第一节 羧酸衍生物
羧酸及其衍生物和取代酸
O R1 C NH2 NH3
3.氨解:产物为酰胺。
O R1 C Cl NH4Cl
O R1 C O
O C R2 R4 R3 N H O R1 C R4 N R3 +
O R2 C ONH4
O R1 C O R2 R 2 OH
O R1 C NH2 NH3
4.克莱森(Claisen)缩合反应:得到β-羰基酯 例如:
⑷ 酰胺的生成:
O R 1 C OH O O
+
NH3
R 1 C O NH4
△ -H2O
O
R 1 C O─NH2
△ -H2O
R1 C
+H2O N
R 1 C NH2
二元酸也有上述反应。 3.还原:用催化氢化法(H2/Pt)难以还原,LiAlH4可以还原羧基为羟基。
O R C OH LiAlH4 R CH2 OH
O CH2 CH2 C O Cl
PCl5 H3C ( CH 2) 6 COOH H3C ( CH 2) 6 C Cl
⑶ 酯的生成:
O R1 COOH
+
R2 OH
浓 H2SO4
△
R1 C
O
R2
+H2O
上述反应为可逆反应。提高反应速度的措施有两个: a 加入酸作为催化剂; b 升高温度。 提高反应的产率的措施有两个:a 增加反应物醇(一方面是因为副反应主要 来自于醇另一方面是因为醇相对于酸来说较为便宜);b 移去产物,使平衡向 右移动。
名称(俗名) 熔点 沸点 溶解度(克/100克水) PKa
甲酸(蚁酸) 乙酸(醋酸) 苯甲酸(安息香酸) 乙二酸(草酸) 丙二酸(缩苹果酸) 丁二酸(琥珀酸) 顺丁烯二酸(马来酸) 反丁烯二酸(延胡索酸) 邻苯二甲酸(酞酸)
有机化学——10羧酸衍生物和脂类
=
R C OH + N2 + H2O
3.霍夫曼降解反应
=
O R C NH2 + Br2
NaOH
R NH2 + NaBr + Na2CO3 + H2O
反应使碳链减少一个碳原子
=
O
O
五、碳酸衍生物
(一)脲(尿素)——碳酸的二元酰胺
1. 弱碱性 不能使石蕊试纸变色, 只能与强酸成盐
= = =
O R C NHOH +
=
R'COOH
O
R C O R'
=
+ H NH OH
O R C NHOH +
= =
R'OH
O
R C NH2 + H NH OH
O R C NHOH + NH3 异羟肟酸
3R C NHOH + FeCl3
=
异羟肟酸铁 (红~紫色)
可用做羧酸及其衍生物的定性检验
=
O
O (R C NHO)3Fe + 3HCl
(四)酯缩合反应
具有α-H的酯在碱的作用下与另一分子酯发生 反应称酯缩合反应或克莱森(Claisen)缩合反应
CH3 O O O O ① C2H5ONa C OC2H5 + H CH2 C O C2H5 CH3 C CH2 C OC2H5 + C2H5OH ②H
=
=
=
(五)还原反应
卤、酸酐和酯还原成伯醇
乙酰乙酸乙酯 β 丁酮酸乙酯
羧酸衍生物比羧酸容易还原。氢化铝锂可将酰
=
O R C O R C
羧酸衍生物知识点
羧酸衍生物知识点羧酸衍生物是一类化合物,它们在化学反应和有机合成中有着广泛的应用。
羧酸衍生物的结构中包含一个羧酸基团,它们的化学性质也与羧酸有关。
本文将从羧酸衍生物的性质、合成和应用三个方面进行阐述。
一、羧酸衍生物的性质羧酸衍生物中含有一个羧酸基团(-COOH),这个基团可以参与许多化学反应。
例如,在碱性条件下,羧酸基团会失去一个质子,形成相应的负离子,即羧酸盐,这种反应叫做羧化反应。
除此之外,羧酸衍生物还能与醇、胺等反应,生成相应的酯、酰胺等衍生物。
二、羧酸衍生物的合成羧酸衍生物的合成方法非常多,下面介绍两种常用的方法:1.羧化反应羧化反应是一种重要的合成羧酸衍生物的方法。
在这种反应中,通常使用羧酸和一定量的碱反应,生成相应的羧酸盐。
羧酸盐再与酸反应,失去一个水分子,形成相应的酯。
这种反应常用的催化剂有酸性离子交换树脂、三氧化硫等。
2.加成反应加成反应是另一种合成羧酸衍生物的方法。
在这种反应中,羧酸衍生物的反应物通常是烯烃或炔烃。
它们与羧酸在催化剂的存在下发生加成反应,生成相应的羧酸衍生物。
加成反应的催化剂有酸性离子交换树脂、钯等。
三、羧酸衍生物的应用羧酸衍生物在有机合成、材料科学、生物化学等领域有着广泛的应用。
1.有机合成羧酸衍生物是有机合成中常用的反应物和中间体。
它们可以通过羧化反应、加成反应等多种方法进行合成。
羧酸衍生物可以与醇、胺等反应,生成相应的酯、酰胺等衍生物。
2.材料科学羧酸衍生物可以与金属离子、聚合物等反应,形成新的材料。
例如,聚丙烯酸可以与铁离子反应,生成Fe3O4/聚丙烯酸复合材料。
这种材料具有磁性,可以应用于磁性材料、制备催化剂等领域。
3.生物化学羧酸衍生物在生物化学中也有着重要的应用。
例如,羧酸基团是许多生物分子的一部分,例如脂肪酸、氨基酸等。
羧酸衍生物还可以用于制备生物活性分子,例如药物、抗生素等。
羧酸衍生物是一类重要的化合物,在化学反应和有机合成中有着广泛的应用。
通过羧化反应、加成反应等方法可以合成羧酸衍生物。
有机化学-羧酸及其衍生物
O CH3OC
O
H+
COCH3 + 2HOCH2CH2OH -2CH3OH
酯交换
O
O
O HOCH2CH2 OC
O
CH3OC
COCH3
COCH2CH2OH
HOCH2CH2OH
酯交换
O
O
C
C OCH2CH2O n n=80100
( 涤纶 )
16
4、酰胺的反应
酰胺的反应活性更小,需在酸或碱催化下长时间
加热回流才能水解
O
或 其它试剂
R CH
醛
水解反应 醇解反应 胺解反应
还原反应
11
1、酰氯的取代反应
H—OH O
R—C—Cl + H—OR'
H—NH2
O
R—C—OH O
HCl 水解
R—C—OR' + HCl 醇解
O
R—C—NH2 NH4Cl 氨解
(酰氯活性大是个优良的酰基化试剂)
O CH3CCl + CH3CH2CH2OH
RCH2
O CX
O
O
RCH2 C O C R
O RCH2 C OR'CH C
H
有弱酸性
可加成至 饱和
L
可被亲核 试剂取代
L: 离去基团 (Leaving group)
9
一、羧酸衍生物的取代反应
这类反应是羧酸衍生物与羧酸、以及羧酸衍生物 之间的相互转化。
O RCL
HOH
R C OH
RCOOH
OO
O
RC O C R HOR'
R C OR' RCOOH
羧酸及羧酸衍生物
水解
(1)反应特点:
+ RCOOR' H2O
① 反应可逆(酯化和水解都不能进行完全)。
② 反应速度慢,催化剂同时加速酯化和水解反应。
增大产率:① 增加反应物; ② 减少生成物。
(2)反应历程: ① 伯、仲醇:亲核加成—消除历程 醇中羟基上的氢与羧酸中的羟基结合脱水生成 酯,反应中羧酸的酰氧键断裂。
沸点(162℃)
O
+ R C OH SOCl2
沸点(79℃)
O
+ R C Cl POCl3 制备高沸点酰氯
沸点(107℃)
O
+ + R C Cl SO2 HCl
两种情况均适用
生成酰卤的反应历程
R
O
-HCl
C OH + PCl3
R
O CO
PCl2
Cl- R
O C
O PCl2
b.p. 75℃
Cl
O R C Cl + HO PCl2
攻酰基碳而发生酯化。
O
O
O
+O
+
C-OH
C-OH2
+C
C
CH3
CH3 H2SO4(浓) CH3
CH3 CH3
CH3 CH3
CH3
CH3
CH3OH CH3
CH3
OH C-O+ CCHH33
-H+ CH3
CH3
O C-OCH3
CH3
CH3
78%
CH3
CH3
(3)羧酸和醇的结构对酯化反应速率的影响 ① 羧酸α-C上支链愈多,基团愈大,酯化反应 速率愈慢。
羧酸衍生物1羧酸衍生物的结构和命名一
O R- C-OH -L O R- C-L
O R- C-X L=X O 1 R- C-OR1 L=OR O L=OCOR1 R- C-OCOR1 O L=NH2 R- C-NH2
酰卤 酯 酸酐 酰胺
§1 羧酸衍生物的结构和命名
一、羧酸衍生物的结构
1O
R
C
2
L
3
E
2 1 2 1 2 1 3 3 3
O
O C C O
O
邻苯二甲酸酐
丁烯二酸酐
丁二酸酐
3、酯
(1)、一元酸酯
可以看成是RCOOH中的羧基的氢被烃基取代,其命 名由相应的酸和烃基名称组合而成,加上酯即可;
O CH3COCH2CH3 O CH3COCH=CH2 O CH2=CCOCH3 CH3
乙酸乙酯
乙酸乙烯酯
α-甲基丙烯酸甲酯
(2)、多元酸酯
LUMO 反键
HOMO 非键
成键
O R C L P π 共轭体系
(1) 与酰基相连的原子的电负性都比碳大,故有 I 效应 (2) L 和碳相连的原子上有未共用电子对,故具有 + C (3) 当 + C > 当+C < I 时,反应活性将降低 I 时,反应活性将增大
二、命名 1、酰卤
CH3CH2CH2COCl
1
O CH3C-Cl + CH3CH2OH
O O CH3C-O-CCH3 + CH3CH2OH
O 反应剧烈 CH3C-OCH2CH3 + HCl
O O CH3C-OCH2CH3 + CH3COH
O CH3C-O-R1 + R2OH(过量)
O CH3COCH2CH2OH COOCH 3 H
有机化学-第六版-第11章-羧酸衍生物
包括酰卤、酸酐、酯和酰胺类的化合物
羧酸衍生物通式
O
(Ar)R C L
-X
卤素
-OR
L
O
OC R
烷氧基 酰氧基
-NH2、-NHR、-NR2 胺基
第一节 羧 酸 衍 生 物 的 命 名
酰
酸分子中
基
去掉 OH
后的基团
O
H3 C C OH
乙酸
O
(Ar)R C
O H3 C C
乙酰基
酰基的命名:某酸
某酰基
O H3C C OH
O C OH
O H3C C
O C
乙酰基 苯甲酰基
OO
OO
HO C C
HO C C OH
草酸
OO CC
酸性草酰基 草酰基
一、酰卤的命名
O H3C C Cl
某酰基 + 卤素 乙酰氯
O C Cl
苯甲酰氯
CH3 O H3C CH C Cl
O CH3CH2 C Br
(一) 氨基甲酸酯
O
ROH
+ C NR
酰胺键
O
H ROCNR
酯键
(二) 胍
NH
H2N
NH2
胍 胍基 脒基
NH H2N C NH2
NH H2N C NH
NH H2N C
水解反应
H2N
NH C NH2
+H2O Ba(OH)2
NH
H2N C NH2 +NH3
(三) 丙二酰脲---丙二酸酯与脲缩合而成
δ+
-OR1
Nu:
-NHR1
I. 亲核取代反应
大学第八章 羧酸和羧酸衍生物
增强, 供电子取代基使酸性减弱。
O
O
O
Gr
C O H
H-C
O-H
Gw C
O
H
Gr: releasing group
Gw: withdrawing group
供电子基 减弱酸性
广东药学院
吸电子基 增强酸性
18
O2N-CH2COOH H-COOH
pKa
CH3-COOH
4.76
1.68
3.77
FCH2CO2H ClCH2CO2H BrCH2CO2H ICH2CO2H CH3CO2H
广东药学院
12
五、羧酸的化学性质
. 脱羧反应; 4 氧化与还原
*3.α-H 的反应
O C H O
1. 酸 性
(Ar)R
2.亲核取代
广东药学院
RCO-X RCOOCOR RCO-OR RCO-NH2
酰卤 酸酐 酯 酰胺
13
(一) 羧酸的酸性与成盐(重点) Ka: 10-4~10-5
可用pH试纸或石蕊试纸检验出其水溶液的酸性。 共轭大π键的形成使羧酸根的键长完全平均化, 增加了羧基负离子的稳定性,有助于H+的离解。
127pm
R R
H H
R R
+ H+
127pm
广东药学院
14
羧酸能与碱中和生成羧酸盐和水。利用羧酸与 NaHCO3反应放出CO2,可以鉴别、分离苯酚和羧酸。
NaOH CO2H NaHCO3
COONa
H2O
H2O CO2
CO2Na
羧酸盐与强的无机酸作用, 又可转化为原来的羧酸。
RCOONa
HCl
广东药学院
羧酸及其衍生物 (1)
COOH COOH
C(CH3)3
C(CH3)3
通常采用醇作原料氧化制备羧酸,由醛出发制备羧酸只适用于那 些容易得到的醛。如:
CH3CH2CH2OH CH3(CH2)3 CH3CH2
Na2Cr 2O7/H 2SO 4
CH3CH2COOH
65%
CHCH2OH
1.KMnO4/OH- CH3(CH2)3 2. H+
CH3CH2
CHCOOH
74%
n-C6H1 3CHO
KMnO4/H2SO4 室温 CrO3/H2O
n-C6H1 3COOH
75%
O
CHO
O
COOH
75%
1.2.2由腈、酯等羧酸衍生物水解 腈在酸性或碱性条件下回流水解,生成羧酸。伯卤代烷通过亲核 取代反应,容易制得腈,因为用叔卤代烷制腈容易发生消去反应,因 此腈水解制备羧酸一般从伯代卤烷出发。 例如:
+ +
H+
RCOH R C O RCOR'
OH R'OH
RCOH O
+
Ka
CH3—CH2COOH 1.3x10-5
CH3CH2CH2COOH CH3CH2CHClCOOH pKa 4.82 2.82
CH3CHClCH2COOH ClCH2CH2CH2COOH 4.41 4.70
O2 N CH 2COOH
H CH 2COOH
pKa 4.76
1.68
吸电子基的吸电能力: O || NO2 C CN SO2 COOH COOR CONH 2 X H
CH3COOH (C2 H5 )2 CH COOH
羧酸的四大衍生物
羧酸的四大衍生物
羧酸的四大衍生物
羧酸是一类含有羧基(-COOH)的有机化合物,可作为各种化学反应
的重要中间体。
羧酸有多种衍生物,其中最常见的是如下四种。
一、酰氯(Acyl chloride)
酰氯是羧酸最常见的反应产物,它可以通过将羧酸与氯化物反应制得。
酰氯是一个非常重要的中间体,可用于合成酯、醚、酰胺等多种化合物。
酰氯有弱腐蚀性,可多用于有机合成实验室中。
二、酐(Anhydride)
酐是两个羧酸分子缩合而成的产物,分为内酐和外酐两种。
内酐是指
两个羧基在同一分子内缩合而成的环状产物,外酐则是指两个羧基不
在同一分子内缩合而成的非环状产物。
酐也可作为中间体用于合成酯、酰胺等化合物。
三、酸酐(Acid anhydride)
酸酐是两个不同羧酸分子缩合而成的产物,以其极强的反应性而闻名。
酸酐可用于合成酸酐酯、酸酰胺、酸酐酸等化合物。
但由于其极易水解,因此在使用过程中需要特别注意。
四、酯(Ester)
酯是羧酸的一种重要衍生物,它由羧酸和醇反应而成。
酯具有良好的挥发性和揮發性,并可用于制备香精、香料、油漆等多种化合物。
酯也可作为用于制硝化纤维、炸药等的重要中间体。
在有机合成中,酰氯、酐、酸酐和酯均属于常见的重要中间体。
它们在不同条件下均可相互转化,因此在尝试合成某种化合物时,应根据需要灵活选择相应的羧酸衍生物。
羧酸衍生物的活性
H- C-CH2-COOH + CO2↑ O 丙酮酸
草酰乙酸
1.丙二酸二乙酯
丙二酸二乙酯是以氯乙酸为原料经过 氰解、酯化得到的二元羧酸酯; 在丙二酸二乙酯的分子中有一个活泼 的亚甲基,在醇钠等强碱催化下,能产生 一个碳负离子,它可以和卤代烃发生亲核 反应,生产各种酸;
2.尿素
尿素是碳酸的二酰胺,由于含两个氨基,所以 显碱性,但碱性很弱,不能用石蕊试纸检验。
普通命名法: -溴丁酰溴
对氯甲酰苯甲酸
IUPAC 命名法: 2-溴丁酰溴
4-氯甲酰苯甲酸
2. 酸酐的命名 单酐:在羧酸的名称后加酐字; 混酐:将简单的酸放前面,复杂的酸放后面再加酐字; 环酐:在二元酸的名称后加酐字。
O O O CH3COCCH3 O O CH3COCCH2CH3 O Aceticpropionic anhydride Succinic anhydride O
O ROH + RCONa+ O RCONa
• 碱性水解的讨论 1. 碱性水解速率与 [-OH]成正比。 2. 羰基活性越大,-C空阻越小,酯基空阻越小,反应 速率快。
• CH3COOCMe3 V相对 0.002 Me3CCOOEt 0.01 CH3COOEt ClCH2COOEt 1 296
3. 形成的四面体中间体能量越低,反应速度越快。(能 分散负电荷的取代基对反应是有利的) 4. 酯的碱性水解是不可逆的。 5. 碱的用量要超过催化量。
CH3-CH-COOH OH 2-羟基丙酸 或α-羟基丙酸 (乳酸) HOOC-CH-CH2-COOH OH 2-羟基丁二酸 或α-羟基丁二酸 (苹果酸)
羰基酸的系统命名和羟基酸一样, 也是把相应的羧酸作为母体,侧链和其 它的官能团作为取代基,然后根据系统 命名法的有关规定进行命名。
羧酸衍生物
2. CH3CH2CH2ONO2 硝酸丙酯
二乙酸乙二酯 或 乙二醇二乙酸酯
乙二酸二乙酯
O CH 3CH 2O C H
O C OCH 2
甲酸乙酯
苯甲酸苄酯
O CH 3CHCOCH 2CH 3 CH 3
2-甲基丙酸乙酯
低级酯都有芳香味。许多水果的香味就是由酯引起的。许 多酯常被用来调配食品或做化妆品香精。
酯和酰胺的水解需酸,碱催化且加热,反应是可逆反应。 油脂是高级脂肪酸的甘油酯,在碱性条件下水解生成高级脂 肪酸盐是肥皂的主要成分,所以该反应又称皂化反应
(2)醇解
酰氯、酸酐、酰胺和酯与醇或酚作用,主要产物是酯。 酯的醇解需酸,碱催化是可逆反应,酰胺的醇解需要酸催化
反 应 活 性 依 次 减 弱
O RC O RC O RC OR Cl O O CR
§12-5 羧酸衍生物
和取代羧酸
( 酰卤、酸酐、酯、酰胺和羟基酸)
尿素
邻苯二甲酸酐
乙酸酐
一、 羧酸衍生物的定义和命名
1、羧酸衍生物的定义
羧酸衍生物:羧酸中羧基发生变化而产生的有机物统称羧酸衍
生物。(或羧酸中羟基被其他基团取代形成的有机物) 羧酸衍生物主要有:酰卤、酰胺、酸酐、酯等。
2、类别和命名(1)酰卤和酰胺 Nhomakorabea构特点和命名
O R C X酰基
(2)酸酐的命名 [结构特点]
O R C O O C R'
[命名] 由对应的什么酸决定,读“某某酐”或“某酸酐”
O O CH 3C O CCH 3
乙(酸)酐
O O CH 3C O CCH 2CH 3
乙丙(酸)酐
H C C O O
O CH 2 C CH 2 C O O
羧酸及其衍生物
羧酸及其衍生物第一节羧酸由烃基(或氢原子)与羧基相连所组成的化合物称为羧酸,其通式为RCOOH,羧基(-COOH)是羧酸的官能团.一,分类和命名按羧酸分子中烃基的种类将羧酸分为脂肪族羧酸和芳香族羧酸.按羧酸分子中所含的羧基数目不同将羧酸分为一元酸和多元酸.一些常见的羧酸多用俗名,这是根据它们的来源命名的.如:HCOOH 蚁酸CH3COOH 醋酸HOOC—COOH 草酸脂肪族羧酸的系统命名原则与醛相同,即选择含有羧基的最长的碳链作主链,从羧基中的碳原子开始给主链上的碳原子编号.取代基的位次用阿拉伯数字表明.有时也用希腊字母来表示取代基的位次,从与羧基相邻的碳原子开始,依次为α,β,γ等.例如:CH3CH═CHCOOH2-丁烯酸2,3-二甲基戊酸α-丁烯酸(巴豆酸)芳香族羧酸和脂环族羧酸,可把芳环和脂环作为取代基来命名.例如:对甲基环已基乙酸3-苯丙烯酸(肉桂酸) 4-甲基-3-(2-萘)丙酸命名脂肪族二元羧酸时,则应选择包含两个羧基的最长碳链作主链,叫某二酸.如:邻-苯二甲酸正丙基丙二酸二,羧酸的制法1,氧化法高级脂肪烃(如石蜡)在加热至120℃-150℃和催化剂存在的条件下通入空气,可被氧化生成多种脂肪酸的混合物.RCH2CH2R1 RCOOH + R1COOH伯醇氧化成醛,醛易氧化成羧酸,因此伯醇可作为氧化法制羧酸的原料.含α-氢的烷基苯用高锰酸钾氧化时,产物均为苯甲酸.例如:2,格氏试剂合成法格氏试剂与二氧化碳反应,再将产物用酸水解可制得相应的羧酸.例如:RMgX + CO2 RCOOMgX RCOOH腈水解法在酸或碱的催化下,腈水解可制得羧酸.RCN + H2O + HCl RCOOH + NH4ClRCN + H2O + NaOH RCOONa + NH3三,物理性质1,状态甲酸,乙酸,丙酸是具有刺激性气味的液体,含4-9个碳原子的羧酸是有腐败恶臭气味的油状液体,含10个碳原子以上的羧酸为无味石蜡状固体.脂肪族二元酸和芳香酸都是结晶形固体.2,沸点羧酸的沸点比分子量相近的醇还高.这是由于羧酸分子间可以形成两个氢键而缔合成较稳定的二聚体.3,水溶性羧酸分子可与水形成氢键,所以低级羧酸能与水混溶,随着分子量的增加,非极性的烃基愈来愈大,使羧酸的溶解度逐渐减小,6个碳原子以上的羧酸则难溶于水而易溶于有机溶剂.化学性质1,酸性羧酸具有酸性,因为羧基能离解出氢离子.RCOOH RCOO- + H+因此,羧酸能与氢氧化钠反应生成羧酸盐和水.RCOOH + NaOH RCOONa + H2O羧酸的酸性比苯酚和碳酸的酸性强,因此羧酸能与碳酸钠,碳酸氢钠反应生成羧酸盐.RCOOH + NaHCO3(Na2CO3) RCOONa + H2O + CO2↑但羧酸的酸性比无机酸弱,所以在羧酸盐中加入无机酸时,羧酸又游离出来.利用这一性质,不仅可以鉴别羧酸和苯酚,还可以用来分离提纯有关化合物.例如:欲鉴别苯甲酸,苯甲醇和对-甲苯酚,可按如下步骤进行,在这三者中加入碳酸氢钠溶液,能溶解并有气体产生的是苯甲酸;再在剩下的二个中加入氢氧化钠溶液,溶解的是对-甲苯酚,不溶解的是苯甲醇.当羧酸的烃基上(特别是α-碳原子上)连有电负性大的基团时,由于它们的吸电子诱导效应,使氢氧间电子云偏向氧原子,氢氧键的极性增强,促进解离,使酸性增大.基团的电负性愈大,取代基的数目愈多,距羧基的位置愈近,吸电子诱导效应愈强,则使羧酸的酸性更强.如:三氯乙酸二氯乙酸氯乙酸pKa 0.028 1.29 2.81因此,低级的二元酸的酸性比饱和一元酸强,特别是乙二酸,它是由两个电负性大的羧基直接相连而成的,由于两个羧基的相互影响,使酸性显著增强,乙二酸的pKa1=1.46,其酸性比磷酸的pKa1=1.59还强.取代基对芳香酸酸性的影响也有同样的规律.当羧基的对位连有硝基,卤素原子等吸电子基时,酸性增强;而对位连有甲基,甲氧基等斥电子基时,则酸性减弱.至于邻位取代基的影响,因受位阻影响比较复杂,间位取代基的影响不能在共轭体系内传递,影响较小.对硝基苯甲酸对氯苯甲酸对甲氧基苯甲酸对甲基苯甲酸pKa 3.42 3.97 4.47 4.382,羧基中的羟基被取代羧酸分子中羧基上的羟基可以被卤素原子(-X),酰氧基(-OOCR),烷氧基(-OR),氨基(-NH2)取代,生成一系列的羧酸衍生物.①酰卤的生成羧酸与三氯化磷,五氯化磷,氯化亚砜等作用,生成酰氯.RCOOH + PCl3(PCl5 SOCl2) RCOCl②酸酐的生成在脱水剂的作用下,羧酸加热脱水,生成酸酐.常用的脱水剂有五氧化二磷等.RCOOH + RCOOH RCOOOCR③酯化反应羧酸与醇在酸的催化作用下生成酯的反应,称为酯化反应.酯化反应是可逆反应,为了提高酯的产率,可增加某种反应物的浓度,或及时蒸出反应生成的酯或水,使平衡向生成物方向移动.RCOOH + R1OH RCOOR1 + H2O酯化反应可按两种方式进行:RCOOH + HOR1 RCOOR1 + H2O (1)RCOOH + HOR1 RCOOR1 + H2O (2)实验证明,大多数情况下,酯化反应是按(1)的方式进行的.如用含有示踪原子18O的甲醇与苯甲酸反应,结果发现18O在生成的酯中.④酰胺的生成在羧酸中通入氨气或加入碳酸铵,首先生成羧酸的铵盐,铵盐胺热脱水生成酰胺.RCOOH + NH3 RCOONH4 RCONH23,α-氢被取代羧基和羰基一样,能使α-H活化.但羧基的致活作用比羰基小,所以羧酸的α-H卤代反应需用在红磷等催化剂存在下才能顺利进行.CH3COOH + Cl2 CH2ClCOOH CHCl2COOH CCl3COOH还原反应羧酸在一般情况下,和大多数还原剂不反应,但能被强还原剂—氢化锂铝还原成醇.用氢化铝锂还原羧酸时,不但产率高,而且分子中的碳碳不饱和键不受影响,只还原羧基而生成不饱和醇.例如: RCH2CH═CHCOOH RCH2CH═CHCH2OH5,脱羧反应羧酸分子脱去羧基放出二氧化碳的反应叫脱羧反应.例如,低级羧酸的钠盐及芳香族羧酸的钠盐在碱石灰(NaOH-CaO)存在下加热,可脱羧生成烃.CH3COONa CH4 + Na2CO3这是实验室用来制取纯甲烷的方法.一元羧酸的脱羧反应比较困难,把羧酸盐蒸气通过加热至400-500℃的钍,锰或镁的氧化物,则脱羧生成酮.2CH3COOH CH3COCH3 + CO2 + H2O当一元羧酸的α-碳上连有吸电子基时,脱羧较容易进行,如:CCl3COOH CHCl3 + CO2↑五,重要的羧酸1,甲酸俗称蚁酸,是具有刺激性气味的无色液体,有腐蚀性,可溶于水,乙醇和甘油.甲酸的结构比较特殊,分子中羧基和氢原子直接相连,它既有羧基结构,又具有醛基结构,因此,它既有羧酸的性质,又具有醛类的性质.如能与托伦试剂,斐林试剂发生银境反应和生成砖红色的沉淀,也能被高锰酸钾氧化.2,乙酸俗称醋酸,是食醋的主要成分,一般食醋中含乙酸6℅-8℅.乙酸为无色具有刺激性气味的液体.当室温低于16.6℃时,无水乙酸很容易凝结成冰状固体,故常把无水乙酸称为冰醋酸.乙酸能与水按任何比例混溶,也可溶于乙醇,乙醚和其它有机溶剂.3,苯甲酸俗名安息香酸,是无色晶体,微溶于水.苯甲酸钠常用作食品的防腐剂.4,乙二酸俗称草酸,是无色晶体,通常含有两分子的结晶水,可溶于水和乙醇,不溶于乙醚.草酸具有还原性,容易被高锰酸钾溶液氧化.利用草酸的还原性,还可将其用作漂白剂和除锈剂.5,已二酸为白色电晶体,溶于乙醇,微溶于水和乙醚.已二酸和已二胺发生聚合反应,生成聚酰胺(尼龙-66).羧酸衍生物一,分类和命名重要的羧酸衍生物有酰卤,酸酐,酯和酰胺.1,酰卤和酰胺酰卤和酰胺的命名由酰基名称加卤素原子或胺.酰基:羧酸分子从形式上去掉一个氢原子以后所乘余的部分.某酸所形成的酰基叫某酰基.例如:某酰基乙酰氯乙酰胺N-甲基乙酰胺2,酸酐某酸所形成的酸酐叫\"某酸酐\".如:乙酐(醋酐) 乙丙酐丁二酸酐邻-苯二甲酸酐酯酯的命名为\"某酸某酯\".如:CH3CH2COOCH3 丙酸甲酯(CH3)2C═CHCH2COOCH2CH3 4-甲基-3-戊烯酸乙酯苯甲酸甲酯苯甲酸苄酯HOOC—COOCH2CH3 乙二酸氢乙酯CH3CH2OOC—CH2—COOCH2CH3 丙二酸二乙酯二,物理性质酰氯大多数是具有强烈刺激性气味的无色液体或低熔点固体.低级酸酐是具有刺激性气味的无色液体,高级酸酐为无色无味的固体.酸酐难溶于水而溶于有机溶剂.低级酯是具有水果香味的无色液体.酯的相对密度比水小,难溶于水而易溶于乙醇和乙醚等有机溶剂.三,化学性质1,水解四种羧酸衍生物化学性质相似,主要表现在它们都能水解,生成相应的羧酸.RCOCl HClRCOOOCR1 R1COOHRCOOR1 + H2O RCOOH + R1OHRCONH2 NH3水解反应进行的难易次序为:酰氯> 酸酐> 酯> 酰胺例如,乙酰氯与水发生猛烈的放热反应;乙酐易与热水反应;酯的水解在没有催化剂存在时进行得很慢;而酰胺的水解常常要在酸或碱的催化下,经长时间的回流才以完成.2,醇解和氨解酰氯,酸酐和酯都能与醇作用生成酯.RCOCl HClRCOOOR1 + HOR2 RCOOR2 + R1COOHRCOOR1 R1OH酰氯,酸酐和酯都能与氨作用,生成酰胺.RCOCl HClRCOOOR1 + NH3 RCONH2 + R1COOHRCOOR1 R1OH四,重要的羧酸衍生物1,乙酰氯:是一种在空气中发烟的无色液体,有窒息性的刺鼻气味.能与乙醚,氯仿,冰醋酸,苯和汽油混溶.2,乙酐:又名醋(酸)酐,为无色有极强醋酸气味的液体,溶于乙醚,苯和氯仿.3,顺丁烯二酸酐:又称马来酸酐和失水苹果酸酐.为无色结晶性粉末,有强烈的刺激性气味,易升华,溶于乙醇,乙醚和丙酮,难溶于石油醚和四氯化碳.4,乙酸乙酯:为无色可燃性的液体,有水果香味,微溶于水,溶于乙醇,乙醚和氯仿等有机溶剂.5,甲基丙烯酸甲酯:为无色液体,其在引发剂存在下,聚合成无色透明的化合物,俗称有机玻璃.6,丙二酸二乙酯及其在有机合成中的应用:丙二酸二乙酯,简称丙二酸酯,为无色有香味的液体,微溶于水,易溶于乙醇,乙醚等有机溶剂.常用下面的方法来制取丙二酸酯:CH2ClCOONa CH2CNCOONa + C2H5OH C2H5OOCCH2COOC2H5由于丙二酸酯分子中亚甲基上的氢原子受相邻两个酯基的影响,比较活泼,其能在乙醇化钠的催化下与卤代烃或酰氯反应,生成一元取代丙二酸酯和二元取代丙二酸酯.烃基或酰基取代两二酸酯经碱性水解,酸化和脱羧后,可制得相应的羧酸.这是合成各种类型羧酸的重要方法,称为丙二酯酯合成法.取代羧酸羧酸分子中烃基上的氢原子被其它原子或原子团取代后生成的化合物称为取代羧酸.常见的取代羧酸有卤代酸,羟基酸,羰基酸(氧代酸)和氨基酸等.第一节羟基酸一,分类和命名羟基酸可以分为醇酸和酚酸两类.羟基酸的命名是以相应的羧酸作为母体,把羟基作为取代基来命名的.自然界存在的羟基酸常按其来源而采用俗名.如:CH3CHOHCOOH 2-羟基丙酸(乳酸)HOOCCH2CHOHCOOH 羟基丁二酸(苹果酸)HOOCCHOHCHOHCOOH 2,3-二羟基丁二酸(洒石酸)2-羟基苯甲酸(水杨酸)3,4,5-三羟基苯甲酸(没食子酸)二,醇酸的性质1,物理性质醇酸一般为结晶的固体或粘稠的液体.由于羟基和羧基都以且慢水形成氢键,所以醇酸在水中的溶解度比相应的醇或羧酸都大,低级的醇酸可与水混溶.2,化学性质醇酸既具有醇和羧酸的一般性质,如醇羟基可以氧化,酰化,酯化;羧基可以成盐,成酯等,又由于羟基和羧基的相互影响,而具有一些特殊的性质.(1)酸性在醇酸分子中,由于羟基的吸电子诱导效应沿着碳链传递到羧基上,而降低了羧基碳的电子云密度,使羧基中氧氢键的电子云偏向于氧原子,促进了氢原子解离成质子.由于诱导效应随传递距离的增长而减弱,因此醇酸的酸性随着羟基与羧基距离的增加而减弱.如:CH3CHOHCOOH OHCH2CH2COOH CH3CH2COOHpKa 3.87 4.51 4.882,α-醇酸的分解反应由于羟基和羧基都有吸电子诱导效应,使羧基与α-碳原子之间的电子云密度降低,有利于二者之间键的断裂,所以当α-醇酸与稀硫酸共热时,分解成比原来少一个碳原子的醛或酮和甲酸.RCHOHCOH RCHO + HCOOH此反应常用于由高级羧酸经α-溴代酸制备少一个碳原子的高级醛.RCH2COOH RCHBrCOOH RCHOHCOOH RCHO + HCOOH3,脱水反应脱水产物因羟基与羧基的相对位置不同而有所区别.①α-醇酸生成交酯:α-醇酸受热时,一分子α-醇酸的羟基与另一分子α-醇酸的羟基相互脱水,生成六元环的交酯.RCHOHCOOH + RCHOHCOOH 交酯②β-醇酸生成α,β-不饱和羧酸:β-醇酸中的α-氢原子同时受到羟基和羧基的影响,比较活泼,受热时容易与β-碳原子上的羟基结合,发生分子内脱水生成α,β-不饱和羧酸.RCHOHCH2COOH RCH═CHCOOH + H2O③γ-和δ-醇酸生成物内酯:γ-和δ-醇酸在室温时分子内的羟基和羧基就自动脱去一分子水,生成稳定的γ-和δ-内酯.④羟基与羧基相隔5个或5个以上碳原子的醇酸受热,发生多分子间的脱水,生成链状的聚酯.三,酚酸的性质(1)物理性质酚酸大多数为晶体,有的微溶于水(如水杨酸),有的易溶于水(如没食子酸).(2)化学性质羟基处于邻或对位的酚酸,对热不稳定,当加热至熔点以上时,则脱去羧基生成相应的酚.+ CO2↑+ CO2↑四,重要的羟基酸1,乳酸:为无色粘稠液体,有很强的吸湿性和酸味,溶于水,乙醇,甘油和乙醚,不溶于氯仿和油脂.2,β-羟基丁酸:是吸湿性很强的无色晶体,一般为糖浆状粘稠液体,易溶于水,乙醇及乙醚,不溶于苯.3,苹果酸:为针状结晶,易溶于水和乙醇,微溶于乙醚.苹果酸在酶的催化下生成草酰乙酸.苹果酸在食品工业中用作酸味剂.4,洒石酸:是透明棱形晶体,有很强的酸味,易溶于水.洒石酸常用于配制饮料,洒石酸钾钠用于配制斐林试剂.5,柠檬酸:为无色结晶,含一分子结晶水,易溶于水,乙醇和乙醚,有强酸味.柠檬酸常用于配制清凉饮料和作糖果的调味剂,也是制药工业的重要原料.6,水杨酸:为无色针状结晶,微溶于冷水,易溶于乙醇,乙醚和热水.它具有酚和羧酸的一般性质,如易被氧化,遇三氯化铁显紫红色,酸性比苯甲酸强等.7,乙酰水杨酸:俗称\"阿司匹林\",为白色针状晶体.它可用水杨酸和乙酐在少量浓硫酸存在下制得.乙酰水杨酸具有解热镇痛作用,是常用的解热镇痛药.乙酰水杨酸分子中中无游离的酚羟基,故其纯品与三氯化铁不显色,但在潮湿的空气中,其易水解为水杨酸和乙酸,因此应密闭于干燥处贮存.8,没食子酸:又称五倍子酸.纯粹的没食子酸为白色结晶性粉末,能溶于水,乙醇和乙醚.没食子酸有较强还原性,极易被氧化,露置在空气中能迅速氧化呈暗褐色,可用作抗氧剂的影像显影剂.没食子酸与三氯化铁产生蓝黑色沉淀,可用来制造墨水.第二节羰基酸一,分类和命名分子中既含有羰基又含有羧基的化合物称为羰基酸.根据所含的是醛基还是酮基,将其分为醛酸和酮酸.羰基酸的命名与醇酸相似,也是以羧酸为母体,羰基的位次用阿拉伯数字或用希腊字母表示.如:OHC—COOH CH3COCOOH CH3COCH2COOH乙醛酸丙酮酸3-丁酮酸(β-丁酮酸)二,化学性质酮酸具有酮和羧酸的一般性质,如与氢或亚硫酸氢钠加成,与羟胺生成肟,成盐和酰化等.由于两种官能团的相互影响,α-酮酸和β-酮酸又有一些特殊的性质.(一)α-酮酸的性质1,脱羧和脱羰反应在α-酮酸分子中,羰基与羧基直接相连,由于羰基和羧基的氧原子都具有较强的吸电子能力,使羰基碳与羧基碳原子之间的电子云密度降低,所以碳碳键容易断裂,在一定条件下可发生脱羧和脱羰反应.α-酮酸与稀硫酸或浓硫酸共热,分别发生脱羧和脱羰反应生成醛或羧酸.RCOCOOH + 稀H2SO4 RCHO + CO2↑RCOCOOH + 浓H2SO4 RCOOH + CO↑2,氧化反应α-酮酸很容易被氧化,托伦试剂就能其氧化成羧酸和二氧化碳.RCOCOOH + *Ag(NH3)2++ RCOONH4 + Ag↓(二)β-酮酸的性质在β-酮酸分子中,由于羰基和羧基的吸电子诱导效应的影响,使α-位的亚甲基碳原子电子云密度降低.因此亚甲基与相邻两个碳原子间的键容易断裂,在不同的反应条件下,能发生酮式和酸式分解反应.1,酮式分解β-酮酸在高于室温的情况下,即脱去羧基生成酮.称为酮式分解.RCOCH2COOH RCOCH3 + CO2↑2,酸式分解β-酮酸与浓碱共热时,α-和β-碳原子间的键发生断裂,生成两分子羧酸盐.称为酸式分解.RCOCH2COOH + 40℅NaOH RCOONa + CH3COONa三,乙酰乙酸乙酯及酮式-烯醇式互变异构现象1,乙酰乙酸乙酯的制备在醇钠的催化作用下,两分子乙酸乙酯脱去一分子乙醇生成乙酰乙酸乙酯,此反应称为克莱森酯缩合反应.2CH3COOC2H5 CH3COCH2COOC2H5 + C2H5OH2,酮式-烯醇式互变异构现象乙酰乙酸乙酯能与羰基试剂如羟按,苯肼反应生成肟,苯腙等,能与氢氰酸,亚硫酸氢钠等发生加成反应.由此,证明它具有酮的结构.另外,乙酰乙酸乙酯还能与金属钠作用放出氢气,能使溴的四氯化碳溶液褪色,与三氯化铁作用产生紫红色.由此,又证明它也具有烯醇式的结构.这种现象的产生是因为乙酰乙酸乙酯室温下通常是由酮式和烯醇式两种异构体共同组成的混合物,它们之间在不断地相互转变,并以一定比例呈动态平衡.像这样两种异构体之间所发生的一种可逆异构化现象,叫做互变异构现象.乙酰乙酸乙酯分子中烯醇式异构体存在的比例较一般羰基化合物要高的原因,是由于其分子中的亚甲基氢受羰基和酯基的吸电子诱导效应的影响酸性较强,容易以质子形式解离.形成的碳负离子与羰基和酯基共轭,发生电子离域而比较稳定.当H+与羰基氧结合时,就形成烯醇式异构体.此外,还由于烯醇式异构体能形成六元环的分子内氢键,以及其分子中共轭体系的存在,更加强了它稳定性. 3,分解反应(1)酮式分解乙酰乙酸乙酯在稀碱溶液中加热,可发生水解反应,经酸化后,生成β-丁酮酸.β-丁酮酸不稳定,失去二氧化碳生成丙酮.(2)酸式分解乙酰乙酸乙酯与浓碱共热时,生成两分子乙酸盐,经酸化后得到两分子乙酸.4,在合成上的应用乙酰乙酸乙酯亚甲基上的氢原子很活泼,与醇钠等强碱作用时,生成乙酰乙酸乙酯的钠盐,再与活泼的卤烃或酰卤作用,生成乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物.+ RCOX乙酰乙酸乙酯的钠盐还可与卤代酸酯,卤代丙酮等反应,引入相应的酯基和羰基.乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物,再进行酮式分解或酸式分解反应,可以制取甲基酮,二酮,一元羧酸,二元羧酸,酮酸等化合物.四,重要的羰基酸1,乙醛酸:为无色糖浆状液体,易溶于水.2,丙酮酸:为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强.3,β-丁酮酸:又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡.4,α-酮丁二酸:又称草酰乙酸,为晶体,能溶于水,在水溶液中产生互变异构,生成α-羟基丁烯二酸,其水溶液与三氯化铁反应显红色.α-酮丁二酸具有二元羧酸和酮的一般反应.如能成盐,成酯,成酰胺,与2,4-二硝基苯肼作用生成2,4-二硝基苯腙等.立体化学基础按结构不同,同分异构现象分为两大类.一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构.构造异构包括碳链异构,官能团异构,位置异构及互变异构等.另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构.立体异构包括顺反异构,对映异构和构象异构.。
《基础化学》第9章 羧酸及羧酸衍生物---课程思政
《基础化学》
第九章 羧酸及衍生物
一、羧酸衍生物的结构和命名 1. 羧酸衍生物的结构
O RC L
L: 卤原子(X), O 酰氧基( OCR),
烷氧基(-OR),
酰卤 酸酐 酯
氨基(-NH2, -NHR, -NR2)
酰胺
《基础化学》
第九章 羧酸及衍生物
O
RC X
酰卤
OO
R C 酸O酐பைடு நூலகம் R
RCH2COOH + Br2
PBr3 -HBr
RCHCOOH Br
思政元素
(1)培养刻苦钻研的学习态度 (2)树立正确的人生观和世界观
《基础化学》
第九章 羧酸及衍生物
3、 羧 基上羟基的取代反 应
取代羟基生成羧酸衍生物
O R C OH
羧酸
O RC X
O
O
R C O CR
O R C OR'
O R C NH2(R)
《基础化学》
第九章 羧酸及衍生物
通过羧酸钠盐脱羧
O R C OH
(1) NaOH
(2)
R H + CO2 产率一般较低
其他直链羧酸盐与碱石灰热熔的产物复杂,无制备意义。
CH3CH2COONa + NaOH(CaO)
热熔 CH3CH2CH3 + CH4 + 烯及混合物
17%
20%
《基础化学》
第九章 羧酸及衍生物
《基础化学》
第九章 羧酸及衍生物
2. 还原反应
(1) 用氢化铝锂还原
O
C15H31CCl
①LiAlH4, Et2O ② H2O,98%
第一节羧酸衍生物
第十三章羧酸衍生物第一节羧酸衍生物一分类和命名1.分类R可以是烷基或芳基它们都含有酰基:2.命名:⑴酰卤的命名将相应的酰基名称放在前面,卤素的名称放在后面。
即将相应的“酸”改成“酰卤”⑵酰胺的命名:和酰卤相似。
将相应的酰基后边加一“胺”字,既将相应的“酸”改为“酰胺”。
⑶酸酐的命名:①由二分子相同的一元羧酸脱水形成的酸酐称为单酐,它们的命名,可在原来的羧酸名称之后加一“酐”字来称呼,“酸”字也可以省略。
Acetic anhydride②由二分子不相同的一元羧酸脱水形成的酸酐称为混酐。
它们的命名,可把简单的或低级的羧酸名称放在前面,复杂的或高级的羧酸名称放在后面(即按甲、乙、丙…顺序,英文按字母顺序),两者的中间加一逗点分开(也可省略),再加一“酐”字来称呼。
③环状酸酐,一分子的二元酸或多元以上的多元酸,它们脱水后可生成环状酸酐。
命名时,可在二元酸的名称后加一“酐”字。
⑷酯的命名:把酸的名称放在前面,烃基的名称放在后面,在加一“酯”字。
二.羧酸衍生物的光谱性质1.IR:醛、酮、羧酸、酰卤、酸酐、酯和酰胺都含有羰基,因此,在IR 都有C=O的强吸收峰。
1705~1740cm-1醛、酮的νC=O羧酸衍生物的C=O伸缩振动扩大到了1550~1928 cm-1.这是因为:-I效应使波数升高。
+C效应使波数降低。
降低了C=O的极性。
供电子作用而使C=O的双键性降低。
增加了C=O的双键性。
吸收频率的波数降低。
波数增高。
酰卤:νC=O~1800cm-1 νC=O ~1920cm-1酸酐:在1800-1860cm-1(强)和1750-1800cm-1(强)区域有两个C=O伸拉振动吸收峰,这两个峰往往相隔60cm-1左右。
对于线形酸酐,高频峰较强于低频峰,而环状酸酐则反之。
另外:C—O的伸拉振动吸收在1045~1310/cm(强)。
酯:酯的C=O伸缩振动稍高于酮,在1735~1750cm-1处,与芳基相连的则降至1715~1730 cm-1,酯在1015~1300 cm-1区域内有两个强的C—O伸缩谱带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几个概念:
1.干性:某些油涂成薄层,在空气中就逐渐变成有韧性的固态薄膜。油的这种结膜特性叫做干性(或称干化)。
油的干性强弱(即干结成膜的快慢)是和油分子中所含双键数目和双键结构有关系的,含双键数目多的,结膜快,数目少,结膜慢。有共轭双键结构体系的比孤立双键体系的结膜快。成膜是由于双键聚合形成高分子聚合物的结果。桐油结膜快是由于三个双键形成共轭体系。顺,反,反,-9,11,13-十八三烯酸
第十三章 羧酸衍生物
第一节 羧酸衍生物
一 分类和命名
1. 分类
R可以是烷基或芳基
它们都含有酰基:
2. 命名:
⑴ 酰卤的命名将相应的酰基名称放在前面,卤素的名称放在后面。
即将相应的"酸"改成"酰卤"
酰胺:RCONH δ=5~8ppm。往往不能给出一个尖锐的峰。
三.羧酸衍生物的亲核取代反应
分为加成-消除两步:
加成一步取决于电子因素和空间因素。
消除一步取决于L的碱性和稳定性。L碱性越弱,越容易离去;L越稳定,越容易离去。
就酰氯、酸酐、酯、酰酐、酰胺而言,
b)阳离子洗涤剂。
溶于水时其有效部分是阳离子。如:
c)非离子型洗涤剂
在水溶液中不离解,是中性化合物。
其中羟基和聚醚(OCH2CH2)n部分是亲水基团,家用液态洗涤剂的主要成分也是非离子洗涤剂。
一条直线和两个圆圈代表着一个二酸酯的分子。二酸酯分子中的碳氢键部分是非极性的,在金属钠表面上可以扭动,结果使两个酯基逐渐接近,
最后发生反应变为环状化合物。
4.酯缩合反应:
① Claisen缩合
这类反应称为Claisen缩合反应
历程:
⑵ 酰胺的命名:和酰卤相似。将相应的酰基后边加一"胺"字,既将相应的"酸"改为"酰胺"。
⑶ 酸酐的命名:
① 由二分子相同的一元羧酸脱水形成的酸酐称为单酐,它们的命名,可在原来的羧酸名称之后加一"酐"字tic anhydride
当酯的α-碳上只有一个氢时,由于增加了烃基的诱导效应,酸性减弱了,进行酯缩合反应时,需要使用比醇钠更强的碱(如ph3CNa,NaH),夺取酯的α氢,形成较稳定的α负碳离子,才能迫使反应朝右方进行。
② 交叉Claisen缩合
如两个酯只有一个酯有α-H,相互缩合就能得到一个单纯产物。
肼和羟氨也能与酯发生反应
2.与格氏试剂反应作用
格氏试剂对酮反应比酯快反应很难停留在酮阶段。
具有位阻酯可以停留在酮阶段:
内酯则得二醇:
3.还原
① 催化加氢:
② LiAlH4作还原试剂:
酸性溶液提供给氢离子,它接到羰基氧上从而使分子易受弱亲核试剂,即水的进攻。
第二节 酰卤与酸酐
1水解:
2醇解:
3.氨解:
4.与Grignard试剂作用
酰卤可以与格氏试剂作用得到酮,但是酮很容易与格氏试剂反应得三级醇。因此,如果用一当量的格氏试剂与酰氯反应产物为酮与三级醇的混合物,因此酮的产率很低,如果用两当量以上的格氏试剂则主要产物为三级醇。
乙酸乙酯的酸性是很弱的(Pka~24),而乙醇钠又是一个比较弱的碱(乙醇Pka~15.9)。因此,可以想到乙酸乙酯形成的负离子在平衡体系中是很少的。这也就是说,用乙氧负离子把乙酸乙酯变为 -CH2COOC2H5是很困难的。但是在实际上为什么这个反应会进行的如此完全呢?其原因就是最后产物乙酰乙酸乙酯是一个比较强的酸(Pka~11),形成很稳定的负离子,可以使平衡朝产物方向移动。体系中乙酸乙酯负离子浓度虽然很低,但一形成后,就不断的反应,结果使反应完成。
⑷ 酯的命名:把酸的名称放在前面,烃基的名称放在后面,在加一"酯"字。
二.羧酸衍生物的光谱性质
1. IR:醛、酮、羧酸、酰卤、酸酐、酯和酰胺都含有羰基,因此,在IR都有C=O的强吸收峰。
醛、酮的νC=O 1705~1740cm-1
L的碱性为: Cl- < R-COO- < R'O- < NH2-
L的稳定性为:Cl->R-COO- > R'O- > NH2-
所以羧酸衍生物的活性为:
羧酸的衍生物在碱性或酸性条件下比在中性溶液中更容易水解,这是可以理解的:碱性溶液提供给氢氧根离子,它充当一种强的亲核试剂;
三.磷脂
磷脂多为甘油脂,以脑磷脂及卵磷脂为最重要,其结构为:α-脑磷脂(磷脂酰乙醇胺)α-卵磷脂(磷脂酰胆碱)
磷脂中的酰基都是相应的十六个碳以上的高级脂肪酸,如硬脂酸、软脂酸、油酸、亚油酸(顺,顺-9,12-十八二烯酸)等;磷酸中尚有一个羟基具有强的酸性,可以与具有碱性的胺形成离子偶极键;这样在分子中就分为两个部分,一部分是长链的非极性的烃基,是疏水部分,另一部分是偶极离子,是亲水部分,因此磷脂的结构与前面所讲的肥皂结构类似,如果将磷脂放在水中,可以排成二列,它的极性基团指向水,而疏水性基团,因对水的排斥而聚集再一起,尾尾相连,与水隔开,形成脂双分子层。
③ 酮与酯缩合
酮的α-H比酯的α-H活泼:
④ Dieckmann缩合反应
酯缩合反应也可在分子内进行,形成环酯,这种环化酯缩合反应又称为Dieckmann反应。(己二酸酯和庚二酸酯在醇钠作用下进行自身的酯缩合反应)
注意!酯缩合常用的碱性催化剂是醇钠RONa,不是醇加钠。醇加钠是一组还原剂,它要将酯还原成醇。
羧酸衍生物的C=O伸缩振动扩大到了1550~1928 cm-1.
这是因为:
-I效应使波数升高。 +C效应使波数降低。
降低了C=O的极性。 供电子作用而使C=O的双键性降低。
增加了C=O的双键性。 吸收频率的波数降低。
波数增高。
酰卤: νC=O~1800cm-1 νC=O ~1920cm-1
2.碘值:不饱和脂肪酸甘油酯的碳碳双键也可以和碘发生加成反应。100g油脂所能吸收的碘的克数称为碘值(又称碘价)。
二.肥皂和合成洗涤剂
1. 肥皂:
肥皂的制造:
2.合成系涤剂
a) 阴离子洗涤剂
溶于水时其有效部分是阴离子。
现在国内最广泛使用的洗涤剂是烷基苯磺酸钠盐,R表示C12----C18的烷基。烷基最好是直链的,称为线形烷基。过去曾用过叉链的,但发现不能为微生物所降解(大分子变为较小分子称降解),容易聚集在下水中或飘在河流中,引起环境的污染,因为微生物对有机物的生物氧化降解有选择性,它对直链的有机物可以作用,每次氧化降解两个碳,而有叉链存在时破坏其作用,故现在国际上系用线型的C12以上的烷基制洗涤剂。它可以从石油中分出正烷烃进行一元氯化,或石油、蜡裂解分出直链的1-烯烃,与苯进行傅氏反应得烷基苯,磺化、碱化处理得到。
酰胺
νC=O在1630~1690 cm-1 ,
νN-H在3050~3550 cm-1 。
一级酰胺,-NH2的N-H吸收为两个峰。二级酰胺N-H为一个尖峰。
2. 核磁共振(NMR):
酯:RCOOCH δ=3.7~4.1ppm。
对于有空间阻碍的反应物,能满意的得到酮,产率很好。。这种空间因素可以是酰氯(脂肪或芳香的)或者是格氏试剂,特别是三级基团直接连接在MgX基团上:
有机镉化合物反应性较低,但很容易与酰氯反应,与酮反应很慢,因此可用于酮的合成。
第三节 羧酸酯
酯广泛存在于自然界,低级酯具有芳香气味存在于植物的花,果中,油脂是高级脂肪酸的甘油酯是生命不可缺少的物质,由动物或植物得到的蜡,其主要成分是酯类,抗生素红霉素也是酯,杀虫药、除虫菊是菊酸酯
酸酐:在1800-1860cm-1(强)和1750-1800cm-1(强)区域有两个C=O伸拉振动吸收峰,这两个峰往往相隔60cm-1左右。对于线形酸酐,高频峰较强于低频峰,而环状酸酐则反之。
另外:C-O的伸拉振动吸收在1045~1310/cm(强)。
酯:酯的C=O伸缩振动稍高于酮,在1735~1750cm-1处,与芳基相连的则降至1715~1730 cm-1 ,酯在1015~1300 cm-1 区域内有两个强的C-O伸缩谱带。可以与酮相区别。
③ Na-醇作还原试剂:
特点:双键可不受影响。目前工业上仍应用。
反应时首先由金属钠给出它的价电子,形成游离基负离子(i), (i)再从钠得到一个电子生成(ii),然后(ii)与醇反应生成(iii),(iii)消除醇钠成为醛(iv):
醛再经过①②③的反应过程,得到醇钠(v)。反应完后再酸化得相应的醇(vi)。 在供质子溶剂存在时,酯还原成醇。[选自邢其毅《基础有机》P459]
它是合成五元环、六元碳环的一个方法。(并不是所有的二元酸酯都能发生环缩合,一般局限于生成稳定的五、六碳环。所以,只是有α氢的己二酸酯和庚二酸酯才能起Dieckmann缩合)如:
三、个别化合物
1、 蜡:蜡来自动植物,它的主要成分是高级饱和脂肪酸和高级一元醇所组成的酯。如蜂蜡其主要成分是 C15H31COOC30H61 。水解可得三十烷醇。(植物调节剂,能使农作物增产)蜡与石蜡组成不一样
2. 原酸酯。
原甲酸乙酯,对碱很稳定,在微量的酸存在下,可以发生水解生成甲酸酯和乙醇。
原甲酸酯是制备缩酮的良好试剂。
第四节 油脂和合成洗涤剂
一.油脂
油脂普遍存在于动物脂肪组织和植物的种子中,习惯上把室温下成固态的叫酯,成液态的叫油。油脂是高级脂肪酸甘油酯的通称
④Na+非质子性溶剂(如二甲苯) [选自邢其毅《基础有机》P827]
在非质子性溶剂中(如二甲苯),生成的游离基负离子二聚成双负离子,酯在金属和非质子中,生成酮醇。