000I mv I v m∆=-∆∴=,如图受力分析并由牛顿定律得,2020220/202.47mv T mg l mv T mg lmg I l I Ns-==+≥∴+∆≥∆≥2-13一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为;爆炸后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为100m;问第二块落在距抛出点多远的地面上 设空气的阻力不计解:取如图示坐标系,根据抛体运动规律,爆炸前,物体在最高点得速度得水平分量为()1010x 2x 12y 2x 0x (1),v 2mv mv 30mv mv 414v v 100x x v x t==+=2111121物体爆炸后,第一块碎片竖直下落的运动方程为1y =h-v t-gt 2当碎片落地时,y =0,t=t 则由上式得爆炸后第一块碎片抛出得速度为1h-gt 2=()t 又根据动量守恒定律,在最高点处有1=()211=-22联立以上()-()式得爆炸后第二块碎片抛出时的速度分量分别为=2=2x 11212x 2222y 222214.7v t 5y =h+v t -60,x 500my ms v v ms gt y --====21211h-gt 2t 爆炸后第二块碎片作斜抛运动,其运动方程为x =x +()1()2落地时由式(5)和(6)可解得第二块碎片落地点得水平位置=2-14质量为M 的人手里拿着一个质量为m 的物体,此人用与水平面成θ角的速率v 0向前跳去;当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出;问:由于人抛出物体,他跳跃的距离增加了多少假设人可视为质点解:取如图所示坐标,把人和物视为一系统,当人跳跃到最高点处,在向左抛物得过程中,满足动量守恒,故有()00000m cos ()v u mu v cos m mu v v- cos m sin t g m sin x vt um gv Mv m v u v v v v v θθθθθ=+-∆∆∆+M 式中为人抛物后相对地面的水平速率,-为抛出物对地面得水平速率,得=++M人的水平速率得增量为==+M而人从最高点到地面得运动时间为=所以人跳跃后增加的距离为==(+M )2-15铁路上有一静止的平板车,其质量为M,设平板车可无摩擦地在水平轨道上运动;现有N 个人从平板车的后端跳下,每个人的质量均为m,相对平板车的速度均为u;问:在下列两种情况下,1N 个人同时跳离;2一个人、一个人地跳离,平板车的末速是多少所得的结果为何不同,其物理原因是什么解:取平板车及N 个人组成的系统,以地面为参考系,平板车的运动方向为正方向,系统在该方向上满足动量守恒;考虑N 个人同时跳车的情况,设跳车后平板车的速度为v,则由动量守恒定律得 0=Mv+Nmv -uv =Nmu/Nm+M 1又考虑N 个人一个接一个的跳车的情况;设当平板车上商有n 个人时的速度为v n ,跳下一个人后的车速为v n -1,在该次跳车的过程中,根据动量守恒有M+nmv n =M v n -1+n-1m v n -1+mv n -1-u 2 由式2得递推公式v n -1=v n +mu/M+nm 3当车上有N 个人得时即N =n,v N =0;当车上N 个人完全跳完时,车速为v 0, 根据式3有,v N-1=0+mu/Nm+Mv N-2= v N-1+mu/N-1m+M ………….v 0= v 1+mu/M+nm将上述各等式的两侧分别相加,整理后得,0n 0mu v nm,1,2,3....v vM nm M Nm n N N +≤+=∑N=1=M+由于故有,即个人一个接一个地跳车时,平板车的末速度大于N 个人同时跳下车的末速度。

2021年大学物理习题精选-答案——第2章 质点动力学

2021年大学物理习题精选-答案——第2章 质点动力学

质点动力学习题答案欧阳光明(2021.03.07)2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-1.图2-1X 方向: 0=x F t v x 0=① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v由①、②式消去t ,得2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为常数.求物体升高到最高点时所用时间及上升的最大高度.解:⑴研究对象:m⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律:合力:f P F+=y 分量:dtdVm KV mg =-- 即dt mKV mg dV 1-=+mg Ke KV mg K V t m K1)(10-+=⇒-①0=V 时,物体达到了最高点,可有0t 为)1ln(ln 000mgKV K mmg KV mg K m t +=+=② ∵dtdyV =∴Vdt dy =021()1K t m mmg KV e mgt K K-+--⎡⎤=⎢⎥⎣⎦③ 0t t =时,max y y =,2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度. 解:链条在运动过程中,其部分的速度、加速度均相同,沿链条方向,受力为mxg l,根据牛顿定律,有 图2-4通过变量替换有 m dvxg mv l dx =0,0x v ==,积分00l vm xg mvdv l =⎰⎰由上式可得链条刚离开桌面时的速度为v gl =2-5 升降机内有两物体,质量分别为1m 和2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =12g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m 和2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有题2-5图联立,解得g a ='方向向下 (2)2m 对地加速度为22ga a a =-'=方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a+=' ∴g g g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上. 2-6 一物体受合力为t F 2=(SI ),做直线运动,试问在第二个5秒内和第一个5秒内物体受冲量之比及动量增量之比各为多少? 解:设物体沿+x 方向运动,25250501===⎰⎰tdt Fdt I N·S (1I 沿i方向)7521051052===⎰⎰tdt Fdt I N·S (2I 沿i方向)∵⎩⎨⎧∆=∆=1122)()(p I p I∴3)()(12=∆∆p p2-7 一弹性球,质量为020.0=m kg ,速率5=v m/s ,与墙壁碰撞后跳回.设跳回时速率不变,碰撞前后的速度方向和墙的法线夹角都为60α︒=,⑴求碰撞过程中小球受到的冲量?=I ⑵设碰撞时间为05.0=∆t s ,求碰撞过程中小球受到的平均冲力?F = 解:i i i mv i I I x10.060cos 5020.02cos 2=⨯⨯⨯===⇒αN·S2-9 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F=(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量 将ba t =代入,得(3)由动量定理可求得子弹的质量2-10 木块B 静止置于水平台面上,小木块A 放在B 板的一端上,如图所示. 已知0.25A m =kg ,B m =0.75kg ,小木块A 与木块B 之间的摩擦因数1μ=0.5,木板B 与台面间的摩擦因数2μ=0.1. 现在给小木块A 一向右的水平初速度0v =40m/s ,问经过多长时间A 、B 恰好具有相同的速度?(设B 板足够长)它将受解:当小木块A 以初速度0v 向右开始运动时,到木板B 的摩擦阻力的作用,木板B 则在A 给予的摩擦力及台面给予的摩擦力的共同作用下向右运动. 如果将木板B 与小木块A 视为一个系统,A 、B 之间的摩擦力是内力,不改变系统的总动量,只有台面与木板B 之间的摩擦力才是系统所受的外力,改变系统的总动量. 设经过t ∆时间,A 、B 具有相同的速度,根据质点系的动量定理0()k A B A F t m m v m v -∆=+-再对小木块A 单独予以考虑,A 受到B 给予的摩擦阻力'K F ,应用质点的动量定理'0k A B F t m v m v -∆=- 以及'1k A F m g μ= 解得0012121(),A A B v v v m v t m m gμμμμμ-=-∆=+-图2-10代入数据得 2.5v =m/s t ∆=7.65s2-11一粒子弹水平地穿过并排静止放置在光滑水平面上的木块,如图2-11所示. 已知两木块的质量分别为1m 和2m ,子弹穿过两木块的时间各为1t ∆和2t ∆,设子弹在木块中所受的阻力为恒力F ,求子弹穿过后,两木块各以多大速度运动.解:子弹穿过第一木块时,两木块速度相同,均为1v ,初始两木块静止,由动量定理,于是有设子弹穿过第二木块后,第二木块速度变为2v ,对第二块木块,由动量定理有 解以上方程可得2-12一端均匀的软链铅直地挂着,链的下端刚好触到桌面. 如果把链的上端放开,证明在链下落的任一时刻,作用于桌面上的压力三倍于已落到桌面上那部分链条的重量.解:设开始下落时0t =,在任意时刻t 落到桌面上的链长为x ,链未接触桌面的部分下落速度为v ,在dt 时间内又有质量dm dx ρ=(ρ为链的线密度)的链落到桌面上而静止. 根据动量定理,桌面给予dm 的冲量等于dm 的动量增量,即 所以2dxF vv dtρρ== 由自由落体的速度22v gx =得这是t 时刻桌面给予链的冲力. 根据牛顿第三定律,链对桌面的冲力'F F =,'F 方向向下,t 时刻桌面受的总压力等于冲力'F 和t 时刻已落到桌面上的那部分链的重力之和,所以图2-11所以3Nxgρ= 即链条作用于桌面上的压力3倍于落在桌面上那部分链条的重量. 2-13一质量为50kg 的人站在质量为100kg 的停在静水中的小船上,船长为5m ,问当人从船头走到船尾时,船头移动的距离. 解:以人和船为系统,整个系统水平方向上动量守恒 设人的质量为m ,船的质量为M ,应用动量守恒得 其中v ,V 分别为人和小船相对于静水的速度, 可得m -MV =v 人相对于船的速度为'M mM+=-=v v V v 设人在t 时间内走完船长l ,则有在这段时间内,人相对于地面走了0tx vdt =⎰所以Mlx M m=+船头移动的距离为'53ml x l x M m =-==+2-14质量为M 的木块静止在光滑的水平桌面上,质量为m ,速度0v 的子弹水平地射入木块,并陷在木块内与木块一起运动.求: (1)子弹相对木块静止后,木块的速度和动量; (2)子弹相对木块静止后,子弹的动量;(3) 在这个过程中,子弹施于木块的冲量.解:子弹相对木块静止后,其共同速度设为u ,子弹和木块组成系统动量守恒(1)0()mv m M u =+ 所以0mv u m M=+(2)子弹的动量20m m v P mu m M==+(3)针对木块,由动量守恒知,子弹施于木块的冲量为2-15质量均为M 的两辆小车沿着一直线停在光滑的地面上,质量为m的人自一辆车跳入另一辆车,接着又以相同的速率跳回来. 试求两辆车的速率之比.解:质量为m 的人,以相对于地面的速度v 从车A 跳到车B ,此时车A 得到速度1u ,由于车是在光滑的地面上,沿水平方向不受外力,因此,由动量守恒得人到达车B 时,共同得速度为2u ,由动量守恒得人再由车B 以相对于地面的速度v 跳回到车A ,则车B 的速度为'2u ,而车A 与人的共同速度为'1u ,如图所示,由动量守恒得联立方程解得:'22m u v M ='12mu v M m=+ 所以车B 和车A 得速率之比为2-16体重为P 的人拿着重为p 的物体跳远,起跳仰角为ϕ,初速度为0v . 到达最高点时,该人将手中的物体以水平向后的相对速度u抛出,问跳远成绩因此增加多少?解:人和物体组成系统在最高点抛出物体前后沿水平方向动量守恒,注意到对地面这个惯性参考系从最高点到落地,人做平抛运动所需时间0sin v t gϕ= 跳远距离增加为2-17铁路上有一平板车,其质量为M ,设平板车可无摩擦地在水平轨道上运动. 现有N 个人从平板车的后端跳下,每个人的质量均为m ,相对平板车的速度均为u . 问在下述两种情况下,平板车的末速度是多少?(1)N 个人同时跳离;(2)一个人、一个人的跳离. 所得结果是否相同.解:取平板车和N 个人为研究对象,由于在水平方向上无外力作用,故系统在该方向上动量守恒. 取平板车运动方向为坐标轴正方向,设最初平板车静止,则有()0Mv Nm v u +-= 所以N 个人同时跑步跳车时,车速为(2)若一个人、一个人地跳车,情况就不同了. 第一个跳车时,由动量守恒定律可得第二个人跳车时,有以此类推,第N 个人跳车时,有所以1111()2NN n muv mu M m M m M Nm M nm ==++⋅⋅⋅=++++∑因为1112M m M m M Nm>>⋅⋅⋅>+++ 故N v v >2-18质量为kg 10的物体作直线运动,受力与坐标关系如图2-18所示。

大学物理习题答案02质点动力学

大学物理习题答案02质点动力学

大学物理练习题二一、选择题1. 质量为m的小球在向心力作用下,在水平面内作半径为R、速率为v的匀速圆周运动,如下左图所示。

小球自A点逆时针运动到B点的半周内,动量的增量应为:(A )mv 2j (B )jmv2 (C )i mv 2 (D )i mv 2 [ B ]解: j mv j mv v m v m p A B)(j mv 2 ; 另解:取y 轴为运动正向,mv mv mv p 2)( , pj mv 22. 如图所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A ).2mv (B )22/2v R mg mv(C )v Rmg / (D )0。

[ C ]解: v /R 2T ,2/T t ,t mgd I T 20v /R mg(注)不能用0v m v m p I,因为它是合力的冲量。

3. 一质点在力)25(5t m F (SI )(式中m 为质点的质量,t 为时间)的作用下,0 t 时从静止开始作直线运动,则当s t 5 时,质点的速率为(A )s m /50 (B )s m /25 (C )0 (D )s m /50 [ C ]mvR解:F 为合力,00 v ,0525)25(5525t tt mt mt dt t m Fdt由mv mv mv Fdt tt 00可得0 v解2:由知)25(5t m F 知)25(5t a ,550)25(5dt t adt v v0)5(5520 t t v v , (00 v )4. 质量分别为m和4m的两个质点分别以动能E和4E沿一直线相向运动,它们的总动量大小为(A ),22mE (B )mE 23, (C )mE 25, (D ) mE 2122 。

[ B ]解:由M p Mv E k 22122,有k ME p 2 ,mE 2p 1 ,12p 4)E 4)(m 4(2p ,1123)(p p p p 总m E 235. 一个质点同时在几个力作用下的位移为:k j i r654 (SI ) 其中一个力为恒力k j i F953 (SI ),则此力在该位移过程中所作的功为 (A) 67J (B) 91J (C) 17J (D) –67J [ A ]解:恒力作功,z F y F x F r F A z y x69)5()5(4)3()(67J6. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加。

(2021年整理)大学物理练习册习题及答案3

(2021年整理)大学物理练习册习题及答案3

大学物理练习册习题及答案3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(大学物理练习册习题及答案3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为大学物理练习册习题及答案3的全部内容。

习题及参考答案第2章 质点动力学参考答案一 思考题2—1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g - (C )12122m m g m m ⎛⎫ ⎪+⎝⎭ (D )12124m m gm m ⎛⎫⎪+⎝⎭2—2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为m ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为m s ,滑动摩擦系数为m k ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mg μ≤ (B )(1)s F m M mg μ≤+(C )()s F m M mg μ≤+ (D )s m M F mgM μ+≤AmBB m A 思考题2-1图思考题2-3图思考题2—4图m(a )(b )Bm mm 21m 21思考题2-7图2—5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1〉 m 2。

大学物理第二章质点动力学习题答案

大学物理第二章质点动力学习题答案

习题二2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。

[解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律tv mma f d d == 即tv mkv d d ==- 所以t mk v v d d -=对等式两边积分⎰⎰-=tvv t m k v v 0d d 0得t mkv v -=0ln因此t mke v v -=0(2)由牛顿第二定律xv mv t x x v m t v m ma f d d d d d d d d ==== 即xvmv kv d d =- 所以v x mkd d =-对上式两边积分⎰⎰=-000d d v sv x mk 得到0v s m k-=-即kmv s 0=2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。

若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。

由牛顿第二定律得即tvm ma kv F mg d d ==--整理得mtkv F mg v d d =--对上式两边积分⎰⎰=--t vmt kv F mg v00d dy得mktF mg kv F mg -=---ln即⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。

求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。

[解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。

《新编大学物理》(上、下册)教材习题答案

《新编大学物理》(上、下册)教材习题答案
题:
答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),

大学物理第2章 质点动力学习题(含解答)

大学物理第2章 质点动力学习题(含解答)

第2章质点动力学习题解答2-1 如图所示,电梯作加速度大小为a 运动。

物体质量为m ,弹簧的弹性系数为k ,•求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。

解:(a )ma mg N =- )(a g m N += (b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F +=2-2 如图所示,质量为10kg 物体,•所受拉力为变力2132+=t F (SI ),0=t 时物体静止。

该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。

解:最大静摩擦力)(20max N mg f s ==μmax f F >,0=t 时物体开始运动。

ma mg F =-μ,1.13.02+=-=t mmgF a μ 1=t s 时,)/(4.12s m a =dtdv a =Θ,adt dv =,⎰⎰+=t v dt t dv 0201.13.0t t v 1.11.03+=1=t s 时,)/(2.1s m v =2-3 一质点质量为2.0kg ,在Oxy 平面内运动,•其所受合力j t i t F ρρρ232+=(SI ),0=t 时,速度j v ρρ20=(SI ),位矢i r ρρ20=。

求:(1)1=t s 时,质点加速度的大小及方向;(2)1=t s 时质点的速度和位矢。

解:j t i t m Fa ρρρρ+==223 223t a x =,00=x v ,20=x ⎰⎰=tv x dt t dv x0223,23t v x =⎰⎰⎰==txtx dt t dt v dx 03202,284+=t xt a y =,20=y v ,00=y⎰⎰=tv y tdt dv y02,222+=t v y⎰⎰⎰+==tyty dt t dt v dy 020)22(,t t y 263+=(1)1=t s 时,)/(232s m j i a ρρρ+=(2)j t i t v ρρρ)22(223++=,1=t s 时,j i v ρρρ2521+= j t t i t r ρρρ)26()28(34+++=,1=t s 时,j i r ρρρ613817+=2-4 质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。

大学物理2-1第二章(质点动力学)习题答案

大学物理2-1第二章(质点动力学)习题答案

大学物理2-1第二章(质点动力学)习题答案习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。

[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 tv m ma f d d ==即 tv mkv d d ==-所以t m k v v d d -=对等式两边积分 ⎰⎰-=t v v tm k v v 0d d 0得t mk v v -=0ln因此t mke v v -=0(2)由牛顿第二定律xvmv t x x v m t v m ma f d d d d d d d d ==== 即 xvmvkv d d =- 所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。

若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。

由牛顿第二定律得t vm ma f F mg d d ==-- 即tvmma kv F mg d d ==-- 整理得mtkv F mg v d d =--对上式两边积分 ⎰⎰=--t v mt kv F mg v00d d 得mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kF mg v 1mgFf2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。

《新编大学物理》(上、下册)教材习题答案

《新编大学物理》(上、下册)教材习题答案

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。

大学物理第二章 质点动力学习题解答

大学物理第二章 质点动力学习题解答

第二章 习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。

解:∵j i dt r d a ˆ6ˆ12/22+== , j i a m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。

F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。

证明:∵r j t b i t a dt r d a 2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。

2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μ2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。

大学物理(肖剑荣主编)-习题答案-第2章

大学物理(肖剑荣主编)-习题答案-第2章

将 Dm = qmDt 代入得 f x = qmv , f y = qmv 0 䯮

f=
f
2 x
+
f
2 y
= 149
数和物体最后能回到的高度.
解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能
零点。则由功能原理,有
-
frs
=
1 2
kx2
-
æ çè
1 2
mv02
+
mgs
sin
37°
ö ÷ø
k
=
1 2
mv02
+
mgs sin 37° -
frs
1 x2
2
式中 s = 4.8 + 0.2 = 5 m , x = 0.2 m ,再代入有关数据,解得
v.
解:(l)根据功能原理,有
fs
=
1 2
mv0 2
-
mgh
fs
=
µNh sin a
=
µmgh
cos a sin a
=
µmghctga
=
1 2
mv0 2
-
mgh
v2
h=
0
= 4.25m
2g(1+ µctga)
(2)根据功能原理有 fs = mgh - 1 mv 2 2
1 mv 2 = mgh - µmghctga 2 v = [2gh(1- µctga)1/ 2 = 8.16m / s 2-12 一物体质量为2kg,以初速度 v0 =3m·s-1从斜面 A 点处下滑,它与斜面的摩 擦力为8N,到达 B 点后压缩弹簧20cm后停止,然后又被弹回,求弹簧的劲度系

大学物理_第2章_质点动力学_习题答案

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两习题2-2图者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

大学物理上课后习题答案

大学物理上课后习题答案

第1章 质点运动学 P21一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计;⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t=0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;5计算t =0s 到t =4s 内质点的平均加速度;6求出质点加速度矢量的表示式,计算t =4s 时质点的加速度请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式;解:1j t t i t r)4321()53(2-+++=m⑵ 1=t s,2=t s 时,j i r5.081-= m ;2114r i j =+m∴ 213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷ 1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ 5 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44ja j t --∆====⋅∆v v v 6 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量; 质点沿x 轴运动,其加速度和位置的关系为226a x=+,a 的单位为m/s 2,x 的单位为m;质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值;解:由d d d d d d d d x a t x t x===v v v v得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 31225 m s x x -=++⋅v一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少解: t tt t 18d d ,9d d 2====ωβθω ⑴ s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ︒== 即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 一质点在半径为的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α= rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度;解:s 2=t 时,4.022.0=⨯==t αω 1s rad -⋅则0.40.40.16R ω==⨯=v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅0.40.20.08a R τα==⨯=2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n与切向夹角arctan()0.06443n a a τϕ==≈︒第2章 质点动力学质点在流体中作直线运动,受与速度成正比的阻力kv k 为常数作用,t =0时质点的速度为0v ,证明:⑴t 时刻的速度为()0=k t me-v v ;⑵ 由0到t 的时间内经过的距离为x =0m k v 1-t m ke )(-;⑶停止运动前经过的距离为0()mkv ;⑷当m t k =时速度减至0v 的e1,式中m 为质点的质量;解:f k =-v ,a f m k m ==-v⑴ 由d d a t =v 得:d d d k a t t m==-vv分离变量得:d d kt m =-v v ,即00d d t k t m-=⎰⎰v v v v , 因此有:0ln ln kt m e -=v v , ∴ 0k m te -=v v ⑵ 由d d x t =v 得:0d d d k m t x t e t -==v v ,两边积分得:000d d k mx t t x e t-=⎰⎰v∴ 0(1)k m tm x e k-=-v ⑶ 质点停止运动时速度为零,00k mt e -=→v v ,即t →∞,故有:000d k mt x et m k ∞-'==⎰v v⑷ t m k =时,其速度为:1000k m m kv e e e -⋅-===v v v ,即速度减至0v 的1e .作用在质量为10 kg 的物体上的力为(102)F t i =+N,式中t 的单位是s,⑴ 求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量;⑵ 为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m/s 的物体,回答这两个问题; 解: ⑴ 若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,1111115.6m s 56kg m s p m i I p i --∆=∆=⋅=∆=⋅⋅;v若物体原来具有6-1s m -⋅初速,则000000, (d )d t tp m p m F m t m F t=-=-+⋅=-+⎰⎰v v v 于是:⎰∆==-=∆t p t F p p p 0102d, 同理有:21∆=∆v v ,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量亦即冲量就一定相同,这就是动量定理;⑵ 同上理,两种情况中的作用时间相同,即:⎰+=+=tt t t t I 0210d )210(亦即:0200102=-+t t , 解得s 10=t ,s 20='t 舍去设N 67j i F -=合;⑴ 当一质点从原点运动到m 1643k j i r++-=时,求F所作的功;⑵ 如果质点到r 处时需,试求平均功率;⑶ 如果质点的质量为1kg,试求动能的变化;解: ⑴ 由题知,合F为恒力,且00r =∴ (76)(3416)212445J A F r i j i j k =⋅∆=-⋅-++=--=-合⑵ w 756.045==∆=t A P ⑶ 由动能定理,J 45-==∆A E k一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端又挂一重物C ,C 的质量为M ,如图;求这一系统静止时两弹簧的伸长量之比和弹性势能之比;解: 弹簧B A 、及重物C 受力如题图所示平衡时,有: Mg F F B A == ,又 11x k F A ∆=,22x k F B ∆=所以静止时两弹簧伸长量之比为:1221x x k k ∆∆= 弹性势能之比为:22111222211212p p E k x k E k x k ⋅∆==⋅∆第3章 刚体力学基础一质量为m 的质点位于11,y x 处,速度为x y i j =+v v v , 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩;解: 由题知,质点的位矢为:j y i x r11+=作用在质点上的力为:i f f-=所以,质点对原点的角动量为:01111()()()x y y x L r m x i y j m i j x m y m k =⨯=+⨯+=-v v v v v作用在质点上的力的力矩为:k f y i f j y i x f r M1110)()(=-⨯+=⨯=哈雷彗星绕太阳运动的轨道是一个椭圆;它离太阳最近距离为1r =×1010m 时的速率是1v =×104m/s,它离太阳最远时的速率是2v =×102 m/s,这时它离太阳的距离2r 是多少太阳位于椭圆的一个焦点;解:哈雷彗星绕太阳运动时受到太阳的引力,即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有:1122r m r m =v v ∴ 10412112228.7510 5.4610 5.2610m 9.0810r r ⨯⨯⨯===⨯⨯v v 物体质量为3kg,t =0时位于m 4i r=,6i j =+v m/s,如一恒力N 5j f =作用在物体上,求3秒后,⑴ 物体动量的变化;⑵ 相对z 轴角动量的变化; 解:⑴ ⎰⎰-⋅⋅===∆301s m kg 15d 5d j t j t f p⑵ 解法一 由53 N a f m j ==得:0034437m x t x x t t ==+=+=+=v222031515663325.52623y t y t at t t j ==+=+=⨯+⨯⨯=v即有:i r41=,j i r 5.2572+=01x x ==v v ;0653311y y at =+=+⨯=v v即有:216i j =+v ,211i j =+v∴ 11143(6)72L r mi i j k =⨯=⨯+=v 222(725.5)3(11)154.5L r m i j i j k =⨯=+⨯+=v∴ 1212s m kg 5.82-⋅⋅=-=∆k L L L解法二 ∵d LM dt =, ∴ 2032031d ()d 15 (4)(6))5d 23 5(4)d 82.5kg m s t tL M t r f tt i t t j j t t k t k -∆=⋅=⨯⎡⎤=+++⨯⨯⎢⎥⎣⎦=+=⋅⋅⎰⎰⎰⎰平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物;小球作匀速圆周运动,当半径为0r 时重物达到平衡;今在1M 的下方再挂一质量为2M 的物体,如题图;试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少解:只挂重物1M 时,小球作圆周运动,向心力为g M 1,即:2001ωmr g M = ①挂上2M 后,则有:221)(ω''=+r m g M M ② 重力对圆心的力矩为零,故小球对圆心的角动量守恒;即:00r m r m ''=v v ωω''=⇒2020r r ③联立①、②、③得:100M g mr ω=,2112301()M g M M mr M ω+'=, 112130212()M M M r g r m M M ω+'==⋅'+ 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900 rev/min;现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速;已知闸杆的尺寸如题图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算;试求:⑴ 设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转 ⑵ 如果在2s 内飞轮转速减少一半,需加多大的力F解:⑴ 先作闸杆和飞轮的受力分析图如图b;图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力;杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有:121()0F l l N l '+-=, 121)N l l F l '=+(对飞轮,按转动定律有r F RIβ=-,式中负号表示β与角速度ω方向相反; ∵ N F r μ= ,N N '=∴ F l l l N F r 121+='=μμ 又∵ 212I mR =,∴1212()r F R l l F I mRl μβ+=-=-① 以N 100=F 等代入上式,得:2s rad 34010050.025.060)75.050.0(40.02-⋅-=⨯⨯⨯+⨯⨯-=β由此可算出自施加制动闸开始到飞轮停止转动的时间为:s 06.74060329000=⨯⨯⨯=-=πβωt 这段时间内飞轮的角位移为:2201900291409()53.12rad 2604234t t πφωβπππ⨯=+=⨯-⨯⨯=⨯可知在这段时间里,飞轮转了1.53转; ⑵10s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 200215rad s 22ttωωωπβ--==-=-⋅ 用上面式⑴所示的关系,可求出所需的制动力为:112600.250.50151772()20.40(0.500.75)2mRl F N l l βπμ⨯⨯⨯=-==+⨯⨯+⨯计算题图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设m 1=50kg,m 2=200 kg,M =15 kg,r = m解:分别以m 1、m 2滑轮为研究对象,受力图如图b 所示.对m 1、m 2运用牛顿定律,有:a m T g m 222=- ;a m T 11=对滑轮运用转动定律,有:β)21(212Mr r T r T =- 又βr a = 由以上4个方程解得:22122009.87.6 m s 25200152m g a m m M -⨯===⋅++++题a 图 题b 图如题图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下;求:⑴ 初始时刻的角加速度;⑵ 杆转过θ角时的角速度. 解:⑴ 由转动定律有:211()23mg l ml β=, ∴ lg23=β⑵ 由机械能守恒定律有:22)31(21sin 2ωθml l mg = ∴ lg θωsin 3= 如题图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上;现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞;相撞后,使棒从平衡位置处摆动到最大角度=θ30°处;⑴设这碰撞为弹性碰撞,试计算小球初速0v 的值; ⑵相撞时小球受到多大的冲量解:⑴ 设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:0m l I m l ω=+v v ①2220111222m I m ω=+v v②上两式中23I Ml =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o 30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得:2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω 由①式得:0I mlω=-v v ④ 由②式得:2220I m ω=-v v ⑤所以:22200()I I ml mωω-=-v v求得:026(23)13(1)(1)22312gl l I l Mm M ml m mωω-+=+=+=v ⑵相碰时小球受到的冲量为:0d ()F t m m m =∆=-⎰v v v由①式求得:06(23)1d 36gl I F t m m Ml M l ωω-=-=-=-=-⎰v v 负号说明所受冲量的方向与初速度方向相反;一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动;另一质量为0m 的子弹以速度0v 射入轮缘如题图所示方向; ⑴开始时轮是静止的,在质点打入后的角速度为何值⑵用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比;解:⑴ 射入的过程对O 轴的角动量守恒: ωθ2000)(sin R m m v m R +=∴ Rm m v m )(sin 000+=θω⑵ 022*******000sin 1[()][]2()sin 2k k m m m R E m m R m E m m m θθ++==+v v 弹簧、定滑轮和物体的连接如题图所示,弹簧的劲度系数为 N/m ;定滑轮的转动惯量是0.5kg·m 2,半径为0.30m ,问当6.0 kg 质量的物体落下0.40m 时,它的速率为多大 假设开始时物体静止而弹簧无伸长;解:以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有:222111222mgh m I kh ω=++v 又/R ω=v ,故有:2222221(2)(2 6.09.80.4 2.00.4)0.36.00.30.5 2.0m s mgh kh R mR I --⨯⨯⨯-⨯⨯==+⨯+=⋅v第5章 机械振动质量为kg 10103-⨯的小球与轻弹簧组成的系统,按0.1cos(82x t ππ=+的规律作谐振动,求:⑴ 振动的周期、振幅和初位相及速度与加速度的最大值; ⑵ 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等⑶ s 52=t 与s 11=t 两个时刻的位相差;解:⑴设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又0.8m A ωπ==v 1s m -⋅ 51.2=1s m -⋅,2.632==A a m ω2s m -⋅⑵ 0.63N m m F ma ==,J 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即:)21(212122kA kx ⋅=∴ m 20222±=±=A x ⑶ ππωφ32)15(8)(12=-=-=∆t t一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示;如果0=t 时质点的状态分别是:⑴A x -=0; ⑵ 过平衡位置向正向运动; ⑶过2Ax =处向负向运动; ⑷过2A x -=处向正向运动; 试求出相应的初位相,并写出振动方程;解:因为000cos sin x A A φωφ=⎧⎨=-⎩v将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相;故有:)2cos(1πππφ+==t T A x , )232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x , )452cos(454πππφ+==t T A x一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+;求:⑴s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; ⑵由起始位置运动到cm 12=x 处所需的最短时间; ⑶在cm 12=x 处物体的总能量;解:由题已知s 0.4,m 10242=⨯=-T A ,∴ -120.5 rad s ωππ==⋅ 又,0=t 时,00 , 0x A φ=+∴= 故振动方程为:m )5.0cos(10242t x π-⨯=⑴ 将s 5.0=t 代入得:0.17m m )5.0cos(102425.0=⨯=-t x π23231010(2)0.17 4.210N F ma m x ωπ--=-=-=-⨯⨯⨯=-⨯方向指向坐标原点,即沿x 轴负向;⑵ 由题知,0=t 时,00=φ;t t =时,02,0,3t x A φπ=+<=且故v ∴ s 322/3==∆=ππωφt ⑶ 由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:22232241111010()(0.24)7.110J 2222E kA m A πω--===⨯⨯⨯=⨯ 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4;用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后,给予向上的初速度0 5.0cm /s =v ,求振动周期和振动表达式; 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x 设向上为正又 30.225 , 1.26s 810k T m πωω-=====⨯即 222222205.010 ()(1.010)()210m 5v A x ω---⨯∴=+=⨯+=⨯200020 5.0105tan 1 , 1.01054x πφφω--⨯=-===⨯⨯即v ∴ m )455cos(1022π+⨯=-t x题图为两个谐振动的t x -曲线,试分别写出其谐振动方程;解:由题图a,∵0=t 时,0000 , 0 , 32 , 10cm , 2s x A T φπ=>∴===又v即:1s rad 2-⋅==ππωT,故 m )23cos(1.0ππ+=t x a由题图b ∵0=t 时,0005,0,23A x πφ=>∴=v01=t 时,0005,0,23A x πφ=>∴=v又ππωφ253511=+⨯=,∴ πω65=故m t x b )3565cos(1.0ππ+=一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子;现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动;⑴ 此时的振动周期与空盘子作振动时的周期有何不同⑵ 此时的振动振幅多大⑶ 取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程; 解:⑴ 空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大;⑵按⑶所设坐标原点及计时起点,0=t 时,则0x mg k =-;碰撞时,以M m ,为一系统动量守恒,即:02()m gh m M =+v则有:02m gh m M=+v ,于是22220022()()1()()v mg m gh mg kh A x k k m M k m M gω=+=+=+++3gm M khx v )(2tan 000+=-=ωφ 第三象限,所以振动方程为 221cos arctan ()()mg khk kh x t k m M gm MM m g ⎡⎤=++⎢⎥+++⎣⎦有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量41.010kg m s F t -∆=⨯⋅,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程; 解:由动量定理,有:0F t m ⋅∆=-v∴ 4-131.0100.01 m s 1.010F t m --⋅∆⨯===⋅⨯v 按题设计时起点,并设向右为x 轴正向,则知0=t 时,1000 , 0.01m s x -==⋅v >0,∴ 2/30πφ=又1s rad 13.30.18.9-⋅===l g ω ∴ 2230000.01() 3.210m 3.13A x ωω-=+===⨯v v故其角振幅:33.210rad A l θ-==⨯小球的振动方程为:rad )2313.3cos(102.33πθ+⨯=-t有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动π/6的位相差为,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差;解:由题意可做出旋转矢量题图;由图知222211222cos30(0.173)(0.2)20.1730.23/20.01A A A A A =+-︒=+-⨯⨯⨯=,∴ m 1.02=A 设角θ为O AA 1,则:θcos 22122212A A A A A -+=即:2222221212(0.173)(0.1)(0.02)cos 0220.1730.1A A A A A θ+-+-===⨯⨯即2θπ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π; 一质点同时参与两个在同一直线上的简谐振动,振动方程为:⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程;解:∵ πππφ=--=∆)65(6, ∴ m 1.021=-=A A A 合 1122112250.4sin 0.3sinsin sin 366tan 5cos cos 30.4cos 0.3cos 66A A A A ππφφφππφφ⨯-+===++ ∴ 6φπ=其振动方程为:0.1cos(26)m x t π=+作图法略第6章 机械波已知波源在原点的一列平面简谐波,波动方程为y =A cos Cx Bt -,其中A ,B ,C 为正值恒量;求:⑴ 波的振幅、波速、频率、周期与波长;⑵ 写出传播方向上距离波源为l 处一点的振动方程; ⑶ 任一时刻,在波的传播方向上相距为d 的两点的位相差;解:⑴ 已知平面简谐波的波动方程:)cos(Cx Bt A y -= 0≥x 将上式与波动方程的标准形式:)22cos(λππυxt A y -=比较,可知:波振幅为A ,频率πυ2B =,波长C πλ2=,波速B u C λν==, 波动周期12T Bπν==;⑵ 将l x =代入波动方程即可得到该点的振动方程:)cos(Cl Bt A y -=⑶ 因任一时刻t 同一波线上两点之间的位相差为:)(212x x -=∆λπφ将d x x =-12,及2Cπλ=代入上式,即得:Cd =∆φ; 沿绳子传播的平面简谐波的波动方程为y =10x t ππ4-,式中x ,y 以米计,t 以秒计;求:⑴ 绳子上各质点振动时的最大速度和最大加速度;⑵ 求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相这一位相所代表的运动状态在t =时刻到达哪一点 解:⑴ 将题给方程与标准式2cos()y A t x πωλ=-相比,得:振幅05.0=A m ,圆频率10ωπ=,波长5.0=λm ,波速 2.5m s 2u ωλνλπ===;绳上各点的最大振速,最大加速度分别为:ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅⑵2.0=x m 处的振动比原点落后的时间为:08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点0=x ,在92.008.010=-=t s 时的位相,即:2.9=φπ;设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则,825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m一列平面余弦波沿x 轴正向传播,波速为5 m/s,波长为2m,原点处质点的振动曲线如题图所示;⑴ 写出波动方程;⑵作出t =0时的波形图及距离波源0.5m 处质点的振动曲线;解: ⑴ 由题a 图知,1.0=A m,且0=t 时,000 , 0y =>v ,∴230πφ=, 又52.52uνλ===Hz ,则ππυω52== 取])(cos[0φω+-=u x t A y ,则波动方程为:30.1cos[5()]52x y t ππ=-+m⑵ 0=t 时的波形如题b 图5.0=x m 代入波动方程,得该点处的振动方程为:50.530.1cos[5]0.1cos(5)52y t t πππππ⨯=-+=+m如题c 图所示;如题图所示,已知t =0时和t =时的波形曲线分别为图中曲线a 和b,周期T>,波沿x 轴正向传播,试根据图中绘出的条件求: ⑴ 波动方程;⑵P 点的振动方程; 解:⑴ 由题图可知,1.0=A m ,4=λm ,又,0=t 时,000,0y =<v , ∴20πφ=,而-11 2 m s 0.5x u t ∆===⋅∆,20.5Hz 4u νλ===,∴ππυω==2故波动方程为:]2)2(cos[1.0ππ+-=x t y m⑵ 将1=P x m 代入上式,即得P 点振动方程为:t t y ππππcos 1.0)]22cos[(1.0=+-= m一列机械波沿x 轴正向传播,t =0时的波形如题图所示,已知波速为10 m/s 1,波长为2m,求: ⑴波动方程;⑵ P 点的振动方程及振动曲线; ⑶ P 点的坐标;⑷ P 点回到平衡位置所需的最短时间;解:由题图可知1.0=A m ,0=t 时,00,02A y =<v ,∴30πφ=,由题知2=λm ,-110m s u =⋅,则5210===λυuHz ,∴ππυω102==⑴ 波动方程为:0.1cos[10()]103x y t ππ=-+m⑵ 由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P P 点的位相应落后于0点,故取负值∴P 点振动方程为)3410cos(1.0ππ-=t y p ⑶ 由πππ34|3)10(100-=+-=t x t 解得:67.135==x m ⑷ 根据⑵的结果可作出旋转矢量图如题图a,则由P点回到平衡位置应经历的位相角πππφ6523=+=∆ ∴所属最短时间为:121106/5==∆=∆ππωφt s 如题图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =Acos 0ϕω+t ;⑴ 分别就图中给出的两种坐标写出其波动方程;⑵ 写出距P 点距离为b 的Q 点的振动方程;解:⑴ 如题图a,则波动方程为:0cos[()]l xy A t u uωϕ=+-+ 如图b,则波动方程为:0cos[()]x y A t uωϕ=++⑵ 如题图a,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=-+如题图b,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=++一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为×10-3J/m 2·s,频率为300 Hz,波速为300m/s,求波的平均能量密度和最大能量密度.解: ∵u w I =, ∴ 53106300100.18--⨯=⨯==u I w 3m J -⋅, 4max 102.12-⨯==w w 3m J -⋅如题图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4λ,1S 较2S 位相超前2π,求:⑴ 1S 外侧各点的合振幅和强度;⑵ 2S 外侧各点的合振幅和强度 解:1在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为:πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r ,∴ 0,0211===-=A I A A A 2在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差:0)4(2222=-+-=∆r r λλππφ,∴ 2121114,2A A I A A A A ===+=一平面简谐波沿x 轴正向传播,如题图所示;已知振幅为A ,频率为ν,波速为u ;⑴ 若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;⑵ 若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置;解: ⑴ ∵0=t 时,0,000>=v y ,∴20πφ-=,故波动方程为:cos[2()]2x y A t u ππυ=--m⑵ 入射波传到反射面时的振动位相为即将λ43=x 代入2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为:πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为23542πλππλ--⨯-=,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为:]2)(2cos[ππυ-+=u x t A y 反此时驻波方程为:cos[2()]cos[2()]222 2cos cos(2)2x x y A t A t u u x A t u πππυπυπυππυ=--++-=-故波节位置为:2)12(22πλππυ+==k x u x故 4)12(λ+=k x ,2,1,0±±=k …根据题意,k 只能取1,0,即λλ43,41=x 两列波在一根很长的细绳上传播,它们的波动方程分别为1y =t x ππ4-SI, 2y =t x ππ4+SI;⑴ 试证明绳子将作驻波式振动,并求波节、波腹的位置; ⑵ 波腹处的振幅多大x =1.2m 处振幅多大 解:⑴ 它们的合成波为:0.06cos(4)0.06cos(4)0.12cos cos 4y x t x t x t ππππππ=-++=出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动; 令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置;令2)12(ππ+=k x ,则21)12(+=k x ,,2,1,0±±=k …,此即波节的位置;⑵波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即:097.0)2.1cos(12.0=⨯=π驻A m第7章 气体动理论基础 P218设有N 个粒子的系统,其速率分布如题图所示;求⑴ 分布函数f υ的表达式; ⑵ a 与υ0之间的关系; ⑶ 速度在υ0到υ0之间的粒子数; ⑷ 粒子的平均速率; 5 υ0到υ0区间内粒子平均速率;解:⑴从图上可得分布函数表达式: 00000()/(0)()(2)()0(2)Nf a Nf a Nf υυυυυυυυυυυυ=≤≤⎧⎪=≤≤⎨⎪=≥⎩, 00000/(0)()/(2)0(2)a N f a N υυυυυυυυυυ≤≤⎧⎪=≤≤⎨⎪≥⎩⑵ f υ满足归一化条件,但这里纵坐标是N f υ而不是f υ,故曲线下的总面积为N.由归一化条件:20d d a NN a N υυυυυυυ+=⎰⎰,可得023Na υ=⑶ 可通过面积计算001(2 1.5)3N a N υυ∆=⨯-=⑷N 个粒子平均速率:220220001()d ()d d d 11311()329a f Nf a Na a N υυυυυυυυυυυυυυυυυυ∞∞===+=+=⎰⎰⎰⎰5 υ0到υ0区间内粒子数:100013(0.5)(0.5)284NN a a a υυυ=+-== υ0到υ0区间内粒子平均速率:000000.50.50.5111d d ()d NN N N f N N N N υυυυυυυυυυυυ===⎰⎰⎰ 0020.510d N a N N υυυυυυ=⎰0033220000.51010017111d ()32424a av a a N N N υυυυυυυυυ==-=⎰ 2007769a N υυυ==试计算理想气体分子热运动速率的大小介于υp -υp /100与υp +υp /100之间的分子数占总分子数的百分比; 解:令P u υυ=,则麦克斯韦速率分布函数可表示为:du e u N dN u 224-=π因为u=1,∆u=由u e u N N u ∆=∆-224π,得 %66.102.0141=⨯⨯⨯=∆-e N N π容器中储有氧气,其压强为P=即1atm 温度为27℃求:⑴ 单位体积中的分子数n ;⑵ 氧分子的质量m ;⑶ 气体密度ρ;⑷ 分子间的平均距离e ;5 平均速率υ;62υ7分子的平均动能ε; 解:⑴ 由气体状态方程nkT p =得:242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n m -3⑵ 氧分子的质量:26230mol 1032.51002.6032.0⨯=⨯==N M m Kg ⑶ 由气体状态方程RT M MpV mol =,得: 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ3m kg -⋅⑷ 分子间的平均距离可近似计算932431042.71045.211-⨯=⨯==ne m5 平均速率:mol 8.313001.601.60446.580.032RT M υ⨯=≈=1s m -⋅ 题图Nf υO2υ0υυ0a6482.87≈=1s m -⋅ 7 氧分子的平均动能:20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少解:理想气体分子的能量:RT iE 2υ= 平动动能 t=3 5.373930031.823=⨯⨯=t E J转动动能 r=2 249330031.822=⨯⨯=r E J内能 i=5 5.623230031.825=⨯⨯=i E J一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求⑴氧气和氢气分子数密度之比;⑵氧分子和氢分子的平均速率之比; 解:⑴ 因为nkT p =,则:1O H n n =⑵由平均速率公式υ=,得:14O H υυ== 7-25 一真空管的真空度约为×10-3 Pa 即×10-5 mmHg,试 求在27℃时单位体积中的分子数及分子的平均自由程设分子的有效直径d =3×10-10 m; 解:由气体状态方程nkT p =得:317-3231.3810 3.3310m 1.3810300p n kT -⨯===⨯⨯⨯ 由平均自由程公式nd 221πλ=得: 5.71033.3109211720=⨯⨯⨯⨯=-πλ m ⑴ 求氮气在标准状态下的平均碰撞频率;⑵ 若温度不变,气压降到×10-4Pa,平均碰撞频率又为多少设分子有效直径为10-10m解:⑴碰撞频率公式2z d n υ=对于理想气体有nkT p =,即:kTpn =,所以有:2d p z kT υ=而-1455.43 m s υ≈≈=⋅ 氮气在标准状态下的平均碰撞频率805201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=-πz s -1⑵气压下降后的平均碰撞频率2042310455.43 1.33100.7141.3810273z ---⨯⨯⨯⨯==⨯⨯ s -11mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间⑴气体分子方均根速率之比;⑵ 分子平均自由程之比; 解:⑴ 由气体状态方程:2211T p T p = 及 3322V p V p =====⑵ 对于理想气体,nkT p =,即 kTpn =所以有:pd kT 22πλ=,即:12121==T p p T 末初λλ第8章 热力学基础.如题图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统做功126 J;⑴ 若沿adb 时,系统做功42 J,问有多少热量传入系统⑵ 若系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84 J,试问系统是吸热还是放热热量传递是多少 解:由abc 过程可求出b 态和a 态的内能之差:A E Q +∆=224126350=-=-=∆A Q E Jabd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热1mol 单原子理想气体从300K 加热到350K,问在下列两过程中吸收了多少热量增加了多少内能对外做了多少功⑴ 容积保持不变; ⑵ 压力保持不变; 解:⑴ 等体过程对外作功0=A∴ V 2121()()2328.31(350300)623.25J iQ E A E C T T R T T νν=∆+=∆=-=-=⨯⨯-=, ⑵ 等压过程,吸热:P 212125()()8.31(350300)1038.75J 22i Q C T T R T T νν+=-=-=⨯⨯-=内能增加:V 21()328.31(350300)623.25J E C T T ν∆=-=⨯⨯-=对外作功:5.4155.62375.1038=-=∆-=E Q A J一个绝热容器中盛有摩尔质量为M mol ,比热容比为γ的理想气体,整个容器以速度υ运动,若容器突然停止运动,求气体温度的升高量设气体分子的机械能全部转变为内能;解:整个气体有序运动的能量为212m υ,转变为气体分子无序运动使得内能增加,温度变化;2V 12m E C T m M υ∆=∆=,22mol mol V 111(1)22T M M C R υυγ∆==- 0.01m 3氮气在温度为300K 时,由压缩到10MPa;试分别求氮气经等温及绝热压缩后的⑴ 体积;⑵ 温度;⑶ 各过程对外所做的功; 解:⑴ 等温压缩过程中,T =300K,且2211V p V p =,解得:3112210.0111010p V V p -==⨯=⨯m 3 , 6321112lnln 0.1100.01ln0.01 4.6710J V pA vRT p V V p ===⨯⨯⨯=-⨯ ⑵ 绝热压缩:R C 25V =,57=γ 由绝热方程 γγ2211V p V p =,得:111/33111421221()()()0.01 1.9310m 10p V p V V p p γγγ-===⨯=⨯由绝热方程 111122T p T p γγγγ----=,得11.40.4122211300(10)579K T p T T p γγγγ--==⨯⇒=Oab c d由热力学第一定律A E Q +∆=及0=Q 得:)(12molT T C M MA V --=, 又RT M MpV mol=,所以 51121135 1.013100.015()(579300)23002 2.3510Jp V A R T T RT ⨯⨯=--=-⨯⨯-=-⨯ 理想气体由初状态P 1,V 2经绝热膨胀至末状态P 2,V 2;试证过程中气体所做的功为:12211--=γV P V P w 式中γ为气体的比热容比;证明: 由绝热方程C V p V p pV ===γγγ2211得γγV V p p 111= 故,22111121221111221121d 11d ()11 ()11V V r V V V C A p V C V V V p V p V p V p V V V γγγγγγγγγ----===----=--=--⎰⎰1 mol 的理想气体的T -V 图如题图所示,ab 为直线,延长线通过原点O ;求ab 过程气体对外做的功; 解:设T kV =,由图可求得直线的斜率k 为:2T k V =,得过程方程002T T V V =由状态方程pV vRT=得:RT p V ==R V 02T V V =002RT V ab 过程气体对外作功:⎰=02d V v V p A 02000d 22V V RT RTV V ==⎰某理想气体的过程方程为Vp 1/2=a ,a 为常数,气体从V 1膨胀到V 2;求其所做的功;解:气体做功:22211122221211d d ()|()V V V V V V a a A p V V a V V V V ===-=-⎰⎰设有一以理想气体为工质的热机循环,如题图所示;试证其循环效率为:η=1212111V V p p ηγ-=--解:等体过程:1V 21()0Q vC T T '=->,吸热,∴ )(1221V 11RV p R V p C Q Q -='= 绝热过程:03='Q 等压压缩过程:2p 21()0Q vC T T '=-<,放热 ∴ 212222P 21P ()()p V p V Q Q vC T T C R R'==--=-,则, 循环效率为:p 21222121V 122212()(/1)111()(/1)C p V p V Q Q C pV p V p p ννηγ--=-=-=--- 一卡诺热机在1000K 和300K 的两热源之间工作,试计算⑴ 热机效率;⑵ 若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少⑶ 若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少T Oab题图Vp OV绝热题图V 2 V 1 p 1p解:⑴ 卡诺热机效率 213001170%1000T T η=-=-= ⑵ 低温热源2300K T =不变时,即1130080%T η'=-=,解得:11500K T '=,则: 11115001000500K T T T '∆=-=-=即高温热源温度提高500K;⑶ 高温热源11000K T =不变时,即21100080%T η'=-= 解得:2200K T '=,则:222200300-100K T T T '∆=-=-=即低温热源温度降低100K;如题图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为T 2和T 3;求此循环效率;这是卡诺循环吗解:⑴热机效率211Q Q η=-AB 等压过程1P 21()0Q C T T ν'=->,吸热,即有: 11P mo ()B A lMQ Q C T T M '==- CD 等压过程2P 21()0Q vC T T '=-<,放热,即有: )(P mol22D C T T C M MQ Q -='-= ∴)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= AD 绝热过程,其过程方程为:γγγγ----=D D AA T p T p 11 BC 绝热过程,其过程方程为:γγγγ----=C C B BT p T p 111 又 A B C D p p p p ==,,所以得:D C BT TT T = ∴ 231T T -=η⑵ 不是卡诺循环,因为不是工作在两个恒定的热源之间;⑴ 用一卡诺循环的致冷机从7℃的热源中提取1000J 的热量传向27℃的热源,需要多少功从-173℃向27℃呢⑵ 一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于做功就愈有利;当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利为什么解:⑴卡诺循环的致冷机2122T T T A Q e -==静 7℃→27℃时,需作功:12122300280100071.4J 280T T A Q T --==⨯= 173-℃→27℃时,需作功:1222230010010002000J 100T T A Q T --==⨯= ⑵从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的;p O 题图A B C D第9章 静电场长l =15.0cm 的直导线AB 上均匀地分布着线密度λ= C/m 的正电荷;试求:⑴ 在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;⑵ 在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强; 解:⑴ 如题图所示,在带电直线上取线元d x ,其上电量d q 在P 点产生场强为:20)(d π41d x a xE P -=λε 22200220d d 4π()11 []4π22π(4)l P P l x E E a x a l a l la l λελελε-==-=--+=-⎰⎰用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得:21074.6⨯=P E 1C N -⋅ 方向水平向右⑵ 同理,2220d d π41d +=x xE Q λε 方向如题图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220ddd d π41d ++=x x xE Qy λε22223222222022d d d 4π(d )2π4ll Qy Qy l x lE E x d l d λλεε-===++⎰⎰以9100.5-⨯=λ1cm C -⋅,15=l cm ,5d 2=cm 代入得:21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强; 解:如图在圆上取ϕRd dl =ϕλλd d d R l q ==,它在O 点产生场强大小为:20π4d d R R E εϕλ=,方向沿半径向外,则:ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-= 积分得:R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x 0π2ελ==,方向沿x 轴正向;均匀带电的细线弯成正方形,边长为l ,总电量为q ;⑴求这正方形轴线上离中心为r 处的场强E ;⑵证明:在l r >>处,它相当于点电荷q 产生的场强E ;解:如图示,正方形一条边上电荷4q 在P 点产生物强P E 方向如图,大小为:()12220cos cos 4π4P E r l λθθε-=+∵1222cos 2l r l θ=+ ,12cos cos θθ-=∴ 222204π42P lE r l r l λε=++P E 在垂直于平面上的分量cos P E E β⊥=∴ 22222204π424lr E r l r l r l λε⊥=+++由于对称性,P 点场强沿OP 方向,大小为:22220444π(4)2PO lrE E r l r l λε⊥=⨯=++∵ l q4=λ ∴ 222204π(4)2P qrE r l r l ε=++ , 方向沿OP⑴ 点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;⑵ 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少解: ⑴ 立方体六个面,当q 在立方体中心时,每个面上电通量相等,由高斯定理0d sE S q ε⋅=⎰得:各面电通量06εq e =Φ; ⑵ 电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe ;均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×510-C/m 3求距球心5cm,8cm ,12cm 各点的场强;解:高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E5=r cm 时,0=∑q ,0=E8=r cm 时,334π()3q pr r =-∑内 ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外; 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1CN -⋅ 沿半径向外. 半径为1R 和2R 2R >1R 的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:⑴r <1R ;⑵ 1R <r <2R ;⑶ r >2R 处各点的场强;解:取同轴圆柱形高斯面,侧面积rl S π2=,则:rl E S E Sπ2d =⋅⎰⑴ 1R r <时,0q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =;⑵ 21R r R <<时,λl q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:rE 0π2ελ= 沿径向向外;⑶ 2R r >时,0=∑q ,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强;解:如题图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外,n E)(21210σσε+-=2σ面外,n E )(21210σσε+=, n:垂直于两平面由1σ面指为2σ面;半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题图所示;试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的;。

大学物理第2章课后答案

大学物理第2章课后答案

第二章 质点动力学四、习题选解2-1 光滑的水平桌面上放有三个相互接触的物体,它们的质量分别为.4,2,1321kg m kg m kg m ===(1)如图a 所示,如果用一个大小等于N 98的水平力作用于1m 的左方,求此时2m 和3m 的左边所受的力各等于多少?(2)如图b 所示,如果用同样大小的力作用于3m 的右方。

求此时2m 和3m 的左边所受的力各等于多少?(3)如图c 所示,施力情况如(1), 但3m 的右方紧靠墙壁(不能动)。

求此时2m 和3m 左边所受的力各等 于多少?解:(1)三个物体受到一个水平力的作用,产生的加速度为a()a m m m F 321++=232114-⋅=++=sm m m m F a用隔离法分别画出32,m m 在水平方向的受力图(a ),题2-1(a )图由a m F =a m f f23212=- a m f323= 2332f f =N f 5623=N f 8412=(2)由()a m m m F321++=232114-⋅=++=sm m m m F a用隔离法画出321m m m 、、在水平方向的受力图(b )由a m F= 得⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-3223122112121232323f f ff a m f a m f f a m f F解得: N f 1412= N f 4223=题2-1(b )图(3)由于321m m m 、、都不运动,加速度0=a ,三个物体彼此的作用力都相等,都等于FN f f 982312== 2-2 如图所示,一轻质弹簧连接着1m 和2m 两个物体,1m 由细线拉着在外力作用下以加速a 竖直上升。

问作用在细线上的张力是多大?在加速上升的过程中,若将线剪断,该瞬时1m 、2m 的加速度各是多大?解:(1)分别画出1m 、2m 受力的隔离体如图(a ),题2-2(a )图取向上为正方向,由牛顿第二定律⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f T 2211故 ()()a g m m g m g m a m a m T ++=+++=212121 (2)将线剪断,画出21m m 、的隔离体图,如图(b )题2-2(b )图 取竖直向上为正方向,由牛顿第二定律得⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f 222111 得⎪⎩⎪⎨⎧+--==-=)(/)'(121222a g m m g a a m g m f a 1a 的方向向下,2a的方向向上。

大学物理第2章质点动力学习题及答案

大学物理第2章质点动力学习题及答案

第 2 章自测题一、填空题1、设作用在质量为 1 kg 的物体上的力F=3t +5(SI )。

如果物体在这一力的作用下,由静止开始沿直线运动,在0 到 2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________ 。

2、某质点在力F=(3+4x) i (SI) 的作用下沿x 轴作直线运动,在从x=0移动到x =7m的过程中,力 F 所做的功为_____ 。

3、一质量为 1 kg的物体,置于水平地面上,现对物体施一水平拉力F=2t (SI) ,由静止开始运动,物体与地面之间的滑动摩擦系数μ=0.16 ,则 2 秒末物体的速度大小v=_。

4 、一质点在恒力为 F -4i 5j 8k (SI) 的作用下产生位移为r 2i 5j 9k (SI) ,则此力在该位移过程中所做的功为。

5、质量为0.5Kg 的质点,在OXY坐标面内运动,运动方程为x 3t2,y 2t (SI),从t 1s到t 3s 这段时间内,外力对该质点所做的功为。

二、计算题1. 质量m =2.0kg 的物体沿x 轴无摩擦地滑动,t = 0 时物体静止于1m 处。

( 1) 若物体在力 F 5 t2(SI)的作用下运动了 2 s,它的速率增为多大?( 2)若物体在力 F 5 x 2(SI)的作用下移动到 2 m 处,它的速率又增大为多少?2. 质量m = 1.0kg 的质点,在Oxy 坐标平面内运动,其运动方程为x 2t2,y 3t (SI) ,从1s 到 2 s 这段时间内,外力对质点做的功为多少?3. 质量为5千克的物体沿X轴运动,物体受到与F反向大小为1 牛的摩擦力的作用。

开始时物体静止在坐标原点,(1) 当物体在力F=t 的作用下运动了 2 秒,它的速率增大为多少?(2) 当物体受到F=X+1的作用下移动2m,它的速率又增大为多少?4. 一颗子弹水平穿过质量分别为2m 和m,并排放在光滑水平面上的静止木块A 和B,设子弹穿过两木块所用时间均为t ,木块对子弹的阻力恒为F,子弹穿过A的速度为多少?和B后,A与B5. 如图所示,质量m 1kg 的物体,用一根长l 1.0m 的细绳悬挂在天花板上。

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)习题解答第一章质点运动学1-1(1)质点t时刻位矢为:r(3t5)i12t23t4j(m)(2)第一秒内位移r1(某1某0)i(y1y0)j3(10)i12(10)23(110)j3i3.5j(m)(3)前4秒内平均速度Vr1t4(12i20j)3i5j(m1)(4)速度Vdr3i(t3)j(m1dt)∴V43i(43)j3i7j(m1)A;/。

(5)前4秒平均加速度aVV4V0734jj(m2t40)(6)加速度adVdtj(m2)a4j(m2)1-2vd某dtt33t22某d某vdtc14t4t32tc当t=2时某=4代入求证c=-12即某14t4t32t12vt33t22adv3t2dt6t将t=3代入证某41134(m)v356(m1)a345(m2)1-3(1)由运动方程某4t22t消去t得轨迹方程y3某(y3)20(2)1秒时间坐标和位矢方向为某14m[4,5]m:tgy某1.25,51.3(3)第1秒内的位移和平均速度分别为y15mr1(40)i(53)j4i2j(m)r1V4i2j(m1)t(4)质点的速度与加速度分别为drV8i2j,dtdVa8idt故t=1时的速度和加速度分别为V18i2jm1,a18im21-4该星云飞行时间为9.4610152.741096.5910172.091010a73.9310即该星云是2.091010年前和我们银河系分离的.1-5实验车的加速度为v1600103a2.47102m/225(g)t36001.80基本上未超过25g.1.80内实验车跑的距离为v1600103t1.80400(m)2236001-6(1)设第一块石头扔出后t秒未被第二块击中,则hv0t12gt2代入已知数得11115t9.8t22解此方程,可得二解为t11.84,t11.22第一块石头上升到顶点所用的时间为tmv10/g15/9.81.53由于t1tm,这对应于第一块石头回落时与第二块相碰;又由于t1tm这对应于第一块石头上升时被第二块赶上击中.以v20和v20分别对应于在t1和t1时刻两石块相碰时第二石块的初速度,则由于hv20(t1t1)1g(t1t1)22所以hv2011g(t1t1)2119.8(1.841)222t1t11.84117.2m/同理.2v20h11g(t1t1)2119.8(1.221)2221.221t1t151.1(m/)(2)由于t21.3t1,所以第二石块不可能在第一块上升时与第一块相碰.对应于t1时刻相碰,第二块的初速度为h12g(t)21119.8(1.841.3)2v201t2tt2121.841.323.0(m/)1-7以l表示从船到定滑轮的绳长,则v0dl/dt.由图可知l2h2于是得船的速度为vdldl2h2dtl2h2dtv0习题1-7图负号表示船在水面上向岸靠近.船的加速度为advdldtvdlh2v20dll2h20dt3负号表示a的方向指向岸边,因而船向岸边加速运动.1-8所求位数为2r42n2r42(6104)2gg0.16029.841051-9物体A下降的加速度(如图所示)为a2h20.40.2m/2t222此加速度也等于轮缘上一点在t3时的切向加速度,即at0.2(m/2)在t3时的法向加速度为av2(att)2R(0.23)2n1.00.36(m/2R)习题1-9图习题1-10图1-10a1.2m/2,t00.5,h01.5m.如图所示,相对南面,小球开始下落时,它和电梯的速度为3v0at01.20.50.6(m/)以t表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为hv0t12gt2电梯下降的距离为hv0t12at2又h0hh1(ga)t22由此得t2h021.50.59ga9.81.2而小球相对地面下落的距离为hv0t12gt20.60.599.80.5922.06m1-11v风地v风人v人地2v0人地,速度矢量合成如图(b)两图中v风地应是同一矢量.可知(a)v风人画出速度矢量合成图(a)又v风地12图必是底角为45的等腰直角三角形,所以,风向应为西北风,风速为v风地4.23(m1)v0人地co452v0人地1-12(1)t(2)2L2LvvLL2vLtt1t22vuvuvu222Lu1vv1习题1-11图(3)u由东习题1-12图tt1t2LL,如图所示风速vv向西,由速度合成可得飞机对地速度vuv,则Vv2u2.t2L2L22vvu2Luv1v2证毕1-13(1)设船相对岸的速度为V(如图所示),由速度合成得VuVV的大小由图1.7示可得VVcouco习题1-13图4即VcoVuco323332而Vinuin21船达到B点所需时间tAB两点之距SDctgOBDD1000()VVincoin12D将式(1)、(2)代入可得SD(33)1268(m)(2)由D1103tVinuin船到对岸所需最短时间由极值条件决定dt1du1in2co0即co0,/2故船头应与岸垂直,航时最短.将值代入(3)式得最短航时为3t110minuin/2110320.5103500()(3)设OBl,则lDVDDu2V22inuVcoVinuin欲使l最短,应满足极值条件.dlDu2V22uVcoduacoainuVin2ain2au2V22uVco0简化后可得2u2V2coauVco10即co2a136co10解此方程得co23co12348.2故船头与岸成48.2,则航距最短.将值代入(4)式得最小航程为2lu2v22uvco10002232223minDu1co23221231.5103m1.5(km)AB两点最短距离为52SminlminD21.511.12(km)第二章质点动力学2-1(1)对木箱,由牛顿第二定律,在某向:Fmincofma某0y向:NFmininMg0还有fma某N习题2-1图木箱将要被推动的情况下如图所示,解以上三式可得要推动木箱所需力F的最小值为FminMgcoin在木箱做匀速运动情况下,如上类似分析可得所需力F的大小为FminkMgcokin(2)在上面Fmin的表示式中,如果coin0,则Fmin,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是coin0由此得的最小值为arctan12-2(1)对小球,由牛顿第二定律某向:TcoNinmay向:TinNcomg0联立解此二式,可得Tm(acogin)0.5(2co309.8in30)3.32(N)Nm(gcoain)0.5(9.8co302in30 )3.74(N)由牛顿第三定律,小球对斜面的压力NN3.74(N)(2)小球刚要脱离斜面时N=0,习题2-2图则上面牛顿第二定律方程为Tcoma,Tinmg由此二式可解得ag/tan9.8/tan3017.0m/22-3要使物体A与小车间无相对滑动,三物体必有同一加速度a,且挂吊B的绳应向后倾斜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。

[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 t v mma f d d == 即 tvm kv d d ==-所以 t m kv v d d -=对等式两边积分 ⎰⎰-=tv v t m k v v 0d d 0得 t mkv v -=0ln因此 t m kev v -=0(2) 由牛顿第二定律 x vmv t x x v m t v m ma f d d d d d d d d ==== 即 x vmv kv d d =-所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到 0v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。

若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。

由牛顿第二定律得即 tvm ma kv F mg d d ==--整理得mtkv F mg v d d =-- 对上式两边积分⎰⎰=--t vmt kv F mg v00d d得 mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。

求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。

[解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。

此时 2T kv mg =即 kmgv =T 有牛顿第二定律 tv m kv mg d d 2=- 整理得mtkv mg v d d 2=- 对上式两边积分mgk m t kvmg v t v21d d 002⎰⎰=- 得 mtvk mg v k mg =+-ln整理得 T 22221111v eek mg ee v kgm t kg m tkgm t kg m t+-=+-=2-4 一人造地球卫星质量m =1327kg ,在离地面61085.1⨯=h m 的高空中环绕地球作匀速率圆周运动。

求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。

[解] 卫星所受的向心力即是卫星和地球之间的引力由上面两式得()()()N 1082.71085.11063781063788.913273263232e 2e ⨯=⨯+⨯⨯⨯⨯=+=h R R mgf(2) 由牛顿第二定律 hR v m f +=e 2(3) 卫星的运转周期2-5 试求赤道上方的地球同步卫星距地面的高度。

[解] 设同步卫距地面高度为h ,距地心为R +h ,则 所以 2gR GM =代入第一式中 3122⎪⎪⎭⎫ ⎝⎛=ωgR r 解得 m r 71022.4⨯=2-6 两个质量都是m 的星球,保持在同一圆形轨道上运行,轨道圆心位置上及轨道附近都没有其它星球。

已知轨道半径为R ,求:(1)每个星球所受到的合力;(2)每个星球的运行周期。

[解] 因为两个星球在同一轨道上作圆周运动,因此,他们受到的合力必须指向圆形轨道的圆心,又因星球不受其他星球的作用,因此,只有这两个星球间的万有引力提供向心力。

所以两个星球必须分布在直径的两个端点上,且其运行的速度周期均相同(1)每个星球所受的合力 (2) 设运动周期为T 联立上述三式得 GmR RT π4= 所以,每个星球的运行周期2-7 2-82-9 一根线密度为λ的均匀柔软链条,上端被人用手提住,下端恰好碰到桌面。

现将手突然松开,链条下落,设每节链环落到桌面上之后就静止在桌面上,求链条下落距离s 时对桌面的瞬时作用力。

[解] 链条对桌面的作用力由两部分构成:一是已下落的s 段对桌面的压力1N ,另一部分是正在下落的x d 段对桌面的冲力2N ,桌面对x d 段的作用力为2N '。

显然 t 时刻,下落桌面部分长s 。

设再经过t d ,有x d 落在桌面上。

取下落的x d 段链条为研究对象,它在t d 时间之内速度由gs v 2=变为零,根据动量定理p t N d d 2=' (1) x v p d 0d λ-= (2) t v x d d = (3)由(2)、(3)式得 λsg N 22-=' 故链条对桌面的作用力为2-10 一半径为R 的半球形碗,内表面光滑,碗口向上固定于桌面上。

一质量为m 的小球正以角速度ω沿碗的内面在水平面上作匀速率圆周运动。

求小球的运动水平面距离碗底的高度。

[分析] 小钢球沿碗内壁作圆周运动,其向心力是由内壁对它的支承力的分力提供的,而支承力的方向始终与该点内壁相垂直,显然,不同的角速度对应不同大小和方向的支承力。

[解] 设小球的运动水平面距碗底的高度为h ,小球受力如图所示,则由以上四式得 ⎪⎭⎫ ⎝⎛-=R g R h 21ω2-11 自动步枪连发时每分钟射出120发子弹,每颗子弹的质量为m =7.90g ,出口速率为735s m ,求射击时(以分钟计)抢托对肩的平均压力。

[解] 取t ∆时间之内射出的子弹为研究对象,作用在子弹上的平均力为N ',根据动量定理得所以 N 6.117351090.7220601203=⨯⨯⨯==∆-∆=∆∆='-mv ttv mtp N 故枪托对肩部的平均压力为2-12 水力采煤是利用高压水枪喷出的强力水柱冲击煤层。

设水柱直径为D =30mm ,水速v =56s m ,水柱垂直射到煤层表面上,冲击煤层后速度变为零。

求水柱对煤层的平均冲力。

[解] 取长为dx 的一段水柱为研究对象,设它受到的煤层的作用力为N ',根据动量定理 p t N d d ='所以 ()2224d 2d 0d d v D t v D x t p N ρπρπ-=⋅⋅-=='故水柱对煤层的平均冲力2-13 F =30+4t 的力作用在质量为10kg 的物体上,求: (1)在开始两秒钟内,此力的冲量是多少?(2)要使冲量等于 300s N ⋅,此力作用的时间为多少?(3)若物体的初速度为10 s m ,方向与F 相同,在t =6.86s 时,此物体的速度是多少?[解] 根据冲量定义(1)开始两秒钟此力的冲量 (2) 当s N 300⋅=I 时解得 s 86.6=t(3) 当s 86.6=t 时,s N 300⋅=I ,根据动量定理因此 s m 401010103000=⨯+=+=m mv I v 2-14 质量为m 的质点,以不变速率v 沿图示三角形ABC 的水平光滑轨道运动。

求质点越过角A 时,轨道作用于质点冲量的大小。

[解] 如图所示,质点越过A 角时动量的改变为 由图知p ∆的大小根据动量定理 mv p I 3=∆=2-15 质量为m 的质点在xOy 平面内运动,其运动方程j i r t b t a ωωsin cos +=,试求:(1)质点的动量;(2)从t =0到ωπ2=t这段时间内质点受到的合力的冲量;(3)在上述时间内,质点的动量是否守恒?为什么?[解] 质点的速度j i rv t b t a tωωωωcos sin d d +-==(1) (1) 质点的动量(2) 由(1)式得0=t 时,质点的速度ωπ2=t 时,质点的速度为根据动量定理 解法二:(3) 质点的动量不守恒,因为由第一问结果知动量随时间t 变化。

2-16 将一空盒放在台秤盘上,并将台秤的读数调节到零,然后从高出盒底h 处将石子以每秒n 个的速率连续注入盒中,每一石子的质量为m 。

假定石子与盒子的碰撞是完全非弹性的,试求石子开始落入盒后t 秒时,台秤的读数。

[解] t 秒钟后台秤的读数包括下面两部分,一部分是已落入盒中的石子对称盘的压力1N ,另一部分是正下落的石子对秤的冲力2N ,显然取t ∆时间下落的石子为研究对象,设它们所受到的平均冲力为N ',根据动量定理所以 gh nm N 22-=' 故t ∆时间下落的石子对称的冲力因此秤的读数为2-17 一质点的运动轨迹如图所示。

已知质点的质量为20g ,在A 、B 两位置处的速率都是20s m ,A v 与x 轴成045角,B v 与y 轴垂直,求质点由 A 点运动到B 点这段时间内,作用在质点上外力的总冲量。

[解] 由题意知,质点由A 点到B 点动量的改变为 根据动量定理,作用在质点上的外力的冲量所以 ()()()()s N 739.0283.0683.0222y 2x 2y 2x⋅=-+-=∆+∆=+=p p I I I冲量与x 轴之间的夹角2-18 若直升飞机上升的螺旋浆由两个对称的叶片组成,每一叶片的质量m =136kg ,长l =3.66m 。

当它的转速n =320min r 时,求两个叶片根部的张力(设叶片是均匀薄片)。

[解一] 设叶片的根部为原点O ,作径向Or 轴,在叶片上距O 点为r 处取一线元r d ,则r m d d λ=,其两边所受的张力如图所示。

根据圆周运动沿径向的动力学方程,有即 r rlm T d d 2ω=对上式积分,并考虑到叶片的外端r 趋近于l 时,张力0=T ,则 因此距O 点为r 处叶片中的张力为式中负号表明T 指向O 点。

取r =0,代入题中所给数据,得叶片根部张力 [解二] 任意时刻t 叶片的动量 经过d t 时间,叶片动量的改变 叶片根部所受的作用力2-19 如图所示,砂子从h =0.8m 处下落到以=0v 3s m 的速率沿水平向右运动的传输带上,若每秒钟落下100kg 的砂子,求传输带对砂子作用力的大小和方向。

[解] 如图所示,设t ∆时间内落下的砂子的质量为m ∆,则m ∆的动量改变显然有 gh v 21= 由图可知根据动量定理 p F ∆=∆t 所以2-20 矿砂从传输带A 落到另一传输带B ,其速度大小为1v =4s m ,2v =2s m 方向如图所示。

设传输带的运送量t m ∆∆=2000h kg ,求矿砂作用在传输带B 上的力的大小和方向。

[解] 取t ∆时间内落下的矿砂m ∆为研究对象,建立如图所示的坐标系,其动量的改变为()22111122x cos sin sin cos θθθθv v m mv mv p -∆=∆+∆-=∆根据动量定理 p F ∆=∆t 所以 ()()N 1079.315cos 230sin 436002000cos sin 2002211x x -⨯=-=-∆∆=∆∆=θθv v t mt p F 故矿砂作用在传输带B 上的力与竖直方向的夹角2-21 质量为m 的质点,当它处在r =-2i +4j +6k 的位置时的速度v =5i +4j +6k ,试求其对原点的角动量。

相关文档
最新文档