试求三次样条插值S(X)
数值分析第四版习及答案
Yn
Yn1
1 100
783
( n=1,2,…)
计算到 Y100 .若取 783 ≈27.982(五位有效数字),试问计算Y100 将有多大误差?
7. 求方程 x2 56x 1 0 的两个根,使它至少具有四位有效数字( 783 ≈27.982).
8.
当 N 充分大时,怎样求
N
1
1 x2
dx
24.
将
f
(x)
sin
1 2
x 在 1,1 上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼
近多项式并画出误差图形,再计算均方误差.
25. 把 f (x) arccos x 在 1,1 上展成切比雪夫级数.
26. 用最小二乘法求一个形如 y a bx2 的经验公式,使它与下列数据拟合,并求均方误差.
第四版 数值分析习题
第一章 绪 论
1. 设 x>0,x 的相对误差为δ ,求ln x 的误差.
2. 设 x 的相对误差为 2%,求 xn 的相对误差.
3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字:
x1* 1.1021, x2* 0.031, x3* 385.6, x4* 56.430, x5* 71.0.
19
25
31
38
44
xi
19.0
32.3
49.0
73.3
97.8
yi
27. 观测物体的直线运动,得出以下数据:
x2 C 0,1 的最佳平方逼近,并比较其结果.
22. f (x) x 在 1,1 上,求在 1 span 1, x2, x4 上的最佳平方逼近.
4.3三次样条插值
xj是qj(x)的m重根
q(ji ) ( x j ) p(ji)1 ( x j ) p(ji ) ( x j ) 0, i 0,1,...,m 1
q j ( x) c j ( x x j )m
光滑因子
p j ( x) p j 1 ( x) c j ( x x j )m
维数为n+3
利用两点三次Hermite插值公式, 设
s( xk ) mk (k 0,1,, n), hk xk 1 xk (k 0,1,, n 1)
当x∈[xk, xk+1]时,
x xk s x 1 2 hk x x k 1 x x k 1 x x k h yk 1 2 h k k hk
三对角 严格对角占优
2 1
1 2
1
2
2
2
n 1
2 n 1 1 2
m0 g 0 m g 1 1 m2 g 2 mn 1 g n 1 mn gn
n
s( x) pm ( x) c j ( x x j )m , x
j 1
m m Sm ( x1, x2 ,...,xn ) span {1, x,.., xm , ( x x1 )m , ( x x ) ,..., ( x x ) 2 n }
2 2 2
y k 1
2
x x k 1 x xk ( x x k ) h mk ( x x k 1 ) h k k
数值分析(第四版)课后习题及答案
0.30
0.39
0.45
0.53
yj
0.5000
0.5477
0.6245
0.6708
0.7280
试求三次样条插值 S (x) 并满足条件
i) S(0.25) 1.0000, S(0.53) 0.6868; ii) S(0.25) S(0.53) 0.
25. 若 f (x) C2 a,b, S (x) 是三次样条函数,证明
12. 在 1,1 上利用插值极小化求 1 f (x) tg 1x 的三次近似最佳逼近多项式.
13. 设 f (x) ex 在 1,1 上的插值极小化近似最佳逼近多项式为 Ln (x) ,若 f Ln 有界,
证明对任何 n 1,存在常数 n 、 n ,使
改用另一等价公式
ln(x x2 1) ln(x x2 1)
计算,求对数时误差有多大?
x1 1010 x2 1010 ; x1 x2 2.
14. 试用消元法解方程组
假定只用三位数计算,问结果是否可靠?
s 1 ab sin c,
0c
15. 已知三角形面积 2
n
x
k j
j1 f (xj )
0,0k n2; an1 ,k n1.
15. 证明 n 阶均差有下列性质:
i) 若 F (x) cf (x) ,则 F x0, x1,, xn cf x0, x1,, xn ;
ii) 若 F (x) f (x) g(x) ,则 F x0, x1,, xn f x0, x1,, xn g x0, x1,, xn .
5.
设 xk
x0
西北农林科技大学数值分析数值法实验报告
数值法实验报告专业班级:信息与计算科学121 姓名:金辉 学号:20120142801)实验目的本次实验的目的是熟练《数值分析》第二章“插值法”的相关内容,掌握三种插值方法:牛顿多项式插值,三次样条插值,拉格朗日插值,并比较三种插值方法的优劣。
本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并在MATLAB 软件中去实现。
2)实验题目 实验一:试用44据进行插值。
用图给出{(x i ,y i ),x i =0.2+0.08i ,i=0,1, 11, 10},P 4(x )及S (x )。
实验二:在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。
实验三:可以得到平方根函数的近似,在区间[0,64]上作图。
(1)用这9各点作8次多项式插值L 8(x).(2)用三次样条(自然边界条件)程序求S (x )。
从结果看在[0,64]上,那个插值更精确;在区间[0,1]上,两种哪个更精确?3)实验原理与理论基础《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日4)实验内容 实验一:试用44据进行插值。
用图给出{(xi ,yi),xi=0.2+0.08i,i=0,1, 11, 10},P4(x)及S(x)。
(1)首先我们先求牛顿插值多项式,此处要用4次牛顿插值多项式处理数据。
已知n次牛顿插值多项式如下:P n =f(x)+f[x,x1](x-x)+ f[x,x1,x2](x-x) (x-x1)+···+f[x0,x1, (x)n](x-x) ···(x-xn-1)我们要知道牛顿插值多项式的系数,即均差表中得部分均差。
在MATLAB的Editor中输入程序代码,计算牛顿插值中多项式系数的程序如下:function varargout=newtonliu(varargin)clear,clcx=[0.2 0.4 0.6 0.8 1.0];fx=[0.98 0.92 0.81 0.64 0.38];newtonchzh(x,fx);function newtonchzh(x,fx)%由此函数可得差分表n=length(x);fprintf('*****************差分表*****************************\n');FF=ones(n,n);FF(:,1)=fx';for i=2:nfor j=i:nFF(j,i)=(FF(j,i-1)-FF(j-1,i-1))/(x(j)-x(j-i+1));endendfor i=1:nfprintf('%4.2f',x(i));for j=1:ifprintf('%10.5f',FF(i,j));endfprintf('\n'); end由所以有四次插值牛顿多项式为:P 4(x )=0.98-0.3(x-0.2)-0.62500 (x-0.2)(x-0.4) -0.20833(x-0.2)(x-0.4)(x-0.6)-0.52083 (x-0.2)(x-0.4)(x-0.6)(x-0.8)(2)接下来我们求三次样条插值函数。
(完整版)数值分析第一次作业
问题1:20.给定数据如下表:试求三次样条插值S(x),并满足条件 (1)S`(0.25)=1.0000,S`(0.53)=0.6868; (2)S ’’(0.25)=S ’’(0.53)=0。
分析:本问题是已知五个点,由这五个点求一三次样条插值函数。
边界条件有两种,(1)是已知一阶倒数,(2)是已知自然边界条件。
对于第一种边界(已知边界的一阶倒数值),可写出下面的矩阵方程。
⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡432104321034322110d M M M M M 200020000020022d d d d λμμλμλμλ其中μj =j1-j 1-j h h h +,λi=j1-j j h h h +,dj=6f[x j-1,x j ,x j+1], μn =1,λ0=1对于第一种边界条件d 0=0h 6(f[x 0,x 1]-f 0`),d n =1-n h 6(f`n-f `[x n-1,x n ]) 解:由matlab 计算得:由此得矩阵形式的线性方程组为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡ 2.1150-2.4286-3.2667-4.3143-5.5200-M M M M M 25714.00001204286.000004000.026000.0006429.023571.0001243210解得 M 0=-2.0286;M 1=-1.4627;M 2= -1.0333; M 3= -0.8058; M 4=-0.6546S(x)=⎪⎪⎩⎪⎪⎨⎧∈-+-+-∈-+-+-∈-+-+-∈-+-+-]53.0,45.0[x 5.40x 9.1087x 35.03956.8.450-x 1.3637-x .5301.67881- ]45.0,39.0[x 9.30x 11.188x 54.010.418793.0-x 2.2384-x .450(2.87040-]39.0,30.0[x 03.0x 6.9544x 9.30 6.107503.0-x 1.9136-x .3902.708779-]30.0,25.0[x 5.20x 10.9662x 0.3010.01695.20-x 4.8758-x .3006.76209-33333333),()()()(),()()()),()()()(),()()()(Matlab 程序代码如下:function tgsanci(n,s,t) %n代表元素数,s,t代表端点的一阶导。
三次样条插值ppt
把以上各式由后向前代入,可得
Nn (x) f (x0) f [x0, x1](x x0) f [x0, x1, xn](x x0) (x xn1)
Rn (x) f (x) Nn (x) f [x, x0, x1, xn ](x x0) (x xn)
yi
n1 ( x) ( x xi )n' 1 ( xi )
(2)插值误差估计
定理2 设 f (n) (x) 在[a,b] 上连续,f (n1) (x)在 (a,b) 内存在, 节点 a x0 x1 xn b,Pn (x) 是拉格朗日插值多项 式,则对任意 x [a,b] , 插值余项
x4 f ( x4 ) f [x3, x4 ] f [x2 , x3 , x4 ] f [x1, x2, x3, x4 ] f [x0, x1, x2, x3, x4 ]
(2) Newton插值公式
由差约定义 x [a,b]
f (x) f (x0 ) f [x, x0 ](x x0 )
f [x, x0 ] f [x0, x1] f [x, x0, x1](x x1)
xn1] f [x1, x2 , x0 xn
xn ] n 阶差商
差商表
xk
f
(xk )
一阶 差商
二阶差商
三阶差商 四阶差商
x0 f (x0 )
x1 f (x1) f [x0, x1]
x2 f (x2 ) f [x1, x2 ] f [x0 , x1, x2 ]
x3 f (x3 ) f [x2, x3] f [x1, x2 , x3 ] f [x0, x1, x2, x3]
计算方法大作业1 克服Runge现象
x3
x2
x
1
S1 ( x)
-0.34685
0.2086
0.073964
0.038462
S2 (x)
S (xi 0 ) S x(i 0 )
S
'
(xi
0) S
xi' (
0 )i
S
'
'
x(i
0)S
xi' ' (
0)
1 ,n2, . . . , 1
(1)
这里共有了 3n-3 个条件,再加上条件(2)中的 n+1 个插值条件,共有 4n-2 个条件,
因此还需要 2 个方程才能确定 S (x) .通常可在区间[a, b]的端点 a x0,b xn 上各加一个边
dn1
1
2
Mn
dn
(6)
2 1
2
2
2
1 M1 d1
M2
d2
n 1
2
n
1
M
n
1
dn1
n
n 2 M n dn
由式(1)内点拼接条件,可得
i M i1 2M i i M i1 d j i 1, 2,..., n 1
(3) (4)
其中
i
hi 1 hi1
, hi
i
hi hi 1
三次样条插值
三次样条插值分段线性插值的优点:计算简单、稳定性好、收敛性有保证且易在计算机上实现缺点:它只能保证各小段曲线在连接点的连续性,却无法保证整条曲线的光滑性,这就不能满足某些工程技术的要求。
三次Hermit 插值优点:有较好的光滑性,缺点:要求节点的一阶导数已知。
从20世纪60年代开始,首先由于航空、造船等工程设计的需要而发展起来所谓样条(Spline)插值方法,既保留了分段低次插值多项式的各种优点,又提高了插值函数的光滑性。
今天,样条插值方法已成为数值逼近的一个极其重要的分支,在许多领域里得到越来越多广泛应用。
我们介绍应用最广的具二阶连续导数的三次样条插值函数。
一、三次样条插值函数的定义:给定区间],[b a 上的个节点b x x x a n =<<<= 10和这些点上的函数值),,1,0()(n i y x f i i == 若)(x S 满足: (1)),,2,1,0()(n i y x S i i ==;(2)在每个小区间],[b a 上至多是一个三次多项式; (3))(),(),(x S x S x S '''在],[b a 上连续。
则称)(x S 为函数)(x f 关于节点的n x x x ,,,10 三次样条插值函数。
二、边界问题的提出与类型单靠一个函数表是不能完全构造出一个三次样条插值函数。
我们分析一下其条件个数,条件(2)三次样条插值函数)(x S 是一个分段三次多项式,若用)(x S i 表示它在第i 个子区间],[1i i x x -上的表达式,则)(x S i 形如],[,)(1332210i i i i i i i x x x x a x a x a a x S -∈+++=其中有四个待定系数)3,2,1,0(=j a ij ,子区间共有n 个,所以)(x S 共有n 4个待定系数。
由条件(3))(),(),(x S x S x S '''在],[b a 上连续,即它们在各个子区间上的连接点110,,,-n x x x 上连续即可,共有)1(4-n 个条件,即⎪⎪⎩⎪⎪⎨⎧==-=+''=-''-=+'=-'-=+=-),2,1,0()()1,,2,1)(0()0()1,,2,1)(0()0()1,,2,1)(0()0(n i y x S n i x S x S n i x S x S n i x S x S i i i i i i i i 共有241)1(3-=++-n n n 个条件,未知量的个数是n 4个。
三次样条插值计算算法
/* 三次样条插值计算算法*/#include "math.h "#include "stdio.h "#include "stdlib.h "/*N:已知节点数N+1R:欲求插值点数R+1x,y为给定函数f(x)的节点值{x(i)} (x(i) <x(i+1)) ,以及相应的函数值{f(i)} 0 <=i <=NP0=f(x0)的二阶导数;Pn=f(xn)的二阶导数u:存插值点{u(i)} 0 <=i <=R求得的结果s(ui)放入s[R+1] 0 <=i <=R返回0表示成功,1表示失败*/int SPL(int N,int R,double x[],double y[],double P0,double Pn,double u[],double s[]){/*声明局部变量*/double *h; /*存放步长:{hi} 0 <=i <=N-1 */double *a; /*存放系数矩阵{ai} 1 <=i <=N ;分量0没有利用*/ double *c; /*先存放系数矩阵{ci} 后存放{Bi} 0 <=i <=N-1 */double *g; /*先存放方程组右端项{gi} 后存放求解中间结果{yi} 0 <=i <=N */double *af; /*存放系数矩阵{a(f)i} 1 <=i <=N ;*/double *ba; /*存放中间结果0 <=i <=N-1*/double *m; /*存放方程组的解{m(i)} 0 <=i <=N ;*/int i,k;double p1,p2,p3,p4;/*分配空间*/if(!(h=(double*)malloc(N*sizeof(double)))) exit(1);if(!(a=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(c=(double*)malloc(N*sizeof(double)))) exit(1);if(!(g=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(af=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(ba=(double*)malloc((N)*sizeof(double)))) exit(1);if(!(m=(double*)malloc((N+1)*sizeof(double)))) exit(1);/*第一步:计算方程组的系数*/for(k=0;k <N;k++)h[k]=x[k+1]-x[k];for(k=1;k <N;k++)a[k]=h[k]/(h[k]+h[k-1]);for(k=1;k <N;k++)c[k]=1-a[k];for(k=1;k <N;k++)g[k]=3*(c[k]*(y[k+1]-y[k])/h[k]+a[k]*(y[k]-y[k-1])/h[k-1]); c[0]=a[N]=1;g[0]=3*(y[1]-y[0])/h[0]-P0*h[0]/2;g[N]=3*(y[N]-y[N-1])/h[N-1]+Pn*h[N-1]/2;/*第二步:用追赶法解方程组求{m(i)} */ba[0]=c[0]/2;g[0]=g[0]/2;for(i=1;i <N;i++){af[i]=2-a[i]*ba[i-1];g[i]=(g[i]-a[i]*g[i-1])/af[i];ba[i]=c[i]/af[i];}af[N]=2-a[N]*ba[N-1];g[N]=(g[N]-a[N]*g[N-1])/af[N];m[N]=g[N]; /*P110 公式:6.32*/ for(i=N-1;i> =0;i--)m[i]=g[i]-ba[i]*m[i+1];/*第三步:求值*/for(i=0;i <=R;i++){/*判断u(i)属于哪一个子区间,即确定k */if(u[i] <x[0] || u[i]> x[N]){/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 1;}k=0;while(u[i]> x[k+1])k++;//p1=(h[k]+2*(u[i]-x[k])*pow((u[i]-x[k+1]),2)*y[k])/pow(h[k],3); //p2=(h[k]-2*(u[i]-x[k+1])*pow((u[i]-x[k]),2)*y[k+1])/pow(h[k],3);p1=(h[k]+2*(u[i]-x[k]))*pow((u[i]-x[k+1]),2)*y[k]/pow(h[k],3);p2=(h[k]-2*(u[i]-x[k+1]))*pow((u[i]-x[k]),2)*y[k+1]/pow(h[k],3); p3=(u[i]-x[k])*pow((u[i]-x[k+1]),2)*m[k]/pow(h[k],2);p4=(u[i]-x[k+1])*pow((u[i]-x[k]),2)*m[k+1]/pow(h[k],2);s[i]=p1+p2+p3+p4;}/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 0;}void main(){int N,R;double *x,*y,*u,*s;double P0,Pn;int i;/*验证算法:*/N=7;R=6;/*分配空间*/if(!(x=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(y=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(u=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(s=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}x[0]=0.5;x[1]=0.7;x[2]=0.9;x[3]=1.1;x[4]=1.3;x[5]=1.5;x[6]=1.7;x[7]=1.9;y[0]=0.4794;y[1]=0.6442;y[2]=0.7833;y[3]=0.8912;y[4]=0.9636;y[5]=0.9975;y[6]=0.9917;y[7]=0.9 463;u[0]=0.6;u[1]=0.8;u[2]=1.0;u[3]=1.2;u[4]=1.4;u[5]=1.6;u[6]=1.8;P0=-0.4794;Pn=-0.9463;if(!SPL( N, R, x, y, P0, Pn, u, s)){/*打印结果*/printf( "\nx= ");for(i=0;i <=N;i++)printf( "%8.1f ",x[i]);printf( "\ny= ");for(i=0;i <=N;i++)printf( "%8.4f ",y[i]);printf( "\n\nu= ");for(i=0;i <=R;i++)printf( "%9.2f ",u[i]);printf( "\ns= ");for(i=0;i <=R;i++)printf( "%9.5f ",s[i]);printf( "\nsin= ");for(i=0;i <=R;i++)printf( "%9.5f ",sin(u[i]));}/*释放空间*/free(x);free(y);free(u);free(s);}/* 测试数据来自课本55页例5 《数值分析》清华大学出版社第四版*/ //输入327.7 4.128 4.329 4.130 3.013.0 -4.0//输出输出三次样条插值函数:1: [27.7 , 28]13.07*(x - 28)^3 + 0.22*(x - 27.7)^3+ 14.84*(28 - x) + 14.31*(x - 27.7)2: [28 , 29]0.066*(29 - x)^3 + 0.1383*(x - 28)^3+ 4.234*(29 - x) + 3.962*(x - 28)3: [29 , 30]0.1383*(30 - x)^3 - 1.519*(x - 29)^3+ 3.962*(30 - x) + 4.519*(x - 29)//三次样条插值函数#include<iostream>#include<iomanip>using namespace std;const int MAX = 50;float x[MAX], y[MAX], h[MAX];float c[MAX], a[MAX], fxym[MAX];float f(int x1, int x2, int x3){float a = (y[x3] - y[x2]) / (x[x3] - x[x2]);float b = (y[x2] - y[x1]) / (x[x2] - x[x1]);return (a - b)/(x[x3] - x[x1]);} //求差分void cal_m(int n){ //用追赶法求解出弯矩向量M……float B[MAX];B[0] = c[0] / 2;for(int i = 1; i < n; i++)B[i] = c[i] / (2 - a[i]*B[i-1]);fxym[0] = fxym[0] / 2;for(i = 1; i <= n; i++)fxym[i] = (fxym[i] - a[i]*fxym[i-1]) / (2 - a[i]*B[i-1]);for(i = n-1; i >= 0; i--)fxym[i] = fxym[i] - B[i]*fxym[i+1];}void printout(int n);int main(){int n,i; char ch;do{cout<<"Please put in the number of the dots:";cin>>n;for(i = 0; i <= n; i++){cout<<"Please put in X"<<i<<':';cin>>x[i]; //cout<<endl;cout<<"Please put in Y"<<i<<':';cin>>y[i]; //cout<<endl;}for(i = 0; i < n; i++) //求步长h[i] = x[i+1] - x[i];cout<<"Please 输入边界条件\n 1: 已知两端的一阶导数\n 2:两端的二阶导数已知\n 默认:自然边界条件\n";int t;float f0, f1;cin>>t;switch(t){case 1:cout<<"Please put in Y0\' Y"<<n<<"\'\n";cin>>f0>>f1;c[0] = 1; a[n] = 1;fxym[0] = 6*((y[1] - y[0]) / (x[1] - x[0]) - f0) / h[0];fxym[n] = 6*(f1 - (y[n] - y[n-1]) / (x[n] - x[n-1])) / h[n-1];break;case 2:cout<<"Please put in Y0\" Y"<<n<<"\"\n";cin>>f0>>f1;c[0] = a[n] = 0;fxym[0] = 2*f0; fxym[n] = 2*f1;break;default:cout<<"不可用\n";//待定};//switchfor(i = 1; i < n; i++)fxym[i] = 6 * f(i-1, i, i+1);for(i = 1; i < n; i++){a[i] = h[i-1] / (h[i] + h[i-1]);c[i] = 1 - a[i];}a[n] = h[n-1] / (h[n-1] + h[n]);cal_m(n);cout<<"\n输出三次样条插值函数:\n";printout(n);cout<<"Do you to have anther try ? y/n :";cin>>ch;}while(ch == 'y' || ch == 'Y');return 0;}void printout(int n){cout<<setprecision(6);for(int i = 0; i < n; i++){cout<<i+1<<": ["<<x[i]<<" , "<<x[i+1]<<"]\n"<<"\t";/*cout<<fxym[i]/(6*h[i])<<" * ("<<x[i+1]<<" - x)^3 + "<<<<" * (x - "<<x[i]<<")^3 + "<<(y[i] - fxym[i]*h[i]*h[i]/6)/h[i]<<" * ("<<x[i+1]<<" - x) + "<<(y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i]<<"(x - "<<x[i]<<")\n";cout<<endl;*/float t = fxym[i]/(6*h[i]);if(t > 0)cout<<t<<"*("<<x[i+1]<<" - x)^3";else cout<<-t<<"*(x - "<<x[i+1]<<")^3";t = fxym[i+1]/(6*h[i]);if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")^3";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")^3";cout<<"\n\t";t = (y[i] - fxym[i]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<"+ "<<t<<"*("<<x[i+1]<<" - x)";else cout<<"- "<<-t<<"*("<<x[i+1]<<" - x)";t = (y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")";cout<<endl<<endl;}cout<<endl;}。
三次样条插值的求解
三次样条插值的求解摘要:分段低次插值虽然解决了高次插值的振荡现象和数值不稳定现象,使得插值多项式具有一致收敛性,保证了插值函数整体的连续性,但在函数插值节点处不能很好地保证光滑性要求,这在某些要求光滑性的工程应用中是不能接受的。
如飞机的机翼一般要求使用流线形设计,以减少空气阻力,还有船体放样等的型值线,往往要求有二阶光滑度(即有二阶连续导数)。
因此,在分段插值的基础上,引进了一种新的插值方法,在保证原方法的收敛性和稳定性的同时,又使得函数具有较高的光滑性的样条插值。
关键字:三转角方程 三弯矩阵方程0. 引言1,三次样条函数定义1:若函数2()[,]S x a b C ∈,且在每个小区间上1,j j x x +⎡⎤⎦⎣上是三次多项式,其中01n a x x x b ⋯=<<<= 是给定节点,则称()s x 是节点01,,,n x x x ⋯上的三次样条函数。
若节点j x 上 给定函数值()j j y f x =(0,1,)j n ⋯= ,且()j j s x y = (0,1,)j n ⋯= (1.1)成立,则称 ()s x 为三次样条差值函数。
从定义知,要求出()s x ,在每个应小区间1[,]j j x x + 上确定4个待定系数,共有 n 个小区间,故应确定4n 个参数,根据()s x 在[,]a b 上二阶导数连续,在节点()1,2,3,,1j x j n ⋯=-处应满足连续性条件(0)(0),j j s x s x -=+ ''(0)(0),j j s x s x -=+''''(0)(0)j j s x s x -=+ (1.2) 共有 3n-3个条件,再加上()s x 满足插值条件(1.1),共有4n-2个条件,因此还需要2个条件才能确定()s x 。
通常可在区间[,]a b 端点0,n a x b x ==上各加一个条件(称边界条件),边界条件可根据实际的问题要求给定。
数值分析实验报告1
p
得到m=(00)T
即M0=0 ;M1=;M2=;M3=;M4=0
则根据三次样条函数定义,可得:
S(x)=
接着,在Command Window里输入画图的程序代码,
下面是画牛顿插值以及三次样条插值图形的程序:
x=[ ];
y=[ ];
plot(x,y)
hold on
for i=1:1:5
y(i)= *(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)
Pn=f(x0)+f[x0,x1](x-x0)+ f[x0,x1,x2](x-x0) (x-x1)+···+ f[x0,x1,···xn](x-x0) ···(x-xn-1)
我们要知道牛顿插值多项式的系数,即均差表中得部分均差。
在MATLAB的Editor中输入程序代码,计算牛顿插值中多项式系数的程序如下:
【实验原理】
《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日插值的相应算法和相关性质。
【实验环境】(使用的软硬件)
软件:
MATLAB 2012a
硬件:
电脑型号:联想 Lenovo 昭阳E46A笔记本电脑
操作系统:Windows 8 专业版
处理器:Intel(R)Core(TM)i3 CPU M 350 @
实验内容:
【实验方案设计】
第一步,将书上关于三种插值方法的内容转化成程序语言,用MATLAB实现;第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。
【实验过程】(实验步骤、记录、数据、分析)
实验的主要步骤是:首先分析问题,根据分析设计MATLAB程序,利用程序算出问题答案,分析所得答案结果,再得出最后结论。
计算方法大作业——三次样条插值
计算方法上机报告
此完成所有数据的输入。继续按 Enter 键会出现提示“选择封闭方程组的边界条件: 第 一类边界条件输入 1,第二类边界条件输入 2,第三类边界条件输入 3。 ”根据已知情况 选择相应的边界条件,若为自然三次样条插值,则选 1,并将插值区间两端点的二阶导 数值设置为 0。输入完成之后按 Enter 开始求解,程序运行结束后命令窗口会显示要求 的三次样条插值函数,同时会出现该插值函数以及插值节点的图像,便于直接观察。 2.3 算例及计算结果 (1) 《数值分析》课本第 137 页的例题 4.6.1,已知函数 y=f(x)的数值如下表,求它 的自然三次样条插值函数。 xi yi -3 7 -1 11 0 26 3 56 4 29
2 三次样条插值
2 三次样条插值
2.1 算法原理及程序框图 设在区间[a, b]上给定 n+1 个节点 xi(a ≤ x0 < x1 < … < xn ≤ b),在节点 xi 处的函数 值为 yi = f(xi) (i = 0,1,…,n)。若函数 S(x)满足以下三个条件: (1) 在每个子区间[xi-1, xi] (i = 0,1,…,n)上,S(x)是三次多项式; (2) S(xi) = yi (i = 0,1,…,n); (3) 在区间[a, b]上,S(x)的二阶导数 S”(x)连续, 则称 S(x)为函数 yi = f(x) 在区间[a, b]上的三次样条插值函数。 由定义可知 S(x)共有 4n 个待定参数,根据条件(3)可得如下 3n-3 个方程,
S x
x x i
6hi
3
M i 1
x xi 1
6hi
3
x x hi2 M i yi 1 M i 1 i 6 hi
数值计算方法三次样条插值
4.4 三次样条插值
令
A1
j1 (u )
(1
2
u
x hj
j 1
)(
u
xj hj
)2
A2
j (u )
(1
2
u
x hj
j
)(
u
x hj
j 1
)2
B1
j1 (u )
(u
u x j 1 )(
xj hj
)2
B2
j (u )
(u
x
j )(
u
x hj
j
)2
分段三次Hermite插值算法
I2(x)
I
n
(
x
)
x ( x0 , x1)
x ( x1, x2 ) ...... x ( xn1, xn )
其I中 j xxj1 xxj j yj1xxj xxjj 11yj yj1(xxj1)(yj yj1)/(xj xj1)
缺点:I(x)连续,但不光滑,精度较低,仅在 hm 1jan{xhj xj xj1}足够小才能较好。的逼近
ss((xxn0
) )
f f
( x0 ) (xn )
m0 mn
三次样条插值作业题
例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表:且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s本算法求解出的三次样条插值函数将写成三弯矩方程的形式:)()6()()6()(6)(6)(211123131j j jj j j jj j j j jj j jj x x h h M y x x h h M y x x h M x x h M x s --+--+-+-=+++++其中,方程中的系数jj h M 6,jj h M 61+,jj j j h h M y )6(2-,jjj j h h M y )6(211++-将由Matlab代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。
以下为Matlab 代码:%=============================% 本段代码解决作业题的例1%============================= clear all clc% 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5];LeftBoun = 0.2; RightBoun = -1;% 区间长度向量,其各元素为自变量各段的长度 h = zeros(1, length(IndVar) - 1); for i = 1 : length(IndVar) - 1h(i) = IndVar(i + 1) - IndVar(i); end% 为向量μ赋值mu = zeros(1, length(h));for i = 1 : length(mu) - 1mu(i) = h(i) / (h(i) + h(i + 1));endmu(i + 1) = 1;% 为向量λ赋值lambda = zeros(1, length(h));lambda(1) = 1;for i = 2 : length(lambda)lambda(i) = h(i) / (h(i - 1) + h(i));end% 为向量d赋值d = zeros(1, length(h) + 1);d(1) = 6 * ( (DepV ar(2) - DepVar(1) ) / ( IndVar(2) - IndVar(1) ) - LeftBoun) / h(1);for i = 2 : length(h)a = ( DepVar(i) - DepVar(i - 1) ) / ( IndVar(i) - IndVar(i - 1) );b = ( DepVar(i + 1) - DepVar(i) ) / ( IndVar(i + 1) - IndVar(i) );c = (b - a) / ( IndVar(i + 1) - IndVar(i - 1) );d(i) = 6 * c;endd(i + 1) = 6 *( RightBoun - ( DepVar(i + 1) - DepVar(i) ) / ( IndVar(i + 1) - IndVar(i) ) ) / h(i);% 为矩阵A赋值% 将主对角线上的元素全部置为2A = zeros( length(d), length(d) );for i = 1 : length(d)A(i, i) = 2;end% 将向量λ的各元素赋给主对角线右侧第一条对角线for i = 1 : length(d) - 1A(i, i + 1) = lambda(i);end% 将向量d的各元素赋给主对角线左侧第一条对角线for i = 1 : length(d) - 1A(i + 1, i) = mu(i);end% 求解向量MM =A \ d';% 求解每一段曲线的函数表达式for i = 1 : length(h)Coefs_1 = M(i) / (6 * h(i));Part_1 = conv( Coefs_1, ...conv( [-1, IndVar(i + 1)], ...conv( [-1, IndVar(i + 1)], [-1, IndVar(i + 1)] ) ) );S_1 = polyval (Part_1, [IndVar(i) : 0.01 : IndVar(i + 1)]);Coefs_2 = M(i + 1)/(6 * h(i));Part_2 = conv( Coefs_2, ...conv( [1, -IndVar(i)], ...conv( [1, -IndVar(i)], [1, -IndVar(i)] ) ) );S_2 = polyval (Part_2, [IndVar(i) : 0.01 : IndVar(i + 1)]);Coefs_3 = (DepVar(i) - M(i) * h(i)^2 / 6) / h(i);Part_3 = conv(Coefs_3, [-1, IndVar(i + 1)]);S_3 = polyval (Part_3, [IndVar(i) : 0.01 : IndVar(i + 1)]);Coefs_4 = (DepVar(i + 1) - M(i + 1) * h(i)^2 / 6) / h(i);Part_4 = conv(Coefs_4, [1, -IndVar(i)]);S_4 = polyval (Part_4, [IndVar(i) : 0.01 : IndVar(i + 1)]);S = S_1 + S_2 + S_3 + S_4;plot ([IndVar(i) : 0.01 : IndVar(i + 1)], S, 'LineWidth', 1.25)% 在样条插值曲线的相应位置标注该段曲线的函数表达式text(i - 1, polyval(Part_1, 3), ...['\itS', num2str(i), '(x)=', num2str(Coefs_1), '(', num2str( IndVar(i + 1) ), '-x)^{3}+', ...num2str(Coefs_2), '(x-', num2str( IndVar(i) ), ')^{3}+', num2str(Coefs_3), ...'(', num2str( IndVar(i + 1) ), '-x)+', num2str(Coefs_4), '(x-', num2str( IndVar(i) ), ')'], ...'FontName', 'Times New Roman', 'FontSize', 14)hold onend% 过x=1和x=2两个横轴点作垂线%line([1, 1], [2.5, -0.5], 'LineStyle', '--');line([2, 2], [2.5, -0.5], 'LineStyle', '--');% 为x轴和y轴添加标注xlabel( '\itx', 'FontName', 'Times New Roman', ...'FontSize', 14, 'FontWeight', 'bold');ylabel( '\its(x)', 'FontName', 'Times New Roman', ...'Rotation', 0, 'FontSize', 14, 'FontWeight', 'bold');最终,三次样条插值函数s(x)表达式为:[][][]⎪⎩⎪⎨⎧∈-+-+-+--∈-+-+---∈+-++--=.3,2,)2(44.1)3(62.2)2(06.0)3(62.0,2,1,)1(62.2)2(08.0)1(62.0)2(42.0,1,0,08.0)1(06.042.0)1(06.0)(333333x x x x x x x x x x x x x x x x s曲线的图像如图所示:例2 已知函数值表:试求在区间[1,5]上满足上述函数表所给出的插值条件的三次自然样条插值函数)(x s本算法求解出的三次样条插值函数将写成三弯矩方程的形式:)()6()()6()(6)(6)(211123131j j jj j j jj j j j jj j jj x x h h M y x x h h M y x x h M x x h M x s --+--+-+-=+++++其中,方程中的系数jj h M 6,jj h M 61+,jj j j h h M y )6(2-,jjj j h h M y )6(211++-将由Matlab代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。
第二章三次样条插值
mk 1 2mk
hk 1 hk hk 1
k 1
3( hk yk1 yk hk1 yk yk1 )
hk hk 1
hk
hk hk 1
hk 1
k mk1 2mk k mk 1 gk
k
hk
hk hk 1
k
hk 1 hk hk 1
gk
3(k
yk yk 1 hk 1
k 0,1,2
小结
1 x3 3 x2 7 x 1
8 8 4
1 x2
S(x)
1 8
x3
3 8
x2
7 4
x
1
3 x3 45 x2 103 x 33
88
4
2x4 4x5
f (3) S(3) 17 4
最后,介绍一个有用的结果
定理 . 设f (x)C2[a,b],S(x)是以xk (k 0,1,,n)
m2 m3
g0 g1 g2
g3
解方程组得:m0
17 8
, m1
Байду номын сангаас
7 4
, m2
5 4
, m3
19 8
将上述结果代入(10)式
S0 ( x)
1 8
x3
3 8
x2
7 4
x
1
S1 ( x)
1 8
x3
3 8
x2
7 4
x
1
1 x 2 2x4
S2(x)
3 8
x3
45 8
x2
103 4
x
33
4x5
注:三次样条与分段 Hermite 插值的根本区别在于S(x)自 身光滑,不需要知道 f 的导数值(除了在2个端点可能需 要);而Hermite插值依赖于f 在所有插值点的导数值。
2[1].7三次样条插值
即
lim S ( x ) = lim S ( x ) lim S ′ ( x) = lim S ′ ( x) = m lim S ′′( x) = lim S ′′ ( x) S ′( x ) = f ′ S ′( x ) = f ′ 或
将(13)式化为矩阵形式
2 λ2
µ1 λ3
2
µ2 λ4
2
µ3
2 O O O
λn − 2
λn − 1
O 2
m1 g 1 − λ1 f 0′ m2 g2 g3 m3 M = M M M µ n − 2 mn − 2 gn−2 2 mn − 1 g n − 1 − µ n − 1 f n′
共4 n − 2个条件
′ ′ lim S k′( x ) = lim S k′− 1 ( x ) + −
S k ( x )是[ xk , xk + 1 ]上的三次样条插值多项式, 应有4个待定的系数 即要确定S ( x )必须确定4n个待定的系数
少两个条件
并且我们不能只对插值函数在中间节点的状态进行限制 也要对插值多项式在两端点的状态加以要求 也就是所谓的边界条件: 第一类(一阶)边界条件: 第二类(二阶)边界条件 第三类(周期)边界条件
f(x) H(x) S(x)
二、三次样条插值多项式
a ≤ x0 , x1 ,L , xn ≤ b为区间[ a , b ]的一个分割 如果函数f ( x )在节点x0 , x1 ,L , xn处的函数值为
f ( x j ) = y j , j = 0 ,1,L , n 如果S ( x )是f ( x )的三次样条插值函数, 则其必满足
三次样条插值
一、问题提出
为给定的节点, 设 x0 , x1 xn 为给定的节点,yi = f ( xi ) ,i = 0,1, n 为相应的函数值, 为相应的函数值,求一个次数不超过 n 的多项式 Pn (x), 使其满足
Pn ( xi ) = yi,
i = 0,1, n .
这类问题称为插值问题。 称为被插值函数 P 被插值函数, 这类问题称为插值问题。 f ( x) 称为被插值函数, n ( x) 称 插值问题 插值函数, 称为插值节点 为插值函数, x0 , x1 xn 称为插值节点
六、 分段插值
所谓分段插值,就是将被插值函数逐段多项式化。 所谓分段插值,就是将被插值函数逐段多项式化。在每 个 [ xi , xi +1 ] 子段上构造插值多项式,然后把它们装配在一, 子段上构造插值多项式,然后把它们装配在一, 作为整个区间 [ a, b ] 上的插值函数,即称为分段多项式。如果 上的插值函数,即称为分段多项式。 次式, 函数 Sk ( x ) 在每个子段上都是 k 次式,则称为 一般(低次: 一般(低次:k=1,2,3) ) 次式。 k 次式。
f [ x0 , x1 ] = 5, f [ x0 , x1, x2 , x3 ] = 1,
N n ( x) = 0 5( x 1) + 2( x 1)( x 2)
+ ( x 1)( x 2)( x 3)
= x3 4 x + 3
五、 Hermite插值多项式 插值多项式
给定的是节点上的函数值和导数值 问题: 问题:已知
∑
i=0
y i li ( x )
( x x0 ) ( x xi 1 )( x xi +1 ) ( x xn ) , i = 0,1, n ( xi x0 ) ( xi xi 1 )( xi xi +1 ) ( xi xn )
数值分析实验报告-插值、三次样条
实验报告:牛顿差值多项式&三次样条... . (1)问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数f (x)---作多项式插25 x 2值及三次样条插值对每个n值,分别画出插值函数矽(x)的图形。
实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。
应用所编程序解决实际算例。
实验要求:1.认真分析问题,深刻理解相关理论知识并能熟练应用;2.编写相关程序并进行实验;3.调试程序,得到最终结果;4.分析解释实验结果;5.按照要求完成实验报告。
实验原理:详见《数值分析第5版》第二章相关容。
实验容:(1)牛顿插值多项式1.1 当 n=10 时:在Matlab下编写代码完成计算和画图。
结果如下:代码:clear allclcx1=-1:0.2:1;y1=1./(1+25.*x1.八2);n=length(x1);f=y1(:);for j=2:nfor i=n:-1:jf(i) = (f(i)-f(i-1))/(x1(i)-x1(i-j+1));endendsyms F x p;F(1)=1;p(1)=y1(1);for i=2:nF(i)=F(i-1)*(x-x1(i-1));p(i)=f(i)*F(i);endsyms PP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25火x八2),x,x0);plot(x0,y0,x0,y2)grid onxlabel('x')ylabel('y')P10即我们所求的牛顿插值多项式,其结果为:P10(x )=-220.94*x A10+494.91*x A8-9.5065e-14*x A7-381.43*x A6-8.504e-14*x A5+123.36*x A4+2.0202e-14*x A3-16.855*x A2-6.6594e-16*x+1.0并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。
三次样条插值数学公式
三次样条插值数学公式
我们要找出三次样条插值的数学公式。
首先,我们需要了解三次样条插值的基本概念和原理。
三次样条插值是一种数学方法,用于通过给定的数据点来估计一个平滑的函数。
它要求在每个数据点之间,该函数是连续的,并且在每个数据点的端点上,该函数是二阶连续可导的。
假设我们有一组数据点 (x0, y0), (x1, y1), ..., (xn, yn)。
我们想要找到一个函数 S(x),它在每个数据点上是连续的,并且在整个数据区间上是平滑的。
三次样条插值的数学公式如下:
S(x) = ai + bi(x-xi) + ci(x-xi)^2 + di(x-xi)^3
其中,i = 0, 1, ..., n,且满足以下条件:
1. S(xi) = yi (i = 0, 1, ..., n)
2. S'(xi) = 0 (i = 1, 2, ..., n-1)
3. S''(xi) = 0 (i = 2, 3, ..., n-1)
4. S(x0) = S(xn) = 0
5. S'(x0) = S'(xn) = 0
6. S''(x0) = S''(xn) = 0
这些条件确保了函数 S(x) 在数据点上是连续的,并且在整个数据区间上是平滑的。
通过解这组方程,我们可以找到 a0, a1, ..., an, b0, b1, ..., bn, c0, c1, ..., cn, d0, d1, ..., dn。
然后,我们就可以使用 S(x) 来估计任何 x 处的 y 值。
这就是三次样条插值的数学公式。
三次样条 求离散点斜率的公式
三次样条求离散点斜率的公式
我们要找出三次样条插值法中离散点斜率的计算公式。
首先,我们需要了解三次样条插值法的基本原理。
三次样条插值法是一种数学方法,用于通过给定的离散点集来拟合一个连续的函数。
这个方法的关键在于找到一个连续的、在离散点处可微的函数,这个函数通常被称为“样条”。
假设我们有一个离散点集(x0, y0), (x1, y1), ..., (xn, yn)。
我们希望找到一个连续的、在离散点处可微的函数S(x),使得S(xi) = yi,其中i = 0, 1, ..., n。
三次样条插值法的核心在于找到这样一个函数S(x),它由一系列的三次多项式组成,这些多项式在相邻的离散点之间是连续的,并且在离散点的边界处也是连续的。
对于离散点(xi, yi),其斜率可以通过以下公式计算:
斜率= 3hi / (xi - xi-1)
其中hi 是样条在该点处的“高度”(或称为“步长”)。
这个公式告诉我们如何根据给定的离散点集计算每个离散点的斜率。
计算结果为:斜率= 3hi / (xi - xi-1)
所以,离散点斜率的计算公式为:斜率= 3hi / (xi - xi-1)。