上学期八年级数学期中综合复习检测卷(含答案)

合集下载

陕西省西安市2023-2024学年八年级上学期期中数学试题(含答案)

陕西省西安市2023-2024学年八年级上学期期中数学试题(含答案)

.已知函数,当自变量答案第2页,共17页.....如图,在平面直角坐标系中,函数的图象分别为直线,过点12x =-l l 、答案第4页,共17页(1)求b ,m的值;(2)垂直于x轴的直线交直线于C ,D 两点,若线段CD 长为6,求点D 的坐标.22.一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:升)与时间x (单位:分钟)之间的关系如图所示.(1)每分钟进水多少升?(2)当4<x ≤12时,求y 关于x 的函数解析式;(3)容器中储水量不低于15 升的时长是多少分钟?23.在平面直角坐标系xOy 中,点A 、B 分别在y 轴和x 轴上,已知点A (0,4).以AB 为直角边在AB 左侧作等腰直角△ABC ,∠CAB =90°.(1)当点B 在x 轴正半轴上,且AB =8时①求AB 解析式;12,l l,时,相应函数值增加,答案第6页,共17页b答案第8页,共17页答案第10页,共17页答案第12页,共17页故原方程组的解为;(2)解:由得:,解得,把代入②,得,解得:故原方程组的解为;(3)解:由得:,解得,把代入①,得,解得:故原方程组的解为;(4)解:由得:,解得,把代入②,得,解得:故原方程组的解为.【点睛】本题考查了解二元一次方程组,掌握代入消元法和加减消元法是解答本题的关键.19.a 的值为3,b 的值为2【分析】首先联立两个方程组不含a 、b 的两个方程求得方程组的解,然后代入两个方程组含a 、b 的两个方程从而得到一个关于a ,b 的方程组求解即可.【详解】解方程组得:,则有,解得:.28x y =⎧⎨=⎩32338x y x y +=⎧⎨+=⎩①②3⨯-②①721y =3y =3y =338x +⨯==1x -13x y =-⎧⎨=⎩203216x y x y -=⎧⎨+=⎩①②+①②416x =4x =4x =420y -=2y =42x y =⎧⎨=⎩35198367x y x y +=⎧⎨-=⎩①②35⨯+⨯①②49392x =8x =8x =88367y ⨯-=1y =-81x y =⎧⎨=-⎩212y x x y =-⎧⎨+=⎩11x y =⎧⎨=⎩51a b a b +=⎧⎨-=⎩32a b =⎧⎨=⎩答案第14页,共17页答案第16页,共17页则,,;(2)由可知,点在直线上运动,作点AHB CGA ∆∆()AAS 4AG HB ∴==43CG AH ==C ∴(4,443)--AGC BHA ∆≅∆4AG =C 4x =-O的最小值为此时,.【点睛】本题主要考查等腰直角三角形的性质、利用轴对称求最短线路.AC OC +222248AO AO OO ''=+=+=2OB AH CG ===(2,0)B ∴。

辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。

第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。

湖南省娄底市涟源市2024-2025学年八年级上学期11月期中考试数学试题(含答案)

湖南省娄底市涟源市2024-2025学年八年级上学期11月期中考试数学试题(含答案)

2024-2025学年上学期期中质量检测卷八年级数学时量为120分钟,满分为120分题号一二三四五六总分得分一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

)题序12345678910答案1. 分式x−3x+2有意义的条件是()A. x≠3B. x≠-2C. x=3D. x=-22. 下列分式是最简分式的是()A.2a+64aB.3a−3ba2−b2C.m−n−m+nD.m−5m+53. 下列计算正确的是A.a2÷1a =a3B.12a+13a=15aC.1a−1b=a−babD.a÷b⋅1b=a4. 下列长度的三条线段,能组成三角形的是()A. 3, 4, 7B. 6, 7, 12C. 5, 8, 14D. 3, 3, 85. 下列命题是真命题的是()A. 两条直线被第三条直线所截,同旁内角互补B. 相等的角是对顶角C. 三个角对应相等的两个三角形全等D. 有两个内角是60°的三角形是等边三角形6. 若a=−22,b=2−2,c=(12)−2,d=(12)0,则()A. a<b<d<cB. a<b<c<dC. b<a<d<cD. a<c<b<d7. 如图, 在△ABC中, ∠A=74°,∠B=56°.尺规作图的步骤为: ①以点C为圆心,任意长为半径画弧,分别交AC于点D,交BC的延长线于点E;②分别以D,E为圆心,大于12DE为半径画弧,两弧交于点F;③作射线CF. 则∠ECF的度数为()A. 74°B. 65°C. 60°D. 56°8. 已知3x−4(x−1)(x−2)=Ax−1+Bx−2,则A+B的值为()A. 1B. 2C. 3D. 49. 如图, ∠ABC的平分线 BF, 与△ABC的外角∠ACG的平分线相交于点 F , 过点 F作DF∥BC交AB于点D, 交AC于点E, 若BD=8, CE=6, 则DE的长为()A. 4B. 2.5C. 2D. 1.510. 如图, 在△ABC中, ∠ABC=45°,过点C作CD⊥AB于点D, 过点B作BM⊥AC于点M, 连接MD, 过点 D作DN⊥MD,交BM于点N, CD与BM相交于点E. 则下列结论:①AC=BE;②DM=DN;③∠AMD=45°;④S△EDN=S△ADM.其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(本题共8小题,每小题3分,共24分)11. 一张新版百元人民币的厚度约为0. 00009米,数据“0. 00009”用科学记数法表示为 .12. “对顶角相等”的逆命题是.13. 已知关于x的分式方程kx−2−32−x=1有增根, 则k= .14. 计算:15.把一副三角板按如图所示的方式摆放,∠A=60°,∠F=45° , DE⊥BC,则∠CHE的度数为.16. 如图,是一个瓶子的切面图,测量得到瓶子的外径AB的长度是 18cm ,为了得到瓶子的壁厚 acm,小庆把两根相同长度的木条DE和CF的中点O固定在一起,做了一个简单的测量工具,如图,得到EF的长为12cm,则瓶子的壁厚a的值为 cm.17. 如图,∠ACB=90°, AC=BC. AD⊥CE,BE⊥CE,垂足分别是点 D、E, AD=6,BE=2, 则 DE的长是 .18. 若x²−4x+1=0,则x2+1=¯.x2三、解答题 (本题共2小题,每小题6分,共12分)19.计算: −12024+|−6|−(3.14−π)0+(−13)−220. 如图,CE是△ABC的外角∠ACD的平分线, 且CE交BA的延长线于点E, 若∠B=35° , ∠E=25° . 求∠BAC的度数.四、解答题 (本题共2小题,每小题8分,共16分)21. 先化简:m2−4m+4÷(m+1−3m−1),再从±1,±2中选择一个合适的m m−1值代入求值.22. 如图, 在△ABC中, AB 的垂直平分线MN交AB于点E, 交AC于点D,且.AC=15cm, △BCD的周长等于25cm.(1) 求BC的长;(2) 若∠A=36°,并且AB=AC, 求证: BC=BD.五、解答题(本题共2小题,每小题9分,共18分)23. 为了美化环境,建设生态南岸,某社区需要对8400平方米的区域进行绿化改造,计划由甲、乙两个绿化工程队合作完成,已知甲队每天能完成的绿化改造面积比乙队多100平方米,甲队单独完成全部任务所需时间是乙队的2.3(1) 甲、乙两队每天分别能完成多少平方米的绿化改造面积?(2) 已知甲队每天施工费用为2400元,乙队每天施工费用为1800元,若先由甲队施工若干天后,再由甲、乙两个施工队合作完成,恰好20天完成绿化改造,求完成这项绿化改造任务总共需要施工费用多少元?24. 如图,BD⊥AC于点 D,CE⊥AB于点E,BE=CD,BD与CE交于点 O.(1) 求证:△COD≅△BOE;(2) 若CD=2,AE=5,求AC的长.六、综合题(本题共2小题,每小题10分,共20分)25. 阅读材料:通过小学的学习,我们知道,83=6+23=2+23=223,在分式中,类似地,2x+4x+1=2x+2+2x+1=2(x+1)+2x+1=2+2x+1.探索:(1)如果3x+4x+1=3+mx+1,则m= ;如果3x−1x+1=3+mx+1,则m=;总结:(2) 如果ax+bx−c =a+mx−c(其中a、b、c为常数) , 则求m的值. (用含a、b、c的代数式表示)应用:(3) 利用上述结论解决:若代数式2x−1x+1的值为整数,求满足条件的整数x的值.26.如图1, 已知△ABC和△DBE都是等边三角形,且点 D 在边AC上,AD>CD.(1) 求证:△ABD≅△CBE.(2) 求∠DCE的度数.(3) 如图2, 过点B作BF⊥AC于点F,设△BCE的面积为S₁,△BCD的面积为S₂,求△BFD的面积(用含S₁,S₂的代数式表示) .2024-2025学年上学期期中质量检测卷八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,满分30分)12345678910B D A B D A BC C D二、填空题(本大题共6个小题,每小题3分,满分18分)11.9×10-5; 12.如果两个角相等,那么这两个角是对顶角;13.﹣3;14.;15.15°;16.3;17.4;18.14 三、解答题(每小题6分,共12分)19.解:原式=﹣1+6﹣1+9=13.20.解:∵∠B=35°,∠E=25°,∴∠DCE=∠B+∠E=60°,∵CE平分∠ACD,∴∠ACD=2∠DCE=120°,∵∠ACD=∠B+∠BAC,∴∠BAC=120°﹣35°=85°.四、解答题(每小题8分,共16分)21.解:原式=÷=•=•=,∵m=1或±2时,原分式无意义,∴x=﹣1,当x=﹣1时,原式==﹣3.22.(1)解:∵MN是AB的垂直平分线,∴AD=BD,∵AC=15cm,△BCD的周长等于25cm,∴BC+CD+BD=BC+CD+AD=BC+AC=25cm,∴BC=10cm.(2)证明:∵∠A=36°,AB=AC,∴∠ABC=∠C==72°,∵BD=AD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=36°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.五、解答题(每小题9分,共18分)23.解:(1)设乙工程队每天能完成x平方米的绿化改造面积,则甲工程队每天能完成(x+100)平方米的绿化改造面积,依题意得:,解得:x=200,经检验,x=200是原方程的解,∴原方程的解为x=200,∴x+100=300.答:甲工程队每天能完成300平方米的绿化改造面积,乙工程队每天能完成200平方米的绿化改造面积;(2)设甲工程队先做了x天,则甲乙合作了(20﹣x)天,则:300x+(20﹣x)(300+200)=8400,解得x=8,∴完成这项绿化改造任务总共需要施工费用为2400×8+(2400+1800)×(20﹣8)=69600(元).24.(1)证明:∵BD⊥AC,CE⊥AB∴∠CDO=∠BEO=90°在△COD和△BOE中,,∴△COD ≌△BOE (AAS );(2)解:∵△COD ≌△BOE ,∴OC =OB ,OD =OE ,∴OC +OE =OB +OD ,即CE =BD ,在△ACE 和△ABD 中,,∴△ACE ≌△ABD (AAS ),∴AE =AD =5,∵CD =2,∴AC =AD +CD =7.六、综合题(每小题10分,共20分)25.(1)①1;②﹣4;(2)∵.∴m =ac +b ;(3)===2﹣,∵结果为整数,∴当x =﹣4或﹣2或0或2时,代数式的值为整数.26.(1)证明:∵△ABC 和△DBE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABD =60°﹣∠DBC =∠CBE ,在△ABD 和△CBE 中,,∴△ABD ≌△CBE (SAS );(2)解:∵△ABC 是等边三角形,∴∠ACB =60°,由(1)知:△ABD ≌△CBE ,∴∠CEB =∠A =60°,()cx bac a c x b ac c x a c x b ax -++=-++-=-+∴∠DCE=∠ABC+∠BCE=60°+60°=120°;(3)解:∵△ABC是等边三角形,BF⊥AC,∴AF=CF,由(1)知:△ABD≌△CBE,∴△ABD的面积=△BCE的面积=S1=AD•BF=(AF+FD)•BF=AF•BF+FD•BF,∵△BCD的面积=S2=CD•BF=(CF﹣FD)•BF=(AF﹣FD)•BF=AF•BF﹣FD•BF,∴S1﹣S2=(AF•BF+FD•BF)﹣(AF•BF﹣FD•BF)=FD•BF,∴△BFD的面积=FD•BF=(S1﹣S2).。

人教版八年级数学上册期中综合检测试卷(含解析答案)

人教版八年级数学上册期中综合检测试卷(含解析答案)

期中综合检测(第十一至第十三章)(120分钟120分)一、选择题(每小题3分,共30分)1. 下列交通指示标识中,不是轴对称图形的是()A B C D【解析】选C.A.是轴对称图形,故本选项不符合题意;B. 是轴对称图形,故本选项不符合题意;C. 不是轴对称图形,故本选项符合题意;D. 是轴对称图形,故本选项不符合题意.【变式训练】以下微信图标不是轴对称图形的是()0 ® A &ABC D【解析】选D.观察各图形,其中选项A,B,C中的微信图标,均能沿着图形中间竖直的一条直线折叠后两侧部分能够完全重合,故它们都是轴对称图形,且只有一条对称轴;选项D中的微信图标“S”部分无法找到一条直线沿其折叠后使两侧部分重合,它不是轴对称图形.2. 如图,下列条件中,不能证明厶ABD^^ ACD的是()A. BD 二DC,AB 二ACB. / ADB=L ADCC. / B=Z C, / BAD W CADD. / B=Z C,BD=DC【解析】选B.根据SSS 利用选项A 可以证明厶ABD2Z CD 根据AAS 利用选项C 可以证明厶ABD^zACD 连接BC,利用选项D 的条件可知/ DBCeCB j D BCtABD W DCB+ACD 即ZABC=^CB,「AB 二AC ;.AB 二AC,BD 二DC,AD 二AD ^BD^^CD.3. 如图,将三角形纸板的直角顶点放在直尺的一边上,/仁20° , Z 2=40° ,则【解析】选C.由题意得Z 4=z2=40°,由外角定理得/4=/1 + /3, 3=/4- Z1=40°-20 °=20°.4. (2016 •毕节中考)到三角形三个顶点的距离都相等的点是这个三角形的( )A. 三条高的交点B. 三条角平分线的交点A.50 °B.30 D.15 AC.20 °。

2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)

2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)

2024-2025学年第一学期人教版八年级期中数学复习训练试卷(天津)试卷满分:120分 考试时间:100分钟一、选择题本大愿共12小题每小题3分共36分在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段中,能组成三角形的是( )A .,,B .,,C .,,D .,,3.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( )A .B .C .D .4 . 一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为( )A .30B .24C .18D .24或305. 如图,是的两条中线,连接.若,则(  )A .1B .1.5C .2.5D .56. 如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是(  )3cm 1cm 1cm 1cm 2cm 3cm2cm 3cm 4cm 4cm 4cm 9cmAOB AO B '''∠=∠SSS SAS ASA AASAD CE ,ABC V ED 10ABC S =△S =阴影A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC7.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40°B.30°C.20°D.10°8.如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是( )A.①或②B.②或③C.①或③D.①或④9.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于4平方厘米,则△ABC的面积为( )A .8平方厘米B .12平方厘米C .16平方厘米D .18平方厘米10 . 如图,中,,且,垂直平分,交于点,交于点,若周长为16,,则为( )A .5B .8C .9D .1011. 如图,在中, 垂直平分,点P 为直线上的任意一点,则的最小值是( )A .6B .7C .8D .1012 .如图,C 为线段上一动点(不与点A ,E 重合),在同侧分别作正三角形和正三角形,与交于点O ,与交于点P ,与交于点Q ,连接.以下五个结论:①;②;③;④;其中恒成立的结论有( )个ABC V AB AE =AD BC ⊥EF AC AC F BC E ABC V 6AC =DC ABC V 906810BAC AB AC BC EF ∠=︒===,,,,BC EF AP BP +AE AE ABC CDE AD BE AD BC BE CD PQ AD BE =PQ AE ∥EQ DP =60AOB ∠=︒A .1B .2C .3D .4二、境空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上。

人教版八年级上学期期中考试数学试卷共五套(含答案)

人教版八年级上学期期中考试数学试卷共五套(含答案)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A. B.C. D.2.(2分)点(﹣2,3)关于y轴对称的点的坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,﹣3)D.(3,﹣2)3.(2分)下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4D.a•a2=a24.(2分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD=()A.6 B.4 C.3 D.25.(2分)若(﹣x+a)(x﹣3)的积不含x的一次项,则a的值为()A.3 B.﹣3 C.D.6.(2分)若9x2+mxy+16y2是一个完全平方式,那m的值是()A.±12 B.﹣12 C.±24 D.﹣247.(2分)如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°8.(2分)如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=72°,则∠E等于()A.18°B.36°C.54°D.72°9.(2分)已知a、b、c是三角形的三边,则代数式a2﹣2ab+b2﹣c2的值()A.不能确定B.大于0 C.等于0 D.小于010.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S=mn.△AEF其中正确的结论是()A.①②③B.①②④C.②③④D.①③④二.填空题(本题共8小题;每小题3分,共24分.)11.(3分)计算:(6x2﹣3x)÷3x= .12.(3分)计算:20152﹣2014×2016= .13.(3分)若a m=2,a n=3,则a2m+n= .14.(3分)已知a+=4,则a2+= .15.(3分)当x 时,(x﹣3)0=1.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.18.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).三.解答题(本大题共8小题,共56分)19.(8分)计算:(1)(x+4)2﹣(x+3)(x﹣3)(2)(x+2y﹣3)(x﹣2y+3)20.(12分)因式分解:(1)2a3﹣12a2b+18ab2(2)﹣4(x+2y)2+9(2x﹣y)2(3)x4﹣16(4)(x﹣1)(x﹣3)﹣8.21.(4分)如图,在Rt△ABC中,∠C=90°,∠A=15°.(1)在AC边上求作点D,使得DA=DB.(尺规作图,不写作法,保留作图痕迹).= .(2)在(1)的基础上,连接BD,若BC=1,则S△ABD22.(5分)化简求值:已知[(x﹣2y)2﹣4y2+2xy]÷2x,其中 x=1,y=2.23.(5分)如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB 于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.24.(6分)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.25.(8分)如图,在△ABC中,点D为边BC的中点,过点A作射线AE,过点C 作CF⊥AE于点F,过点B作BG⊥AE于点G,连接FD并延长,交BG于点H (1)求证:DF=DH;(2)若∠CFD=120°,求证:△DHG为等边三角形.26.(8分)如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y 轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A. B.C. D.【解答】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:B.2.(2分)点(﹣2,3)关于y轴对称的点的坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,﹣3)D.(3,﹣2)【解答】解:点(﹣2,3)关于y轴对称的点的坐标是(2,3),故选:B.3.(2分)下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4D.a•a2=a2【解答】解:A、2a﹣3a=﹣a,正确,不合题意;B、(﹣ab)3=﹣a3b3,正确,不合题意;C、a6÷a2=a4,正确,不合题意;D、a•a2=a3,错误,故此选项符合题意.故选:D.4.(2分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD=()A.6 B.4 C.3 D.2【解答】解:过P作PE⊥OB于E,∵∠AOP=∠BOP,PD⊥OA,∴PE=PD,∵PC∥OA,∴∠CPO=∠POA=15°=∠BOP,∴∠ECP=∠BOP+∠CPO=30°,∵∠PEC=90°,∴PE=PC=×6=3,即PD=PE=3.故选:C.5.(2分)若(﹣x+a)(x﹣3)的积不含x的一次项,则a的值为()A.3 B.﹣3 C.D.【解答】解:∵(﹣x+a)(x﹣3)=﹣x2+(3+a)x﹣3a,∴3+a=0,解得:a=﹣3,故选:B.6.(2分)若9x2+mxy+16y2是一个完全平方式,那m的值是()A.±12 B.﹣12 C.±24 D.﹣24【解答】解:∵9x2+mxy+16y2是一个完全平方式,∴m=±24,故选:C.7.(2分)如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°【解答】解:∵AB=AC,AD=AE,∠B=50°,∠AEC=120°,∴∠AED=∠ADE=60°,∠EAC=60°﹣∠C=60°﹣50°=10°,∴∠DAC=60°+10°=70°.故选:B.8.(2分)如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=72°,则∠E等于()A.18°B.36°C.54°D.72°【解答】解:∵BE⊥AC,AD=DC,∴BA=BC,∴∠ABD=∠CBD=∠ABC=36°,在△ADB和△CDE中,,∴△ADB≌△CDE,∴∠E=∠ABD=36°,故选:B.9.(2分)已知a、b、c是三角形的三边,则代数式a2﹣2ab+b2﹣c2的值()A.不能确定B.大于0 C.等于0 D.小于0【解答】解:a2﹣2ab+b2﹣c2=(a﹣b)2﹣c2=(a+c﹣b)[a﹣(b+c)].∵a,b,c是三角形的三边.∴a+c﹣b>0,a﹣(b+c)<0.∴a2﹣2ab+b2﹣c2<0.故选:D.10.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S=mn.△AEF其中正确的结论是()A.①②③B.①②④C.②③④D.①③④【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥A B于M,作ON⊥BC于N,连接OA,∵在△AB C中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF =S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:A.二.填空题(本题共8小题;每小题3分,共24分.)11.(3分)计算:(6x2﹣3x)÷3x= 2x﹣1 .【解答】解:(6x2﹣3x)÷3x,=6x2÷3x﹣3x÷3x,=2x﹣1.故答案为:2x﹣1.12.(3分)计算:20152﹣2014×2016= 1 .【解答】解:20152﹣2014×2016=20152﹣(2015﹣1)×(2015+1)=20152﹣(20152﹣1)=20152﹣20152+1=1.故答案是:1.13.(3分)若a m=2,a n=3,则a2m+n= 12 .【解答】解:∵a m=2,a n=3,∴a2m+n=a2m•a n=(a m)2•a n=22×3=12.故答案为:12.14.(3分)已知a+=4,则a2+= 14 .【解答】解:∵a+=4,∴(a+)2=16,∴a2+2+=16,∴a2+=14.故答案为14.15.(3分)当x ≠3 时,(x﹣3)0=1.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:≠3.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有①②③④.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.【解答】①证明:连接NP,MP,在△ANP与△AMP中,∵,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②证明:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,∠ADC=60°,故此选项正确;③证明:∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④证明:∵在Rt△ACD中,∠2=30°,∴CD=AD,∴BC=BD+CD=AD+AD=AD,S△DAC=AC•CD=AC•AD,∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC :S△ABC=1:3,故此选项正确;故答案为:①②③④.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.18.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45 (度).【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x ﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为:45.三.解答题(本大题共8小题,共56分)19.(8分)计算:(1)(x+4)2﹣(x+3)(x﹣3)(2)(x+2y﹣3)(x﹣2y+3)【解答】解:(1)(x+4)2﹣(x+3)(x﹣3)=x2+8x+16﹣(x2﹣9)=8x+25;(2)(x+2y﹣3)(x﹣2y+3)=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.20.(12分)因式分解:(1)2a3﹣12a2b+18ab2(2)﹣4(x+2y)2+9(2x﹣y)2(3)x4﹣16(4)(x﹣1)(x﹣3)﹣8.【解答】解:(1)原式=2a(a2﹣6a+9b2)=2a(a﹣3b)2;(2)原式=[3(2x﹣y)+2(x+2y)][3(2x﹣y)﹣2(x+2y)]=(8x+y)(4x ﹣7y);(3)原式=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2);(4)原式=x2﹣4x﹣5=(x﹣5)(x+1).21.(4分)如图,在Rt△ABC中,∠C=90°,∠A=15°.(1)在AC边上求作点D,使得DA=DB.(尺规作图,不写作法,保留作图痕迹).= 1 .(2)在(1)的基础上,连接BD,若BC=1,则S△ABD【解答】解:(1)如图所示:此时DA=DB;(2)如图所示:∵∠C=90°,∠A=15°,AD=BD,∴∠A=∠ABD=15°,∴∠CDB=30°,∵BC=1,∴AD=BD=2,∴S=×1×2=1.△ABD故答案为:1.22.(5分)化简求值:已知[(x﹣2y)2﹣4y2+2xy]÷2x,其中 x=1,y=2.【解答】解:原式=(x2﹣4xy+4y2﹣4y2+2xy)÷2x=(x2﹣2xy)÷2x=x﹣y当x=1,y=2时,原式=﹣2=﹣23.(5分)如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB 于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.【解答】证明:∵AD平分∠BAC交BC于D,DE⊥AB于E,∠C=90°,∴DC=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),同理可得Rt△FCD和Rt△BED,∴AC=AE,CF=BE,∴AE﹣BE=AF.24.(6分)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE.(2)∵△ACD≌△BCE,∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.25.(8分)如图,在△ABC中,点D为边BC的中点,过点A作射线AE,过点C 作CF⊥AE于点F,过点B作BG⊥AE于点G,连接FD并延长,交BG于点H (1)求证:DF=DH;(2)若∠CFD=120°,求证:△DHG为等边三角形.【解答】证明:(1)∵CF⊥AE,BG⊥AE,∴∠BGF=∠CFG=90°,∴∠1+∠GMB=∠2+∠CME,∵∠GMB=∠CME,∴∠1=∠2,∵点D为边BC的中点,∴DB=CD,在△BHD和△CED中,,∴△BHD≌△CED(ASA),∴DF=DH;(2)∵∠CFD=120°,∠CFG=90°,∴∠GFH=30°,∵∠BGM=90°,∵△HGF是直角三角形,HD=DF,∴DG=HF=DH,∴△DHG为等边三角形.26.(8分)如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y 轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.【解答】解:(1)过点B作BD⊥OD,∵∠DAC+∠ACD=90°,∠ACD+∠BCD=90°,∴∠BCD=∠DAC,在△ADC和△COB中,,∴△ADC≌△COB(AAS),∴AD=OC,CD=OB,∴点B坐标为(0,4);(2)延长BC,AE交于点F,∵AC=BC,AC⊥BC,∴∠BAC=∠ABC=45°,∵BD平分∠ABC,∴∠COD=22.5°,∠DAE=90°﹣∠ABD﹣∠BAD=22.5°,在△ACF和△BCD中,,∴△ACF≌△BCD(ASA),∴AF=BD,在△ABE和△FBE中,,∴△ABE≌△FBE(ASA),∴AE=EF,∴BD=2AE;(3)作AE⊥OC,则AF=OE,∵∠CBO+∠OCB=90°,∠OCB+∠ACO=90°,∴∠ACO=∠CBO,在△BCO和△ACE中,,∴△BCO≌△ACE(AAS),∴CE=OB,∴OB+AF=OC.∴=1.人教版八年级上学期期中考试数学试卷(二)一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120°D.60°二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI 全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI全等.(填“一定”或“不一定”或“一定不”)12.(4分)点P(﹣1,2)关于x轴对称点P的坐标为.113.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC= .14.(4分)如图,已知AO=OB,若增加一个条件,则有△AOC≌△BOC.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为.16.(4分)如图,在△ABC中,AD=DE, AB=BE,∠A=92°,则∠CED= .三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC 各内角的度数.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【解答】解:∵等腰三角形底角为72°∴顶角=180°﹣(72°×2)=36°故选:D.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F【解答】解:A、添加BC=EF,可利用SAS判定△ABC≌△DEF,故此选项错误;B、添加∠A=∠D,可利用ASA判定△ABC≌△DEF,故此选项错误;C、添加AC=DF,不能判定△ABC≌△DEF,故此选项正确;D、添加∠C=∠F,可利用AAS判定△ABC≌△DEF,故此选项错误;故选:C.6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选:C.8.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【解答】解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2),故选:A.10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120°D.60°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°,∵∠E=40°,∴∠F=180°﹣∠D﹣∠E=180°﹣80°﹣40°=60°.故选:D.二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI 一定全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI 一定不全等.(填“一定”或“不一定”或“一定不”)【解答】解:根据全等三角形的传递性,△ABC和△GHI一定全等,三者有一对不重合则△ABC和△GHI一定不重合,则二者不全等.故结果分别为一定,一定不.的坐标为(﹣1,﹣2).12.(4分)点P(﹣1,2)关于x轴对称点P1【解答】解:点P(﹣1,2)关于x轴对称点P的坐标为(﹣1,﹣2),1故答案为:(﹣1,﹣2).13.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC=【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC,∵∠CAD=∠BAC﹣∠BAD=∠DAE﹣∠CAE,∴∠BAD=∠CAE=40°,∵∠BAE=120°,∠BAD=40°,∴∠DAC=BAE﹣∠BAD﹣∠CAE=120°﹣40°﹣40°=40°.故答案为40°.14.(4分)如图,已知AO=OB,若增加一个条件∠1=∠2 ,则有△AOC≌△BOC.【解答】解:∵AO=OB,∠1=∠2,OC=OC,∴△AOC≌△BOC.故答案为:∠1=∠2.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为3cm .【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB于点E,∵CD=3cm,∴DE=3cm.故答案为3cm.16.(4分)如图,在△ABC中,AD=DE,AB=BE,∠A=92°,则∠CED= 88°.【解答】解:∵在△ABD和△EBD中,∴△ABD≌△EBD(SSS),∴∠BED=∠A=92°,∴∠CED=180°﹣∠DEB=88°,故答案为:88°.三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.【解答】解:当3cm是腰时,3+3<7cm,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17cm.故该三角形的周长为17cm.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.【解答】解:(1)设底边BC=acm,则AC=AB=2acm,∵三角形的周长是18cm,∴2a+2a+a=18,∴a=,2a=.答:等腰三角形的三边长是cm, cm, cm.(2)当4cm为腰,设底边为xcm,可得:4+4+x=18,解得:x=10,三角形的三边长是4cm,4m,10cm,不符合三角形的三边关系定理,当4cm为底,设腰为xcm,可得:x+4+x=18,解得:x=7,三角形的三边长是7cm,7cm,4cm,符合三角形的三边关系定理,所以另两边长7cm,7cm.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中,∴△ABC≌△DEF(2)∵△ABC≌△DEF∴BC=EF∴BC﹣EC=EF﹣EC即BE=CF20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.【解答】证明:∵AE是∠BA C的平分线,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△BAD≌△CAD(SAS)21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC 各内角的度数.【解答】解:设∠B=α∵AB=AC,∴∠C=α,∵BD=BA,∴∠BAD=α,∵∠ADC为△ABC外角,∴∠ADC=2α,∵AC=DC,∴∠CAD=2α,∴∠BAC=3α,∴在△ABC中∠B+∠C+∠BAC=5α=180°,∴α=36°,∴∠B=∠C=36°,∴∠CAB=108°.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.【解答】证明:∵AF=DB,∴AF+FB=DB+FB,∴AB=DF,在△ACB和△DEF中,,∴△ACB≌△DEF(SSS),∴∠ABC=∠EFD,∴CB∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.【解答】解:(1)如图,△A1B1C1即为所求;点C1的坐标(3,﹣2)(2)如图,△A2B2C2即为所求;点C2的坐标(﹣3,2).(3)S△ABC=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.人教版八年级上学期期中考试数学试卷(三)一、选择题(共10小题,每小题3分,共30分.)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)点(﹣4,﹣2)关于y轴对称的点的坐标是()A.(4,2)B.(4,﹣2)C.(﹣4,﹣2)D.(﹣4,2)3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°6.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短7.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°10.(3分)如图,点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P共有()个.A.6 B.7 C.8 D.9二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)三角形的外角和等于度.12.(3分)直线CD是线段AB的垂直平分线,点P在直线CD上,如果PA=5,则PB= .13.(3分)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= °.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为.15.(3分)如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 度.16.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= .三、作图题:(每题8分,共16分)17.(8分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A 1B1.C118.(8分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形ABC,其面积为.(2)在图②中画出一个以AB为底的等腰三角形ABC,其面积为.四、解答题(每题8,共32分)19.(8分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB ⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,AC=DF.求证:BF=CE.20.(8分)如图,在△ABC中,AB=AC,BD垂直AC,垂足为D,∠A=40°,求∠DBC的度数.21.(8分)如图∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC且交AB于F.(1)求证:△ADF是等腰三角形.(2)若DF=10cm,求DE的长.22.(8分)如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?五、解答题:(每题12分,共24分)23.(12分)如图:在等边三角形ABC中,AE=CD,(1)求证:△ABE≌△CAD;(2)过B点作BQ⊥AD于Q,求证:BP=2PQ.24.(12分)实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q 到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分.)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)点(﹣4,﹣2)关于y轴对称的点的坐标是()A.(4,2)B.(4,﹣2)C.(﹣4,﹣2)D.(﹣4,2)【解答】解:点(﹣4,﹣2)关于y轴对称的点的坐标是(4,﹣2),故选:B.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.6.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.7.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选:D.9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【解答】解:∵AD=AC,∠DAC=80°,∴∠ADC==50°,又∵AD=BD,∴∠B=∠BAD,∵∠B+∠BAD=∠ADC,∴2∠B=∠ADC,∴∠B=∠ADC=25°,故选:C.10.(3分)如图,点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P共有()个.A.6 B.7 C.8 D.9【解答】解:如图,满足条件的点P有8个,故选:C.二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)三角形的外角和等于360 度.【解答】解:三角形的外角和等于360°.故答案是:360.12.(3分)直线CD是线段AB的垂直平分线,点P在直线CD上,如果PA=5,则PB= 5 .【解答】解:∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,而已知线段PA=5,∴PB=5.故答案是:5.13.(3分)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 540 °.【解答】解:如图,∵∠1+∠2+γ=180°①,∠3+∠4+β+θ=360°②,∠5+∠6+∠7+α=360°③,∴①+②+③得,∠1+∠2+∠3+∠4+∠5+∠6+∠7+α+β+γ+θ=900°,∵α+β=180°,γ+θ=180°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=900°﹣180°﹣180°,=540°.故答案为:540.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为30°.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠CBE=∠ABC﹣∠EBA=30°,故答案为:30°.15.(3分)如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 15 度.【解答】解:∵等边三角形ABC中,BD是AC边上的中线,∴∠ABD=ABC=30°,∠ADB=90°,∵BD=BE,∴∠BDE=∠BED==75°,∴∠EDA=15°.故答案为:15.16.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= 9 .【解答】解:在Rt△ADE中,∠A=60°,∴∠A DE=30°,又AE=1,∴AD=2AE=2,∵D为AB的中点,∴AB=AC=4,∴CE=AC﹣AE=4﹣1=3,∵EF∥AB,∴∠EFC=∠B=60°,又∠C=60°,∴△EFC为等边三角形,∴EF=FC=EC=3,∴△EFC的周长=3+3+3=9.三、作图题:(每题8分,共16分)17.(8分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).【解答】解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).18.(8分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形ABC,其面积为4或5或3 .(2)在图②中画出一个以AB为底的等腰三角形ABC,其面积为3,2.5 .【解答】解:(1)以AB为腰的等腰三角形的面积:×2×3=3;面积为:4或5或3;(2)以AB为底的等腰三角形的面积:2×3﹣×3×1﹣×1×2×2=2.5,故答案为3,2.5.四、解答题(每题8,共32分)19.(8分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB ⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,AC=DF.求证:BF=CE.【解答】证明:∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°.在Rt△ABC和△RtDEF中,,∴△RtABC≌Rt△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即:BF=CE.20.(8分)如图,在△ABC中,AB=AC,BD垂直AC,垂足为D,∠A=40°,求∠DBC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=(180°﹣40°)÷2=70°;又∵BD⊥AC垂足为D,∴∠DBC=90°﹣∠ACB=90°﹣70°=20°.21.(8分)如图∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC且交AB于F.(1)求证:△ADF是等腰三角形.(2)若DF=10cm,求DE的长.【解答】(1)证明:∵∠BAC=30°,D为角平分线上一点,∴∠BAD=∠CAD,∵DF∥AC,∴∠CAD=∠FDA,∴∠BAD=∠FDA,∴FA=FD,即△ADF是等腰三角形;(2)解:作DH⊥AB于H,∵DF∥AC,∴∠BFD=∠BAC=30°,∴DH=DF=5,∵D为角平分线上一点,DE⊥AC,DH⊥AB,∴DE=DH=5cm.22.(8分)如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?【解答】解:∵△ABC和△BED都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°,∴∠ABE=∠CBD=60°﹣∠CBE,在△ABE和△CBD中,∴△ABE≌△CBD(SAS),∴AE=CD=4,∵△BED是等边三角形,。

北京二中教育集团2024—2025学年上学期 八年级数学期中考试卷(含答案)

北京二中教育集团2024—2025学年上学期 八年级数学期中考试卷(含答案)

北京二中教育集团2024—2025学年度第一学期初二数学期中考试试卷考查目标1.知识:人教版八年级上册《三角形》、《全等三角形》、《轴对称》、《整式的乘法与因式分解》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.考生须知 1.本试卷分为第Ⅰ卷、第Ⅱ卷和答题卡,共16页;其中第Ⅰ卷2页,第Ⅱ卷6页,答题卡7页。

全卷共三大题,28道小题。

2.本试卷满分100分,考试时间120分钟。

3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。

4.考试结束,将答题卡交回。

第Ⅰ卷(选择题共 16分)一、选择题(共16分,每题2分,以下每题只有一个正确的选项)1.中国古典建筑中有着丰富多彩的装饰纹样,以下四个纹样中,不是轴对称图形的是() A.B.C.D.2.下列计算正确的是( )A. B. C. D.3.如图是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,那么判定图中两三角形全等的条件是( )A.SSSB.SASC.AASD.ASA 4.如图,在中,边上的高是()32m m m -=326m m m ⋅=624m m m ÷=()239m m =ABC △BCA. B. C. D.5.如图,在中,,于D ,点B 关于直线的对称点是点,若,则的度数为( )A.8°B.10°C.20°D.40°6.已知式子的计算结果中不含x 的一次项,则a 的值为()A. B.3 C.1.5D.07.根据下列已知条件,不能画出唯一的是()A.,, B.,,C.,, D.,,8.如图,和分别是的内角和外角的角平分线,,连接.以下结论:①;②;③;④,其中正确的结论有( )A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题 共84分)二、填空题(共16分,每题2分)9.已知等腰三角形的两条边长分别为2和5,则这个等腰三角形的周长为______.10.若有意义,则x 的取值范围是______.11.如图,摄影师在拍照时为了确保照片的清晰度,往往会放一个三脚架来固定和支撑相机,这里用到的数学道理是______.BD CE BE AFABC △90BAC ∠=︒AD BC ⊥AD B '50B ∠=︒B AC '∠()()23x x a +-3-ABC △10AB =6BC =5CA =10AB =6BC =30A ∠=︒10AB =6BC =60B ∠=︒10AB =6BC =90C ∠=︒BD AD ABC △ABC ∠CAE ∠AD BC P CD AB AC =2BAC BDC ∠=∠4EAC ADB ∠=∠90ADC ABD ∠+∠=︒()021x -12.如图是一个五边形,图形中x 的值为______°.13.如图,在长方形中,,垂足为E ,交于点F ,连接.请写出一对面积相等但不全等的三角形______.14.若,,则______.15.如图,在等腰中,,,,,点C 的坐标是______.16.如图,等边的边长为5,点E 在上,,射线,垂足为点C ,点P 是射线上一动点,点F 是线段上一动点,当的值最小时,的长为______.ABCD AF BD ⊥AF BC DF 3a x =2b x =3a b x +=Rt ABC △90CAB ∠=︒AB AC =2OA =3OB =ABC △BC 2CE =CD BC ⊥CD AB EP FP +BF三、解答题(共68分,其中第17-21,23题每题5分,第22,24,25,26题每题6分,第27-28题每题7分)17.计算:.18.因式分解:.19.因式分解:.20.已知,求代数式的值.21.如图,中,,于点E ,于点D ,与相交于点F .求证:.22.如图,已知.(1)根据要求尺规作图:①作的平分线;②在上取点C ,作边的垂直平分线交于点D ,连接;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求证:.解:平分 垂直平分线段(____________)(填推理依据) (____________)(填推理依据)()2533a a a⋅--2328x y y -()()314x x +-+2410m m --=()()()22311m m m ---+ABC △45ABC ∠=︒BE AC ⊥AD BC ⊥BE AD BF AC =AOB ∠AOB ∠OP OP OC MN OA CD CD OB P OC AOB ∠AOC BOC ∴∠=∠MN OCDO DC ∴=AOC DCO ∴∠=∠BOC DCO ∴∠=∠CD OB∴P23.如图:在平面直角坐标系中,其顶点坐标如下:,,.(1)画出关于x 轴对称的图形.其中A 、B 、C 分别和、、对应;(2)点P 在y 轴上,若为等腰三角形,则满足条件的点P 的个数是______个.24.如图,是等边三角形,于D ,为边中线,,相交于点O ,连接.(1)判断的形状,并说明理由(2)若,求的长.25.如图1有三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形,老师用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)观察图2的面积关系,写出一个数学公式______;(2)根据数学公式,解决问题:已知,,求的值.26.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,例如:计算,可用竖式除法.步骤如下:①把被除式、除式按某个字母降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),再把两式相减;ABC △xOy ()3,1A -()1,2B --()1,3C ABC △111A B C △1A 1B 1C ACP △ABC △BD AC ⊥AE BC AE BD DE CDE △2OD =OB 7a b +=2229a b +=()2a b -()()43267121x x x x ---÷+46x 2x 33x 33x ()21x +()4363x x +④把相减所得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.余式为0,可以整除.请根据阅读材料,回答下列问题(直接填空):(1)请在两个方框内分别填入正确的数或式子;(2)多项式除以商式为______,余式为______;(3)多项式的一个因式是,则该多形式因式分解的结果为______.27.已知,,,连接和.(1)如图1,①求证:;②当时,的延长线交于点F ,写出与的数量关系并证明;(2)如图2,与的延长线交于点P ,连接,直接写出的度数(用含的式子表示)28.在平面直角坐标系,中,已知点,过点且垂直于x 轴的直线记为直线,过点且垂直于y 轴的直线记为直线.给出如下定义:将图形G 关于直线对称得到图形,再将图形关于直线得到图形,则称图形是图形G 关于点M 的双对称图形.(1)已知点M 的坐标为,点关于点M 的双对称图形点的坐标为______;()3210x x-- 432671x x x ∴---21x +2357x x +-2x +324839x x x +--1x -AB AC =AD AE =BAC DAE α∠=∠=BD CE BD CE =AD BD ⊥ED BC BF CF CE DB AP APB ∠αxOy (),M m n (),0m x m =()0,n y n =x m =1G 1G y n =2G 2G ()0,1()2,3N 2N(2)如图,的顶点坐标是,,.①已知点M 的坐标为,点,点,线段关于点M 的双对称图形线段位于内部(不含三角形的边),求n 的取值范围;②已知点M 的坐标为,直线l 经过点且平行于第一三象限的角平分线,当关于点M 的双对称图形与坐标轴有交点时,直线l 上存在满足条件的双对称图形上的点,直接写出k 的取值范围.北京二中教育集团2024—2025学年度第一学期初二数学期中考试参考答案一、选择题(共16分,每小题2分)1-5.ACADB 6-8.CBD二、填空题(共16分,每小题2分)9.12 10.11.三角形具有稳定性 12.121°13.和(和,和,和)14.24 15. 16.3.5三、解答题(共68分,其中第17-22题每题5分,第23-26题每题6分,第27-28题每题7分)17.原式18.原式19.原式20.解:原式当时 原式21.证明:, ABC △()2,3A -()4,1B -()0,1C ()1,1-()4,P n ()4,1Q n +PQ 22P Q ABC △(),3m m -+()0,k ABC △222A B C △222A B C △12x ≠ABF △DBF △ABD △AFD △BCD △AFD △ABE △DEF △()5,2--66698a a a=-=-()()()2224222y x yy x y x y =-=+-()222234211x x x x x =+-+=++=+2224129131210m m m m m =-+-+=-+2410m m --=31013=+=BE AC ⊥ AD BC ⊥90ADB ADC BEC ∴∠=∠=∠=︒, 在与中 22.(1)图略(2)线段垂直平分线上的点与线段两个端点距离相等 等边对等角23.解:(1)图略 (2)524.(1)等边三角形证:在等边中,,, 又为边上的中线 又 是等边三角形(2),,,为边上的中线, 在中, 25.解:(1)(2)9又 26.解:(1)2,(2),(3)27.解:(1)①证: 90EBC C ∴∠+∠=︒90DAC C ∠+∠=︒EBC DAC ∴∠=∠45ABC ∠=︒ 9045BAD ABC ∴∠=︒-∠=︒ABC BAD∴∠=∠AD BD ∴=BFD △ACD △ADB ADC BD ADEBC DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BFD ACD ∴≌△△BF AC∴=ABC △AB BC AC ==60C ABC BAC ∠=∠=∠=︒AB BC = BD AC ⊥12CD AC ∴=AE BC 12CE BC ∴=CD CE ∴=60C ∠=︒ CDE ∴△AB BC = AB AC =BD AC ⊥AE BC 1302ABD ABC ∴∠=∠=︒1302BAE CAE BAC ∠=∠=∠=︒ABD BAE ∴∠=∠OA OB ∴=BD AC ⊥ 90BDA ∴∠=︒ Rt AOD △30CAE ∠=︒24OA OD ∴==4OB OA ∴==()2222a b a ab b +=++7a b += ()249a b ∴+=()()()22222a b a b a b ++-=+ ()2229499a b ∴-=⨯-=32105x x--31x -5-()()2123x x -+BAC DAE α∠=∠= BAC CAD DAE CAD ∴∠+∠=∠+∠在与中 ②法1:延长至G ,使,连接。

2023-2024学年苏科新版八年级上册数学期中复习试卷(含答案)

2023-2024学年苏科新版八年级上册数学期中复习试卷(含答案)

2023-2024学年苏科新版八年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.在下列数中,π,,3.14.0.101010,4,(π﹣1)0,无理数有( )个.A.1个B.2个C.3个D.4个2.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A.B.C.D.3.如图,∠1=∠2,∠3=∠4,则判定△ABD≌△ACD的依据是( )A.角角角B.角边角C.边角边D.边边边4.已知等腰三角形三边的长分别为4,x,10,则x的值是( )A.4B.10C.4 或10D.6 或105.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.7,24,25B.5,12,13C.12,16,20D.4,7,86.把边长为1的正方形ABCD按如图所示放置在数轴上,以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,则点F对应的数值是( )A.2B.C.D.7.如图,若△ABE≌△ACF,且AB=7cm,AE=3cm,则EC的长为( )A.3cm B.4cm C.5cm D.7cm8.如图,把直角△ABC沿AD折叠后,使点B落在AC边上点E处,若AB=6,AC=10,则S△CDE=( )A.15B.12C.9D.6二.填空题(共8小题,满分24分,每小题3分)9.用四舍五入法将3.694精确到0.01,所得到的近似数为 .10.定义新运算“△”:对于任意实数a,b都有a△b=ab﹣a﹣b+2.(1)若3△x值不大于3,则x的取值范围是 ;(2)若(﹣2m)△5的值大于3且小于9,则m的整数值是 .11.若+y2﹣4y+4=0,则x= ,y= .12.如图,由两个直角三角形和三个正方形组成的图形.其中两正方形面积分别是S1=22,S2=14,AC=10,则AB= .13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,垂足为D.若∠F=30°,BE=4,则DE的长等于 .14.三角形的三边长分别为cm,cm,cm,这个三角形的周长是 cm.15.如图,将长方形ABCD沿对角线AC折叠,点B的对应点为点E,连接CE交AD于点F,且AD=2AB=8,则△AFC的面积为 .16.若三边均不相等的三角形三边a、b、c满足a﹣b>b﹣c(a为最长边,c为最短边),则称它为“不均衡三角形”.例如,一个三角形三边分别为7,5,4,因为7﹣5>5﹣4,所以这个三角形为“不均衡三角形”.(1)以下4组长度的小木棚能组成“不均衡三角形”的为 (填序号).①4cm,2cm,1cm;②19cm,20cm,19cm;③13cm,18cm,9cm;④9cm,8cm,6cm.(2)已知“不均衡三角形”三边分别为2x+2,16,2x﹣6,直接写出x的整数值为 .三.解答题(共11小题,满分82分)17.计算:×﹣|﹣2|+(﹣)﹣1.18.计算下列各式的值.(1)±;(2);(3);19.求下列各式中x的值:(1)x2=2;(2)(x﹣3)3=﹣8.20.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形△ABC,使它的三边长分别为AB=、BC=2、CA=;(2)在图中建立正确的平面直角坐标系,并写出△ABC各顶点的坐标;(3)作△ABC关于y轴的轴对称图形△A′B′C′(不要求写作法);(4)直接写出△ABC的面积为 .21.如图,已知AC,BD相交于点O,BO=DO,CO=AO,EF过点O分别交BC、AD于点E、F.(1)根据所给的条件,写出图中所有的全等三角形;(2)请说明BE=DF的理由.22.如图,河岸上A、B两点相距25km,C、D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A、B,已知AD=15km,BC=10km,现要在河岸AB上建一水厂E向C,D两村输送自来水,要求水厂到两村的距离相等,且DE⊥EC,则水厂E应建在距A点多少千米处?23.如图,在四边形ABCD中,AD∥BC,∠A=∠C=90°,点E、F分别在AB、DC上,连接DE,BF,若AE=CF;求证:DE=BF.24.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.25.已知+2=a,且与互为相反数,求a,b的值.26.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从点A出发,沿AB以每秒4cm的速度向终点B运动.当点P不与点A、B重合时,过点P作PQ⊥AB交射线BC于点Q,以PQ为一边向上作正方形PQMN,设点P的运动时间为t(秒).(1)求线段PQ的长.(用含t的代数式表示)(2)求点Q与点C重合时t的值.(3)设正方形PQMN与△ABC的重叠部分周长为1(cm),求l与t之间的函数关系式.(4)作点C关于直线QM的对称点C',连接PC'.当PC′与△ABC的边垂直或重合时,直接写出t的值.27.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,将线段BC绕点B顺时针旋转一定角度得到线段BD.连接AD交BC于点E,过点C作线段AD的垂线,垂足为点F,交BD于点G.(1)如图1,若∠CBD=45°.①求∠BCG的度数;②求证:CE=DG;(2)如图2,若∠CBD=60°,当AC﹣DE=6时,求CE的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:无理数有π,共1个.故选:A.2.解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.3.解:在△ADB和△ADC中,,∴△ADB≌△ADC(ASA),故判定两个三角形全等最直接的依据是角边角.故选:B.4.解:当x=4时,4+4<10,不符合三角形三边关系,舍去;当x=10时,4+10>10,符合三角形三边关系.故选:B.5.解:A、72+242=252,此三角形能组成直角三角形;B、52+122=132,此三角形能组成直角三角形;C、122+162=202,此三角形能组成直角三角形;D、(4)2+(7)2≠(8)2,此三角形不能组成直角三角形.故选:D.6.解:根据勾股定理得正方形的对角线==,∴OC=,∵以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,∴点F对应的数是.故选:D.7.解:∵△ABE≌△ACF,∴AB=AC=7cm.∴EC=AC﹣AE=7﹣3=4(cm).故选:B.8.解:在Rt△ABC中,由勾股定理得,BC===8,由翻折变换的性质可知,AB=AE=6,∠B=∠AED=90°,∴EC=AC﹣AE=10﹣6=4,在Rt△DEC中,设DE=x,则BD=x,DC=8﹣x,由勾股定理得,DE2+EC2=CD2,x2+42=(8﹣x)2,解得x=3,即DE=3,∴S△DEC=DE•EC=×3×4=6,故选:D.二.填空题(共8小题,满分24分,每小题3分)9.解:将3.694精确到0.01,所得到的近似数为3.69.故答案为3.69.10.解:(1)∵3△x值不大于3,∴3x﹣3﹣x+2≤3,∴3x﹣x≤3+3﹣2,∴2x≤4,∴x≤2,即x的取值范围是x≤2,故答案为:x≤2;(2)∵(﹣2m)△5的值大于3且小于9,∴,解不等式①,得m<﹣,解不等式②,得m>﹣,所以不等式组的解集是﹣<m<﹣,即整数m为﹣1,故答案为:﹣1.11.解:∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x﹣y=0,y﹣2=0,解得x=2,y=2,故答案为:2,2.12.解:∵S1=22,S2=14,∴S3=S1+S2=22+14=36,∴BC==6,∵AC=10,∴AB===8,故答案为:8.13.解:∵∠C=90°,FD⊥AB,而∠AED=∠CEF,∴∠A=∠F=30°,∵DE垂直平分AB,∴EA=EB,∴∠EBA=∠A=30°,∴DE=BE=×4=2.故答案为2.14.解:根据题意得:++=4+5+5=(9+5)cm;故答案为:9+5.15.解:由折叠的性质,可知:AE=AB=4,CE=CB=8,∠E=∠B=90°,∠ACE=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACE,∴AF=CF.设AF=x,则EF=8﹣x.在Rt△AEF中,AE=4,AF=x,EF=8﹣x,∠E=90°,∴42+(8﹣x)2=x2,∴x=5,∴S△AFC=AF•AB=×5×4=10.故答案为:10.16.解:(1)①∵1+2<4,∴4cm,2cm,1cm不能组成三角形,也就不能组成“不均衡三角形”;②∵19=19,∴19cm,20cm,19cm不能组成“不均衡三角形”;③∵18﹣13>13﹣9,∴13cm,18cm,9cm能组成“不均衡三角形”;④∵9﹣8<8﹣6,∴9cm,8cm,6cm不能组成“不均衡三角形”.故答案为:③;(2)①16﹣(2x+2)>2x+2﹣(2x﹣6),解得:x<3,∵2x﹣6>0,解得:x>3,故不合题意,舍去;②2x+2>16>2x﹣6,解得:7<x<11,2x+2﹣16>16﹣(2x﹣6),解得:x>9,∴9<x<11,∵x为整数,∴x=10,经检验,当x=10时,22,16,14可构成三角形;③2x﹣6>16,解得:x>11,2x+2﹣(2x﹣6)>2x﹣6﹣16,解得:x<15,∴11<x<15,∵x为整数,∴x=12或13或14,都可以构成三角形;综上所述,x的整数值为10或12或13或14,故答案为:10或12或13或14.三.解答题(共11小题,满分82分)17.解:原式=×2﹣(2﹣)﹣8=2﹣2+﹣8=3﹣10.18.解:(1)∵(±)2=,∴=;(2)∵0.33=0.027,∴=0.3;(3)∵(﹣1)3=﹣1,∴=﹣1.19.解:(1)∵x2=2,∴x2=6,∴;(2)∵(x﹣3)3=﹣8,∴x﹣3=﹣2,∴x=1.20.解:(1)如图,△ABC即为所求;(2)平面直角坐标系如图所示.A(﹣3,4),B(﹣4,2),C(﹣2,0)(答案不唯一);(3)如图,△A′B′C′即为所求;(4)S△ABC=2×4﹣×1×2﹣×2×2﹣×1×4=3.故答案为:3.21.解:(1)图中所有的全等三角形:△ADO≌△CBO,△AFO≌△CEO,△DFO≌△BEO;(2)在△CBO和△ADO中,,∴△CBO≌△ADO(SAS),∴∠B=∠D,在△BEO和△DFO中,,∴△BEO≌△DFO(ASA),∴BE=DF.22.解:E站应建在离A站10km处,即AE=BC=10km,∵AB=25km、AD=15km,∴BE=AB﹣AE=15km=AD,∵CB⊥AB、DA⊥AB,∴∠A=∠B=90°,在△ADE和△BEC中,,∴△ADE≌△BEC(SAS),∴DE=CE.23.证明:∵AD∥BC,∴∠ADC+∠C=180°,∵∠C=90°,∴∠ADC=90°,∵∠A=90°,∴∠ADC+∠A=180°,∴AB∥CD,∴四边形ABCD为平行四边形,∴AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,即BE=DF,∵AB∥CD,∴四边形EDFB为平行四边形,∴DE=BF.24.解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,S△ABC=28,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=28,即DE(6+8)=28,∴DE=4.25.解:∵,∴,∴a﹣2=1或a﹣2=0或a﹣2=﹣1,∴a=3或2或1,当a=3时,,∴,∴b=2,当a=2时,,∴,∴,当a=1时,,∴=1,∴b=,综上所述,,.26.解:(1)∵在Rt△ABC中、∠C=90°,∴AB===10,∴AP=4t,BP=10﹣4t,PQ=BP•tan B=BP•=(10﹣4t)×=﹣3t;(2)当点Q与点C重合时,如图1所示:∵cos A==,cos A===,∴=,∴t=(s);(3)当0<t≤时,如图2所示:BN=AB﹣AP﹣PN=10﹣4t﹣+3t=﹣t,∵tan B==,∴NH===(﹣t),cos B==,∴BH===(﹣t),∴CH=BC﹣BH=8﹣(﹣t),∵tan A==,∴PD===t,∵cos A==,∴AD===t,∴CD=AC﹣AD=6﹣t,∴l=PN+NH+CH+CD+PD=﹣3t+(﹣t)+8﹣(﹣t)+6﹣t+t=﹣t+;当<t<时,如图3所示:同理:NH=(﹣t),BH=(﹣t),BQ=(10﹣4t),∴HQ=BQ﹣BH=(10﹣4t)﹣(﹣t),∴l=2PQ+NH+HQ=2(﹣3t)+(﹣t)+(10﹣4t)﹣(﹣t)=﹣t+;(4)①当C′与C重合时,PC′⊥AB,如图4所示:由(2)得:t=s;②当PC′⊥AC时,如图5所示:则PC′∥BC,连接C′E,∵点C关于直线QM的对称点C',∴CC′⊥MQ,CE=C′E,∴CC′∥PQ,∴四边形CC′PQ是平行四边形,∴CQ=C′P,CC′=PQ=﹣3t,由(3)得:BQ=(10﹣4t),∴C′P=CQ=8﹣(10﹣4t)=﹣+5t,∵PD∥BC,∴==,即==,∴PD=t,AD=t,∴C′D=PD﹣C′P=t﹣(﹣+5t)=﹣t,∵MQ∥AB,∴=,即=,∴CE=﹣+t=C′E,∴DE=AC﹣AD﹣CE=6﹣t﹣(﹣+t)=﹣t,∵C′D2+DE2=C′E2,即(﹣t)2+(﹣t)2=(﹣+t)2整理得:27t2﹣t+=0,解得:t1=(s),t2=(s)(不合题意舍去);③当C′落在AB上时,PC′与AB重合,如图6所示:∵点C关于直线QM的对称点C',∴OC=OC′,∵四边形PQMN是正方形,∴MQ∥AB,∴AD=CD=AC=3,∴DQ是△CAB的中位线,∴CQ=BQ=BC=4,由(3)得:BQ=(10﹣4t),∴(10﹣4t)=4,∴t=(s),综上所述,当PC′与△ABC的边垂直或重合时,t的值为s或s或s.27.(1)①解:∵BA=BC,∠ABC=90°,∴∠ACB=∠CAB=45°,∵∠CBD=45°,∴∠ACB=∠CBD,∴AC∥BD,∴∠CAD=∠D,∵BD=BC=BA,∴∠D=∠BAD,∴∠CAD=∠BAD=∠CAB=22.5°,∵CG⊥AD,∴∠CFD=90°,∴∠ACF=90°﹣22.5°=67.5°,∴∠BCG=∠ACF﹣∠ACB=22.5°;②证明:延长CG,AB交于T,如图:∵∠ABE=∠CBT=90°,AB=BC,∠BAE=∠BCT=22.5°,∴△ABE≌△CBT(ASA),∴BE=BT,∠AEB=∠T,∵∠BAE=22.5°,∴∠AEB=90°﹣∠BAE=67.5°=∠T,∵∠EBG=∠TBG=45°,∴∠TGB=180°﹣∠T﹣∠TBG=67.5°,∴∠T=∠TGB,∴BT=BG,∴BE=BT=BG,∵BC=BD,∴BC﹣BE=BD﹣BG,即CE=DG;(2)解:连接CD,过点D作DH⊥BC于H,在DH上取一点J,使得EJ=DJ,设CF=a,如图:∵CB=BD,∠CBD=60°,∴△BCD是等边三角形,∵AB=BC,∠ABC=90°,∴∠ABD=90°+60°=150°,∠BAC=∠ACB=45°,∴∠BAD=∠BDA=15°,∴∠CAF=30°,∵CG⊥AD,∴∠CFA=90°,∴AC=2CF=2a,∵∠CDB=60°,∠BDA=15°,∴∠FDC=∠FCD=45°,∴FC=DF=a,DC=BC=BD=a,∵DH⊥BC,∴CH=BH=a,DH=CH=a,∠HDB=30°,∴∠JDE=∠HDB﹣∠BDA=15°,设EH=x,∵JE=JD,∴∠JED=∠JDE=15°,∴∠EJH=∠JED+∠JDE=30°,∴EJ=2EH=DJ=2x,HJ=x,DE===(+)x,∵DH=a=HJ+DJ,∴x+2x=a,∴x=(﹣)a,∴DE=(3﹣)a,∵AC﹣DE=6,∴2a﹣(3﹣)a=6,∴a=3(+1),∴CE=CH+EH=a+(﹣)a=(﹣)a=(﹣)×3(+1)=6.。

八年级数学上册 期中精选试卷综合测试卷(word含答案)

八年级数学上册 期中精选试卷综合测试卷(word含答案)

八年级数学上册期中精选试卷综合测试卷(word含答案)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.【解析】【分析】(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到EF=FG,最后求三角形的周长即可.【详解】解答:(1)解:如图1,延长FD到G,使得DG=DC在△ABE和△ADG中,∵DC DGB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,在△AEB与△CGB中,∵AE CGA BOG AF BF=⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△CGB(SAS),∴BE=BG,∠ABE=∠CBG.∵∠EBF=45°,∠ABC=90°,∴∠ABE+∠CBF=45°,∴∠CBF+∠CBG=45°.在△EBF与△GBF中,∵BE BGEBF GBF BF BF=⎧⎪∠=∠⎨⎪=⎩,∴△EBF≌△GBF(SAS),∴EF=GF,∴△DEF的周长=EF+ED+CF=AE+CF+DE+DF=AD+CD=10.【点睛】本题主要考查了三角形全等的判定和性质,灵活运用全等三角形的性质和判定是解答本题的关键.但本题分为三问,难度不断增加,对提升思维能力大有好处.2.如图1,等腰△ABC中,AC=BC=42∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.(1) 求证:△ACD≌△BCE;(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.(3) 连接OE,直接写出线段OE的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯=⨯=,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-3.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F(1) 如图1,直接写出AB与CE的位置关系(2) 如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK【答案】(1)AB⊥CE;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A ,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB ⊥CE. (2)延长HK 于DE 交于H ,易得△ACD 为等腰直角三角形,∠ADC=45°,易得DH=DE ,然后证明△DGH ≌△DGE ,所以∠H=∠E ,则∠H=∠B ,可得HK=BK.【详解】解:(1)∵Rt △ABC ≌Rt △CED ,∴∠ECD=∠A ,∠B=∠E ,BC=DE ,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB ⊥CE(2)在Rt △ACD 中,AC=CD ,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH =DB ,∴CH+CD=DB+CD ,即HD=BC ,∴DH=DE ,在△DGH 和△DGE 中,DH=DE HDG=EDG=45DG=DG ⎧⎪∠∠⎨⎪⎩∴△DGH ≌△DGE (SAS )∴∠H=∠E又∵∠B=∠E∴∠H=∠B ,∴HK=BK【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.4.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC =B C ∴∠=∠,60DF DE ADB =∠=︒,且E 与A 重合,ADF ∴∆是等边三角形60ADF AFD ∴∠=∠=︒120AFB ADC ∴∠=∠=︒在ABF ∆和ACD ∆中AFB ADC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD ∴∆∆≌BF DC ∴=②如图2,过点A 做AG ∥EF 交BC 于点G ,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,BF CD BF BG GF AE∴+=+===-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.5.在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等【解析】【分析】(1)根据OA=OE 即可解决问题.(2)根据ASA 证明三角形全等即可解决问题.(2)设运动的时间为t 秒,分三种情况讨论:当点P 、Q 分别在y 轴、x 轴上时;当点P 、Q 都在y 轴上时;当点P 在x 轴上,Q 在y 轴时若二者都没有提前停止,当点Q 提前停止时;列方程即可得到结论.【详解】(1)∵A (0,5),∴OE =OA =5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t =174(秒), ③当点P 在x 轴上,Q 在y 轴上时,若二者都没有提前停止,则PO =QO 得:t ﹣5=3t ﹣12,解得t =72(秒)不合题意; 当点Q 运动到点E 提前停止时,有t ﹣5=5,解得t =10(秒),综上所述:当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等. 【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.二、八年级数学 轴对称解答题压轴题(难)6.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度(2)若2ACB B ∠=∠,①求证:2AB CF =②若 ,CF a EF b ==,直接写出BD CD= (用含 ,a b 的式子表示)【答案】(1)34;(2)①见详解;②2b a b- 【解析】【分析】 (1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出AH AE a b BC BE a b-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,∴180962856ACB ∠=︒-︒-︒=︒,∵CE 为三角形的角平分线,∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒,∴966234BAD ∠=︒-︒=︒.故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠∴B BCE ∠=∠∴BE CE =过点A 作//AH BC 交CE 与点H ,如图所示:则,H BCE ACE EAH B ∠=∠=∠∠=∠∴AH=AC ,H EAH ∠=∠∴AE=HE∵AD CE ⊥∴HF=CF∴AB=HC=2CF ;②在AHF △和DCF 中,H DCF HF CFAFH DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF ≅∴AH=DC∵,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+∵ //AH BC ∴AH AE a b BC BE a b -==+ ∴CD a b BC a b -=+ ∴2BD b CD a b=-. 故答案为:2b a b -. 【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.7.已知△ABC .(1)在图 中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图 ,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩,∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.8.如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E .(1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE ,BE ,CE 之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE +AE =BE .【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC =AD ,∠PAC =∠PAD=20°,根据等边三角形的性质可得AC =AB ,∠BAC =60°,即可得AB =AD ,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°. ∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中,AB ACBAM CAEAM AE=⎧⎪∠=∠⎨⎪=⎩,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE转化到BE 上,再证明CE=BM即可得结论.9.八年级的小明同学通到这样一道数学题目:△ABC为边长为4的等边三角形,E是边AB 边上任意一动点,点D在CB的延长线上,且满足AE=BD.(1)如图①,当点E为AB的中点时,DE=;(2)如图②,点E在运动过程中,DE与EC满足什么数量关系?请说明理由;(3)如图③,F是AC的中点,连接EF.在AB边上是否存在点E,使得DE+EF值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)32)DE=CE,理由见解析;(3)这个最小值为7;【解析】【分析】(1)如图①,过点E作EH⊥BC于H,由等边三角形的性质可得BE=DB=AE=2,由直角三角形的性质可求BH=1,EH3=(2)如图②,过E作EF∥BC交AC于F,可证△AEF是等边三角形,AE=EF=AF=BD,由“SAS”可证△DBE≌△EFC,可得DE=CE;(3)如图③,将△ABC沿AB翻折得到△ABC',连接C'F交AB于点E',连接CE',DE',过点F作FH⊥AC'于点H,由“SAS”可证△ACE'≌△AC'E',可得C'E'=CE',可得当点C',点E',点F三点共线时,DE+EF的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E作EH⊥BC于H,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=BH 3=,∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23.故答案为:23;(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=AH 3=,∴C 'H =4+1=5,∴C 'F 22'253C H HF =+=+=27,∴DE +EF 的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.10.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==,3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.(1)你能求出(a ﹣1)(a 99+a 98+a 97+…+a 2+a +1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a ﹣1)(a +1)= ;(a ﹣1)(a 2+a +1)= ;(a ﹣1)(a 3+a 2+a +1)= ;…由此我们可以得到:(a ﹣1)(a 99+a 98+…+a +1)= .(2)利用(1)的结论,完成下面的计算:2199+2198+2197+…+22+2+1.【答案】(1)21a -,31a -,41a -,1001a -(2)20021-【解析】【分析】根据简单的多项式运算推出同类复杂多项式运算结果的一般规律,然后根据找出的规律进行解决较难的运算问题.【详解】解:(1)21a - 31a - 41a - 1001a -(2)1991981972222221+++⋅⋅⋅++=()21- ⨯(1991981972222221+++⋅⋅⋅++)=20021-.【点睛】考查了学生的基础运算能力和对同一类运算问题计算结果的一般规律性洞察力.12.数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片边长为a 的正方形,B 中纸片是边长为b 的正方形,C 种纸片是长为a 、宽为b 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请问两种不同的方法求图2大正方形的面积.方法1:s =____________________;方法2:s =________________________; (2)观察图2,请你写出下列三个代数式:()222,,a b a b ab ++之间的等量关系. _______________________________________________________;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,11a b a b +=+=,求ab 的值;②已知()()22202020195a a -+-=,则()()20202019a a --的值是____. 【答案】(1)()2a b +,222a ab b ++;(2)()2222a b a ab b +=++;(3)①7ab =,②2-【解析】【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b )2,a 2+b 2,ab 之间的等量关系;(3)①依据a+b=5,可得(a+b )2=25,进而得出a 2+b 2+2ab=25,再根据a 2+b 2=11,即可得到ab=7;②设2020-a=x ,a-2019=y ,即可得到x+y=1,x 2+y 2=5,依据(x+y )2=x 2+2xy+y 2,即可得出xy=()222()2x y x y +-+=2-,进而得到()()20202019a a --=2-. 【详解】 解:(1)图2大正方形的面积=()2a b +,图2大正方形的面积=222a ab b ++故答案为:()2a b +,222a ab b ++;(2)由题可得()2a b +,22a b +,ab 之间的等量关系为:()2222a b a ab b +=++故答案为:()2222a b a ab b +=++;(3)①()()2222a b a b ab +-+=2251114ab ∴=-=7ab ∴=②设2020-a=x ,a-2019=y ,则x+y=1,∵()()22202020195a a -+-=,∴x 2+y 2=5,∵(x+y )2=x 2+2xy+y 2, ∴xy=()222()2x y x y +-+=-2, 即()()202020192a a --=-.【点睛】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键.13.观察下列等式:22()()a b a b a b -=-+3322()()a b a b a ab b -=-++443223()()a b a b a a b ab b -=-+++55432234()()a b a b a a b a b ab b -=-++++完成下列问题:(1)n n a b -=___________(2)636261322222221+++⋯⋯++++= (结果用幂表示).(3)已知4,1a b ab -==,求33a b -.【答案】(1)(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)264-1;(3)76.【解析】【分析】(1)根据规律可得结果(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)利用(1)得出的规律先计算(2-1)63626132(2222221+++⋯⋯++++)即可得出结果;(3)利用(1)得出的规律变形,再用完全平方公式进行变形,变成只含a-b 及ab 的形式,整体代入计算即可得到结果.【详解】解:(1)()()22a b a b a b -=-+,()()3322a b a b a ab b -=-++,()()443223a b a b a a b ab b -=-+++, ()()55432234a b a b a a b a b ab b -=-++++, 由此规律可得:a n -b n =(a-b )(a n-1+a n-2b+…+ab n-2+b n-1),故答案是:(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)由(1)的规律可得(2-1)()636261322222221+++⋯⋯++++=264-1, ∴636261322222221+++⋯⋯++++=264-1.故答案是:264-1.(3)已知4,1a b ab -==,求33a b -.()()3322a b a b a ab b -=-++=()() [a b a b --2+3 a b ]∴33a b -=24431⨯+⨯()=76. 故答案是:76.【点睛】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.14.阅读下列因式分解的过程,再回答所提出的问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x +x (x +1)+x (x +1)2+…+ x (x +1)2004,则需应用上述方法 次,结果是 .(3)分解因式:1+x +x (x +1)+x (x +1)2+…+ x (x +1)n (n 为正整数).【答案】(1)提公因式,两次;(2)2004次,(x +1)2005;(3) (x +1)1n +【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x ),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,=(1+x )[1+x+x (1+x )+…+ x (x +1)2003]⋯=22003(1)(1)(1)(1)(1)x x x x x +++++个=(1+x )2005,故分解1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x (x+1)+x (x+1)2…+x (x+1)n (n 为正整数)的结果是:(x+1)n+1.故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.15.探究题:观察下列式子:(x 2-1)÷(x -1)=x +1;(x 3-1)÷(x -1)=x 2+x +1;(x 4-1)÷(x -1)=x 3+x 2+x +1;(x 5-1)÷(x -1)=x 4+x 3+x 2+x +1;(1)你能得到一般情况下(1)(1)n x x -÷-的结果吗?(n 为正整数)(2)根据(1)的结果计算:1+2+22+23+24+…+262+263.【答案】(1)12n n x x --++…+1;(2)6421-. 【解析】【分析】(1)根据已知的式子可得到的式子是关于x 的一个式子,最高次数是n-1,共有n 项; (2)把2当作x ,即可把所求的式子看成是两个二项式的商的形式,逆用(1)的结果即可求解.【详解】由题意可得:(1)()()1211n n n x x x x ---÷-=++ (1)(2)()()234626364641222222212121+++++⋯++=-÷-=-. 【点睛】 考查了多项式与多项式的除法,观察所给式子,发现运算规律是解题的关键.四、八年级数学分式解答题压轴题(难)16.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成. 据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】规定期限20天;方案(3)最节省【解析】【分析】设这项工程的工期是x 天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x 天完成,则有:415x x x +=+, 解得x=20.经检验得出x=20是原方程的解;答:规定期限20天.方案(1):20×1.5=30(万元)方案(2):25×1.1=27.5(万元 ),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.17.阅读理解:把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将2131x x --表示成部分分式?设分式2131x x --=11m n x x +-+,将等式的右边通分得:(1)(1)(1)(1)m x n x x x ++-+-=()(1)(1)m n x m n x x ++-+-,由2131x x --= ()(1)(1)m n x m n x x ++-+-得:31m n m n +=-⎧⎨-=⎩,解得:12m n =-⎧⎨=-⎩,所以2131x x --=1211x x --+-+. (1)把分式1(2)(5)x x --表示成部分分式,即1(2)(5)x x --=25m n x x +--,则m = ,n = ;(2)请用上述方法将分式43(21)(2)x x x -+-表示成部分分式. 【答案】(1)13-,13;(2)21212x x ++-. 【解析】【分析】仿照例子通分合并后,根据分子的对应项的系数相等,列二元一次方程组求解.【详解】解:(1)∵()()()522525m n x m n m n x x x x +--+=----, ∴0521m n m n +=⎧⎨--=⎩, 解得:1313m n ⎧=-⎪⎪⎨⎪=⎪⎩. (2)设分式()()43212x x x -+-=212m n x x ++-将等式的右边通分得:()()()()221212m x n x x x -+++-=()()()22212m n x m n x x +-++-, 由()()43212x x x -+-=()()()22212m n x m n x x +-++-,得2423m n m n +=⎧⎨-+=-⎩, 解得21m n =⎧⎨=⎩. 所以()()43212x x x -+-=21212x x ++-.18.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽 新能源EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续 航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费, 并求出与燃油车相同里程下的所需费用(油电)百分比.【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%【解析】【分析】(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.【详解】解:(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:300x :3000.6x+ =4:1, 解得:x=0.2, ∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.(2)依题可得新能源汽车400公里所需费用为:0.48×55=26.4(元),∴新能源汽车每公里所需电电费为:26.4÷400=0.066(元/公里),依题可得燃油汽车400公里所需费用为:400×0.8=320(元),∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:26.4÷320=0.0825=8.25%.答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.【点睛】本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.19.观察下列各式:111121212==-⨯,111162323==-⨯,1111123434==-⨯,1111204545==-⨯,1111305656==-⨯,…()1请你根据上面各式的规律,写出符合该规律的一道等式:________()2请利用上述规律计算:()1111...1223341n n ++++=⨯⨯⨯+________ (用含有n 的式子表示) ()3请利用上述规律解方程:()()()()111121111x x x x x x x ++=---++. 【答案】1111426767==-⨯ 1n n + 【解析】【分析】 根据阅读材料,总结出规律,然后利用规律变形计算即可求解.【详解】解:()11111(426767==-⨯答案不唯一); 故答案为1111426767==-⨯; ()2原式1n n =+; 故答案为1n n + ()3分式方程整理得:111111121111x x x x x x x -+-+-=---++, 即1221x x =-+, 方程两边同时乘()()21x x --,得()122x x +=-,解得:5x =,经检验,5x =是原分式方程的解.【点睛】此题主要考查了阅读理解型的规律探索题,利用分数和分式的性质,把分式进行变形是解题关键.20.八年级某同学在“五一”小长假中,随父母驾车去蜀南竹海观光旅游.去时走高等级公路,全程90千米;返回时,走高速公路,全程120千米.返回时的平均速度是去时平均速度的1.6倍,所用时间比去时少用了18分钟.求返回时的平均速度是多少千米每小时?【答案】 返回时的平均速度是80千米/小时.【解析】分析:根据题意,设去时的平均速度是x 千米/小时,找到等量关系:返回时所用时间比去时少用了18分钟,列分式方程求解即可.详解:设去时的平均速度是x 千米/小时.由题:90120181.660x x =+ 解得:50x = 检验:50x =是原方程的解.并且,当50x =时,1.680x =,符合题意.答:返回时的平均速度是80千米/小时.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,根据等量关系列方程解答.五、八年级数学三角形解答题压轴题(难)21.(1)如图1,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,①写出图中一对全等的三角形,并写出它们的所有对应角;②设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)③∠A 与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.(2)如图2,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 外部时,∠A 与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A 与∠1、∠2的数量关系;如果不发生变化,请说明理由.【答案】(1)①△EAD ≌△EA ′D ,其中∠EAD =∠EA ′D ,∠AED =∠A ′ED ,∠ADE =∠A ′DE ;②∠1=180°−2x ,∠2=180°−2y ; ③∠A=12(∠1+∠2);(2)变化,∠A=12(∠2-∠1),见详解【解析】【分析】(1)①根据翻折方法可得△ADE ≌△A ′DE ;②根据翻折方法可得∠AEA ′=2x ,∠ADA ′=2y ,再根据平角定义可得∠1=180°-2x ,∠2=180°-2y ;③首先由∠1=180°-2x ,2=180°-2y ,可得x=90-12∠1,y=90-12∠2,再根据三角形内角和定理可得∠A=180°-x-y ,再利用等量代换可得∠A=12(∠1+∠2);。

八年级上册数学期中综合测试卷(含答案)

八年级上册数学期中综合测试卷(含答案)

八年级上册数学期中综合测试卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下面四个图形中,属于轴对称图形的是()A B C D2.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.93.如图,<B=35°,CD为AB的垂直平分线,则∠ACE=()A.55°B.60°C.70°D.80°4.等腰三角形的周长为13cm,其中一边长为3cm.则该等腰三角形的底长为()A.3cm或5cm B.3cm或7cm C.3cm D.5cm5.如图,E为∠BAC平分线AP上一点,AB=4,△ABE的面积为12,则点E到直线AC的距离为()A.3B.4C.5D.6 6.如图,在五边形ABCDE中,对角线AC=AD,AB=DE,BC= EA,<CAD=65°,<B =110°,则/BAE的大小是()A.135°B.125°C.115°D.105°7.如图,已知△OAB≌△OCD,若OA=4,∠AOB =35°,∠OCA =62°,则下列结论不一定正确的是( )A.∠BDO= 62°B.∠ BOC=21°C.OC=4D.CD//OA8.如图,直线l,m相交于点O,P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.79.如图,AD是△ABC的中线,∠1=2∠2,CE⊥AD,BF⊥AD,点E、F为垂足,EF=6cm,则BC的长为()A.6cmB.12cmC.18cmD.24 cm10.如图,△ABC是等边三角形,F、G分别为AC和BC的中点,D在线段BG上,连接DF,以DF为边作等边△DFE,ED的延长线交AB于H,连接EC,BF,则以下结论:①BF⊥AC;②∠AHD+∠AFD=180°;③∠BCE=60°;④当D在线段BG上(不与G点重合)运动时,DC=FC+CE.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.点A(3,-2)关于x轴对称的点的坐标是。

陕西省咸阳市秦都中学2024—2025学年八年级上学期11月期中数学试题(含答案)

陕西省咸阳市秦都中学2024—2025学年八年级上学期11月期中数学试题(含答案)

2024~2025学年度第一学期期中调研试题(卷)八年级数学注意事项:1.本试卷共6页,满分120分,时间120分钟,学生直接在试题上答卷;2.答卷前将装订线内的项目填写清楚.一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列四个实数中,是无理数的为()A.0B.C.D.2.下列各组数据,是勾股数的是()A.B.C.D.3.化简正确的是()A.5B.C.D.4.将直线向上平移2个单位长度,则平移后的直线为()A.B.C.D.5.下列说法正确的是()A.-27的立方根是3B.C.4的算术平方根是2D.1的平方根是16.已知,则直线的图象是下列选项中的()A.B.C.D.7.如图,分别以的三边为斜边向外作,,,且,这三个直角三角形的面积分别为,且,则()A.25B.C.30D.358.在物理实验探究课上,小明利用滑轮组及相关器材进行实验,不计绳重和摩擦,他把得到的拉力和所悬挂重物的重力的几组数据用电脑绘制成如图所示的图象,请你根据图象判断以下结论错误的是()A.当拉力时,物体的重力B.拉力随着重物重力的增加而增大C.拉力与重力成正比例函数关系D.当滑轮组不挂重物时,所用拉力为0.5N二、填空题(共5小题,每小题3分,计15分)9.若,写出一个满足条件的的值为_________.(写出一个即可)10.在中,,若,则的长为_________.11.若一次函数的图象经过点和点,则的大小关系为(填“”“”或“”).12.在平面直角坐标系中,已知点和点关于轴对称,则的值是_________.13.如图,圆柱形杯子(无盖)的高为18cm,底面周长为24cm,已知蚂蚁在外壁处(距杯子上沿2cm )发现一滴蜂蜜在杯子内壁处(距杯子下沿4cm),则蚂蚁从处爬到处的最短距离(杯子厚度忽略不计)为_________cm.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)计算:.15.(5分)在平面直角坐标系中,已知点的坐标为,则点到坐标原点的距离是多少? 16.(5分)已知与成正比例,当时,.(1)求与之间的函数表达式;(2)请判断点是否在这个函数的图象上,并说明理由.17.(5分)在平面直角坐标系中,已知点,根据条件解决下列问题:(1)若点在轴上,求点的坐标;(2)若点在过点且与轴平行的直线上,求点的坐标.18.(5分)已知实数的平方根为,求实数的算术平方根和立方根.19.(5分)如图,在平面直角坐标系中,的三个顶点的坐标分别为,.(1)作出关于轴对称的,点的对应点分别为点;(2)在(1)的条件下,写出点的坐标。

人教版八年级上学期期中考试数学试卷共五套(含详细答案解析)

人教版八年级上学期期中考试数学试卷共五套(含详细答案解析)

人教版八年级上学期期中考试数学试卷(一)一、选择题(每题3分,满分24分)1.以下五家银行行标中,是轴对称图形的有()A.1个B.2个C.3个D.4个2.下列图形与如图全等的图形是()A.B.C.D.3.以下各组线段长为边,能组成直角三角形的是()A.1,4,4 B.1,2,3 C.9,12,15 D.4,5,64.等腰三角形有一个内角为80°,则它的顶角为()A.80°B.20°C.80°或20°D.不能确定5.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD 的周长为()A.12cm B.10cm C.8cm D.6cm6.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF7.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP8.如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A.72 B.90 C.108 D.144二、填空题(每题3分,满分24分)9.写出一个你熟悉的轴对称图形的名称:.10.如果△ABC≌△DEC,∠B=60°,∠C=40°,那么∠E= °.11.已知等腰三角形的两条边长分别为3和7,那么它的周长等于.12.已知三角形三边长分别是6,8,10,则此三角形的面积为.13.如图,从电线杆离地面9m处向地面拉一条长15m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有m.14.如图,OD=OC,要使△AOD≌△BOC,需添加的一个条件是(添一个条件即可)15.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是.16.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.三、解答题(本大题共11题,满分102分)17.分别在下列各图中补一个小正方形,使它成为轴对称图形(不能重复).18.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定P点的位置.19.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.20.两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.21.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?22.如图,△ABC是等边三角形,D为AC边上的一点,且∠1=∠2,BD=CE.(1)图中有全等的三角形吗?请找出来并证明;(2)判断△ADE的形状,并说明理由.23.如图,有一个三角形花圃,∠C=90°,AC=20m,BC=10m,两个人同时从点B 处出发,以相同速度沿着花圃四周散步,一个沿着BD,DA方向走,另一个沿着BC,CA方向走,结果他们在点A处首次相遇,你能据此求出AD的长吗?试试看.24.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?25.新园小区有一块直角三角形绿地,量得两直角边长分别BC=6m,AC=8m,现在要将绿地扩充成等腰三角形,且扩充部分是以AC为直角边的直角三角形,求扩充后整个等腰三角形绿地的面积.(要求画出简单的示意图,标明数据,写出过程,图2,图3备用)26.如图1,在△ABC中,AB=AC,点D关于直线AE的对称点为F,∠BAC=2∠DAE=2α.(1)求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.参考答案与试题解析一、选择题(每题3分,满分24分)1.以下五家银行行标中,是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.【解答】解:第一、二、三个图形是轴对称图形,第四、五个图形不是轴对称图形,故选:C.2.下列图形与如图全等的图形是()A.B.C.D.【考点】K9:全等图形.【分析】能够完全重合的两个图形叫做全等形,据此解答.【解答】解:由全等形的概念可知:A,B,C与左图完全不同,只是D的位置发生了变化.故选D.3.以下各组线段长为边,能组成直角三角形的是()A.1,4,4 B.1,2,3 C.9,12,15 D.4,5,6【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.【解答】解:A、12+42≠42,不符合勾股定理的逆定理,不能组成直角三角形,故错误;B、12+22≠32,不符合勾股定理的逆定理,不能组成直角三角形,故错误;C、92+122=152,符合勾股定理的逆定理,能组成直角三角形,故正确;D、42+52≠62,不符合勾股定理的逆定理,不能组成直角三角形,故错误.故选C4.等腰三角形有一个内角为80°,则它的顶角为()A.80°B.20°C.80°或20°D.不能确定【考点】KH:等腰三角形的性质.【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选C.5.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD 的周长为()A.12cm B.10cm C.8cm D.6cm【考点】KG:线段垂直平分线的性质.【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.【解答】解:∵l垂直平分BC,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm.故选D.6.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】KB:全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.7.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【考点】KF:角平分线的性质.【分析】本题要从已知条件OP平分∠AOB入手,利用角平分线的性质,对各选项逐个验证,选项D是错误的,虽然垂直,但不一定平分OP.【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选D.8.如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A.72 B.90 C.108 D.144【考点】PB:翻折变换(折叠问题).【分析】由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,可得出△ABD≌△C′DB,利用全等三角形的对应角相等得到∠C′BD=∠ADB,利用等角对等边得到EB=ED,再由一对直角相等,一对对顶角相等,利用AAS得到△ABE ≌△C′DE,利用全等三角形的对应边相等得到AE=C′E,设AE=C′E=xcm,则有ED=AD﹣AE=(24﹣x)cm,在直角三角形ABE中,利用勾股定理列出关于x的方程,求出方程的解得到x 的值,确定出ED的长,三角形BED的面积以ED为底,AB为高,求出即可.【解答】解:由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,∴△ABD≌△C′DB,∴∠C′BD=∠ADB,∴EB=DE,在△ABE和△C′DE中,,∴△ABE≌△C′DE(AAS),∴AE=C′E,设AE=C′E=xcm,则有ED=AD﹣AE=(24﹣x)cm,在Rt△ABE中,根据勾股定理得:AB2+AE2=BE2,即122+x2=(24﹣x)2,解得:x=9,∴AE=9cm,ED=15cm,=ED•AB=×15×12=90(cm2).则S△BED故选B二、填空题(每题3分,满分24分)9.写出一个你熟悉的轴对称图形的名称:圆、矩形.【考点】P3:轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:结合所学过的图形的性质,则有线段,等腰三角形,矩形,菱形,正方形,圆等.故答案为:圆、矩形等.10.如果△ABC≌△DEC,∠B=60°,∠C=40°,那么∠E= 60 °.【考点】KA:全等三角形的性质.【分析】根据全等三角形的性质得出∠E=∠B,代入求出即可.【解答】解:∵△ABC≌△DEC,∠B=60°,∠C=40°,∴∠E=∠B=60°,故答案为:60.11.已知等腰三角形的两条边长分别为3和7,那么它的周长等于17 .【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.12.已知三角形三边长分别是6,8,10,则此三角形的面积为24 .【考点】KS:勾股定理的逆定理.【分析】根据三角形三边长,利用勾股定理逆定理求证此三角形是直角三角形,然后即可求得面积.∴此三角形为直角三角形,∴此三角形的面积为:×6×8=24.故答案为:24.13.如图,从电线杆离地面9m处向地面拉一条长15m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有12 m.【考点】KU:勾股定理的应用.【分析】根据题意得出在Rt△ABC中,BC=,进而求出即可.【解答】解:如图所示:由题意可得,AB=9m,AC=15m,在Rt△ABC中,BC===12(m),即:这条缆绳在地面的固定点距离电线杆底部12m.故答案是:12.14.如图,OD=OC,要使△AOD≌△BOC,需添加的一个条件是∠D=∠C (添一个条件即可)【考点】KB:全等三角形的判定.【分析】添加∠D=∠C可利用ASA判定△AOD≌△BOC.∵在△AOD和△BOC中,∴△AOD≌△BOC(ASA),故答案为:∠D=∠C.15.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是25 .【考点】KV:平面展开﹣最短路径问题.【分析】要求正方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.【解答】解:如图:(1)AB===25;(2)AB===5;(3)AB===5.所以需要爬行的最短距离是25.16.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= 2 cm.【考点】KF:角平分线的性质.【分析】过点D,作DF⊥BC,垂足为点F,根据BD是∠ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得△BDC与△BDA的面积之比,再求出△BDA的面积,进而求出DE.【解答】解:如图,过点D,作DF⊥BC,垂足为点F∵BD是∠ABC的角平分线,DE⊥AB,∴DE=DF∵△ABC的面积是30cm2,AB=18cm,BC=12cm,=•DE•AB+•DF•BC,即×18×DE+×12×DE=30,∴S△ABC∴DE=2(cm).故填2.三、解答题(本大题共11题,满分102分)17.分别在下列各图中补一个小正方形,使它成为轴对称图形(不能重复).【考点】P8:利用轴对称设计图案.【分析】根据轴对称的性质画出图形即可.【解答】解:如图所示.18.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定P点的位置.【考点】N4:作图—应用与设计作图.【分析】画出两条公路夹角的平分线和张、李两村之间线段的垂直平分线,交点即是所求.【解答】解:(1)画出角平分线;(2)作出垂直平分线.交点P即满足条件.19.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.【考点】KD:全等三角形的判定与性质.【分析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.【解答】证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.20.两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.【考点】KD:全等三角形的判定与性质.【分析】分别利用SSS,SAS求证△ABC≌△ADC,△ABO≌△ADO,从而得出OB=OD,AC⊥BD,筝形的面积公式可用△ABC的面积与△ACD的面积和求得.【解答】(1)证明:①在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC.②∵△ABC≌△ADC,∴∠BAO=∠DAO.∵AB=AD,OA=OA,∴△ABO≌△ADO.∴OB=OD,AC⊥BD.(2)解:筝形ABCD的面积=△ABC的面积+△ACD的面积=×AC×BO+×AC×DO,=×AC×(BO+DO),=×AC×BD,=×6×4,=12.21.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?【考点】KU:勾股定理的应用;KS:勾股定理的逆定理.【分析】连接AC,先根据勾股定理求出AC的长,然后利用勾股定理的逆定理证明△ACD为直角三角形.从而用求和的方法求面积,也可得出需要的费用.【解答】解:连接AC,则由勾股定理得AC=5m,∵AC2+DC2=AD2,∴∠ACD=90°.这块草坪的面积=SRt△ABC +SRt△ACD=AB•BC+AC•DC=(3×4+5×12)=36m2.故需要的费用为36×100=3600元.答:铺满这块空地共需花费3600元.22.如图,△ABC是等边三角形,D为AC边上的一点,且∠1=∠2,BD=CE.(1)图中有全等的三角形吗?请找出来并证明;(2)判断△ADE的形状,并说明理由.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)△ABD和△ACE是全等三角形,利用SAS即可证明;(2)根据△ABD≌△ACE得到AD=AE,∠CAE=∠BAD,即可判定出△ADE的形状.【解答】解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)△ADE是等边三角形理由:∵△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD=60°,∴△ADE是等边三角形.23.如图,有一个三角形花圃,∠C=90°,AC=20m,BC=10m,两个人同时从点B 处出发,以相同速度沿着花圃四周散步,一个沿着BD,DA方向走,另一个沿着BC,CA方向走,结果他们在点A处首次相遇,你能据此求出AD的长吗?试试看.【考点】KU:勾股定理的应用.【分析】设BD=x,AD=y,再由BD+AD=BC+AC及勾股定理列出关于x、y的方程组,求出y的值即可.【解答】解:设BD=x,AD=y,∵BD+AD=BC+AC,AC2+CD2=AD2,AC=20m,BC=10m,∴,解得y=25m,即AD=25m.24.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【考点】KD:全等三角形的判定与性质;KJ:等腰三角形的判定与性质;KW:等腰直角三角形.【分析】(1)由SAS可得△BDE≌△CEF,得出DE=EF,第一问可求解;(2)由(1)中的全等得出∠BDE=∠CEF,再由角之间的转化,从而可求解∠DEF 的大小;(3)由于AB=AC,∴∠B=∠C≠90°=∠DEF,所以其不可能是等腰直角三角形.【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=.(3)解:△DEF不可能是等腰直角三角形.∵AB=AC,∴∠B=∠C≠90°∴∠DEF=∠B≠90°,∴△DEF不可能是等腰直角三角形.25.新园小区有一块直角三角形绿地,量得两直角边长分别BC=6m,AC=8m,现在要将绿地扩充成等腰三角形,且扩充部分是以AC为直角边的直角三角形,求扩充后整个等腰三角形绿地的面积.(要求画出简单的示意图,标明数据,写出过程,图2,图3备用)【考点】KU:勾股定理的应用;KH:等腰三角形的性质.【分析】根据勾股定理求出斜边AB,(1)当AB=AD时,求出CD即可;(2)当AB=BD 时,求出CD、AD即可;(3)当DA=DB时,设AD=x,则CD=x﹣6,求出即可.【解答】解:在Rt△ABC中,∵∠ACB=90°,AC=8m,BC=6m,∴AB=10m,(1)如图1,当AB=AD时,CD=6m,则△ABD的面积为:BD•AC=×(6+6)×8=48(m2);(2)如图2,当AB=BD时,CD=4m,则△ABD的面积为:BD•AC=×(6+4)×8=40(m2);(3)如图3,当DA=DB时,设AD=x,则CD=x﹣6,则x2=(x﹣6)2+82,∴x=,则△ABD的面积为:BD•AC=××8=(m2);答:扩充后等腰三角形绿地的面积是48m2或40m2或m2.26.如图1,在△ABC中,AB=AC,点D关于直线AE的对称点为F,∠BAC=2∠DAE=2α.(1)求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.【考点】KY:三角形综合题;KD:全等三角形的判定与性质.【分析】(1)根据轴对称的性质,可得EF=DE,AF=AD,∠DAE=∠EAF=α,再利用等式的性质,判断出∠BAD=∠CAF,然后利用“边角边”证明△ABD≌△ACF;(2)根据(1)得出的全等三角形对应边相等,可得CF=BD,根据全等三角形对应角相等,可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理证明即可;(3)结合(1)、(2)的方法即可判断出等式DE2=BD2+CE2还成立.【解答】解:(1)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∠DAE=∠EAF=α,∴∠CAE+∠CAF=α,∵∠BAC=2∠DAE=2α,∴∠BAD+∠CAE=∠BAC﹣∠DAE=α,∴∠BAD=∠CAF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS);(2)由(1)知,△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,∴DE2=BD2+CE2;(3)等式DE2=BD2+CE2还成立.理由:如图,∵∠BAC=2∠DAE=2α,∴∠DAE=α,∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∠DAE=∠EAF=α,∴∠CAF=∠EAF+∠CAE=α+∠CAE,∴∠BAD=∠BAC﹣∠DAC=2α﹣∠DAC=2α﹣(∠DAE﹣∠CAE)=2α﹣(α﹣∠CAE)=α+∠CAE,∴∠BAD=∠CAF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,∴DE2=BD2+CE2,人教版八年级上学期期中考试数学试卷(二)一、选择题:本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项符合题目要求.1.分式的值不存在,则x的取值是()A.x=﹣2 B.x=2 C.x=﹣3 D.x=32.要使分式的值等于0,则x的取值是()A.x=4 B.x=﹣4 C.x=3 D.x=﹣33.下列式子中,错误的事()A. =B. =C. =D. =4.下列分式:,,,中,是最简分式的有()A.1个B.2个C.3个D.4个5.下列式子中,是分式的是()A.B.C.D.2x+6.计算:()2的结果是()A. B. C.D.7.用科学记数法表示:0.000106是()A.1.06×10﹣4B.1.06×10﹣2C.10.6×10﹣4D.10.6×10﹣28.分式与的最简公分母是()A.6x4y2B.3x2y2C.18x4y2D.6x4y39.分式与的最简公分母是()A.2(x+2)(x﹣2)B.x2﹣4 C.2(2﹣x)D.(x2﹣4)(4﹣2x)10.下列各组的三条线段,能组成三角形的是()A.2,3,5 B.1,7,4 C.5,8,2 D.8,6,1011.在下列各图中,正确画出△ABC的边BC上的高的是()A.B.C.D.12.下列语句中,属于命题的事()A.作三角形的角平分线B.两个锐角一定互余吗?C.对顶角相等 D.好好学习13.如图,在△ABC中,∠A=60°,∠C=90°,CD是∠ACB的平分线,则∠BDC 等于()A.75°B.95°C.105°D.110°14.下列语句中,正确的事()A.一个命题一定有逆命题B.一个定理一定有逆定理C.命题真,它的逆命题也一定真D.命题假,它的逆命题也一定假15.如图,△ABC中,D,E分别是BC、AD的中点,则图中面积相等的三角形共有()A.2对B.3对C.4对D.5对二、填空题:本大题共5小题,每小题3分,共15分16.使分式有意义的x的取值范围是.17.等腰三角形有一个内角是50°,则其余两个角的度数为.18.把式子3x2y﹣3改写成分式的形式是.19.方程=的解是.20.如图,在△ABC中,∠B=35°,AD平分∠BAC,DE垂直平分AB,则∠C的度数等于度.三、解答题:本大题共6小题,满分60分,解答应写出文字说明、证明过程或演算步骤21.计算:(1)x+y+;(2)﹣.22.计算:(1)2x3y﹣3+4xy﹣1×(2x﹣2y2)3;(2)•÷;(3)()4•()3÷()5.23.先化简,再求值:(﹣)÷;其中,x=﹣1,y=﹣.24.如图,在△ABC中,AB=CB,∠ABC=90°,E为AB延长线上一点,点D在BC 上,且BE=BD,连接AD、DE、CE.(1)求证:△ABD≌△CBE;(2)若∠CAD=30°,求∠BEC的度数.25.如图,已知在△ABC中,∠ACB=90°,∠BAC=60°,AE是∠BAC的平分线,延长AC至点D,使CD=AC.(1)求证:DE=BE;(2)连接BD,判断△ABD的形状,并说明理由.26.为了建设“美丽乡村”,计划将某村的道路进行硬化,该工程若由甲工程队单独施工,则恰好能在规定的时间内完成;若由乙工程队单独施工,则完成工程所需天数是规定天数的2倍,若甲、乙两个工程队先合作施工20天,余下的工程再由甲工程队单独施工,则还须3天完成.(1)问这项工程规定完成的时间是多少天?(2)已知甲工程队每天的施工费用为8500元,乙工程队每天的施工费用为4500元,为缩短工期以减少对居民出行的影响,工程指挥部最终决定该工程由甲、乙两个工程队合作完成,则该工程的施工费用是多少?参考答案与试题解析一、选择题:本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项符合题目要求.1.分式的值不存在,则x的取值是()A.x=﹣2 B.x=2 C.x=﹣3 D.x=3【考点】64:分式的值.【分析】直接利用分是有意义的条件得出x的值,进而得出答案.【解答】解:∵分式的值不存在,∴2x﹣6=0,解得:x=3,则x的取值是:3.故选:D.2.要使分式的值等于0,则x的取值是()A.x=4 B.x=﹣4 C.x=3 D.x=﹣3【考点】63:分式的值为零的条件.【分析】直接利用分式的值为0,则分子为零,进而得出答案.【解答】解:∵要使分式的值等于0,∴x﹣4=0,解得:x=4.故选:A.3.下列式子中,错误的事()A. =B. =C. =D. =【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:A、分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,故A正确;B、分式的分子分母都乘以(或除以)不同的整式,分式的值改变,故B错误;C、分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变;故C 正确;D、分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,故D 正确;故选:B.4.下列分式:,,,中,是最简分式的有()A.1个B.2个C.3个D.4个【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:分式:,,,中,是最简分式的有:,是一共1个.故选:A.5.下列式子中,是分式的是()A.B.C.D.2x+【考点】61:分式的定义.【分析】分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式可得答案.【解答】解:根据分式的概念可得是分式;是单项式;,2x+是多项式;故选:B.6.计算:()2的结果是()A. B. C.D.【考点】6A:分式的乘除法.【分析】原式利用分式的乘方运算法则计算即可得到结果.【解答】解:原式=,故选C7.用科学记数法表示:0.000106是()A.1.06×10﹣4B.1.06×10﹣2C.10.6×10﹣4D.10.6×10﹣2【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000106=1.06×10﹣4,故选:A.8.分式与的最简公分母是()A.6x4y2B.3x2y2C.18x4y2D.6x4y3【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的最简公分母是6x4y3;故选D9.分式与的最简公分母是()A.2(x+2)(x﹣2)B.x2﹣4 C.2(2﹣x)D.(x2﹣4)(4﹣2x)【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的最简公分母是2(x+2)(x﹣2);故选A10.下列各组的三条线段,能组成三角形的是()A.2,3,5 B.1,7,4 C.5,8,2 D.8,6,10【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,针对每一个选项进行计算,可选出答案.【解答】解:A、∵3+2=5,∴以2,3,5为边长不能组成三角形,故本选项错误;B、∵1+4<7,∴以1,7,4为边长不能组成三角形,故本选项错误;C、∵5+2<8,∴以5,2,8为边长不能组成三角形,故本选项错误;D、∵6+8>10,∴以8,6,10为边长能组成三角形,故本选项正确.故选:D.11.在下列各图中,正确画出△ABC的边BC上的高的是()A.B.C.D.【考点】K2:三角形的角平分线、中线和高.【分析】过三角形的顶点向对边作垂线,顶点与垂足之间的线段叫做三角形的高,据此解答.【解答】解:由题可得,过点A作BC的垂线段,垂足为D,则AD是△ABC的边BC上的高,所以C选项符合题意,故选:C.12.下列语句中,属于命题的事()A.作三角形的角平分线B.两个锐角一定互余吗?C.对顶角相等 D.好好学习【考点】O1:命题与定理.【分析】分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.【解答】解:C是用语言可以判断真假的陈述句,是命题,A、B、D均不是可以判断真假的陈述句,都不是命题.故选C.13.如图,在△ABC中,∠A=60°,∠C=90°,CD是∠ACB的平分线,则∠BDC 等于()A.75°B.95°C.105°D.110°【考点】K7:三角形内角和定理.【分析】先根据角平分线的性质求出∠ACD的度数,再由三角形外角的性质即可得出结论.【解答】解:∵∠C=90°,CD是∠ACB的平分线,∴∠ACD=∠ACB=45°.∵∠A=60°,∴∠BDC=∠A+∠ACD=60°+45°=105°.故选C.14.下列语句中,正确的事()A.一个命题一定有逆命题B.一个定理一定有逆定理C.命题真,它的逆命题也一定真D.命题假,它的逆命题也一定假【考点】O1:命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.用逻辑的方法判断为正确的命题叫做定理.任何命题都有逆命题.【解答】解:A、所有的命题都有逆命题,正确;B、一个定理一定有一个逆命题,但不一定是定理,故错误;C、命题真,它的逆命题不一定为真,故错误;D、命题假,它的逆命题不一定为假,故错误,故选A.15.如图,△ABC中,D,E分别是BC、AD的中点,则图中面积相等的三角形共有()A.2对B.3对C.4对D.5对【考点】K3:三角形的面积.【分析】根据三角形的中线的性质解答即可.【解答】解:∵△ABC中,D,E分别是BC、AD的中点,根据三角形的中线把三角形分成面积相等的两部分,∴△ABD的面积=△ADC的面积,△ABE的面积=△BED的面积,△AEC的面积=△EDC的面积,故选B二、填空题:本大题共5小题,每小题3分,共15分16.使分式有意义的x的取值范围是x≠﹣3 .【考点】62:分式有意义的条件.【分析】分式有意义的条件是分母不为0.【解答】解:若分式有意义,则x+3≠0,解得:x≠﹣3.故答案为x≠﹣3.17.等腰三角形有一个内角是50°,则其余两个角的度数为50°80°,65°65°.【考点】KH:等腰三角形的性质;K7:三角形内角和定理.【分析】本题可根据三角形的内角和定理求解.由于50°角可能是顶角,也可。

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册《期中考试综合测试卷》测试题及参考答案

人教版八年级数学上册期中考试综合测试卷(时间:120 分钟,满分:120 分)一、选择题(本大题共10 小题,每小题3 分,共30 分.每小题给出的四个选项中,只有一项符合题目要求)1.某同学手里拿着长为3 和2 的两根木棍,想要找一根长为整数的木棍,用它们围成一个三角形,则他所找的这根木棍的长可以是( ).A.1,3,5B.1,2,3C.2,3,4D.3,4,52.下列四个图形:其中是轴对称图形,且对称轴的条数为2 的图形的个数是( ).A.1B.2C.3D.43.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,DE∥BC.若∠A=62°,∠AED=54°,则∠B 的大小为( ).A.54°B.62°C.64°D.74°4.在四边形ABCD 中,∠A=∠B=∠C,点E 在边AB 上,∠AED=60°,则一定有( ).A.∠ADE=20°B.∠ADE=30°C.∠ADE=1 ADCD.∠ADE=1ADC∠∠2 35.如图,AC 是线段BD 的垂直平分线,则图中全等三角形的对数是( ).A.1B.2C.3D.46.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于y 轴对称,则a+b 的值为( ).A.33B.-33C.-7D.77.如图,在△ABC 中,∠BAC=90°,∠C=30°,AD⊥BC 于点D,BE 是∠ABC 的平分线,且交AD 于点P, 交AC 于点E.如果AP=2,那么AC 的长为( ).A.8B.6C.4D.28.如图,已知AE=CF,∠AFD=∠CEB,添加下列一个条件后,仍无法判定△ADF≌△CBE 的是( ).A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC9.如图,A,B,C 三点在同一条直线上,∠A=52°,BD 是AE 的垂直平分线,垂足为点D,则∠EBC 的度数为( ).A.52°B.76°C.104°D.128°10.如图,过边长为1 的等边三角形ABC 的边AB 上的一点P 作PE⊥AC 于点E,Q 为BC 的延长线上一点.当PA=CQ 时,连接PQ 交AC 边于点D,则DE 的长为( ).A.13 B.12C.23D.不能确定二、填空题(本大题共6 小题,每小题4 分,共24 分)11.如图,在△ABC 中,AB=AC,∠A=36°,BD,CE 分别为∠ABC,∠ACB 的平分线,且相交于点O,则图中等腰三角形共有个.12.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC= 度.13.如图,在Rt△ABC 中,∠BAC=90°,∠B=30°,BC=8,AD⊥BC 于点D,则DC= .14.如图,在4×4 的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= .15.已知等腰三角形的两边长a,b 满足|a-b-2|+ 2�-3�-1=0,则此等腰三角形的周长为.16.如图,在△ABC 中,∠B=90°,AC=DC,∠D=15°,AB=18 cm,则CD 的长为cm.三、解答题(本大题共8 小题,共66 分)17.(6 分)如图,已知△ABC.(1)画出BC 边上的高AD 和中线AE;(2)若∠B=30°,∠ACB=130°,求∠BAD 和∠CAD 的度数.18.(6 分)△ABC 在平面直角坐标系中如图所示,其中点A,B,C 的坐标分别为(-2,1),(-4,5),(-5,2).(1)作△ABC 关于直线l:x=-1 对称的△A1B1C1,其中点A,B,C 的对应点分别为A1,B1,C1;(2)写出点A1,B1,C1 的坐标.19.(6 分)如图,点C,F,E,B 在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE.写出CD 与AB 之间的关系, 并证明你的结论.20.(8 分)两个大小不同的等腰直角三角尺按如图①所示放置,图②是由它抽象出的几何图形,点B,C,E 在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.21.(8 分)如图,在△ABC 中,AB=AC,点D,E 分别在AC,AB 上,BD=BC,AD=DE=BE,求∠A 的度数.22.(8 分)如图,已知D,E,F 分别是△ABC 三边上的点,BF=CE,且△DBF 和△DCE 的面积相等.求证:AD 平分∠BAC.23.(12 分)如图①,②,③,点E,D 分别是等边三角形ABC,正方形ABCM,正五边形ABCMN 中以点C 为顶点的相邻两边上的点,且BE=CD,DB 交AE 于点P.(1)图①中,∠APD 的度数为;(2)图②中,∠APD 的度数为,图③中,∠APD 的度数为;(3)根据前面的探索,你能否将本题推广到一般的正n 边形的情况?若能,写出推广问题和结论;若不能, 请说明理由.24.(12 分)如图,已知△DCE 的顶点C 在∠AOB 的平分线OP 上,CD 交OA 于点F,CE 交OB 于点G.(1)如图①,若CD⊥OA,CE⊥OB,则图中有哪些相等的线段?请直接写出你的结论: .(2)如图②,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF 与线段CG 的数量关系,并加以证明.答案与解析一、选择题1.C 设他所找的这根木棍的长为x,由题意得3-2<x<3+2,∴1<x<5.∵x 为整数,∴x=2,3,4,故选C.2.C3.C4.D 如图,在△AED 中,∵∠AED=60°,∴∠A=180°-∠AED-∠ADE=120°-∠ADE.在四边形 DEBC 中,∵∠DEB=180°-∠AED=180°-60°=120°,∴∠B=∠C=(360°-∠DEB-∠EDC )÷2=120 -1EDC. ° ∠2∵∠A=∠B=∠C ,∴120°-∠ADE=120 -1 EDC. ° 2∠∴∠ADE=1 EDC. ∠2 ∵∠ADC=∠ADE+∠EDC=1 EDC+∠EDC=3EDC ,∴∠ADE=1 ∠ ∠ 2 2ADC.故选D .∠ 35.C 全等三角形有 3 对,分别为 Rt △ABO ≌Rt △ADO ,Rt △CDO ≌Rt △CBO ,△ADC ≌△ABC.6.A 点(x ,y )关于 y 轴对称的点是(-x ,y ),故 b=20,a=13,则 a+b=33,故选A .7.B8.B ∵AE=CF ,∴AE+EF=CF+EF ,即 AF=CE.∠� = ∠�,选项A,在△ADF 和△CBE 中, A = C ,∠A � = ∠C �,∴△ADF ≌△CBE (ASA);选项B,根据 AD=CB ,AF=CE ,∠AFD=∠CEB 不能推出△ADF ≌△CBE;A = C,选项C,在△ADF 和△CBE 中, ∠A�= ∠C�,A = C,∴△ADF≌△CBE(SAS);选项D,∵AD∥BC,∴∠A=∠C,易知△ADF≌△CBE(ASA).故选B.9.C ∵BD 是AE 的垂直平分线,∴AB=BE.∴∠E=∠A=52°,∴∠EBC=∠E+∠A=104°.故选C.10.B 如图,过点P 作PM∥BC,交AC 于点M.易知△APM 是等边三角形.∵PE⊥AM,∴AE=EM.∵PM∥CQ,∴∠PMD=∠QCD,∠MPD=∠Q.又PM=PA=CQ,∴△PMD≌△QCD.∴CD=DM,∴DE=ME+DM=1(AM+MC)=1AC=1,故选B.2 2 2二、填空题11.8 设CE 与BD 的交点为点O.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=180°-36°=72°.2∵BD 是∠ABC 的平分线,∴∠ABD=∠DBC=1 ABC=36°=∠A,∠2∴AD=BD.同理,∠A=∠ACE=∠BCE=36°,AE=CE.∴∠DBC=∠BCE=36°,∴OB=OC.∵∠DBC=36°,∠ACB=72°,∴∠BDC=180°-72°-36°=72°,∴BD=BC,同理CE=BC.∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°.∴CD=CO,BO=BE.∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC 都是等腰三角形,共8 个.12.24 13.214.315°由题图可知∠4=1×90°=45°,∠1 和∠7 所在的三角形全等,2∴∠1+∠7=90°.同理,∠2+∠6=90°,∠3+∠5=90°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°.15.11 或13 由题意可得a-b-2=0,2a-3b-1=0,解得a=5,b=3,即三角形的三边长为5,5,3 或3,3,5. 所以此等腰三角形的周长为11 或13.16.36 在△ACD 中,∵AC=DC,∠D=15°,∴∠D=∠DAC=15°.∵∠ACB 是△ACD 的一个外角,∴∠ACB=∠D+∠DAC=15°+15°=30°.在Rt△ABC 中,∠ACB=30°,∴AC=2AB=2×18=36(cm),即CD=36 cm.三、解答题17.解(1)如图.(2)∠BAD=90°-30°=60°(直角三角形的两个锐角互余),∠ACD=180°-130°=50°(邻补角的定义),∠CAD=90°-50°=40°(直角三角形的两个锐角互余).18.解(1)如图.(2)A1(0,1),B1(2,5),C1(3,2).19.证明CD 与AB 之间的关系为CD=AB,且CD∥AB.∵CE=BF,∴CF=BE.A = C,在△CDF 和△BAE 中, ∠A�= ∠C�,A = C,∴△CDF≌△BAE.∴CD=AB,∠C=∠B,∴CD∥AB.20.(1)解题图②中△ABE≌△ACD.证明如下:∵△ABC 与△AED 均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∴△ABE≌△ACD.(2)证明由(1)知△ABE≌△ACD,∠ACD=∠ABE=45°.又∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.21.解∵AD=DE,∴∠A=∠2.∵DE=BE,∴∠3=∠4.又∠2=∠3+∠4,∴∠4=1 2=1 A.∠∠2 2∵BD=BC,∴∠1=∠C.又∠1=∠4+∠A=1 A+∠A=3 A,∠∠2 2∴∠C=3 A.∠2∵AB=AC,∴∠ABC=∠C=3 A.∠2在△ABC 中,∵∠A+∠ABC+∠C=180°,∴∠A+3 A+3 A=180°,即4∠A=180°,∠∠2 2∴∠A=45°.22.证明如图,作DM⊥AB 于点M,DN⊥AC 于点N.∵△DBF 和△DCE 的面积相等,1BF ·DM=1CE ·DN. 2 2 ∵BF=CE ,∴DM=DN.又 DM ⊥AB ,DN ⊥AC ,∴AD 平分∠BAC.23.解 (1)60° (2)90° 108°(3) 能.如图,点 E ,D 分别是正 n 边形 ABCM …中以点 C 为顶点的相邻两边上的点,且 BE=CD ,BD与 AE 交于点 P ,则∠APD的度数为(�-2)×180°.� 24.解 (1)CF=CG ,OF=OG.(2)CF=CG.证明如下:如图,过点 C 作 CM ⊥OA 于点 M ,CN ⊥OB 于点 N ,则∠CMF=∠CNG=90°.①又 OC 平分∠AOB ,∴CM=CN ,②∠AOC=∠BOC.又∠AOB=120°,∴∠AOC=∠BOC=60°,∴∠MCN=360°-∠AOB-∠CMF-∠CNO=60°. ∴∠DCE=∠AOC=60°.∴∠MCN=∠FCG.∴∠MCN-∠FCN=∠FCG-∠FCN,即∠1=∠2.③由①②③得△CMF≌△CNG,∴CF=CG.。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

期中测评(一)数学八年级上册综合复习及检测卷(答案附后面)

期中测评(一)数学八年级上册综合复习及检测卷(答案附后面)

期中测评卷(一)(考试时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )A.1B.2C.3D.82.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是( )3.下列说法错误的是( )A.等腰三角形两腰上的中线相等B.等腰三角形两腰上的高线相等C.等腰三角形的中线与高重合D.等腰三角形底边的中线上任一点到两腰的距离相等4.用直尺和圆规作已知角的平分线的示意图如图,则说明∠CAD=∠DAB的依据是( )A. SSSB. SASC.ASAD.AAS5.一个正多边形,它的一个内角恰好是一个外角的4倍,则这个正多边形的边数是( )A.八B.九C.十D.十二6.已知点P1(-4,3)和P2(-4,-3),则P1和P2( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.不存在对称关系7.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角,这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽内滑动,若∠BDE=75°,则∠CDE的度数是( )A.60°B.65°C.75°D.80°8.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于( )A.8B.4C.12D.169.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A.2∠A=∠1-∠2B.3∠A=2(∠1-∠2)C.3∠A=2∠1-∠2D.∠A=∠1-∠210.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )A.19.2°B.8°C.6°D.3°二、填空题(每小题3分,共24分)11.以下图形:角,线段,直角三角形,等腰三角形,平行四边形,其中一定是轴对称图形的有________个12.如图,△ABC中,∠A=60°,∠B=50°,D、E分别是AB、AC上两点,连接DE并延长,交BC的延长线于点F,此时,∠F =35°,则∠1的度数为________13.如图,∠ABC=∠DCB,请补充一个条件:____________________使△ABC≌△DCB.14.a,b,c为△ABC的三边,化简|a-b-c|-|a+b-c|+2a的结果是____________________15.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=________度16.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有________种17.如图,正八边形和正五边形按如图方式拼接在一起,则∠ABC的度数为________18.已知,△ABC中,AB=9,BC=7,AC=8,点O是△ABC的三个内角的角平分线的交点,S△AOB、S△BOC、S△AOC分别表示△AOB、△BOC、△AOC的面积,则S△AOB∶S△BOC∶S△AOC=________三、解答题(本大题共8小题,共66分)19.(8分)如图,AD是△ABC的中线,延长AD,过点B作BE⊥AD交AD的延长线于点E,过点C作CF⊥AD于点F求证:DE=DF.20.(8分)已知在平面直角坐标系中有三点A(-3,1),B(3,1),C(2,3),请解答下列问题:(1)在坐标系内描出A,B,C的位置;(2)画出△ABC关于x轴对称的图形△A1B1C1,并写出顶点A1,B1,C1的坐标21.(8分)小李同学在计算一个n边形的内角和时不小心多加了一个内角,得到的内角之和是1380度,则这个多边形的边数n的值是多少?多加的这个内角度数是多少?22.(8分)如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长23.(8分)如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数是多少?24.(8分)如图,△ABE和△BCD都是等边三角形,那么线段AD与EC有何数量关系?请说明理由25.(8分)如图,P为∠AOB的角平分线上的一点,PH⊥OA,垂足为H,M为PH上一点,MN⊥OB,与OP,OB的交点分别为Q,N.求证:MP=MQ.26.(10分)已知△ABC是等边三角形,点D,E分别在直线BC,AC上(1)如图1,当BD=CE时,连接AD与BE交于点P,则线段AD与BE的数量关系是________________;∠APE的度数是________________(2)如图2,若“BD=CE”不变,AD与EB的延长线交于点P那么(1)中的两个结论是否仍然成立?请说明理由(3)如图3,若AE=BD,连接DE与AB边交于点M,求证:点M是DE的中点【参考答案及解析】期中测评卷(一)1.C【解析】∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8.故选C.2.D【解析】D答案的图形是轴对称图形3.C【解析】根据全等三角形的判定定理SAS,A选项正确;根据全等三角形的判定定理ASA,B选项正确;非等边三角形的等腰三角形的腰上的中线与高不重合,C错误;根据三线合一的性质,D正确4.A【解析】从角平分线的作法得出,△AFD与△AED的三边全部相等,则△AFD≌△AED5.C【解析】设多边形的一个外角为x,则它的一个内角为4x,4x+x=180°,∴x=36°∴这个正n边形的边数为:360°÷36°=10,故选C.6.A【解析】因为两点的横坐标相等,纵坐标互为相反数,所以两点关于x轴对称7.D【解析】∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,设∠O=∠ODC=x,∴∠DCE=∠DEC=2x,∴∠CDE=180°-∠DCE-∠DEC=180°-4x,∠BDE=75°,∠ODC+∠CDE+∠BDE=180°∴x+180°-4x+75=180°,解得:x=25°,∠CDE=180°-4x=80°8.A【解析】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8.9.A【解析】如图,根据折叠的B性质知:∠3=∠4,∠A=∠A′;由三角形的外角性质知:∠DEA=∠5+∠3=∠A′+∠2+∠3;△DEA中,∠DEA=180°-∠4-∠A;故180°-∠4-∠A=∠A′+∠2+∠3,即:180°-∠4-∠A=∠A+∠2+∠3,180°-∠4-∠3=2∠A+∠2,即∠1=2∠A+∠2,2∠A=∠1-∠2.10.D【解析】∵∠BA1C+∠A1BC=∠A1CD,2∠A1CD=∠ACD=∠BAC+∠ABC,∴2(∠BA1C+∠A1BC)=∠BAC+∠ABC,2∠BA1C+2∠A1BC=∠BAC+∠ABC,∵2∠A1BC=∠ABC,∴2∠BA1C=∠BAC.同理,可得2∠BA2C=∠BA1C,2∠BA3C=∠BA2C,2∠BA4C=∠BA3C,2∠BA5C=∠B A4C,∴∠BA5C=12∠BA4C=14∠BA3C=18∠BA2C=116∠BA1C=132∠BAC=96°÷32=3°11.3【解析】角,线段,等腰三角形是轴对称图形,共3个12.145°【解析】∵∠B=50°,∠F=35°,∴∠ADE=∠B+∠F=85°,∵∠A=60°,∴∠1=∠A+∠ADE=60°+85°=145°13.AB=DC或∠A=∠D或∠BCA=∠DBC【解析】∵∠ABC=∠DCB,BC=BC,∴当AB=DC(SAS)或∠A=∠D(AAS)或∠BCA=∠DBC(ASA)时,△ABC≌△DCB.14.2c 【解析】a,b,c 为△ABC 的三边,∴a +b>c,b+c>a, ∴原式=c+b -a -(a+b -c)+2a =c+b -a -a -b+c+2a =2c. 15.84【解析】∵∠BOC=132°,∴∠OBC +∠OCB=48°,∵∠ABC 与∠ACB 的平分线相交于O 点,∴∠ABC=2∠OBC,∠ACB=2∠OCB, ∴∠ABC +∠ACB=2(∠OBC +∠OCB)=96°,∴∠A=180°-96°=84° 16.4【解析】如图所示,共有4条线段17.31.5°【解析】由题意得:正八边形的每个内角都等于135°,正五边形的每个内角都等于108°,故∠BAC=360°-135°-108°=117°,∵AB=AC,∴∠ABC=∠ACB=(180°-117°)÷2=31.5°18.9:7:8【解析】作OD⊥AB 于D,OE⊥CB 于E,OF⊥AC 于F.∵AO、BO 、CO 分别是三个内角平分线,OD⊥AB 于 D,OE⊥CB 于E,OF⊥AC 于F,∴OD=OE =OF,∴S △AOB ∶S △BOC ∶S △AOC =AB:BC:CA =9:7:8.19.证明:∵AD 是△ABC 的中线,∴BD =CD, ∵BE⊥AD,CF⊥AD,∴∠BED =∠CFD=90°,在△BDE 和△CDF 中,⎩⎪⎨⎪⎧∠BED =∠CFD ∠BDE=∠CDF BD =CD∴△BDE≌△CDF(AAS),∴DE=DF20.解:(1)如图所示:(2)如图所示:A1(-3,-1),B1(3,-1),C1(2,-3)21.解:设多边形的边数为n,多加的内角度数为α,则(n-2)·180°=1380°-α,∵1380°=7×180°+120°,内角和应是180°的倍数,∴同学多加的一个内角为120°∴这是7+2=9边形的内角和,答:这个多边形的边数n的值是9,多加的这个内角度数是120°22.解:延长AD、BC交于E,∵∠A=30°,∠B=90°,∴∠E=60°,∵∠ADC=120°∴∠EDC=60°∴△EDC是等边三角形,设CD=CE=DE=x,∵AD=4,BC=1,∴2(1+x)=x+4,解得x=2,∴CD=2.23.解:作A关于BC和CD的对称点A′,A",连接A′A",交BC于M,交CD于N,则A′A"即为△AMN的周长最小值∵∠DAB=100°,∴∠AA′M+∠A"=180°-∠BAD=180°-100°=80°,∵∠MA ′A =∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD +∠A″=∠ANM, ∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD +∠A″=2(∠AA′M+∠A″)=2×80°=160° ∠MAN =180°-160°=20°故当△AMN 周长最小时,∠MAN 的度数是20° 24.解:AD =EC.证明如下:∵△ABE 和△BCD 都是等边三角形,∴AB =EB,DB =BC,∠ABE=∠DBC=60°, ∴∠ABE+∠EBD=∠DBC +∠EBD,即∠ABD=∠EBC 在△ABD 和△EBC 中,⎩⎪⎨⎪⎧AB =EB∠ABD=∠EBC DB =BC ,∴△ABD≌△EBC(SAS),∴AD=EC. 25.证明:∵P 为∠AOB 的角平分线上的一点,∴∠AOP =∠BOP,∵PH⊥OA,MN⊥OB,∴∠PHO =∠MNO=90°,∴∠AOP+∠HPO=∠BOP +∠NQ O. ∴∠HPO =∠NQO,又∵∠MQP =∠NQO,∴∠HPO =∠MQP,∴MP=MQ26.解:(1)如图1中,∵△ABC 是等边三角形,∴AB =BC,∠ABC=∠ACB=60°, ∴∠ABD =∠BCE=60°,又BD =CE,∴△ABD≌△BCE(SAS), ∴AD =BE,∠BAD=∠CBE,又∠ABE+∠CBE=∠ABC=60°,∴∠APE =∠PAB +∠ABP=∠ABP +∠CBE=60° 故答案为AD =BE ;∠APE=60°(2)结论:“AD=BE,∠APE=60°”仍然成立 理由如下:如图2,∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∴∠ABD=∠BCE=120°,又BD=CE, ∴△ABD≌△BCE(SAS),∴AD=BE,由△ABD≌△BCE得∠BAD=∠CBE,又∠Ap+∠CBE=∠ACB=60°∴∠BAD+∠AEP=60°,又∠BAC=60°,∴∠APE=180°-120°=60°(3)证明:如图3,过点E作EF∥BC交AB边于点F∵△ABC是等边三角形,∴△AEF是等边三角形,∴EF=AE=BD,又∠EFM=∠DBM,∠EMF=∠DMB,∴△MEF≌△MDB(AAS),∴EM=DM,即点M是DE的中点11。

山东省淄博市张店区2024—2025学年上学期八年级数学期中考试卷(含答案)

山东省淄博市张店区2024—2025学年上学期八年级数学期中考试卷(含答案)

2024—2025学年度第一学期期中学业水平检测初三数学试题一、选择题(本题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上)1.下列式子是分式的是( )A .B .C .D .2.下列从左到右的等式变形中,属于因式分解的是( )A .B .C .D .3.下面是2024年某市某周发布的该周每天的最高温度:19℃,16℃,22℃,24℃,26℃,24℃,23℃。

关于这组数据,下列说法正确的是( )A .众数是24B .中位数是24C .平均数是20D .极差是74.下列分式中,为最简分式的是( )A .B .C .D .5.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示:选手甲乙丙丁方差0.560.600.500.45则在这四个选手中,成绩最稳定的是( )A .甲B .乙C .丙D .丁6.若实数x 满足,则的值为( )A .B .C .2024D .20257.甲、乙两个植树队参加植树造林活动,已知甲队每小时比乙队少种3棵树,甲队种60棵树与乙队种66棵树所用的时间相同。

若设甲队每小时种x 棵树,则根据题意可列方程为( )A .B .C .D .8.如图,爱思考的小颖看到课本《因式分解》一章中这样写道:形如的式子称为完全平方式小颖思考,如果一个多项式不是完全平方式,我们对其作如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,那么是否可以由此解决一些新的问题。

若借助小颖的思考,可以求得多项式的最大值,则该最大值为( )355x 25x 53x -()()2111x x x +-=-()ma mb m a b +=+222()2x y x xy y+=++()2ax bx c x ax b c++=++3235a a b 223a a a +222a a ++222a ab a b --2210x x +-=3232024x x x +++2027-2026-60663x x=+60663x x=-60663x x =+60663x x =-222a ab b ±+2285x x --+A .B .C .5D .139.小宇、小刚参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图所示的两个统计图。

人教版八年级上学期数学期中综合测评卷(含答案)

人教版八年级上学期数学期中综合测评卷(含答案)

八年级上学期期中综合测评卷时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.北京是首批国家历史文化名城,也是拥有世界文化遗产数最多的城市,三千多年的历史孕育了众多名胜古迹,让每一个中国人为之骄傲.下列选项是一些北京名胜古迹的标志,其中不属于轴对称图形的是( )A.天坛B.圆明园C.颐和园D.天安门2.如果一个三角形的三边长分别为5,8,a,那么a的值可能是( )A.2B.9C.13D.153.如图是由4个相同的正方形组成的网格,则∠1与∠2的和为( )A.45°B.60°C.90°D.100°(第3题) (第4题) (第5题)4.如图,已知∠AOB,在射线OA,OB上分别截取OD=OE,分别以点D,E为圆心,大于1DE的长为半径画弧,在∠AOB内两弧交于点C,作射线OC,则OC就是∠AOB的2平分线.作图依据是( )A.SASB.ASAC.HLD.SSS5.如图,在△ABC中,∠A∶∠B=1∶2,D是BC延长线上一点,过点D作DE⊥AB于点E,若∠FCD=75°,则∠D=( )A.40°B.30°C.45°D.50°6.如图,在五边形ABCDE中,若∠A+∠B+∠E=320°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是( )A.70°B.65°C.60°D.55°7.如图(1),某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4 m.为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC(点E在BA的延长线上),立柱EF⊥BC,如图(2)所示,若EF=3 m,则斜梁增加的部分AE的长为( )图(1) 图(2)A.0.5 mB.1 mC.1.5 mD.2 m8.如图,AD是△ABC的中线,∠1=2∠2,CE⊥AD于点E,BF⊥AD交AD的延长线于点F,EF=6 cm,则BC的长为 ( ) A.6 cm B.12 cm C.18 cmD.24 cm(第8题) (第9题)9.如图,在4×4的正方形网格中,E,F在网格格点上,若格点三角形DEF为等腰三角形,则符合条件的格点D有( ) A.4个 B.9个 C.6个 D.10个10.如图,在四边形ABCD中,∠BAD=115°,∠B=∠D=90°,在BC,CD上分别找一个点M,N,使△AMN的周长最小,则∠AMN+∠ANM= ( )A.110°B.120°C.130°D.100°二、填空题(共5小题,每小题3分,共15分)11.如果一个多边形的每个外角都等于36°,那么这个多边形的边数为 .12.学了全等三角形的判定后,小明编了这样一个题目:“已知:如图,AD=AC,BC=BD,∠CAB=∠DAB,求证:△ABD≌△ABC.”老师说他的已知条件给多了,那么去掉的一个已知条件可以是 .(第12题) (第13题)12.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为70,AB=16,BC=12,则DE的长为 .14.如图,在△ABC中,AB=AC,D,E是△ABC内两点,连接BE,ED,延长ED交BC于点M,连接AD并延长交BC于点N.若AD平分∠BAC,∠EBC=∠E=60°,BE=6,DE=2,则BC的长是 .(第14题) (第15题)15.如图,在△ABC中,AB=AC=16 cm,∠B=∠C,BC=10 cm,点D为AB的中点,如果点P在线段BC上以2 cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当△BPD与△CQP全等时,点Q的运动速度可能为 三、解答题(共8小题,共75分)16.(7分)如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)作出与△ABC关于x轴对称的图形△A1B1C1.(2)点A关于x轴的对称点A1的坐标为 ,关于y轴的对称点A2的坐标为 ,观察A1,A2的坐标,你有什么发现?(写出一条即可)17.(8分)如图,点P是∠MON内部一点,PA⊥OM于点A,PB⊥ON于点B,连接AB,∠PAB=∠PBA.求证:OP平分∠MON.18.(8分)如图,AB=AC,AC的垂直平分线交AB于点D,交AC于点E,连接CD.(1)若∠A=40°,求∠BCD的度数;(2)若△ABC与△BCD的周长之差为10,求AE的长.19.(8分)“三等分一个任意角”是数学史上一个著名问题.经过无数人探索,现在已经确信,仅用圆规和直尺是不可能作出的.有人曾利用如图所示的图形进行探索,其中四边形ABCD是长方形,F是DA延长线上一点,连接AC,CF,CF与AB相交于点E,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F.试证明:∠ACB=3∠ECB.20.(9分)如图,在△ABC中,AD⊥BC于点D,且AD=BD,点E是线段AD上一点,连接BE,BE=AC.(1)求证:△ACD≌△BED;(2)若∠C=78°,求∠ABE的度数.21.(10分)定义:如果一个三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= .(2)如图,△ABC是直角三角形,∠ACB=90°.①若AD是∠BAC的平分线,则△ABD是“准互余三角形”吗?并说明理由.②若点E是边BC上一点,△ABE是“准互余三角形”,∠B=24°,求∠EAC的度数.22.(12分)△ABC是边长为5 cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度都为1 cm/s.当点P到达点B时,P,Q两点停止运动,设点P的运动时间为t s.(1)如图(1),当t为何值时,△PBQ是直角三角形?(2)如图(2),连接AQ,CP交于点M,则点P,Q在运动的过程中,∠CMQ的度数会发生变化吗?若发生变化,请说明理由;若不变,请求出它的度数. 图(1) 图(2)23.(13分)如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,点A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF. (1)若AB=AC,∠BAC=90°.①当点D在线段BC上时(不与点B重合),试探究CF和BD的数量关系与位置关系;②当点D在线段BC的延长线上时,①中的结论是否仍然成立?请在图(2)中画出相应的图形,并说明理由.(2)如图(3),若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动(不与点B重合),试探究CF与BC的位置关系. 图(1) 图(2)图(3)八年级上学期期中综合测评卷选择填空题答案速查12345678910B BCD A A D B B C11.1012.BC=BD(或∠CAB=∠DAB)13.514.815.2或3.21.B2.B 根据三角形的三边关系,得3<a<13.3.C 如图,在△ABC 和△FDE 中,BC =DE ,∠BCA =∠DEF =90°,AC =FE ,∴△ABC ≌△FDE (SAS),∴∠1=∠BAC.∵∠BAC+∠2=90°,∴∠1+∠2=90°.4.D 如图,连接CD ,CE.在△OCD 和△OCE 中,OD =OE ,CD =CE ,OC =OC ,∴△OCD ≌△OCE (SSS),∴∠COD=∠COE ,∴OC 是∠AOB 的平分线,∴作图依据是SSS. 【提示】全等三角形的对应角相等5.A ∵∠FCD=75°,∴∠A+∠B=75°.∵∠A ∶∠B=1∶2,∴∠A=13×75°=25°.∵DE ⊥AB ,∴∠AFE=90°-∠A=90°-25°=65°,∴∠CFD=∠AFE=65°.∵∠FCD=75°,∴∠D=180°-∠CFD-∠FCD=180°-65°-75°=40°.一题多解∵∠FCD=75°,∴∠A+∠B=75°.∵∠A ∶∠B=1∶2,∴∠B=23×75°=50°.∵∠DEB=90°,∴∠D=90°-50°=40°.6.A ∵五边形的内角和等于540°,∠A+∠B+∠E=320°,∴∠BCD+∠CDE=540°-320°=220°.∵∠BCD ,∠CDE 的平分线相交于点P ,∴∠PCD+∠PDC=12(∠BCD+∠CDE )=110°,∴∠P=180°-110°=70°.7.D ∵立柱AD 垂直平分横梁BC ,AC=4 m,∴AB=AC=4 m .∵∠B=30°,EF ⊥BC ,EF=3 m,∴BE=6 m,∴AE=BE-AB=6-4=2(m).8.B ∵AD 是△ABC 的中线,∴BD=CD.∵CE ⊥AD ,BF ⊥AD 交AD 的延长线于点F ,∴∠CED=∠F=90°.在△CDE 和△BDF 中,∠CED =∠F ,∠2=∠BDF ,CD =BD ,∴△CDE ≌△BDF (AAS),∴DE=DF=12EF=3 cm .∵∠1=2∠2,∠1+∠2=180°,∴∠2=60°,∴∠DCE=30°,∴CD=2DE=6 cm,∴BC=2CD=12 cm . 9.B图示速解 格点D 的位置如图所示,故符合条件的格点D 有9个.9.C 如图,作点A 关于BC 和CD 的对称点A',A″,连接A'A″,交BC 于点M ,交CD 于点N ,则A'A″即为△AMN 的周长的最小值.∵∠DAB=115°,∴∠A'+∠A″=180°-∠BAD=180°-115°=65°.∵∠A'=∠MAA',∠NAD=∠A″,且∠A'+∠MAA'=∠AMN ,∠NAD+∠A″=∠ANM ,∴∠AMN+∠ANM=∠A'+∠MAA'+∠NAD+∠A″=2(∠A'+∠A″)=2×65°=130°.11.10 ∵多边形的外角和等于360°,∴这个多边形的边数为360°÷36°=10.12.BC=BD (或∠CAB=∠DAB ) ∵AD=AC ,BD=BC ,AB=AB ,∴△ABD ≌△ABC (SSS).或者∵AD=AC ,∠DAB=∠CAB ,AB=AB ,∴△ABD ≌△ABC (SAS).综上所述,去掉的一个已知条件可以是BC=BD 或∠CAB=∠DAB.13.5 过点D 作DF ⊥BC 于点F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴DF=DE ,∴12×AB×DE+12×BC×DF=70,∴12×16×DE+12×12×DF=70,∴DE=DF=5.14.8 ∵∠EBC=∠E=60°,BE=6,∴△BEM 为等边三角形,∴∠EMB=60°,BM=EM=BE=6.又DE=2,∴DM=4.∵AB=AC ,AD 平分∠BAC ,∴AN⊥BC,BN=CN,∴∠NDM=30°,∴NM=1DM=2,∴BN=BM-NM=4,∴2BC=2BN=8.【提示】直角三角形中,30°角所对的边等于斜边的一半15.2或3.2 (分类讨论思想)∵AB=16 cm,BC=10 cm,点D为AB的中点,∴BD=1×16=8(cm).设点P,Q的运动时间为t s,则BP=2t cm,PC=(10-2t)cm.①当2△BDP≌△CPQ时,BD=CP,即10-2t=8,解得t=1,∴BP=CQ=2 cm,故点Q的运动速度为2÷1=2(cm/s).②当△BPD≌△CPQ时,BP=PC,BD=CQ.∵BC=10 cm,∴BP=PC=5 cm,∴t=5÷2=2.5,故点Q的运动速度为8÷2.5=3.2(cm/s).16.【参考答案】(1)如图,△A1B1C1即为所作. (3分) (2)(-2,-3) (2,3)发现:点A1和点A2的横坐标互为相反数.(答案不唯一)(7分) 17.【参考答案】证明:∵∠PAB=∠PBA,∴PA=PB.(4分)∵PA⊥OM于点A,PB⊥ON于点B,∴点P在∠MON的平分线上,∴OP平分∠MON.(8分)一题多解证明:∵∠PAB=∠PBA,∴PA=PB.∵PA⊥OM于点A,PB⊥ON于点B,∴∠PAO=∠PBO=90°.∵OP=OP,∴Rt△POA≌Rt△POB(HL),(6分)∴∠POA=∠POB,∴OP平分∠MON.(8分)18.思路导图(1)【参考答案】(1)∵AB=AC,∴∠B=∠ACB=1(180°-∠A)=70°.2∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=40°,∴∠BCD=∠ACB-∠ACD=70°-40°=30°.(4分) (2)∵DE是AC的垂直平分线,∴AD=DC,AE=1AC.2∵△ABC的周长=AB+BC+AC,△BCD的周长=BC+CD+BD=AB+BC,周长之差为10,∴△ABC的周长-△BCD的周长=AC=10,∴AE=5.(8分) 19.【参考答案】证明:∵∠ACG=∠AGC,∠GAF=∠F,∠AGC=∠F+∠GAF,∴∠ACG=2∠F.(3分)由题意得AD∥BC,∴∠ECB=∠F.∴∠ACB=∠ACG+∠ECB=2∠F+∠ECB=3∠ECB.(8分) 20.【参考答案】(1)证明:∵AD⊥BC,∴∠ADC=∠BDE=90°.(2分)∵AD=BD,AC=BE,∴Rt△ACD≌Rt△BED(HL).(4分) (2)由(1)知,△ACD≌△BED,∴∠BED=∠C=78°.(6分)∵AD=BD,AD⊥BC,∴△ABD是等腰直角三角形,∴∠BAD=45°,∴∠ABE=∠BED-∠BAD=78°-45°=33°.(9分) 21.【参考答案】(1)15°(2分)解法提示:∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴∠A+2∠B=90°,∴∠B=15°.(2)①△ABD是“准互余三角形”.(3分)理由:如图,∵AD是∠BAC的平分线,∴∠BAC=2∠BAD.∵∠ACB=90°,∴∠BAC+∠B=90°,∴2∠BAD+∠B=90°,∴△ABD是“准互余三角形”.(6分)②由题意得∠AEB>90°.∵△ABE是“准互余三角形”,∴分两种情况讨论.当∠B+2∠BAE=90°时,∵∠B=24°,∴∠BAE=33°,∴∠EAC=90°-∠B-∠BAE=33°.(8分)当2∠B+∠BAE=90°时,∵∠B=24°,∴∠BAE=42°,∴∠EAC=90°-∠B-∠BAE=24°.综上所述,∠EAC的度数为33°或24°.(10分)22.【参考答案】(1)结合题意,得AP=BQ=t cm,PB=(5-t)cm.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,即5-t=2t,.(3分)解得t=53②当∠BPQ=90°时,∵∠B=60°,∴∠PQB=30°,∴BQ=2BP ,即t=2(5-t ),解得t=103.∵0<t ≤5,∴当t=53或103时,△PBQ 为直角三角形.(6分)(2)∠CMQ 的度数不变,∠CMQ=60°. (8分)在△ABQ 与△CAP 中,AB =CA ,∠B =∠CAP ,BQ =AP ,∴△ABQ ≌△CAP (SAS),∴∠BAQ=∠ACP ,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(12分)23.【解题思路】(1)①根据条件证明△FAC ≌△DAB ,得到CF=BD ,∠FCA=∠DBA ,进而可得∠FCD=90°,从而可得结论;②同①可得结论.(2)过点A 作AB'⊥AC 交BC 于点B',可得△CAB'是等腰直角三角形,结合(1)①可得FC ⊥CB',进而可得结论.【参考答案】(1)①∵∠FAD=∠CAB=90°,∠FAC+∠CAD=∠DAB+∠CAD ,∴∠FAC=∠DAB.又FA=DA ,CA=BA ,∴△FAC ≌△DAB ,(2分)∴CF=BD ,∠FCA=∠DBA ,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,即FC ⊥CB ,∴CF=BD ,且CF ⊥BD. (5分)② ①中的结论仍然成立.(6分)如图(1).理由:∵∠FAD=∠CAB=90°,∠FAD+∠DAC=∠CAB+∠DAC ,∴∠FAC=∠DAB. (7分)又FA=DA,CA=BA,∴△FAC≌△DAB,∴CF=BD,∠FCA=∠DBA,∴∠FCB=∠FCA+∠ACB=∠DBA+∠ACB=90°,即FC⊥CB,∴CF=BD,且CF⊥BD.(10分)图(1)(2)如图(2),过点A作AB'⊥AC交BC于点B'.图(2)∵∠BCA=45°,∴△CAB'为等腰直角三角形. (12分)由(1)中①得,FC⊥CB',∴FC⊥BC.(13分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B
D
C
M
N
上学期八年级数学期中综合复习检测卷
1、下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是( ) A .4个 B .3个 C .2个 D .1个
2、若
1
1-a 有意义,则a 的取值范围是( )
A.a>1 B.a ≥1 C . a≥0 D .a 为任何实数 3、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定 △ABM≌△CDN 的是( )
A.∠M=∠N
B. AM∥CN
C.AB=CD
D. AM=CN
4、AD 是△ABC 的角平分线且交BC 于D ,过点D 作DE⊥AB 于E ,DF⊥AC 于F•,则下列结论不一定正确的是( )
A .DE=DF
B .BD=CD
C .AE=AF
D .∠ADE=∠ADF 5、三角形中,到三边距离相等的点是( )
A.三条高线的交点 B.三条中线的交点 C .三条角平分线的交点 D .三边垂直平分线的交点。

6、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是( )
A .横坐标
B .纵坐标
C .横坐标及纵坐标
D .横坐标或纵坐标 7、下列说法中,正确的是( )
A.有理数都是有限小数 B.无限小数就是无理数 C .实数包括有理数、无理数和零
D .无论是有理数还是无理数,都可以用数轴上的点来表示。

8、下列说法中正确的是( ) A. 实数2
a -是负数
B. a a =2
E
F
C
B
A
D A
B
P
O
C. a -一定是正数
D.实数a -的绝对值是a
9、如右图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF 等于( )
A.5 B.4
C . 3
D .2
10、在下列各数:3.1415926、
100
49、0.2、π1、7、11131、327、中,无
理数的个数( )
A 、2
B 、3
C 、4
D 、5 二、细心填一填(本大题共3小题,每小题3分,共30分) 11、已知点P (-3,4),关于x 轴对称的点的坐标为 。

12.︱35-︳的相反数是______________(用代数式表示)。

13
、若x y ,为实数,且20x ++=,则2009
x y ⎛⎫

⎝⎭
的值为 。

14
.如下图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上
的一点由原点到达点O′,点O′的坐标是
15、16的平方根是_______________ 。

16、如右图,点P 在∠AOB 的平分线上,若使△AOP≌△BOP,则需添 加的一个条件是 (只写一个即可,不添加辅助线)。

17、已知△ABC≌△A′B′C′,A 与A′,B 与B′是对应点,△A′B′C′周长为
9cm,AB=3cm ,BC=4cm ,则A′C′= cm 。

18、小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.
19、如下图,在△ABC 中,AB=8,BC=6,AC 的垂直平分线MN 交AB 、AC 于点M 、N 。

则△BCM 的周长为_________。

20、如图,在△ABC 中,∠ACB=90°,∠BAC=30°,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有___个
三、静心画一画(本大题共2小题,共11分)
21、(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)
画出格点△ABC(顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;(2分) (2)在DE 上画出点P ,使PC PB +1最小;(2分) (3)在DE 上画出点Q ,使QC QA +最小。

(2分)
22(5分)某市政府计划修建一处公共服务设施,使它到三所公寓A 、B 、C 的距离
相等。

(1)若三所公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位
置(尺规作图,保留作图痕迹,不写作法);(3分) (2)若∠BAC=56º,则∠BPC= º. (2分)
A
B
C
第19题
四、耐心求一求(本大题共5小题,共39分) 23、求下列式子的值:(5分)
(— 4)2
+23— 321-—27—38
24、(1)求x 值: 2542
=x (5分) (2)求x 值:027.0)7.0(3=-x (5分)
25.(8分)已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF . 求证:⑴ △ABC ≌△DEF ; ⑵ BE =CF .
26、(8分)如图,在四边形ABCD 中BC=CD ,点E 是BC 的中点,点F 是CD 的中点,且AE⊥BC,AF⊥C D 。

(1)求证:AB=AD 。

(2)请你探究∠EAF,∠BAE,∠DAF 之间有什么数量关系?并证明你的结论。

27、(8分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C 、D
是垂足,连接CD ,且交OE 于点F. (1)求证:OE 是CD 的垂直平分线.
(2)若∠AOB =60º,请你探究OE ,EF 之间有什么数量关系?并证明你的结论。

五、全心探一探:(10分)
28、如图15,(1)P 是等腰三角形ABC 底边BC 上的一人动点,过点P 作BC 的垂线,交AB 于点Q ,交CA 的延长线于点R 。

请观察AR 与AQ ,它们有何关系?并证明你的猜想。

(2)如果点P 沿着底边BC 所在的直线,按由C 向B 的方向运动到CB 的延长线上时,(1)中所得的结论还成立吗?请你在图15(2)中完成图形,并给予证明。

八年级数学答案:
一、精心选一选:
1.B 2.A 3.D 4.B 5.C 6.A 7.D 8.B 9.B 10.A . 二、细心填一填:
11.(-3,-4) 12 . 35- . 13.-1.14. π, 15.± 2,16 .略。

17.2cm . 18、10点45分,19、 14 . 20、 6个. 三、静心画一画: 21略.
22、略.(2)112度. 四、耐心求一求: 23、8. 24(1)2
5
±
. (2) 1. 25、证明:(1)∵AC ∥DF ∴∠ACB =∠F 在△ABC 与△DEF 中
ACB F A D AB DE ∠=∠⎧⎪
∠=∠⎨⎪=⎩
∴△ABC ≌△DEF (2) ∵△ABC ≌△DEF ∴BC=EF ∴BC –EC=EF –EC 即BE=CF
26、证明:(1) 连接AC ∵点E 是BC 的中点,AE⊥BC ∴AE 是BC 的垂直平分线. ∴AB=AC 同理:AD=AC ∴AB=AD 。

(2)∠EAF =∠BAE +∠DAF
理由如下:
)∵AB=AC,AE⊥BC
∴∠BAE=∠CAE
同理:∠DAF=∠CAF
∴∠EAF=∠CAE+∠CAF=∠BAE+∠DAF
27、证明:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA
∴ED=EC
∵OE=OE
∴Rt△OED≌Rt△OEC
∴OC=OD
∵OE平分∠AOB
∴OE是CD的垂直平分线.
(2)OE=4EF
理由如下:
∵OE平分∠AOB, ∠AOB=60º,
∴∠AOE=∠BOE=30º
∵ED⊥OA
∴OE=2DE
∵∠E FD=90º,∠DEO=90º-∠DOE=90º-30º=60º
∴∠E DF=30º
∴DE=2EF
∴OE=4EF
五、全心探一探:
28、解:(1)AR=AQ,理由如下:
∵AB=AC
∴∠B=∠C
∵RP⊥BC
∴∠B+∠BQP=∠C+∠PRC=90º
∴∠BQP=∠PRC
∵∠BQP=∠AQR
∴∠PRC=∠AQR
∴AR=AQ
(2)猜想仍然成立。

证明如下:∵AB=AC
∴∠ABC=∠C
∵∠ABC=∠PBQ
∴∠PBQ=∠C
∵RP⊥BC
∴∠PBQ+∠BQP=∠C+∠PRC=90º∴∠BQP=∠PRC
∴AR=AQ。

相关文档
最新文档