八年级数学期中精选试卷培优测试卷

合集下载

2024-2025学年人教版八年级数学上册期中达标培优卷

2024-2025学年人教版八年级数学上册期中达标培优卷

2024-2025学年人教版八年级数学上册期中达标培优卷1.下列轴对称图形中,只有两条对称轴的图形是()A .B .C .D .2.下列长度的各组线段中,能组成三角形的是()A .B .C .D .3.如图,一扇窗户打开后,用窗钩可将其固定,这里所运用的数学原理是()A .三角形具有稳定性B .两点确定一条直线C .两点之间线段最短D .三角形的两边之和大于第三边4.如图,直线MN 是四边形AMBN 的对称轴,与对角线交于点Q,点P 是直线MN 上任意一点,下列判断错误的是()A .AQ=BQB .AP=BPC .∠MAP=∠MBPD .∠ANM=∠NMB5.在三角形内,到三角形三个顶点的距离都相等的点是这个三角形的()A .三条中线的交点B .三条高的交点C .三条角平分线的交点D .三条边的垂直平分线的交点6.工人师傅常用角尺平分一个任意角.做法如下:如图,是一个任意角,在边、上分别取,移动角尺,使角尺两边相同的刻度分别与点、重合.过角尺顶点的射线便是的平分线.在这个过程中先可以得到,其依据的基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.斜边和一条直角边分别相等的两个直角三角形全等7.一个正多边形的每一个内角都等于135°,那么从这个多边形的一个顶点可以引对角线的条数是()A.4条B.5条C.6条D.8条8.两边分别长4cm和10cm的等腰三角形的周长是()A.18cm或24cm B.20cm或24cm C.24cm D.26cm9.若一个多边形的边数增加1,则这个多边形的内角和()A.不变B.增加360°C.减少180°D.增加180°10.如图,已知,垂足分别为交于点O,且平分,那么图中全等三角形共有()A.3对B.4对C.5对D.6对11.如图,中,是的垂直平分线,,的周长为16,则的周长为()A.18B.21C.24D.2612.如图,将△ABD沿△ABC的角平分线AD所在直线翻折,点B在AC边上的落点记为点E.已知∠C=20°、AB+BD=AC,那么∠B等于()A.80°B.60°C.40°D.30°13.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A.B.C.D.14.如图,等边的边长为8,是边上的中线,是边上的动点,是边上一点,若,则当取得最小值时,的度数为()A.B.C.D.15.如图,在中,,,平分,交于,点是上的一点,且,连交于,连,下列结论:,,,,其中正确的有()A.B.C.D.16.已知点和和关于轴对称,则的值为_________.17.如图,在中,平分交于点,过点作交于点.动点从点出发,沿着运动,当时,则的度数为___________.18.如图,在四边形中,已知,.则_____.19.如图在第二个△A1BC中,∠B=40°,A1B=BC,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第二个△A1A2D,再在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E…如此类推,可得到第n个等腰三角形.则第n个等腰三角形中,以A n为顶点的内角的度数为______.20.如图,,,,,点P和点Q同时从点A出发,分别在线段和射线上运动,且,当______时,以点A,P,Q为顶点的三角形与全等.21.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.22.如图,在中,为边上的高,点D为边上的一点,连接.(1)当为边上的中线时,若,的面积为30,求的长;(2)当为的角平分线时,若,求的度数.23.如图点在线段上,∥,,,是的中点,试探索与的位置关系,并说明理由.24.三角形中,顶角等于的等腰三角形称为黄金三角形,如图,中,,且.(1)在图中用尺规作边的垂直平分线交于D,连接(保留作图痕迹,不写作法).(2)请问是不是黄金三角形,如果是,请给出证明,如果不是,请说明理由.25.如图,在中,G为的中点,,交的平分线于点D,,垂足为E,,垂足为F.(1)求证:;(2)若,,则的长为______.26.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?。

八年级数学上册期中精选试卷(培优篇)(Word版 含解析)

八年级数学上册期中精选试卷(培优篇)(Word版 含解析)

八年级数学上册期中精选试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.2.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.3.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,34tt xt=-⎧⎨=⎩,解得11tx=⎧⎨=⎩,②若△ACP≌△BQP,则AC=BQ,AP=BP,34xtt t=⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.综合实践如图①,90,,,ACB AC BC AD CE BE CE∠=︒=⊥⊥,垂足分别为点D E、,2.5, 1.7AD cm DE cm==.(1)求BE的长;(2)将CE所在直线旋转到ABC∆的外部,如图②,猜想AD DE BE、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC∆中,,AC BC D C E=、、三点在同一直线上,并且BEC ADC BCAα∠=∠=∠=,其中α为任意钝角.猜想AD DE BE、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE=+(3)∵BEC ADC BCAα∠=∠=∠=∴180BCE ACD a︒∠+∠=-180BCE BCE a︒∠+∠=-∴ACD BCE∠=∠在ACD与CBE△中,ADC E aACD BCEAC BC∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE≅∴,AD CE CD BE==又∵ED EC CD=+∴ED AD BE=+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.5.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.(1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC∆、111A B C∆均为锐角三角形,且11AB A B=,11BC B C=,1C C∠=∠.求证:111ABC A B C∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.【答案】(1)见解析;(2)钝角三角形或直角三角形.【解析】【分析】(1)过B作BD⊥AC于D,过B1作B1D1⊥B1C1于D1,得出∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,根据SAS证△BDC≌△B1D1C1,推出BD=B1D1,根据HL证Rt△BDA≌Rt△B1D1A1,推出∠A=∠A1,根据AAS推出△ABC≌△A1B1C1即可.(2)当这两个三角形都是直角三角形时,直接利用HL即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌,∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌,∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒.∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等;故答案为:钝角三角形或直角三角形.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.二、八年级数学 轴对称解答题压轴题(难)6.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.7.再读教材:宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB22AC BC+2212+55(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE ,矩形MNDE .∵AD =5.AN =AC =1,CD =AD ﹣AC =5﹣1.∵BC =2,∴CD BC =51-,∴矩形BCDE 是黄金矩形. ∵MN DN =15+=512-,∴矩形MNDE 是黄金矩形. (4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.长GH 51,宽HE =35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.8.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG∆≅∆,∴BH=BG,∵BE=CD,∴EH=BH-BE=BG-CD=CG-CD=DG,在OEH∆和ODG∆中,90OH OGOHE OGDEH DG=⎧⎪∠=∠=⎨⎪=⎩,∴OEH ODG∆≅∆,∴OE=OD.(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由如下;如图 ,作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为 CD=BE,所以OEH ODG∆≅∆且OE=OD,∴EOH DOG∠=∠,180ABC HOG∠+∠=,∴EOD EOG DOG EOG EOH HOG∠=∠+∠=∠+∠=∠,∴180ABC EOD∠+∠=,∵△BEF的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF和△OGF中,OE ODEF FDOF OF=⎧⎪=⎨⎪=⎩,∴OEF OGF∆≅∆,∴EOF DOF∠=∠,∴2EOD EOF∠=∠,∴2180ABC EOF∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.9.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =-解得103t =∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=-解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.10.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动秒后,△AMN是等边三角形?(2)点M、N在BC边上运动时,运动秒后得到以MN为底边的等腰三角形△AMN?(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.【答案】(1)125;(2)485;(3)点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【解析】【分析】(1)当AM=AN时,△MNA是等边三角形.设运动时间为t秒,构建方程即可解决问题;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.构建方程即可解决问题;(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.【详解】(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒则有:2t=12﹣3t解得t=12 5故点M、N运动125秒后,△AMN是等边三角形;(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN则有:2t﹣12=36﹣3t解得t=48 5故运动485秒后得到以MN为底边的等腰三角形△AMN;(3)设点M、N运动t秒后,可得到直角三角形△AMN ①当M在AC上,N在AB上,∠ANM=90°时,如图∵∠A=60°∴∠AMN=30°∴AM=2AN则有2t=2(12﹣3t)∴t=3;②当M在AC上,N在AB上,∠AMN=90°时,如图∵∠A=60°∴∠ANM=30°∴2AM=AN∴4t=12﹣3t∴t=127;③当M、N都在BC上,∠ANM=90°时,如图CN=3t﹣24=6解得t=10;④当M、N都在BC上,∠AMN=90°时,则N与B重合,M正好处于BC的中点,如图此时2t=12+6解得t=9;综上所述,点M、N运动3秒或127秒或10秒或9秒后,△AMN为直角三角形.【点睛】本题主要考查了等边三角形的性质、等腰三角形的判定、全等三角形的判定与性质,熟练掌握相关知识点是解决本题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片边长为a 的正方形,B 中纸片是边长为b 的正方形,C 种纸片是长为a 、宽为b 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请问两种不同的方法求图2大正方形的面积.方法1:s =____________________;方法2:s =________________________; (2)观察图2,请你写出下列三个代数式:()222,,a b a b ab ++之间的等量关系. _______________________________________________________;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,11a b a b +=+=,求ab 的值;②已知()()22202020195a a -+-=,则()()20202019a a --的值是____. 【答案】(1)()2a b +,222a ab b ++;(2)()2222a b a ab b +=++;(3)①7ab =,②2-【解析】【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b )2,a 2+b 2,ab 之间的等量关系;(3)①依据a+b=5,可得(a+b )2=25,进而得出a 2+b 2+2ab=25,再根据a 2+b 2=11,即可得到ab=7;②设2020-a=x ,a-2019=y ,即可得到x+y=1,x 2+y 2=5,依据(x+y )2=x 2+2xy+y 2,即可得出xy=()222()2x y x y +-+=2-,进而得到()()20202019a a --=2-. 【详解】 解:(1)图2大正方形的面积=()2a b +,图2大正方形的面积=222a ab b ++故答案为:()2a b +,222a ab b ++;(2)由题可得()2a b +,22a b +,ab 之间的等量关系为:()2222a b a ab b +=++故答案为:()2222a b a ab b +=++;(3)①()()2222a b a b ab +-+=2251114ab ∴=-=7ab ∴=②设2020-a=x ,a-2019=y ,则x+y=1,∵()()22202020195a a -+-=,∴x 2+y 2=5,∵(x+y )2=x 2+2xy+y 2, ∴xy=()222()2x y x y +-+=-2, 即()()202020192a a --=-.【点睛】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键.12.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.13.阅读下列因式分解的过程,再回答所提出的问题:()()()()()()()223111111111x x x x x x x x x x x x +++++=++++=++=⎤⎣+⎡⎦.(1)上述分解因式的方法是______________法.(2)分解220191(1)(1)(1)x x x x x x x ++++++++的结果应为___________.(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++.【答案】(1)提公因式 ; (2)()20201x + ;(3)()11n x ++【解析】【分析】(1)用的是提公因式法;(2)按照(1)中的方法再分解几个,找了其中的规律,即可推测出结果;.(3)由(2)中得到的规律即可推广到一般情况.【详解】解:(1)上述分解因式的方法是提公因式法.(2)()()()()()2333111111x x x x x x x x x x +++++++=+++=()41x + ()()()()()()234441111111x x x x x x x x x x x x +++++++++=+++=()51x +……由此可知()2201911(1)(1)x x x x x x x ++++++++=()20201x +(3)原式=(1+x )[1+x+x (x+1)]+x (x+1)3+…+x (x+1)n ,=(1+x )2(1+x )+x (x+1)3+…+x (x+1)n ,=(1+x )3+x (1+x )3+…+x (1+x )n ,=(1+x )n +x (x+1)n ,=(1+x )n+1.【点睛】本题考查了提公因式法分解因式,找出整式的结构规律是关键,体现了由特殊到一般的数学思想.14.阅读下列因式分解的过程,再回答所提出的问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x +x (x +1)+x (x +1)2+…+ x (x +1)2004,则需应用上述方法 次,结果是 .(3)分解因式:1+x +x (x +1)+x (x +1)2+…+ x (x +1)n (n 为正整数).【答案】(1)提公因式,两次;(2)2004次,(x +1)2005;(3) (x +1)1n +【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x ),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,=(1+x )[1+x+x (1+x )+…+ x (x +1)2003]⋯=22003(1)(1)(1)(1)(1)x x x x x +++++个=(1+x )2005,故分解1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x (x+1)+x (x+1)2…+x (x+1)n (n 为正整数)的结果是:(x+1)n+1.故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.15.(探究)如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,有阴影部分沿虚线剪开,拼成图②的长方形(1)请你分别表示出这两个图形中阴影部分的面积(2)比较两图的阴影部分面积,可以得到乘法公式 (用字母表示)(应用)请应用这个公式完成下列各题①已知22412m n -=,24m n +=,则2m n -的值为②计算:(2)(2)a b c a b c +--+(拓展)①()()()()24832(21)21212121+1+++++结果的个位数字为 ②计算:222222221009998974321-+-++-+-【答案】[探究](1)a 2﹣b 2;(a +b )(a ﹣b );(2)(a +b )(a ﹣b )=a 2﹣b 2;[应用]①3;②4a 2﹣b 2+2bc ﹣c 2;[拓展]①6;②5050.【解析】【分析】[探究](1)由面积公式可得答案;(2)公式由(1)直接可得;[应用]①用平方差公式分解4m 2﹣n 2,将已知值代入可求解;②将三项恰当组分成两组,先用平方差,再用完全平方公式展开后合并同类项即可;[拓展]①将原式乘以(2﹣1),就可以反复运用平方差公式化简,最后按照循环规律可得解;②将原式从左向右依次两项一组,运用平方差公式分解,化为100+99+98+…+4+3+2+1,从而可得答案.【详解】(1)图①按照正方形面积公式可得:a2﹣b2;图②按照长方形面积公式可得:(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b).(2)令(1)中两式相等可得:(a+b)(a﹣b)=a2﹣b2故答案为:(a+b)(a﹣b)=a2﹣b2.【应用】①∵4m2﹣n2=12,2m+n=4,4m2﹣n2=(2m+n)(2m﹣n),∴(2m﹣n)=12÷4=3.故答案为:3.②(2a+b﹣c)(2a﹣b+c)=[2a+(b﹣c)][2a﹣(b﹣c)]=4a2﹣(b﹣c)2=4a2﹣b2+2bc﹣c2【拓展】①原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264.∵2的正整数次方的尾数为2,4,8,6循环,64÷4=16.故答案为:6.②原式=(100+99)(100﹣99)+(98+97)(98﹣97)+…+(4+3)(4﹣3)+(2+1)(2﹣1)=100+99+98+97+…+4+3+2+1=5050.【点睛】本题考查了平方差公式的几何背景及其应用与拓展,计算具有一定的难度,属于中档题.四、八年级数学分式解答题压轴题(难)16.已知分式 A =2344 (1)11a aaa a-+ +-÷--(1)化简这个分式;(2)当 a>2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.【答案】(1)22aa+-;(2)原分式值变小了,见解析;(3)11【解析】【分析】(1)根据分式混合运算顺序和运算法则化简即可得;(2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a 的范围判断结果与0的大小即可得;(3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】 解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯-- =22a a +-; (2)变小了,理由如下: ∵22a A a +=-, ∴62a B a +=+, ∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,∴20a ->,24a +>,∴0A B ->,∴分式的值变小了;(3)∵A 是整数,a 是整数, 则24122a A a a +==+--, ∴21a -=±、2±、4±, ∵1a ≠,∴a 的值可能为:3、0、4、6、-2;∴3046(2)11++++-=;∴符合条件的所有a 值的和为11.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a +=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +;(3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.18.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h 米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h 的代数式表示)【答案】(1)甲的平均攀登速度是12米/分钟;(2)360h h+倍. 【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得甲的平均攀登速度;(2)根据(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本题.【详解】(1)设乙的速度为x 米/分钟, 900900151.2x x+=, 解得,x=10,经检验,x=10是原分式方程的解,∴1.2x=12,即甲的平均攀登速度是12米/分钟;(2)设丙的平均攀登速度是y 米/分,12h +0.5×60=h y , 化简,得 y=12360h h +, ∴甲的平均攀登速度是丙的:1236012360h h h h ++=倍,。

期中测试卷(培优卷)八年级数学上册(北师大版)

期中测试卷(培优卷)八年级数学上册(北师大版)

2021-2022学年八年级数学上册期中测试卷(培优卷)【北师大版】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握所学内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2021秋•工业园区期末)下列各数中,不是无理数的是( )A .πB .1327C .0.1010010001…D .π﹣3.142.(3分)(2021春•姑苏区期末)下列根式中,最简二次根式的是( )A .√9B .√a 2+b 2C .√0.7D .√a 33.(3分)(2021秋•虎丘区校级期末)在下列四个图形中,能作为y 是x 的函数的图象的是( )A .B .C .D .4.(3分)(2021•岳麓区校级模拟)如果点P (﹣2,b )和点Q (a ,﹣3)关于x 轴对称,则a +b 的值是( )A .﹣1B .1C .﹣5D .55.(3分)(2021秋•重庆期末)(−√9)2的平方根是x ,64的立方根是y ,则x +y 的值为( )A .3B .7C .3或7D .1或76.(3分)(2021春•栾城区期末)已知点P (x ,y )在第四象限,且点P 到x 轴,y 轴的距离分别为2,5.则点P 的坐标为( )A .(5,﹣2)B .(﹣2,5)C .(2,﹣5)D .(﹣5,2)7.(3分)(2021秋•苏州期末)在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,下列条件不能判断△ABC 是直角三角形的是( )A .∠B =∠C +∠AB .a 2=(b +c )(b ﹣c )C .∠A :∠B :∠C =3:4:5D .a :b :c =3:4:58.(3分)(2021秋•高新区期末)已知函数y =|x ﹣b |,当x =1或x =3时,对应的两个函数值相等,则实数b 的值是( )A .2B .1C .﹣1D .﹣29.(3分)(2021•工业园区模拟)如图,在4×5的方格中,A 、B 为两个格点,再选一个格点C ,使∠ACB 为直角,则满足条件的点C 个数为( )A .3B .4C .5D .610.(3分)(2021•沙坪坝区校级三模)甲、乙两车分别从A 地、C 地同时向B 地匀速行驶(C 在A 、B 两地之间).甲追上乙之后,乙立即以原来速度的2倍向B 地继续行驶,且此刻速度大于甲的速度,到达B 地后立即以提高后的速度返回C 地,甲车到达B 地后立刻以原速返回A 地,两车距C 地的距离之和y (千米)与甲车行驶的时间t (小时)之间的部分函数关系如图所示,那么甲、乙两车第二次相遇时甲行驶的时间是( )小时A .3411B .3711C .4011D .4311二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2021•高新区模拟)函数y =1−√2x −4中自变量x 的取值范围是 .12.(3分)(2021春•高要区期末)若正比例函数y =(m ﹣2)x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时y 1>y 2,则m 的取值范围是 .13.(3分)(2021秋•吴江区期末)已知点A 的坐标为(n +3,3),点B 的坐标为(n ﹣4,n ),AB ∥x 轴,则线段AB = .14.(3分)(2021•永安市一模)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2=.15.(3分)(2021秋•万山区期末)如图,直线l的表达式为y=−√3x,点A1坐标为(﹣1,0).过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此法进行下去,点B2021的坐标为.16.(3分)(2021•凉山州)已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+b=.三.解答题(共7小题,满分52分)17.(6分)(2021春•高新区校级月考)计算(1)√12−√43×√15+2√5;(2)√48÷√3−√12×√12+√24;(3)(√5−√2)(√5+√2)−(√3−2)2.18.(6分)(2021春•海淀区校级期末)计算:(1)9a√12ab•(−23√6b)(a≥0,b≥0);(2)(√6+2√2)×√6−13√27.19.(8分)(2021秋•昆山市校级期末)如图,已知四边形ABCD中,∠A为直角,AB=16,BC=25,CD=15,AD=12,求四边形ABCD的面积.20.(8分)(2021秋•镇江期末)一次函数y=kx+4的图象经过点(﹣3,﹣2),则(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象;(3)判断(﹣5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是.21.(8分)(2021春•扎兰屯市期末)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.22.(8分)(2021春•新城区校级期末)小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是米;小明在书店停留了分钟;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(3)请直接写出小明出发后多长时间离家的距离为900米?23.(8分)(2021秋•罗湖区期中)(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?。

八年级数学期中精选试卷培优测试卷

八年级数学期中精选试卷培优测试卷

八年级数学期中精选试卷培优测试卷一、八年级数学全等三角形解答题压轴题(难)1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5Q(厘米/秒);(2)点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得△BPD≌△CQP;②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x秒,即可列出方程1562202x x,解方程即可得到结果.【详解】(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P 、Q 的运动时间84663BPt (秒), 此时107.543Q CQ V t (厘米/秒).(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程设经过x 秒后P 与Q 第一次相遇,依题意得1562202x x , 解得x=803(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.2.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .(1)试说明:△AED ≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=EAD DAF ∠=∠,从而得到.AED AFD ≌ ()2 由△AED AFD ≌得到ED FD =,再证明90DCF ∠=︒,利用勾股定理即可得出结论. ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .试题解析:()1ABE AFC ≌,AE AF =,BAE CAF ∠=∠,45,EAD ∠=90,BAC ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=在AED 和AFD 中,{AF AEEAF DAE AD AD ,=∠=∠=.AED AFD ∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=22217AD AH DH=+=或65.22234DE AD==或130.点睛:D是斜边BC所在直线上一点,注意分类讨论.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。

【解析版】初中数学八年级下期中经典题(课后培优)(3)

【解析版】初中数学八年级下期中经典题(课后培优)(3)

一、选择题1.(0分)[ID:9912]如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )A.3B.5C.6D.72.(0分)[ID:9905]如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.3553.(0分)[ID:9904]某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90B.85,87.5C.90,85D.95,904.(0分)[ID:9900]如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.2√3C.3√3D.65.(0分)[ID:9896]已知P(x,y)是直线y=1322x 上的点,则4y﹣2x+3的值为( ) A .3B .﹣3C .1D .06.(0分)[ID :9894]实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++7.(0分)[ID :9889]如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .8.(0分)[ID :9882]有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .7B .74C .72D .49.(0分)[ID :9877]周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.(0分)[ID:9870]函数y=11xx+-中,自变量x的取值范围是()A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠1 11.(0分)[ID:9865]如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<12.(0分)[ID:9862]如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.4113.(0分)[ID:9917]如图所示,▱ABCD的对角线AC,BD相交于点O,AE EB=,3OE=,5AB=,▱ABCD的周长()A.11B.13C.16D.2214.(0分)[ID:9872]下列计算正确的是()A.a2+a3=a5B.3221=C.(x2)3=x5D.m5÷m3=m2 15.(0分)[ID:9915]菱形周长为40cm,它的条对角线长12cm,则该菱形的面积为()A.24B.48C.96D.36二、填空题16.(0分)[ID :10029]某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表: 植树棵数(单位:棵) 4 5 6 8 10 人数(人)302225158则这100名学生所植树棵数的中位数为_____.17.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分. 18.(0分)[ID :10019]当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.19.(0分)[ID :10013]如图,点E 在正方形ABCD 的边AB 上,若1EB ,2EC =,那么正方形ABCD 的面积为_.20.(0分)[ID :9988]如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.21.(0分)[ID :9987]在矩形ABCD 中,点E 为AD 的中点,点F 是BC 上的一点,连接EF 和DF ,若AB=4,BC=8,EF=25,则DF 的长为___________.22.(0分)[ID :9986]若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.23.(0分)[ID :9976]如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.24.(0分)[ID :9974]小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m,当它把绳子的下端拉开旗杆4m后,发现下端刚好接触地面,则旗杆的高为________ 25.(0分)[ID:9940]如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为_____cm.三、解答题26.(0分)[ID:10126]某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10到25人,甲乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可以给每位游客七五折优惠,乙旅行社表示可以先免去一位游客的旅游费用,然后给予其余游客八折优惠.若单位参加旅游的人数为x人,甲乙两家旅行社所需的费用分别为y1和y2.(1)写出y1,y2与x的函数关系式并在所给的坐标系中画出y1,y2的草图;(2)根据图像回答,该单位选择哪家旅行社所需的费用最少?27.(0分)[ID:10114]先阅读,后解答:(1)由根式的性质计算下列式子得:①√32=3,②√(23)2=23,③√(−13)2=13,④√(−5)2=5,⑤√0=0.由上述计算,请写出√a2的结果(a为任意实数).(2)利用(1)中的结论,计算下列问题的结果:①√(3.14−π)2;②化简:√x2−4x+4(x<2).(3)应用:若√(x−5)2+√(x−8)2=3,求x的取值范围.28.(0分)[ID:10101]123101010 23429.(0分)[ID:10089]定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.已知:在Rt ABC 中,90BAC ∠=︒,斜边5BC =,直角边3AB Rt ABC =,的准外心P 在AC 边上,试求PA 的长.30.(0分)[ID :10083]已知 90, 23,8,ACB BC AC CD ︒∠===是边AB 上的高,求CD 的长【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.B 3.B 4.C 5.B 6.A 7.A 8.B 9.C 10.D 11.C12.C13.D14.D15.C二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排17.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少18.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直19.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b220.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P21.或【解析】【分析】分两种情况考虑①当BF>CF时②当BF<CF时然后过F作FG⊥AD于G根据勾股定理进行求解【详解】①如图所示当BF>CF时过F作FG⊥AD于G 则GF=4Rt△EFG中又∵E是AD的22.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为2423.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF =AC=15∴DF=DE﹣E24.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练25.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:.∴故选:B.【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.2.B解析:B 【解析】 【分析】 根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】 如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°, 在Rt △ADE 中,22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 故选:B . 【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.3.B解析:B 【解析】试题解析:85分的有8人,人数最多,故众数为85分; 处于中间位置的数为第10、11两个数, 为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数4.C解析:C 【解析】 【分析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=12AD=3,CM⊥AD,∴CM=√CD2−DM2=3√3,∴PA+PM=PC+PM=CM=3√3.故选:C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.5.B解析:B【解析】【分析】根据点P(x,y)是直线y=1322x-上的点,可以得到y与x的关系,然后变形即可求得所求式子的值.【详解】∵点P(x,y)是直线y=1322x-上的点,∴y=13 22x-,∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性6.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -的正负,再根据2a 的性质计算即可.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()()2212a b +--()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】本题结合数轴上点的位置考查了2a 的计算性质,熟练掌握该性质是解答的关键. 7.A解析:A【解析】【分析】当OP 垂直于直线y =kx +b 时,由垂线段最短可知:OP <2,故此函数在y 轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O 作OP 垂直于直线y =kx +b ,∵OP 垂直于直线y =kx +b ,∴OP <2,且点P 的横坐标<0.故此当x <0时,函数有最小值,且最小值<2,根据选项可知A 符合题意.故选:A .【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x <0时,函数有最小值,且最小值小于2是解题的关键.8.B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.9.C解析:C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.10.D解析:D【解析】根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.11.C解析:C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.12.C解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE,进而利用勾股定理得出AE即可.【详解】∵菱形ABCD,∴CD=AD=5,CD∥AB,∴CE=CD﹣DE=5﹣1=4,∵BE⊥CD,∴∠CEB=90°,∴∠EBA=90°,在Rt△CBE中,BE3==,在Rt△AEB中,AE==故选C.【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD.13.D解析:D【解析】【分析】根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,AE EB,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.14.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A、a2与a3不是同类项,无法计算,故此选项错误;B、32-2=22,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.15.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.【详解】解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,∵菱形的周长为40,∴AB=BC=CD=AD=10,∵一条对角线的长为12,当AC=12,∴AO=CO=6,在Rt△AOB中,根据勾股定理,得BO=8,∴BD=2BO=16,∴菱形的面积=12AC•BD=96,故选:C.【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.18.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b 过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直解析:y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.19.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b2解析:3.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,BC==∴正方形ABCD的面积23==,BC故答案为:3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P解析:10【解析】【分析】已知ABCD是正方形,根据正方形性质可知点B与点D关于AC对称,DE=PB+PE,求出DE长即是PB+PE最小值.【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称,连接DE,交AC于点P,连接PB,则PB+PE=DE的值最小∵CE=1,CD=3,∠ECD=90°∴2222DE CE CD=++=1310∴PB+PE1010【点睛】本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.21.或【解析】【分析】分两种情况考虑①当BF>CF时②当BF<CF时然后过F 作FG⊥AD于G根据勾股定理进行求解【详解】①如图所示当BF>CF时过F作FG ⊥AD于G则GF=4Rt△EFG中又∵E是AD的解析:2513【解析】【分析】分两种情况考虑,①当BF>CF时,②当BF<CF时,然后过F作FG⊥AD于G,根据勾股定理进行求解.【详解】①如图所示,当BF>CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,()22EG=-=,2542又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4﹣2=2,∴Rt△DFG中,22DF+=4225②如图所示,当BF<CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,()222542EG=-=,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4+2=6,∴Rt△DFG中,2246213DF=+=,故答案为:25或213.【点睛】本题考查矩形的性质,勾股定理,学会运用分类讨论的思想与巧作辅助线构造直角三角形是解题的关键.22.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为24解析:24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm2,故答案为24.23.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF=AC=15∴DF=DE﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.解:∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =2.5, ∵AF ⊥CF ,E 为AC 的中点,∴EF =12AC =1.5, ∴DF =DE ﹣EF =1,故答案为:1.【点睛】 本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.24.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练 解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x 米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x ,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 25.【解析】【分析】根据作法判定出四边形OACB 是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC =BC =OA ∵OA =OB ∴OA =OB =BC =AC ∴四边形OACB 是菱形∵AB解析:【解析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC =BC =OA ,∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2, ∴12AB •OC =12×2×OC =4, 解得OC =4cm .故答案为:4.【点睛】 本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.三、解答题26.(1)1150y x =,2160160y x =-,图象见解析;(2)当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【解析】【分析】(1)根据题意可以直接写出甲乙旅行社收费1y 、2y (元)与参加旅游的人数x (人)之间的关系式,再画出图象;(2)根据题意,可以列出相应的不等式,从而可以得到该单位选择哪一家旅行社支付的旅游费用较少.【详解】解:(1)由题意可得,12000.75150y x x =⨯=,即甲旅行社收费1y (元)与参加旅游的人数x (人)之间的关系式是1150y x =; 22000.80(1)160160y x x =⨯-=-,即乙旅行社收费2y (元)与参加旅游的人数x (人)之间的关系式是2160160y x =-;(2)当150160(1)x x =-时,解得,16x =,即当16x =时,两家费用一样;当150160(1)x x >-时,解得,16x <,即当1016x ≤<时,乙社费用较低;当150160(1)x x <-时,解得,16x >,即当1625x <时,甲社费用较低;答:当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.27.(1)√a 2=|a|={a(a >0)0(a =0)−a(a <9);(2)①π﹣3.14,②2﹣x ;(3)x 的取值范围是5≤x≤8.【解析】【分析】(1)将a 分为正数、0、负数三种情况得出结果;(2)①当a=3.14﹣π<0时,根据(1)中的结论可知,得其相反数﹣a ,即得π﹣3.14; ②先将被开方数化为完全平方式,再根据公式得结果;(3)根据(1)式得:√(x −5)2+√(x −8)2 =|x ﹣5|+|x ﹣8|,然后分三种情况讨论:①当x <5时,②当5≤x≤8时,③当x >8时,分别计算,哪一个结果为3,哪一个就是它的取值.【详解】(1)√a 2=|a|={a (a >0)0(a =0)−a (a <0);(2)①√(3.14−π)2=|3.14﹣π|=π﹣3.14,②√x 2−4x +4(x <2),=√(x −2)2,=|x ﹣2|,∵x <2,∴x ﹣2<0,∴√x 2−4x +4=2﹣x ;(3)∵√(x −5)2+√(x −8)2=|x ﹣5|+|x ﹣8|,①当x <5时,x ﹣5<0,x ﹣8<0,所以原式=5﹣x +8﹣x=13﹣2x ;②当5≤x≤8时,x ﹣5≥0,x ﹣8≤0,所以原式=x ﹣5+8﹣x=3;③当x >8时,x ﹣5>0,x ﹣8>0,所以原式=x ﹣5+x ﹣8=2x ﹣13,∵√(x −5)2+√(x −8)2=3,所以x 的取值范围是5≤x≤8.【点睛】本题考查了二次根式的性质和化简,明确二次根式的两个性质:①(√a )2=a (a≥0)(任何一个非负数都可以写成一个数的平方的形式);②√a 2=|a|={a (a >0)0(a =0)−a (a <0);尤其是第2个性质的运用,注意被开方数是完全平方式时,如第(3)小题,要分情况进行讨论. 28.【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式123234⎛=+-= ⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.29.2PA =或78 【解析】【分析】 先利用勾股定理计算出AC=4,根据准外心分类讨论:当PA=PC 时,易得PA=12AC=2;当PB=PC 时,设PA=x ,则PC=PB=4-x ,利用勾股定理得x 2+32=(4-x )2,解得x=78;当PA=PB 时,此情况不成立,然后解方程求出x 即可.【详解】如图:3,5,BC AB ==224AC AB BC ∴=-,若,PB PC =设PA x =,则()22243,x x -=+ 78x ∴=,即78PA =, 若,PA PC =则2,PA =若,PA PB =此情况不成立;综上,2PA =或78【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.也考查了阅读理解能力. 30.230【解析】【分析】已知两直角边,利用勾股定理求出斜边长,再利用面积法即可求出斜边上的高.【详解】解:Rt ABC ∆中,由勾股定理得AB ===1122ABC S AC AB AB CD ∆==2352AC BC CD AB ∴=== 【点睛】此题考查勾股定理,关键是利用勾股定理求出斜边长.。

浙教版2022-2023学年八年级上数学期中培优测试卷2(解析版)

浙教版2022-2023学年八年级上数学期中培优测试卷2(解析版)

浙教版2022-2023学年八年级上数学期中培优测试卷2(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.下列垃圾分类的图标(不含文字与字母部分)中,是轴对称图形的是( )A .B .C .D .【答案】B【解析】A 、不是轴对称图形,故本选项不合题意; B 、是轴对称图形,故本选项符合题意; C 、不是轴对称图形,故本选项不合题意; D 、不是轴对称图形,故本选项不合题意. 故答案为:B .2.下列长度的三条线段,能组成三角形的是( ) A .3,4,8 B .5,6,10 C .5,5,11 D .5,6,11【答案】B【解析】A.∵3+4<8,故不能组成三角形,A 不符合题意; B.∵5+6>10,故能组成三角形,B 符合题意; C.∵5+5<11,故不能组成三角形,C 不符合题意; D.∵5+6=11,故不能组成三角形,D 不符合题意; 故答案为:B.3.如图是作△ABC 的作图痕迹,则此作图的已知条件是( )A .已知两边及夹角B .已知三边C .已知两角及夹边D .已知两边及一边对角 【答案】C【解析】观察图象可知:已知线段AB ,∠CAB =α,∠CBA =β. 故答案为:C.4.已知关于x 的不等式组{3x −m <0x >−4的所有整数解的和为-5,则m 的取值范围为( )A .−6<m ≤−3或3<m ≤6B .−6≤m <−3或3≤m <6C .−6≤m <−3D .−6<m ≤−3 【答案】A【解析】由3x −m <0,得:x <m3,又x >−4,且不等式组所有整数解的和为−5, ∴不等式组的整数解为-3、-2或-3、-2、-1、0、1,∴−2<m 3≤−1或1<m3≤2, 解得−6<m ≤−3或3<m ≤6. 故答案为:A. 5.如图,在△ABC 中,∠ABC 的平分线与AC 的垂直平分线相交于点D ,过点D 作DF ⊥BC ,DG ⊥AB ,垂足分别为F 、G .若BG =4,AC =5,则△ABC 的周长是( )A.12B.13C.14D.15【答案】B【解析】连接AD、DC.∵BD平分∠ABC,DG⊥AB,DF⊥BC,∴DG=DF.∵D在AC的中垂线上,∴DA=DC.在Rt△DGA与Rt△DFC中,∵DG=DF,DA=DC,∴Rt△DGA≌Rt△DFC(HL).∴AG=CF,∵DG=DF,BD=BD,∴Rt△BDG≌Rt△BDF(HL).∴BG=BF.又∵AG=CF,∴△ABC的周长=AB+BC+AC=BG-AG+BF+FC+AC=2BG+AC=2×4+5=13.故答案为:B.6.如图,已知等边△ABC中,在射线BA上有一点D,连接CD,以CD为边向上作等边△CDE,连接BE和AE,下列结论:①AE=BD;②直线AE与直线AB所夹的锐角为60°;③当D在线段AB或BA延长线上时,总有∠BED−∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的结论序号有()A.①②B.①②③C.①②④D.①②③④【答案】C【解析】∵△ABC,△CDE都是等边三角形∴CB=CA,CD=CE,∠BCA=∠DCE= 60°∴∠BCD=∠ACE∴△BCD≅△ACE(SAS)∴BD=AE,∠BDC=∠AEC,故①正确;∵∠EOC=∠DOA∴∠OAD=∠OCE= 60°∴AE与AB的夹角为60°,故②正确;∵∠BED-∠AED=∠AEB<∠AEC∠AEC=∠BDC∴∠BED-∠AED <∠BDC,故③错误;当∠BCD= 90°时,易证AC=AD∵CE=DE∴CE2+AD2=AC2+DE2,故④正确.故答案为:C.7.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,则OE的最小值是()A.√22B.1C.√2D.2【答案】C【解析】设Q为AB的中点,连接DQ,如图所示:∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,∵AB=AC=4,点O为AC的中点,∴AQ=AO,∵AD=AE,∴△AQD≌△AOE(SAS),∴QD=OE,∵点D在直线BC上运动,∴当QD⊥BC时,QD最小,∵△ABC是等腰直角三角形,∴∠B=45°,∴△QBD是等腰直角三角形,∴QD=√22QB,∵QB=12AB=2,∴QD=√2,∴线段OE的最小值为√2;故答案为:C.8.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于点G,CD=AE.若BD =6,CD=5,则△DCG的面积是()A.10B.5C.103D.53【答案】B【解析】∵CE是AB边上的中线,∴AE=BE,∵CD=AE=5,∴AB=10,根据勾股定理得:AD=√AB2−BD2=8,∴△ABC的面积为12BC·AD=12×11×8=44,∵CE 是△ABC 的中线, ∴S △BCE =S △ACE =22,∵BD =6,AD =8,AD ⊥BC ,∴S △ABD =12·BD ·AD =12×6×8=24 , ∵DE 是△ABD 的中线, ∴S △BDE =12,∴S △DCE =S △BCE ﹣S △BDE =10,∵DE =AE = 12 AB ,DC =AE , ∴DC =DE , ∵DG ⊥CE ,∴S △DCG =12S △DCE =12×10=5 . 故答案为:B.9.已知关于x 的不等式组的 {x −a ≥b2x −a <2b +1解集为3≤x <5,则 b a 的值为( ) A .﹣2 B .−12 C .﹣4 D .﹣ 14【答案】A【解析】{x −a ≥b①2x −a <2b +1②由①得:x≥a+b ;由②得:x <a+2b+12;∵不等式组的解集为:a +b ≤x <a+2b+12即3≤x <5∴{a +b =3a+2b+12=5 解之:{a =−3b =6∴b a =6−3=−2. 故答案为:A.10.如图,在Rt △ABC 中,∠ACB =90°,点D 是斜边AB 边上的中点,连接CD ,延长BC 至点E ,使得CE =AD ,连接DE ,过点C 作CM ⊥DE 于点M ,其中BC =6,AD =5,则S △ABC :S △MCE 等于( )A .11:1B .44:3C .24:5D .44:5【答案】C【解析】∵点D 是斜边AB 边上的中点,AD =5, ∴AB =10, ∵∠ACB =90°,BC =6,∴AC = √AB 2−BC 2 =8,CD =AD =BD = 12 AB =5, ∵CE =AD , ∴CE =CD , ∵CM ⊥DE , ∴DM =EM ,∵BC =6,CE =5,∴S △BCD :S △DCE =BC :CE =6:5,∵S △ABC =2S △BCD ,S △CEM = 12 S △CDE , ∴S △ABC :S △MCE =2×6: 12 ×5=24:5. 故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,已知△ABD ≌△ACE ,∠A =53°,∠B =22°,则∠BEC = °.【答案】75【解析】∵△ABD ≌△ACE , ∴∠B=∠C=22°,∴∠BEC=∠A+∠C=53°+22°=75°. 故答案为:75.12.如图,直线 l 上有三个正方形A 、B 、C ,若正方形A 、C 的边长分别为5和7,则正方形 B 的面积为 .【答案】74 【解析】如图,∵ 正方形 A , C 的边长分别为5和7, ∴EF =5 , MH =7 ,由正方形的性质得: ∠EFG =∠EGH =∠GMH =90° , EG =GH , ∵∠FEG +∠EGF =90° , ∠EGF +∠MGH =90° , ∴∠FEG =∠MGH ,在 ΔEFG 和 ΔGMH 中, {∠EFG =∠GMH ∠FEG =∠MGH EG =GH,∴ΔEFG ≅ΔGMH(AAS) ,∴FG =MH =7 , GM =EF =5 , ∴EF 2=52=25 , HM 2=72=49 ,∴ 正方形B 的面积为 EG 2=EF 2+FG 2=EF 2+HM 2=25+49=74 , 故答案为:74.13.如图,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,点E 、F 分别是AD 的三等分点,若△ABC 的面积为18cm 2,则图中阴影部分面积为 cm 2.【答案】9【解析】∵S △ABC =18cm 2,∴阴影部分面积= 12 ×18=9cm 2. 故答案为:9. 14.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是 .【答案】76【解析】依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得:x=13,∴“数学风车”的外围周长(13+6)×4=76.故答案为:76.15.如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.若保持△A′DE的一边与BC平行,则∠ADE 的度数.【答案】45°或30°【解析】当DA'∥BC时,如图,∠A'DA=∠ACB=90°,∵△ADE沿DE折叠到A'DE,∴∠ADE=∠A'DE= 12∠ADA′=45°,当EA'∥BC时,如图,在△ABC中,∠B=180°-∠C-∠A=60°,∴∠2=∠ABC=60°,由折叠可知,∠A′=∠A=30°,在△A′EF中,∠A′+∠2+∠A′FE=180°,∴∠2=180°-∠A′-∠A′FE=150°-∠A′FE,在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°-∠C-∠B-∠BFD=210°-∠BFD,∵∠BFD=∠A′FE,∴∠1-∠2=210°-150°=60°,∴∠1=∠2+60°=120°,∵△ADE 沿DE 折叠到A'DE ,∴∠ADE=∠A'DE= 12 ∠ADA′= 12 (180°-∠1)=30°,综上所述,∠ADE 的度数为:45°或30°. 故答案为:45°或30°.16.如图,已知△ABC 中,∠ACB=90°,O 为AB 的中点,点E 在BC 上,且CE=AC ,∠BAE=15°,则∠COE= 度.【答案】75【解析】∵∠ACB=90°,CE=AC , ∴∠CAE=∠AEC=45°, ∵∠BAE=15°, ∴∠CAB=60°, ∴∠B=30°, ∵∠ACB=90°,O 为AB 的中点,∴CO=BO=AO= 12 AB ,∴△AOC 是等边三角形,∠OCB=∠B=30°, ∴AC=OC=CE ,∴∠COE=∠CEO= 12 ×(180°-30°)=75°. 故答案为:75.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,△ABC 和△DCE 都是等腰直角三角形,CA =CB ,CD =CE ,且点D 在△ABC 的斜边AB 上.(1)连结AE ,求证:△ACE ≌△BCD . (2)若BD =2,CD =6,求AD 的长. 【答案】(1)证明:∵ΔABC 和ΔDCE 都是等腰直角三角形,CA =CB ,CD =CE , ∴∠ACB =∠DCE =90°, ∴∠BCD =∠ACE , 在ΔBCD 和ΔACE 中,{CB =CA∠BCD =∠ACE CD =CE,∴ΔBCD ≅ΔACE(SAS).(2)解:∵ΔACE ≅ΔBCD ,∴CE =CD =6,BD =AE =2,∠B =∠CAE =45°, ∴DE =6√2,∠DAE =90°,∴AD =√DE 2−AE 2=√(6√2)2−22=2√17.18.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC 中,AB =AC =2√5,BC =4,求证:△ABC 是“奇妙三角形”; (2)在Rt △ABC 中,∠C =90°,AC =2√3,若△ABC 是“奇妙三角形”,求BC 的长. 【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB =AC ,AD ⊥BC ,∴BD =12BC =2,由勾股定理得,AD =√AB 2−BD 2=4, ∴AD =BC ,即△ABC 是“奇妙三角形”;(2)解:∵直角三角形斜边的中线等于斜边的一半, ∴该中线不可能是斜边的中线.当AC 边上的中线BD 等于AC 时, BC =√BD 2−CD 2=3, 当BC 边上的中线AE 等于BC 时,AC 2=AE 2﹣CE 2,即BC 2﹣(12BC)2=(2√3)2, 解得BC =4.综上所述,BC 的长是3或4.19.如图,在△ABC 中,AB =AC ,AD =AE .(1)若∠BAD =40°,求∠EDC 的度数.(2)判断∠BAD 与∠EDC 之间的数量关系,并说明理由. 【答案】(1)解:∵∠AED=∠EDC+∠C , ∠ADC=∠B+∠BAD , 又∵AD=AE ,∴∠AED=∠ADE , ∵AB=AC , ∴∠B=∠C ,∴∠B+∠BAD=∠EDC+∠C+∠EDC , 即∠BAD=2∠EDC , ∵∠BAD=40°, ∴∠EDC=20°.(2)解:∠BAD =2∠EDC(或∠EDC =12∠BAD ). ∵AD =AE ,∴∠ADE =∠AED , ∴∠BAD +∠B =∠ADC =∠ADE +∠EDC=∠AED +∠EDC=(∠EDC +∠C)+∠EDC =2∠EDC +∠C , 又∵AB =AC , ∴∠B =∠C ,∴∠BAD =2∠EDC ,∴∠EDC =12∠BAD .20.如图,已知在△ABC 中,∠B =90°,AC =10,BC =6,若动点P 从点B 开始,按B →A →C →B 的路径运动,且速度为每秒2个单位长度,设出发的时间为t 秒.(1)出发2秒后,求CP 的长.(2)出发几秒钟后,CP 恰好平分△ABC 的周长. (3)当t 为何值时,△BCP 为等腰三角形? 【答案】(1)解:由∠B =90°,AC =10,BC =6,∴AB =8,∵P 从点B 开始,按B→A→C→B ,且速度为2, ∴出发2秒后,则BP =4,AP =6, ∵∠B =90°,∴在Rt △BCP 中,由勾股定理得PC =√BP 2+BC 2=√62+42=√52 ;(2)解:∵P 点不可能位于线段BC 和AC 上,即对P 点在线段AB 上进行探究, 根据题意可得,6+2t =10+8-2t ; 解得t =3∴出发3秒钟后,CP 恰好平分△ABC 的周长(3)解:①当P 在AB 上时,若BP =BC 时,得到2t =6;则t =3,②当P 在AC 上时,若BP =BC 时,过点B 作BD ⊥AC ,则BD =AB×BC AB=6×810=4.8在Rt △BDP 中,PD =√PD 2−BD 2=√62−4.82=3.6 在Rt △ADB 中,AD =√AB 2−BD 2=√82−4.82=6.4∴BA +AP =BA +AD −PD =8+6.4−3.6=10.8即2t =10.8 解得t =5.4③当P 在AC 上时,若CB =CP 时,BA +PA =BA +AC −PC =8+10−6=12即2t =12 解得t =6④当P 在AC 上时,若PC =PB 时,PA =12AB =5∴BA +AP =8+5=13得到2t =6; 则t =6.5.综上可得t =3或5.4或6或6.5时,△BCP 为等腰三角形.21.某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元. (1)求购进甲,乙两种钢笔每支各需多少元?(2)若购进了甲种钢笔80支,乙种钢笔60支,求需要多少元?(3)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种购进方案. 【答案】(1)解:设购进甲种钢笔每支需x 元,购进乙种钢笔每支需y 元,依题意得:{100x +50y =100050x +30y =550,解得:{x =5y =10.答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元. (2)解:5×80+10×60=400+600=1000(元). 答:需要1000元.(3)解:设购进甲种钢笔m 支,则购进乙种钢笔1000−5m 10=(100−12m)支, 依题意得:{m ⩾6(100−12m)m ⩽8(100−12m), 解得:150⩽m ⩽160.又∵m ,(100−12m)均为正整数,∴m 可以为150,152,154,156,158,160, ∴该文具店共有6种购进方案.22.如图,在△ABC 中,AB =AC ,点D 在△ABC 内,BD =BC ,∠DBC =60°,点E 在△ABC 外,∠BCE =150°,∠ABE =60°.(1)求∠ADB 的度数;(2)判断△ABE 的形状并证明;(3)连接DE ,若DE ⊥BD ,DE =6,求AD 的长.【答案】(1)解:∵BD =BC ,∠DBC =60°,∴△DBC 是等边三角形,∴DB =DC ,∠BDC =∠DBC =∠DCB =60°,在△ADB 和△ADC 中,{AB =AC AD =AD DB =DC ,∴△ADB ≌△ADC (SSS ),∴∠ADB =∠ADC ,∴∠ADB =12(360°﹣60°)=150°.(2)解:结论:△ABE 是等边三角形.理由:∵∠ABE =∠DBC =60°,∴∠ABD =∠CBE ,在△ABD 和△EBC 中,{∠ADB =∠BCE =150°BD =BC ∠ABD =∠CBE , ∴△ABD ≌△EBC (ASA ),∴AB =BE ,∵∠ABE =60°,∴△ABE 是等边三角形.(3)解:连接DE .∵∠BCE =150°,∠DCB =60°,∴∠DCE =90°,∵∠EDB =90°,∠BDC =60°,∴∠EDC =30°,∴EC =12DE =3,∵△ABD ≌△EBC ,∴AD =EC =3.23.在Rt △ABC 中,∠ACB =90°,AC =BC ,点D 为AB 边上一点,过点D 作DE ⊥AB ,交BC 于点E ,连接AE ,取AE 的中点P ,连接DP ,CP.(1)观察猜想:如图(1),DP与CP之间的数量关系是,DP与CP之间的位置关系是.(2)类比探究:将图(1)中的△BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由.(3)问题解决:若BC=3BD=3√2,将图(1)中的△BDE绕点B在平面内自由旋转,当BE⊥AB 时,请直接写出线段CP的长.【答案】(1)PD=PC;PD⊥PC(2)解:结论成立.理由如下:过点P作PT⊥AB交BC的延长线于T,交AC于点O.则∠APO=∠BPT=∠OCT=90°∴∠A=∠AOP=45°,∠COT=∠AOP=45°∴PA=PO,OC=CT,∠CTO=45°由勾股定理可得:OT=√2CT∴∠PBT=∠CTO=45°∴PB=PT∴PE+BE=OP+OT∵点P为AE的中点,∴PA=PE=PO∴BE=OT在Rt△BDE中,BD=DE,∴BE=√2BD,∠DBE=∠T=45°∴√2CT=√2BD∴CT=BD∴△DBP≌△CTP(SAS),∴PD=PC,∠BPD=∠CPT,∴∠DPC=∠BPT=90°,∴PD⊥PC.(3)解:PC的长为4或2.【解析】(1)∵∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∵DE⊥AB,∴∠ADE=∠BDE=∠ACB=90°,∵点P为AE的中点,∴DP=12AE=CP=AP,∴∠PDA=∠PAD,∠PAC=∠PCA,∴∠DPC=∠DPE+∠CPE=2∠DAP+2∠CAP=2∠DAC=90°,∴PD⊥PC故答案为:PD=PC,PD⊥PC;解:(3)如图3﹣1中,当点E在BC的上方时,过点P作PQ⊥BC于Q.则DE∥PQ∥AC,PE=PA∴DQ=CQ∵BC=3BD=3√2∴CD=4√2由(2)可得,PD⊥PC,PD=PC,∴△PCD为等腰直角三角形∴PQ=12CD∴PQ=12CD=DQ=2√2由勾股定理得,PC=PD=4如图3﹣2中,当点E在BC的下方时,同法可得PC=PD=2.综上所述,PC的长为4或2.24.如图1,在Rt△ABC中,∠BAC=90°,AB=4,以AB为边在AB上方作等边△ABD,以BC为边在BC右侧作等边△CBE,连结DE.(1)当AC=5时,求BE的长.(2)求证:BD⊥DE.(3)如图2,点C′与点C关于直线AD对称,连结C′E.①求C′E的长.②连结C′D,当△C′DE是以C′E为腰的等腰三角形时,写出所有满足条件的AC长:▲ .(直接写出答案)【答案】(1)解:∵△ABD,△CBE都是等边三角形,∴∠ABD=∠CBE=60°,AB=DB,BC=BE,∴∠ABC+∠CBD=∠DBE+∠CBD,∴∠ABC=∠DBE,∴△BAC≌△BDE(SAS),∴∠BAC=∠BDE=90°,BE=BC.在Rt△ABC中,AB=4,AC=5,∴BC=√AB2+AC2=√42+52=√41,∴BE=√41;(2)证明:∵△ABD,△CBE都是等边三角形,∴∠ABD=∠CBE=60°,AB=DB,BC=BE,∴∠ABC+∠CBD=∠DBE+∠CBD,∴∠ABC=∠DBE,∴△BAC≌△BDE(SAS),∴∠BAC=∠BDE=90°,∴BD⊥DE;(3)解:①连接AC′,由(2)知△BAC≌△BDE(SAS),∴AC=DE,∠BAC=∠BDE=90°,∴∠ADE=60°+90°=150°,∵∠CAD=∠BAC﹣∠BAD=90°﹣60°=30°,由对称的性质得∠DAC′=∠DAC=30°,AC=DE=AC′,∴∠ADE+∠DAC′=180°,∴DE∥AC′,∴四边形AC′ED是平行四边形,∴C′E=AD=AB=4;②4或4√3【解析】(3)②分两种情况:C′E=DE时,∵C′E=4,四边形AC′ED是平行四边形,∴C′E=DE=AC′=4,由对称的性质得AC=AC′=4,C′E=C′D时,作C′F⊥DE于F,∵C′E=C′D,C′F⊥DE,∴DF=EF,∠C′FE=90°,∵四边形AC′ED是平行四边形,∴∠C′EF=∠DAC′=30°,C′E=2,EF=DF=2√3,∴C′F=12∴DE=AC′=AC=4√3,综上,AC长为4或4√3.故答案为:4或4√3.。

初二数学培优试卷

初二数学培优试卷

初二数学试卷6题图A 班级 考场 考号 姓名11.一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( ) A.⎩⎨⎧=+-=18050y x y x B.⎩⎨⎧=++=18050y x y x C.⎩⎨⎧=+-=9050y x y x D.⎩⎨⎧=++=9050y x y x12.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 13.将五边形纸片ABCDE 按如图所示方式折叠,折痕为AF ,点E 、D 分别落在E ′,D ′,已知∠AFC=76°,则∠CFD ′等于( )A .31°B .28°C .24°D .22°14.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,4-x >1的整数解共有5个,则a 的取值范围是( ).A .-3<a <-2B .-3<a ≤-2C .-3≤a ≤-2D .-3≤a <-215.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板 的一条直角边重合,则∠1的度数为( )A.45°B.60°C.75°D.85°16. 如图,△ABC 中,AD 是∠BAC 的平分线且AB=AC+CD .若∠BAC=60°,则∠ABC 的大小为( )A.40°B.60°C.80°D.100°17.如图所示中的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+•∠7=( )A .245° B .300° C .315° D .330°15题图 17题图 16题图 12题图13题图18. 如图,在△ABC 中,∠A=52°,∠ABC 与∠ACB 的角平分线交于D 1,∠ABD 1与∠ACD 1的角平分线交于点D 2,依次类推,…∠ABD 4与∠ACD 4的角平分线交于点D 5,则∠BD 5C 的度数是( )A 、56°B 、60°C 、68°D 、94°19. ABC ∆的三边,,a b c 都是正整数,且满足a b c ≤≤,如果4c =, 那么这样的三角形共有( ) 个A.4B.6C.8D.1020.锐角三角形的三个内角是∠A ,∠B ,∠C ,如果α=∠A+∠B ,β=∠B+∠C ,γ=∠C+∠A ,那么α,β,γ这三个角中( )A.没有锐角B.有一个锐角C.有2个锐角D.有3个锐角 二、提空题(每题4分,共20分) 21.计算:. = . 22.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.23.如图,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .24.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB,OD⊥BC 于D ,且OD=3,则△ABC 的面积是 .25. △ ABC 中,∠A=50°,高BE 、CF (或其延长线)交于点O ,则∠BOC= . 三、解答题(共80分) 26. (10分)已知方程组⎩⎨⎧-=++=+12123m y x m y x ,当m 为何值时,x>y.18题图 P 2P 1N M O P B A 24题图 22题图 23题图27.(10分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.28.(10分)如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数?29.(10分)如图,射线OX ⊥OY,A 、B 为OX 、OY 上两动点,∠OAB 的平分线与∠ABO 的外角平分线所在直线交于点C.试问:∠C 的度数是否随点A 、B 的运动而发生变化?若变化,请说明理由;若不变化,求出∠C 的值班级 考场 考号 姓名30.(13分)建华小区准备新建50个停车位,以解决小区停车难的问题,已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元。

数学八年级上册 期中精选试卷培优测试卷

数学八年级上册 期中精选试卷培优测试卷

数学八年级上册期中精选试卷培优测试卷一、八年级数学全等三角形解答题压轴题(难)1.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,34tt xt=-⎧⎨=⎩,解得11tx=⎧⎨=⎩,②若△ACP≌△BQP,则AC=BQ,AP=BP,34xtt t=⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.2.在ABC中,AB AC=,点D在BC边上,且60,ADB E∠=︒是射线DA上一动点(不与点D重合,且DA DB≠),在射线DB上截取DF DE=,连接EF.()1当点E在线段AD上时,①若点E与点A重合时,请说明线段BF DC=;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,BF CD BF BG GF AE∴+=+===-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.3.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.4.如图1,已知CF 是△ABC 的外角∠ACE 的角平分线,D 为CF 上一点,且DA =DB .(1)求证:∠ACB =∠ADB ;(2)求证:AC +BC <2BD ;(3)如图2,若∠ECF =60°,证明:AC =BC +CD .【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,证明Rt △DAM ≌Rt △DBN ,得出∠DAM=∠DBN ,则结论得证;(2)证明Rt △DMC ≌Rt △DNC ,可得CM=CN ,得出AC+BC=2BN ,又BN <BD ,则结论得证;(3)在AC 上取一点P ,使CP=CD ,连接DP ,可证明△ADP ≌△BDC ,得出AP=BC ,则结论可得出.【详解】(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,∵CF 是△ABC 的外角∠ACE 的角平分线,∴DM =DN ,在Rt △DAM 和Rt △DBN 中,DA DB DM DN=⎧⎨=⎩ , ∴Rt △DAM ≌Rt △DBN (HL ),∴∠DAM=∠DBN,∴∠ACB=∠ADB;(2)证明:由(1)知DM=DN,在Rt△DMC和Rt△DNC中,DC DCDM DN=⎧⎨=⎩,∴Rt△DMC≌Rt△DNC(HL),∴CM=CN,∴AC+BC=AM+CM+BC=AM+CN+BC=AM+BN,又∵AM=BN,∴AC+BC=2BN,∵BN<BD,∴AC+BC<2BD.(3)由(1)知∠CAD=∠CBD,在AC上取一点P,使CP=CD,连接DP,∵∠ECF=60°,∠ACF=60°,∴△CDP为等边三角形,∴DP=DC,∠DPC=60°,∴∠APD=120°,∵∠ECF=60°,∴∠BCD=120°,在△ADP和△BDC中,APD BCDPAD CBDDA DB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP≌△BDC(AAS),∴AP=BC,∵AC=AP+CP,∴AC=BC+CP,∴AC=BC+CD.【点睛】本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.5.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA′B的度数不变,∠OA′B=45 ,理由见解析;(3)点M的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA=PA'=PB,由∠PAB+∠PBA=90°,结合三角形内角和定理即可求得∠OA'B=45°;(3)分类讨论:分别讨论当△ABP≌△MBP、△ABP≌△MPB、△ABP≌△MPB时,点M的坐标的情况;过点M作x轴的垂线、过点B作y轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M的坐标即可.【详解】(1)∵AB∥x轴,△APB为等腰直角三角形,∴∠PAB=∠PBA=∠APO=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.∴t=4÷1=4(秒),故t的值为4.(2)如图2,∠OA′B的度数不变,∠OA′B=45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等, ①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形, ∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.二、八年级数学 轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,已知点A (2,3),点B (﹣2,1).(1)请运用所学数学知识构造图形求出AB 的长;(2)若Rt △ABC 中,点C 在坐标轴上,请在备用图1中画出图形,找出所有的点C 后不用计算写出你能写出的点C 的坐标;(3)在x 轴上是否存在点P ,使PA =PB 且PA +PB 最小?若存在,就求出点P 的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.7.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,BH=HE=2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE=2+1∵BH=BG+GH=CG+GH=CH+GH+GH=2+1∴1+2GH=2+1∴GH=2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,∴CE=2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.8.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=12∠ABE.(1)求证:BF=AC;(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.【答案】(1)答案见详解;(2)45°,(3)4.【解析】【分析】(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.【详解】(1)设∠CAD=x ,∵∠CAD =12∠ABE ,∠BAC =90º, ∴∠ABE=2x ,∠BAF=90°-x ,∵∠ABE+∠BAF+∠AFB=180°,∴∠AFB=180°-2x-(90°-x)= 90°-x ,∴∠BAF =∠AFB ,∴BF =AB ;∵AB =AC ,∴BF =AC ; (2)由(1)可知:∠CAD=x ,∠ABE=2x ,∠BAC =90º,∴∠AEB=90°-2x ,∵EF =EC ,∴∠EFC=∠ECF ,∵∠EFC+∠ECF=∠AEB=90°-2x ,∴∠EFC=(90°-2x )÷2=45°-x ,∵BF =AB ,∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,∴∠EFD=∠BFA=90°-x ,∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;(3)由(2)可知:EF =EC ,∴设EF =EC =x ,则AC=AE+EC=3+x ,∴AB=BF=AC=3+x ,∴BE=BF+EF=3+x+x=3+2x ,∵∠BAC =90º,∴222AB AE BE +=,∴222(3)3(32)x x ++=+,解得:11x =,23x =-(不合题意,舍去)∴BF=3+x=3+1=4.【点睛】本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.9.(1)如图①,D 是等边△ABC 的边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边,在BC 上方作等边△DCF ,连接AF ,你能发现AF 与BD 之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D 运动至等边△ABC 边BA 的延长线时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACFDC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AF与BD在(1)中的结论成立,理由如下:如图2中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩′′, ∴△BCF ′≌△ACD (SAS ),∴BF ′=AD ,又由(2)知,AF =BD ,∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.10.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A的坐标为()-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式22m n +-化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-;(3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-的值不变为3-.(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°, ∵ABC △为等腰直角三角形,∴AC=AB,∠CAB=90°, ∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,∴AQC BOA ≅(AAS),∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6, ∴C(-6,-2).(2)如图(2)作DP ⊥OB 于点P ,∴∠BPD=90°,∵ABD △是等腰直角三角形,∴AB=BD,∠ABD=∠ABO+∠OBD=90°, ∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP ,又∵AB=BD,∠AOB=∠BPD=90°,∴AOB BPD ≅∴AO=BP ,∵BP=OB -PO=m-(-n)=m+n, ∵A ()23,0-,∴OA=3∴m+n=23∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23∴整式2253m n +-3-(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12 EG,∴EN=12 EG,∵EG=EM-GM,∴EN=12(EM-GM),∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.观察下列等式:22()()a b a b a b-=-+3322()()a b a b a ab b-=-++443223()()a b a b a a b ab b -=-+++ 55432234()()a b a b a a b a b ab b -=-++++完成下列问题:(1)n n a b -=___________(2)636261322222221+++⋯⋯++++= (结果用幂表示). (3)已知4,1a b ab -==,求33a b -.【答案】(1)(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)264-1;(3)76. 【解析】 【分析】(1)根据规律可得结果(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)利用(1)得出的规律先计算(2-1)63626132(2222221+++⋯⋯++++)即可得出结果;(3)利用(1)得出的规律变形,再用完全平方公式进行变形,变成只含a-b 及ab 的形式,整体代入计算即可得到结果. 【详解】 解:(1)()()22a b a b a b -=-+,()()3322a b a b a ab b -=-++, ()()443223a b a b a a b ab b -=-+++, ()()55432234a b a b aa b a b ab b -=-++++,由此规律可得:a n -b n =(a-b )(a n-1+a n-2b+…+ab n-2+b n-1), 故答案是:(a-b )(a n-1+a n-2b+…+ab n-2+b n-1); (2)由(1)的规律可得(2-1)()636261322222221+++⋯⋯++++=264-1,∴636261322222221+++⋯⋯++++=264-1.故答案是:264-1.(3)已知4,1a b ab -==,求33a b -.()()3322a b a b a ab b -=-++=()() [a b a b --2+3 a b ] ∴33a b -=24431⨯+⨯()=76. 故答案是:76. 【点睛】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.12.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值.解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++{n 34m 3n +=-∴=.解得:n 7=-,m 21=-∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值. 【答案】()4,x + 20. 【解析】 【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式. 【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+--{2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20 【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.13.阅读下列材料:1637年笛卡尔在其《几何学》中,首次应用“待定系数法”将四次方程分解为两个二次方程求解,并最早给出因式分解定理.他认为:对于一个高于二次的关于x 的多项式,“x a =是该多项式值为0时的一个解”与“这个多项式一定可以分解为(x a -)与另一个整式的乘积”可互相推导成立. 例如:分解因式3223x x +-.∵1x =是32230x x +-=的一个解,∴3223x x +-可以分解为()1x -与另一个整式的乘积.设()()322231x x x ax bx c +-=-++而()()()()2321x ax bx c ax b a x c b x c -++=+-+--,则有1203a b a c b c =⎧⎪-=⎪⎨-=⎪⎪-=-⎩,得133a b c =⎧⎪=⎨⎪=⎩,从而()()32223133x x x x x +-=-++ 运用材料提供的方法,解答以下问题:(1)①运用上述方法分解因式323x x ++时,猜想出3230x x ++=的一个解为_______(只填写一个即可),则323x x ++可以分解为_______与另一个整式的乘积; ②分解因式323x x ++;(2)若1x -与2x +都是多项式32x mx nx p +++的因式,求m n -的值. 【答案】(1)①:x=-1;(x+1);②3223=(1)(3)x x x x x +++-+;(2)3【解析】 【分析】(1)①计算当x=-1时,方程成立,则323x x ++必有一个因式为(x+1),即可作答; ②根据待定系数法原理先设另一个多项式,然后根据多项式乘多项式的计算即可求得结论;(2))设32=(1)(2)x mx mx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,然后列方程组求解即可. 【详解】解:(1)①323x x ++,观察知,显然x=-1时,原式=0,则3230x x ++=的一个解为x=-1;原式可分解为(x+1)与另一个整式的积. 故答案为:x=-1;(x+1) ②设另一个因式为(x 2+ax+b ), (x+1)(x 2+ax+b )=x 3+ax 2+bx+x 2+ax+b =x 3+(a+1)x 2+(a+b )x+b ∴a+1=0 ,a=-1, b=3∴多项式的另一因式为x 2-x+3. ∴3223=(1)(3)x x x x x +++-+.(2)设32=(1)(2)x mx nx p x x M +++-+(其中M 为二次整式), 由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,∴可得108420m n p m n p +++=⎧⎨-+-+=⎩①②,∴②-①,得m-n=3∴m n-的值为3.【点睛】本题考查了分解因式,正确理解题意,利用待定系数法和多项式乘多项式的计算法则求解是解题的关键.14.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2﹣1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____.(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).【答案】232﹣13231 2-;【解析】【分析】(1)原式变形后,利用题中的规律计算即可得到结果;(2)原式变形后,利用题中的规律计算即可得到结果;(3)分m=n与m≠n两种情况,化简得到结果即可.【详解】(1)原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=232-1;(2)原式=12(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=32312-;(3)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).当m≠n时,原式=1m n-(m-n)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16)=3232m nm n--;当m=n时,原式=2m•2m2…2m16=32m31.【点睛】此题考查了平方差公式,弄清题中的规律是解本题的关键.15.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方,如=()2,善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为正整数)则有:=m2+2n2,所以a=m2+2n2,b=2mn.这样小明就找到了一种把的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若()2,用含m、n的式子分别表示a、b,得a=,b=(2)若(2(其中a、b、m、n均为正整数),求a的值.【答案】(1)m2+3n2,2mn;(2)13.【解析】试题分析:(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.试题解析:(1)∵)2,∴2+3n2∴a=m2+3n2,b=2mn.故a=m2+3n2,b=2mn;(2)由题意,得223 {42a m nmn=+=∵4=2mn,且m、n为正整数,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7或a=12+3×22=13四、八年级数学分式解答题压轴题(难)16.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.(注:=垃圾处理量垃圾处理率垃圾排放量)(1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可; (2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案. 【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.5401.25100x x ⨯=⨯+,解得:x=100,经检验,x=100是原分式方程的解, 答:2018年平均每天的垃圾排放量为100万吨. (2)由(1)得2019年垃圾的排放量为200万吨, 设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m⨯+⨯+≥90%,m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求. 【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.17.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n nn --小时. 【解析】 【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间.解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0, ∴原分式方程的解为x =4, ∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a+=+ 解得;y =20ma , 经检验:y =20ma是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a+; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n nn --小时.【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.18.一件工程,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做 20 天,剩下的工程再由甲、乙两队合作 60天完成. (1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为 8.6 万元,乙队每天的施工费用为 5.4 万元,工程预算的施工费用为 1000 万元,若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?【答案】(1)甲、乙两队单独完成这项工程分别需120天、180天 (2)工程预算的施工费用不够用,需追加预算8万元试题分析:(1)首先表示出甲、乙两队需要的天数,进而利用由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成得出等式求出答案; (2)首先求出两队合作需要的天数,进而求出答案.试题解析:解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23x 天. 根据题意,得201160()12233x x x ++=,解得:x =180.经检验,x =180是原方程的根,∴23x =23×180=120,答:甲、乙两队单独完成这项工程分别需120天和180天;(2)设甲、乙两队合作完成这项工程需要y 天,则有11()1120180y +=,解得 y =72. 需要施工费用:72×(8.6+5.4)=1008(万元).∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元.点睛:此题主要考查了分式方程的应用以及一元一次方程的应用,正确得出等量关系是解题关键.19.为了迎接运动会,某校八年级学生开展了“短跑比赛”。

初二数学培优提分试卷

初二数学培优提分试卷

一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 2/3B. √4C. -0.5D. π2. 已知x + y = 5,x - y = 1,则x的值为()A. 3B. 4C. 2D. 13. 下列方程中,解为整数的是()A. x^2 - 3x + 2 = 0B. x^2 + 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 + 5x + 6 = 04. 在△ABC中,∠A = 30°,∠B = 45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°5. 若一个长方形的长和宽分别是5cm和3cm,则它的对角线长是()A. 8cmB. 10cmC. 12cmD. 13cm6. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 1D. y = 2x^2 - 3x + 27. 若等腰三角形底边长为6cm,腰长为8cm,则该三角形的周长为()A. 16cmB. 18cmC. 20cmD. 22cm8. 已知一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式Δ = b^2 - 4ac,若Δ = 0,则该方程有两个相等的实数根。

下列方程中,有两个相等的实数根的是()A. x^2 - 5x + 6 = 0B. x^2 - 4x + 4 = 0C. x^2 + 3x + 2 = 0D. x^2 - 6x + 9 = 09. 在平面直角坐标系中,点A(2,3)关于y轴的对称点坐标为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)10. 下列各式中,能被8整除的是()A. 16x + 12B. 24x - 18C. 32x + 20D. 40x - 24二、填空题(每题5分,共50分)11. 若a = -3,b = 2,则a^2 + b^2的值为______。

华师版八年级数学上册期中培优测试卷含答案

华师版八年级数学上册期中培优测试卷含答案

华师版八年级数学上册期中培优测试卷一、选择题(每题3分,共30分) 1.计算4的结果是( )A .4B .-2C .2D .±22.计算(-a )3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 63.下列说法不正确的是( )A .1的平方根是1B .-2是-8的立方根C .4是64的立方根D .0的平方根是04.估计11-2的值在( )A .3和4之间B .2和3之间C .1和2之间D .0和1之间 5.计算-2a 3b 4÷3a 2b ·ab 3的结果是( )A .-23B .-23abC .-23a 6b 8D .-23a 2b 66.数学课上,老师讲了单项式乘多项式,放学回到家,李刚拿出课堂笔记复习,发现一道题:-4xy (3y -2x -3)=-12xy 2●+ 12xy ,●处被墨水弄污了,你认为●处是( ) A .+8x 2yB .-8x 2yC .+8xyD .-8xy 27.计算:52a ×1 0012-52a ×9992=( )A .5 000aB .1 999aC .10 001aD .10 000a8.在多项式16x 2+1中添加一个单项式,使新得到的多项式能运用完全平方公式分解因式,则下列表述正确的是( ) 嘉琪:添加±8x ,16x 2+1±8x =(4x ±1)2; 陌陌:添加64x 4,64x 4+16x 2+1=(8x 2+1)2; 嘟嘟:添加-1,16x 2+1-1=16x 2=(4x )2. A .嘉琪和陌陌的做法正确 B .嘉琪和嘟嘟的做法正确 C .陌陌和嘟嘟的做法正确D .三名同学的做法都正确9.已知10a =20, 100b =50,则2a +4b -3的值是( )A .9B .5C .3D .610.已知实数m,n满足m2+n2=2+mn,则(2m-3n)2+(m+2n)(m-2n)的最大值为()A.24 B.443 C.163D.-4二、填空题(每题3分,共15分)11.写出一个比3大且比4小的无理数:________.12.实数a,b在数轴上的对应点的位置如图所示,那么化简|a+b|+|-a|+3b3的结果为________.(第12题)13.计算:1 2342-1 235×1 233=________.14.若M=(x-2)(x-8),N=(x-3)(x-7),则M与N的大小关系为:M______N. 15.若一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,因为5=22+12,所以5是一个“完美数”.已知M是一个“完美数”,且M =x2+4xy+5y2-12y+k(x,y是两个任意整数,k是常数),则k的值为________.三、解答题(20题9分,21题10分,22,23题每题12分,其余每题8分,共75分)16.计算:(1)9+3-27-(-2)2;(2)(-1)2 023-|3-2|+2+14-0.25.17.利用乘法公式计算:(1)(x-y)(x+y)-(x-y)2; (2)3.992-4.01×3.97.18.已知5x+2的立方根是3,3x+y-1的算术平方根是4.求:(1)x,y的值;(2)3x-2y-2的平方根.19.分解因式:(1)a3b-ab; (2)(x+y)2-(2x+2y-1).20.先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 009.21.阅读下列材料:因为4<5<9,即2<5<3,所以5的整数部分为2,小数部分为5-2.请仿照上述方法,解答下列问题:(1)7的整数部分是________;(2)7的小数部分为m,11的整数部分为n,求m+n-7的值.22.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n的小正方形,五块是长为m、宽为n的小长方形.(1)观察图形可以发现,代数式2m2+5mn+2n2可以因式分解为______________.(2)若每块小长方形的面积为20,四块正方形的面积和为162.①试求图中所有裁剪线(虚线)长度之和;②求(m-n)2的值.(第22题)23.两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算.例如(7x+2+6x2)÷(2x+1),仿照672÷21计算如图①所示.(第23题)因此(7x+2+6x2)÷(2x+1)=3x+2.(1)阅读上述材料后,试判断x3-x2-5x-3能否被x+1整除,并说明理由;(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,求ab的值;(3)有一个长为x+2,宽为x-2的长方形A,若将它的长增加6,宽增加a就得到一个新长方形B,此时长方形B的周长是A周长的2倍(如图),另有一长方形C,它的一边长为x+10,且长方形B的面积比C的面积大76,求长方形C已知边长的邻边长.答案一、1.C 2.A 3.A 4.C 5.D 6.A7.D8.A9.C10.B二、11.15(答案不唯一)12.-2a13.114.<点拨:∵M=(x-2)(x-8)=x2-10x+16,N=(x-3)(x-7)=x2-10x+21,∴M-N=(x2-10x+16)-(x2-10x+21)=16-21=-5<0,即M<N. 15.36点拨:∵M=x2+4xy+5y2-12y+k=(x+2y)2+(y-6)2+k-36,且M是“完美数”,∴k-36=0,∴k=36.三、16.解:(1)原式=3-3-2=-2.(2)原式=-1+3-2+94-0.5=-3+3+32-12=-2+ 3.17.解:(1)原式=x2-y2-(x2-2xy+y2) =x2-y2-x2+2xy-y2=2xy-2y2.(2)原式=3.992-(3.99+0.02)×(3.99-0.02)=3.992-(3.992-0.022)=3.992-3.992+0.000 4=0.000 4.18.解:(1)由题意得,35x+2=3,3x+y-1=4,∴5x+2=27,3x+y-1=16.∴x=5,y=2.(2)由(1)得,x=5,y=2,∴3x-2y-2=15-4-2=9.∴3x-2y-2的平方根是±3.19.解:(1)a3b-ab=ab(a2-1)=ab(a+1)(a-1).(2)(x+y)2-(2x+2y-1)=(x+y)2-2(x+y)+1=(x+y-1)2.20.解:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2=4-a2+a2-5ab+3a5b3÷a4b2=4-a2+a2-5ab+3ab=4-2ab,当ab=-1 009时,原式=4-2×(-1 009)=4+2 018=2 022.21.解:(1)2(2)m=7-2,因为9<11<16,即3<11<4,所以n=3,所以m+n-7=1.22.解:(1)(2m+n)(m+2n)(2)①由题意知mn=20,2m2+2n2=162,∴m2+n2=81,∴(m+n)2=m2+n2+2mn=121,∴m+n=11(负值已舍去),∴图中所有裁剪线(虚线)长度之和为2(2m+n)+2(m+2n)=6(m+n)=66.②(m-n)2=m2+n2-2mn=81-40=41.23.解:(1)x3-x2-5x-3能被x+1整除.理由如下:(2)若多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,则有∴a+9=-3,b=6,∴a=-12,∴ab=-2.(3)长方形A的周长为2(x+2+x-2)=4x,长方形B的周长为2(x-2+a+x+2+6)=4x+2a+12. ∵长方形B的周长是A周长的2倍,∴4x+2a+12=8x.∴a=2x-6.∴长方形B的面积为(x+2+6)(x-2+2x-6)=(x+8)(3x-8)=3x2+16x-64. ∴长方形C的面积为3x2+16x-140.∴所求边长为(3x2+16x-140)÷(x+10)=3x-14.。

人教版2024-2025学年八年级数学上册期中培优试题

人教版2024-2025学年八年级数学上册期中培优试题

人教版2024-2025学年八年级数学上册期中培优试题一、单选题1.下列选项中的四个标志中,是轴对称图形的是( )A .B .C .D .2.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是( ) A .8 B .9 C .10 D .113.已知点()11,5P a -和2(2,1)Pb -关于x 轴对称,则2013()a b +的值为( ) A .0 B .1- C .1 D .()20113- 4.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是( )A .90°B .180°C .270°D .360° 5.已知ABC DCB V V ≌,若10BC =,6AB =,7AC =,则CD =( )A .10B .7C .6D .6或7 6.如图,已知ABC V 中,ABC ACB ∠∠=,以点B 为圆心,AB 长为半径的弧分别交AC ,BC 于点D ,E ,连接BD ,ED ,若105CED ∠=︒,求ABC ∠的度数为( )度A .80B .70C .60D .507.ABC V 中,090A B C θαθθααθ∠=-∠=∠=+︒<<<︒,,,.若BAC ∠与BCA ∠的平分线相交于P 点,则APC ∠=( )A .90°B .105°C .120°D .150°8.如图,在△ABC 中,∠ACD =20°,∠B =45°,BC 的垂直平分线分别交AB 、BC 于点D 、E ,则∠A 的度数是( )A .60°B .65°C .70°D .75°9.下图的方格纸中有若干个点,若A 、B 两点关于过某点的直线对称,这个点可能是().A .P 1B .P 2C .P 3D .P 410.在平面直角坐标系中,点A 的坐标是()1,0,点B 的坐标是(),点C 在坐标平面内,以A ,B ,C 为顶点构成的三角形是等腰三角形,且底角为30°,则满足条件的点C 的个数为( )A .3B .4C .5D .6二、填空题11.ABC V 中,30A ∠=︒,高BE ,CF 所在的直线交于点O ,BOC ∠的度数是. 12.AD 为ABC V 的中线,AE 为ABC V 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为.13.如图,△AFD 和△CEB ,点A 、E 、F 、C 同一直线上,在给出的下列条件中,①AE =CF ,②∠D =∠B ,③AD =CB ,④DF BE ∥,选出三个条件可以证明AFD CEB △≌△的是.(用序号表示,写出一种即可).14.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为12,则图中△BEF 的面积为.15.如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF+CF 取得最小值时,则∠BCF 的度数为.三、解答题16.如图,在ABC V 中,AB AC =,点D 、E 分别在AB 、AC 的延长线上,且13BCD ACB ∠=∠,13CBE ABC ∠=∠.求证:BE CD =.17.如图,在66⨯的方格纸中,线段AB 的两个端分别落在格点上,请按要求画图:(1)在图1中画一个格点四边形APBQ ,且AB 与PQ 垂直.(2)在图2中画一个以AB 为中位线的格点DEF V .18.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,点F 在射线CA 上,且BD=FD .(1)当点F 在线段CA 上时.①求证:BE=CF ;②若AC=6,AF=2,求CD 的长; (2)若∠ADF=15°,求∠BAC 的度数.19.如图,在ABC V 中,BO 平分ABC ∠,CO 平分ACB ∠,过点O 作BC 的平行线与AB ,AC 分别相交于点M ,N .若5AB =,6AC =,求AMN V 的周长.20.已知:如图,AC ∥DF ,AC =DF ,AB =DE .求证:(1)△ABC ≌△DEF ;(2)BC ∥EF .21.如图,ABC V 中,11AB =,5AC =,BAC ∠的平分线AD 与边BC 的垂直平分线DG 相交于点D ,过点D 分别作DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,求BE 的长度.22.如图,CN 是等边△ABC 的外角∠ACM 内部的一条射线,点A 关于CN 的对称点为D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CN 于点E ,P .(1)依题意补全图形;(2)若∠ACN =α,求∠BDC 的大小(用含α的式子表示);(3)用等式表示线段PB ,PC 与PE 之间的数量关系,并证明.23.如图,ABC V 中,点O 为AC 边上的一个动点,过点O 作直线MN BC ∥,设MN 交BCA ∠的外角平分线CF 于点F ,交ACB ∠内角平分线CE 于E .(1)试说明EO OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论;(3)在(2)的条件下猜想ABCV满足什么条件能使四边形AECF是正方形,并证明你的结论.。

2023-2024学年全国初中八年级上数学人教版期中考卷(含答案解析)

2023-2024学年全国初中八年级上数学人教版期中考卷(含答案解析)

20232024学年全国初中八年级上数学人教版期中考卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题3分,共15分)1. 下列选项中,哪个是勾股定理的逆定理?A. 直角三角形两直角边的平方和等于斜边的平方B. 任意三角形两边的平方和等于第三边的平方C. 直角三角形斜边的平方等于两直角边的平方和D. 任意三角形两边的平方和等于第三边的平方2. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是?A. P(2,3)B. P(2,3)C. P(2,3)D. P(2,3)3. 下列哪个是等差数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,254. 下列哪个是等比数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,255. 在一个等差数列中,首项为5,公差为3,第10项是多少?A. 32B. 35C. 38D. 406. 在一个等比数列中,首项为2,公比为3,第4项是多少?A. 18B. 27C. 36D. 457. 下列哪个是勾股数?A. 3,4,5B. 5,6,7C. 8,9,10D. 12,13,14二、填空题(每题4分,共20分)1. 下列数列中,第n项是__________。

2. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是__________。

3. 在一个等差数列中,首项为5,公差为3,第10项是__________。

4. 在一个等比数列中,首项为2,公比为3,第4项是__________。

5. 下列数列中,第n项是__________。

三、判断题(每题3分,共15分)1. 直角三角形两直角边的平方和等于斜边的平方是勾股定理。

()2. 任意三角形两边的平方和等于第三边的平方是勾股定理的逆定理。

()3. 等差数列的任意两项之差是常数。

数学八年级上册 期中精选试卷(培优篇)(Word版 含解析)

数学八年级上册 期中精选试卷(培优篇)(Word版 含解析)

数学八年级上册期中精选试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图1,等腰△ABC中,AC=BC=42, ∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.(1) 求证:△ACD≌△BCE;(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.(3) 连接OE,直接写出线段OE 的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯=⨯=,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC ,∠ABP=∠CBP=45°,结合PB=PB 得出△ABP ≌△CBP ,从而得出结论;(2)、根据全等得出∠BAP=∠BCP ,∠DAP=∠DCP ,根据PA=PE 得出∠DAP=∠E ,即∠DCP=∠E ,易得答案;(3)、首先证明△ABP 和△CBP 全等,然后得出PA=PC ,∠BAP=∠BCP ,然后得出∠DCP=∠E ,从而得出∠CPF=∠EDF=60°,然后得出△EPC 是等边三角形,从而得出AP=CE. 【详解】(1)、在正方形ABCD 中,AB=BC ,∠ABP=∠CBP=45°,在△ABP 和△CBP 中,又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∵PA=PE ,∴PC=PE ;(2)、由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∴∠DAP=∠DCP , ∵PA=PE , ∴∠DAP=∠E , ∴∠DCP=∠E , ∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=90°; (3)、AP =CE理由是:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP , 在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∠BAP=∠DCP ,∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E ∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE考点:三角形全等的证明3.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析. 【解析】 【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE . 【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE , ∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90° ∴∠ABD=∠CAE , ∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ), ∴BD=AE ,AD=CE , ∵AE=AD+DE , ∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下: ∵∠BAC=90°,BD ⊥AE ,CE ⊥AE , ∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE , ∴∠ABD=∠CAE , ∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ), ∴BD=AE ,AD=CE , ∴AD+AE=BD+CE , ∵DE=BD+CE , ∴BD=DE-CE . 【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.4.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC=___cm ;(用含t 的式子表示) (2)当t 为何值时,△ABP ≌△DCP ?.(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由. 【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53v = 【解析】 【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值. 【详解】解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm = ∵12BC cm =∴()122PC BC BP t cm =-=- 故答案为:()122t - (2)∵ABP DCP ∆≅∆ ∴BP CP = ∴2122t t =- 解得3t =.(3)存在,理由如下:①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ , ∴PC=AB=5 ∴BP=BC-PC=12-5=7 ∵2BP tcm = ∴2t=7 解得t=3.5∴CQ=BP=7,则3.5v=7 解得2v =.②当BA CQ =,PB PC =时,ABP QCP ∆≅∆ ∵12BC cm =∴162BP CP BC cm === ∵2BP tcm = ∴26t = 解得3t = ∴3CQ vcm =∵5AB CQ cm == ∴35v = 解得53v =. 综上所述,当2v =或53v =时,ABP ∆与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.5.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析. 【解析】 【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB与△CEA全等,从而得出BD=AE,∠DBA=∠CAE,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF与△EAF全等,在此基础上进一步证明求解即可.【详解】(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD,在△ABD与△CAE中,∵∠ABD=∠CAE,∠BDA=∠AEC,AB=AC,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.二、八年级数学轴对称解答题压轴题(难)6.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.【答案】(1)图形见解析(2) ∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y,∠C=x,过点B的直线交边AC于点D.在△DBC中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°,∠C是小于45°的任意锐角.点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.7.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC 是等边三角形,∴BC =AC ,∠BCA =60°,同理知,DC =CF ,∠DCF =60°,∴∠BCA -∠DCA =∠DCF -∠DCA ,即:∠BCD =∠ACF ,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(2)AF 与BD 在(1)中的结论成立,理由如下:如图2中,∵△ABC 是等边三角形,∴BC =AC ,∠BCA =60°,同理知,DC =CF ,∠DCF =60°,∴∠BCA +∠DCA =∠DCF +∠DCA ,即∠BCD =∠ACF ,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩′′, ∴△BCF ′≌△ACD (SAS ),∴BF ′=AD ,又由(2)知,AF =BD ,∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.8.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.9.如图,在等边ABC ∆中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD 交CE 于点P .(1)如图1,求证120BPC ︒∠=;(2)点M 是边BC 的中点,连接PA ,PM .①如图2,若点A,P,M三点共线,则AP与PM的数量关系是;②若点A,P,M三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM=;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM=;由等边三角形的性质和已知条件得出AM⊥BC,∠CAP=30°,可得PB=PC,由∠BPC=120°和等腰三角形的性质可得∠PCB=30°,进而可得AP=PC,由30°角的直角三角形的性质可得PC=2PM,于是可得结论;②延长BP至D,使PD=PC,连接AD、CD,根据SAS可证△ACD≌△BCP,得出AD=BP,∠ADC=∠BPC=120°,然后延长PM至N,使MN=MP,连接CN,易证△CMN≌△BMP (SAS),可得CN=BP=AD,∠NCM=∠PBM,最后再根据SAS证明△ADP≌△NCP,即可证得结论.【详解】(1)证明:因为△ABC为等边三角形,所以60A ACB∠=∠=︒∵AC BCA ACBAE CD=⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS≌,∴AEC CDB∠=∠,在四边形AEPD中,∵360AEC EPD PDA A∠+∠+∠+∠=︒,∴18060360AEC EPD CDB∠+∠+︒-∠+︒=︒,∴120EPD∠=︒,∴120BPC∠=︒;(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠CAP=12∠BAC=30°,∴PB=PC,∵∠BPC=120°,∴∠PBC=∠PCB=30°,∴PC=2PM,∠ACP=60°﹣30°=30°=∠CAP,∴AP=PC,∴AP=2PM;故答案为:2AP PM=;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN≌△BMP(SAS),∴CN=BP=AD,∠NCM=∠PBM,∴CN∥BP,∴∠NCP+∠BPC=180°,∴∠NCP=60°=∠ADP,在△ADP和△NCP中,∵AD=NC,∠ADP=∠NCP,PD=PC,∴△ADP≌△NCP(SAS),∴AP=PN=2CM;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.10.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠, BCF ∴是等腰三角形,90BCF ∠=︒, BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为22521=+.再如,()222222M x xy y x y y =++=++(x ,y 是整数),所以M 也是“完美数”. (1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知224412S x y x y k =++-+(x ,y 是整数,是常数),要使S 为“完美数”,试求出符合条件的一个2200-0=值,并说明理由.(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”..【答案】(1)8、29是完美数(2)S 是完美数(3)mn 是完美数【解析】【分析】(1)利用“完美数”的定义可得;(2)利用配方法,将S 配成完美数,可求k 的值(3)根据完全平方公式,可证明mn 是“完美数”;【详解】(1) 22228,8+=∴是完美数;222925,29=+∴是完美数 (2) ()222)2313S x y k =++-+-( 13.k S ∴=当时,是完美数(3) 2222,m a b n c d 设=+=+,则()()()()222222mn a bc d ac bd ad bc =++=++- 即mn 也是完美数.【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.12.把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负性这一性质增加问题的条件,这种解题方法通常被称为配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:若代数式M =a 2﹣2ab +2b 2﹣2b +2,利用配方法求M 的最小值:a 2﹣2ab +2b 2﹣2b +2=a 2﹣2ab +b 2+b 2﹣2b +1+1=(a ﹣b )2+(b ﹣1)2+1.∵(a ﹣b )2≥0,(b ﹣1)2≥0,∴当a =b =1时,代数式M 有最小值1.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)若代数式M =214a +2a +1,求M 的最小值; (3)已知a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c +2=0,求代数式a +b +c 的值. 【答案】(1)4;(2)M 的最小值为﹣3;(3)a +b +c=122. 【解析】【分析】(1)根据常数项等于一次项系数的一半进行配方即可;(2)先提取14,将二次项系数化为1,再配成完全平方,即可得答案; (3)将等式左边进行配方,利用偶次方的非负性可得a ,b ,c 的值,从而问题得解.【详解】(1)∵a 2+4a+4=(a+2)2故答案为:4;(2)M =21a 4+2a+1 =14(a 2+8a+16)﹣3 =14(a+4)2﹣3 ∴M 的最小值为﹣3(3)∵a 2+2b 2+4c 2﹣2ab ﹣2b ﹣4c+2=0,∴(a ﹣b )2+(b ﹣1)2+(2c ﹣1)2=0,∴a ﹣b =0,b ﹣1=0,2c ﹣1=0∴a =b =1,1c=2 , ∴a+b+c=122.. 【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.13.阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数. 延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【解析】【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为:19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1, 故答案为:1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为:a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.14.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++-=(8)(3)x x ++ 根据以上材料,解答下列问题: (1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程: 老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数.【答案】(1)2(4)17x +- ;(2)(5)(8)x x +-;(3)见解析【解析】试题分析:(1)根据配方法,可得答案;(2)根据配方法,可得平方差公式,再根据平方差公式,可得答案;(3)根据交换律、结合率,可得完全平方公式,根据完全平方公式,可得答案. 试题解析:解:(1)281x x +-=2228441x x ++--=2(4)17x +-(2)2340x x --=222333()()40222x x -+-- =23169()24x -- =313313()()2222x x -+--=(5)(8)x x +-(3)证明:222416x y x y +--+=22214411x x y y -++-++=22(1)(2)11x y -+-+∵2(1)x -≥0,2(2)y -≥0,∴22(1)(2)110x y -+-+>.∴x ,y 取任何实数时,多项式222416x y x y +--+的值总是正数.点睛:本题考查了配方法,利用完全平方公式:a 2±2ab +b 2=(a ±b )2配方是解题关键.15.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52× = ×25;② ×396=693× .(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a 、b ),并证明.【答案】解:(1)①275;572.②63;36.(2)“数字对称等式”一般规律的式子为:(10a+b )×[100b+10(a+b )+a]=[100a+10(a+b )+b]×(10b+a ),证明见解析.【解析】【分析】根据题意可得三位数中间的数等于两数的和,根据这一规律然后进行填空,从而得出答案;根据题意得出一般性的规律,然后根据多项式的计算法则进行说明理由.【详解】(1)①275,572; ②63,36;(2)“数字对称等式”一般规律的式子为:(10a+b )×[100b+10(a+b )+a]=[100a+10(a+b )+b]×(10b+a ).证明如下:∵左边两位数的十位数字为a ,个位数字为b ,∴左边的两位数是10a+b ,三位数是100b+10(a+b )+a ,右边的两位数是10b+a ,三位数是100a+10(a+b )+b ,∴左边=(10a+b )×[100b+10(a+b )+a]=(10a+b )(100b+10a+10b+a )=(10a+b )(110b+11a )=11(10a+b )(10b+a ),右边=[100a+10(a+b )+b]×(10b+a )=(100a+10a+10b+b )(10b+a )=(110a+11b )(10b+a )=11(10a+b )(10b+a ),∴左边=右边.∴“数字对称等式”一般规律的式子为:(10a+b )×[100b+10(a+b )+a]=[100a+10(a+b )+b]×(10b+a ).考点:规律题四、八年级数学分式解答题压轴题(难)16.已知分式 A =2344(1)11a a a a a -++-÷-- (1)化简这个分式;(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.【答案】(1)22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】【分析】(1)根据分式混合运算顺序和运算法则化简即可得;(2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a 的范围判断结果与0的大小即可得;(3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】 解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯-- =22a a +-; (2)变小了,理由如下:∵22a A a +=-, ∴62a B a +=+, ∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,∴20a ->,24a +>,∴0A B ->,∴分式的值变小了;(3)∵A 是整数,a 是整数, 则24122a A a a +==+--, ∴21a -=±、2±、4±, ∵1a ≠,∴a 的值可能为:3、0、4、6、-2;∴3046(2)11++++-=;∴符合条件的所有a 值的和为11.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17.阅读下面材料并解答问题 材料:将分式322231x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()322231()x x x x x a b --++=-+++,则323223x x x x ax x a b --++=--+++∵对任意x 上述等式均成立,∴2a =且3a b +=,∴2a =,1b = ∴()2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和 解答:(1)将分式371x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681x x x --+-+的最小值.【答案】(1)3+101x -;(2)8 【解析】【分析】 (1)直接把分子变形为3(x-1)+10解答即可;(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 【详解】解:(1)371x x +-=33101x x -+- =()31101x x -+- =3+101x -; (2)由分母为21x -+,可设4268x x --+()()221x x a b =-+++,则4268x x --+ ()()221x x a b =-+++422x ax x a b =--+++ 42(1)()x a x a b =---++.∵对于任意的x ,上述等式均成立,∴168a a b -=⎧⎨+=⎩解得71a b =⎧⎨=⎩ ∴422681x x x --+-+ ()()2221711x x x -+++=-+ ()()222217111x x x x -++=+-+-+ 22171x x =++-+. ∴当x=0时,22171x x ++-+取得最小值8,即 422681x x x --+-+的最小值是8.【点睛】本题主要考查分式的混合运算,解答本题的关键是理解阅读材料中的方法,并能加以正确应用.18.阅读理解:把一个分式写成两个分式的和叫做把这个分式表示成部分分式.如何将2131x x --表示成部分分式?设分式2131x x --=11m n x x +-+,将等式的右边通分得:(1)(1)(1)(1)m x n x x x ++-+-=()(1)(1)m n x m n x x ++-+-,由2131x x --= ()(1)(1)m n x m n x x ++-+-得:31m n m n +=-⎧⎨-=⎩,解得:12m n =-⎧⎨=-⎩,所以2131x x --=1211x x --+-+. (1)把分式1(2)(5)x x --表示成部分分式,即1(2)(5)x x --=25m n x x +--,则m = ,n = ;(2)请用上述方法将分式43(21)(2)x x x -+-表示成部分分式. 【答案】(1)13-,13;(2)21212x x ++-. 【解析】【分析】仿照例子通分合并后,根据分子的对应项的系数相等,列二元一次方程组求解.【详解】解:(1)∵()()()522525m n x m n m n x x x x +--+=----, ∴0521m n m n +=⎧⎨--=⎩, 解得:1313m n ⎧=-⎪⎪⎨⎪=⎪⎩. (2)设分式()()43212x x x -+-=212m n x x ++-将等式的右边通分得:()()()()221212m x n x x x -+++-=()()()22212m n x m n x x +-++-,由()()43212x x x -+-=()()()22212m n x m n x x +-++-, 得2423m n m n +=⎧⎨-+=-⎩, 解得21m n =⎧⎨=⎩. 所以()()43212x x x -+-=21212x x ++-.19.已知分式A=2344(1)11a a a a a -++-÷--. (1) 化简这个分式;(2) 当a >2时,把分式A 化简结果的分子与分母同时..加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由.(3) 若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和.【答案】(1)22a A a +=-;(2)变小了,理由见解析;(3)符合条件的所有a 值的和为11.【解析】分析:(1)分解因式,再通分化简.(2)用作差法比较二者大小关系.(3)先分离常数,再尝试让分子能被分母整除.详解: (1)A =2344111a a a a a -+⎛⎫+-÷ ⎪--⎝⎭=()()()2113211a a a a a -+--÷--=22a a +-. (2)变小了,理由如下:()()()()()()()()21522512212121a a a a a a A B a a a a a a ++-+-++-=-==-+-+-+ . ∵a >2 ∴a -2>0,a+1>0,∴()()1221A B a a -=-+>0,即A >B (3) 24122a A a a +==+-- 根据题意,21,2,4a -=±±± 则a =1、0、-2、3、4、6, 又1a ≠ ∴0+(-2)+3+4+6=11 ,即:符合条件的所有a 值的和为11.点睛:比较大小的方法:(1)作差比较法:0a b a b ->>;0a b a b -<⇒<(a b ,可以是数,也可以是一个式子)。

初二数学培优试卷及答案

初二数学培优试卷及答案

一、选择题(每题5分,共50分)1. 已知方程x^2 - 4x + 3 = 0,那么它的解是()A. x1 = 1,x2 = 3B. x1 = 2,x2 = 2C. x1 = 3,x2 = 1D. x1 = -1,x2 = -32. 若a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √(x - 1)B. y = √(x^2 - 1)C. y = √(x + 1)D. y = √(x^2 + 1)4. 已知一次函数y = kx + b,其中k ≠ 0,若函数图象经过点(2, 3),则k和b 的值分别为()A. k = 2,b = 1B. k = 1,b = 2C. k = -2,b = 1D. k = -1,b = 25. 已知等腰三角形ABC中,AB = AC,且∠BAC = 40°,则∠B和∠C的度数分别为()A. ∠B = ∠C = 50°B. ∠B = ∠C = 70°C. ∠B = ∠C = 40°D. ∠B = ∠C = 30°6. 下列各数中,能被3整除的是()A. 729B. 256C. 1234D. 9877. 已知直角三角形ABC中,∠C = 90°,AB = 5cm,BC = 12cm,那么AC的长度为()A. 13cmB. 15cmC. 17cmD. 19cm8. 若一个数x满足不等式2x - 1 < 5,那么x的取值范围是()A. x < 3B. x ≤ 3C. x > 3D. x ≥ 39. 已知二次函数y = ax^2 + bx + c(a ≠ 0),若函数图象开口向上,则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 010. 在平面直角坐标系中,点P(2, 3)关于x轴的对称点Q的坐标是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)二、填空题(每题5分,共50分)1. 若方程2x - 3 = 5的解为x = 3,则方程3x + 4 = 11的解为x = _______。

2024-2025八年级上期中数学试卷含答案

2024-2025八年级上期中数学试卷含答案

2024—2025学年上期期中学业水平评估八年级数学试卷(时间:100分钟满分:120分)一、选择题(共10小题)1.下列各数中,是无理数的是()A .πB .3.14C .0D .212.已知P (-2,1),则点P 所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限3.估计14的值应在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.如果12-+=a x y 是正比例函数,则a 的值是()A .-2B .0C .21D .21-5.在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,下列条件中,不能判断△ABC 是直角三角形的是()A .13125===c b a ,,B .∠A -∠B=∠CC .∠A :∠B :∠C =3:4:5D .222cb a -=6.如图,一次函数132y x =-+的图象与坐标轴的交点为A 和B ,下列说法中正确的是()A .点()21-,在直线AB 上B .y 随x 的增大而增大C .当0x >时,3y <D .方程1302x -+=的解为3x =7.意大利著名画家达.芬奇用如图所示的方法证明了勾股定理.若设图1中空白部分的面积为1S ,图3中空白部分的面积为2S ,则下列表示1S ,2S 的等式成立的是()A .abb a S 2221++=B .abc S +=22C .ab b a S 21221++=D .ab c S 2122+=第7题图第6题图8.为避开周五放学时学校门口的交通拥堵,乐乐和爸爸商定了一个学校附近的集合地点,爸爸开车从家出发提前到集合地点等待,乐乐放学后从学校出发步行到达集合地,爸爸接到乐乐后再返回家中,假设汽车行进过程中始终保持匀速行驶,二人出发时间()min t 与距家路程()km S 的函数关系图象如图所示,下列说法中不正确的是()A .学校距家的距离为10.6kmB .爸爸比乐乐提前5min 到达集合地点C .乐乐步行的速度为100min/m D .爸爸返程时的速度为45hkm /9.如图所示,(22A ,0),32AB =,以点A 为圆心,AB 长为半径画弧交x 轴负半轴于点C ,则点C 的坐标为()A .(32,0)B .(2,0)C .(2-,0)D .(32-,0)10.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点1A (0,1)、2A (1,1)、3A (1,0)、4A (2,0)...,那么点2024A 的坐标为()A .(1012,0)B .(1012,1)C .(2024,0)D .(2024,1)二、填空题(共5小题)11.2-的相反数是__________.12.若正比例函数kx y =的图象经过点(1,-2),则k 的值为_________.13.已知点A(m +2,-3),B(-2,n -4)关于y 轴对称,则m -n 的值为___________.14.包装纸箱是我们生活中常见的物品.如图1,创意DIY 小组的同学将一个10cm ×30cm ×40cm 的长方体纸箱裁去一部分(虚线为裁剪线),得到图2所示的简易书架.若一只蜘蛛从该书架的顶点A 出发,沿书架内壁爬行到顶点B 处,则它爬行的最短距离为___________cm .15.如图,在△ABC 中,∠C=90°,AC=3,AB=5,点D 是BC 边上的一点(不与B、C 重合),连接AD,将△ACD 沿AD 折叠,使点C 落在点E 处,当△BDE 是直角三角形时,CD 的长为_________.第15题图第10题图第9题图第8题图三、解答题(本大题共8小题)16.计算(1)38520-⨯;(2)31227+.17.围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.如图是某围棋棋盘的局部,若棋盘是由边长均为1的小正方形组成的,棋盘上A 、B 两颗棋子的坐标分别为A (-2,4),B (1,2)(1)根据题意,画出相应的平面直角坐标系;(2)分别写出C 、D 两颗棋子的坐标;(3)有一颗黑色棋子E 的坐标为(3,-1),请在图中画出黑色棋子E .18.已知a 的立方等于-27,b 的算术平方根为5.(1)求a 、b 的值;(2)求a b 8-的平方根.19.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降12米,则他应该往回收线多少米?20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,5,13;(3)如图3,∠BCD是不是直角?请说明理由.21.某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l ,射线2l 分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y (单位:元)和2y (单位:元)与其当月鲜花销售量x (单位:千克)(x ≥0)的函数关系.(1)方案一:每千克提成是________元;方案二:每千克提成是__________元;(2)分别求1y 、2y 与x 的函数关系式;(3)若该公式销售人员小明今年3月份的鲜花销售量是70千克,那么他采用哪种方案获得的报酬会更多一些?22.我们规定用()b a ,表示一个数对,给出如下定义:记:3a m =,()0>b b n -=,将()n m ,和()m n ,称为数对()b a ,的一对“开方对称数对”.例:数对(8,25)的开方对称数对为(2,-5)和(-5,2).(1)数对(27,4)的开方对称数对为___________和_____________;(2)若数对()6,x 的一个开方对称数对是⎪⎭⎫⎝⎛-216,,求x 的值;(3)若数对()b a ,的一个开方对称数对是(-4,-5),求a 、b 的值.23.【探索发现】如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线DE 经过点C ,过A 作AD ⊥DE 于点D .过B 作BE ⊥DE 于点E ,则△BEC ≌△CDA ,我们称这种全等模型为“k 型全等”.(不需要证明)【迁移应用】已知:直线3+=kx y (k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.(1)如图2.当k =23-时,在第一象限构造等腰直角△ABE ,∠ABE =90°;①直接写出OA =_________,OB =__________;②求点E 的坐标;(2)如图3,当k 的取值变化,点A 随之在x 轴负半轴上运动时,在y 轴左侧过点B 作BN ⊥AB ,并且BN =AB ,连接ON ,问△OBN 的面积是否为定值,请说明理由;(3)【拓展应用】如图4,当k =-2时,直线l :y =-3与y 轴交于点D ,点P (n ,3-)、Q 分别是直线l 和直线AB 上的动点,点C 在x 轴上的坐标为(4,0),当△PQC 是以CQ 为斜边的等腰直角三角形时,请直接写出点Q 的坐标.2024--2025学年上期八年级期中考试数学参考答案一.选择题(共10小题,每小题3分,共30分)1.A,2.B,3.C,4.C,5.C,6.C,7.B,8.D,9.C,10.A.二.填空题(共5小题,每小题3分,共15分)11.2;12.-2;13.-1;14.50;15.3或23.三.解答题(本大题共8小题,共75分)16.(10分)解:(1)原式=2520-⨯=2100-=10-2=8.(5分)l图4(2)原式=31227+=33233+=335=5.(10分)17.(9分)解:(1)建立如图所示的直角坐标系;(3分)(2)点C 的坐标(2,1),点D 的坐标(-2,-1);(7分)(3)如图,点E 即为所求.(9分)18.(9分)解:(1)∵a 的立方等于-27,∴3273-=-=a ,(2分)∵b 的算术平方根为5,∴b =25;(4分)(2)∵3-=a ,b =25,∴a b 8-=25-8×(-3)=49,(6分)∵()4972=±,∴49的平方根是±7,∴a b 8-平方根是±7.(9分)19.(9分)解:(1)在Rt △CDB 中,由勾股定理,得400152522222=-=-=BD BC CD ,所以CD=20(负值舍去).(3分)所以CE =CD +DE =20+1.6=21.6(米).答:风筝的垂直高度CE 为21.6米.(5分)(2)如图,由题意,得CM=12,,DM=8,∴(米)171582222=+=+=BD DM BM ,∴BC-BM=25-17=8(米),∴他应该往回收线8米(9分).20.(1)解:略;(3分)(2)略;(6分)(3)连接BD ,202=BC ,52=CD ,252=BD ,∴222BD CD BC =+,∴∠BCD =90°,是直角.(9分)21.(9分)解:(1)30,10;(2分)(2)设x k y 11=,根据题意得120401=k ,解得1k =30,∴1y =30x (x ≥0);设b x k y +=22,根据题意得⎩⎨⎧=+=1200408002b k b ,解得⎩⎨⎧==800102b k ,∴800102+=x y (x ≥0).(6分)(3)当x =70时,21001=y ;15002=y ;∵2100>1500,∴采用方案一获得的报酬会更多一些(9分)22.(10分)解:(1)(3,-2),(-2,3)(2分)(2)∵数对()6,x 的一个开方对称数对是⎪⎭⎫ ⎝⎛-216,,∴81213=⎪⎭⎫ ⎝⎛=x .(6分)(3)数对()b a ,的一个开方对称数对是(-4,-5),当3a =-4,b -=-5时,解得a =-64,b =25;当3a =-5,b -=-4时,解得a =-125,b =16.(10分)23.(10分)解:(1)①2,3;(2分)②作ED ⊥OB 于D ,∴∠BDE =∠AOB =90°,∴∠2+∠3=90°,∵△ABE 是以B 为直角顶点的等腰直角三角形,∴AB =BE ,∠ABE =90°,∴∠1+∠2=90°,∴∠1=∠3,∴△BED ≌△ABO (AAS ),∴DE =OB =3,BD =OA =2,∴OD =OB +BD =5,∴点E 的坐标为(3,5);(4分)(2)当k 变化时,△OBN 的面积是定值,29=OBN S △,理由如下:∵当k 变化时,点A 随之在x 轴负半轴上运动时,∴k >0,过点N 作NM ⊥OB 于M ,∴∠NMB =∠AOB =90°,∵∠1+∠3=90°,∵BN ⊥AB ,∴∠ABN =90°,∴∠1+∠2=90°,∴∠2=∠3,∵BN =BA ,∠NMB =∠AOB =90°,∴△BMN ≌△AOB (AAS ).∴MN =OB =3,∴29332121=⨯⨯=⋅⨯=MN OB S OBN △∴k 变化时,△OBN 的面积是定值,29=OBN S △;(8分)(3)点Q 的坐标为⎪⎭⎫⎝⎛-317313,或(5,﹣7).(10分)。

初二数学期中考试试卷(含答案)精选全文

初二数学期中考试试卷(含答案)精选全文

可编辑修改精选全文完整版初二数学期中考试试卷(含答案)初二数学期中考试试卷(含答案)一、选择题:共40分1. 下列哪一个选项是正确的?()A. 三角形的内角和为90度B. 直角三角形的两条直角边的边长之和大于斜边的边长C. 平行四边形的对边垂直D. 两条相互垂直的直线一定相交于一点答案:B2. 若一个数的个位数和十位数相加等于十位数,百位数的值为3,则该数是()A. 210B. 123C. 132D. 102答案:C3. 当x取什么值时,方程2x - 5 = -7的解唯一?()A. 1B. -1C. 4D. -4答案:A4. 在一个比赛中,小明以每小时40公里的速度骑自行车行驶,他经过3小时后,还剩下120公里的路程未行驶。

这个比赛的总路程是()A. 240公里B. 320公里C. 400公里D. 480公里答案:C5. 若a:b = 3:5,b:c = 2:7,则a:c =()A. 3:5B. 6:7C. 3:35D. 6:35答案:B二、填空题:共30分1. 一个角度的补角是135°,那么这个角度的度数是_______。

答案:452. 单价为40元的商品,现在打7折,最终的价格是_______元。

答案:283. 把一个正方形的边长增加1cm,它的面积增加_________平方厘米。

答案:24. 若一个数的3/5是80,那个数是_______。

答案:1205. 若x的值满足x ÷ 2 = 5,那么x是_______。

答案:10三、解答题:共30分1. 一个三位数,个位数字是它的和的2倍,十位数字比个位数字大2,百位数字比十位数字大2,求这个三位数是多少。

答案:假设这个三位数为abc,根据题意得到以下等式:个位数字: a = 2(b + c)十位数字: b = c + 2百位数字: c = b + 2代入第二个等式得:b = (c + 2)再代入第三个等式得:c = ((c + 2) + 2),化简得:c = c + 4显然,上述等式没有解,因此这个三位数不存在。

新人教版八年级上学期期中数学培优测试卷

新人教版八年级上学期期中数学培优测试卷

八年级上学期期中数学培优测试卷(满分100,时间60分钟)班级: 姓名: 分数: 一、选择题1、在直线、射线、线段、角、直角三角形、等腰三角形、平行四边形图中,轴对称图形有( )A 、7个B 、6个C 、5个D 、4个 2、下列命题中,错误的是( )A .全等三角形对应边上的中线相等B .面积相等的两个三角形是全等三角形C .全等三角形对应边上的高线相等D .全等三角形对应角的平分线相等3、如图1,AB=AC ,BD=BC ,若∠A=30°,则∠ABD 的度数是( )A 、30°B 、40°C 、45°D 、50° 4、如图2,PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E ,且=PD PE ,判定△APD 与△APE 全等的理由不应该是( )A .SASB .AASC .SSSD .HL图1 5、如图3,在△ABC 中,AB =AC ,AD 是ABC △的角平分线,DE AB DF AC ⊥⊥,,垂足分别为E ,F .则下列四个结论:①AD 上任意一点到点C ,B 的距离相等;②AD 上任意一点到边AB ,AC 的距离相等;③BD =CD ,AD ⊥BC ;④∠BDE =∠CDF .其中,正确的个数为 ( ) A .1个 B .2个 C .3个 D .4个6、△ABC 中,AB =AC ,三条高AD ,BE ,CF 相交于O ,那么图4中全等的三角形有( ) A .5对 B .6对 C .7对 D .8对7、已知点A (4,y x 23-),B (2x ,4)关于y 轴对称,则x y 的值为( ) A 、10 B 、-10 C 、±10 D 、58、等腰三角形一腰上的高与另一腰的夹角为25°,则底角的度数为( )A 、65°或57.5 °°°°°A CBD ADC图2 BPE A D EC B 图3 FAD E C B 图4F9、如图5,△DCE 、△ABC 均为等边三角形,AD 、BE 分别与CE 、AC 交于点G 、F ,有下列结论①△ACD ≌△BCE ,②CF=CG ,③CD=EF ,正确的个数是( )A 、3个B 、2个C 、1个D 、0个 10、如图6,已知AB ,CD 相交于O 点,AOC BOD △≌△,E ,F 分别在OA ,OB 上,要使EOC FOD △≌△,添加的一个条件不可以是( )A .∠OCE =∠ODFB .∠CEA =∠DFBC .CE =DFD .OE =OF图5二、填空题11、若三角形的三边a 、b 、c 满足0||)(2=-+-c b b a ,则这个三角形是__ ___三角形。

人教版数学八年级上册:期中培优练习(答案)

人教版数学八年级上册:期中培优练习(答案)

八年级上册:期中培优练习(二)一.选择题(满分20分,每小题2分)1.下列各组数可能是一个三角形的边长的是()A.5,7,12 B.5,6,7 C.5,5,12 D.1,2,62.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为()A.75°B.105°C.135°D.165°3.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°4.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.105.用直尺和圆规作一个角等于已知角的示意图如图,则说明∠A'O'B'=∠AOB,两个三角形全等的依据是()A.SAS B.ASA C.SSS D.不能确定6.下列三角形不一定全等的是()A.面积相等的两个三角形B.周长相等的两个等边三角形C.斜边和一条直角边分别对应相等的两个直角三角形D.有一个角是100°,腰长相等的两个等腰三角形7.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B.CH=CE=EF C.AC=AF D.CH=HD8.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.89.在Rt△ABC中,∠C=90°,∠A=30°,边AC的垂直平分线DE交AB于点D,垂足为点E,若DE=2,则BD的长为()A.1 B.2 C.3 D.410.如图,AD平分∠CAB,BD平分∠ABF,DE⊥AC于E,BF∥AC交ED的延长线于点F.给出以下三个结论:①AB=AC;②AD⊥BC;③DE=DF,其中正确的结论共有()A.0个B.3个C.2个D.1个二.填空题(满分24分,每小题3分)11.下列四个图案中,具有一个共有的性质,那么在222,606,808,609下面四个数中,满足上述性质的一个是.12.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为.13.点A(a,2),与A′(3,b)关于x轴对称,则a=,b=.14.如图,∠BAC=120°,AB=AC,AC的垂直平分线交BC于D,则∠ADB=度.15.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为.16.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为厘米/秒.17.《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中第九卷《勾股》主要讲述了以测量问题为中心的直角三角形三边互求,之中记载了一道有趣的“折竹抵地”问题:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”译文:“一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为多少尺?”(备注:1丈=10尺)如果设竹梢到折断处的长度为x尺,那么折断处到竹子的根部用含x的代数式可表示为尺,根据题意,可列方程为.18.如图,△ABC中,AB=AC=2,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,F为AB的中点,则EF的长等于.三.解答题19.(12分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线.20.(10分)已知:如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD 相交于点F.(1)若∠DCB=40°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.21.(10分)如图,△ABC是等边三角形,E,F分别是边AB,AC上的点,且AE=CF,且CE,BF交于点P,且EG⊥BF,垂足为G.(1)求证:∠ACE=∠CBF:(2)若PG=1,求EP的长度.22.(10分)已知△ABC的角平分线AP与边BC的垂直平分线PM相交于点P,作PK⊥AB,PL⊥AC,垂足分别是K、L.求证:(1)BK=CL.(2)AK=(AB+AC).23.(14分)如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x 轴的正半轴,且FH⊥FG,求m+n的值.参考答案一.选择题1.解:A、5+7=12,不符合三角形三边关系定理,不能组成三角形,故本选项不符合题意;B、5+6>7,5+7>6,6+7>5,符合三角形三边关系定理,能组成三角形,故本选项符合题意;C、5+5<12,不符合三角形三边关系定理,不能组成三角形,故本选项不符合题意;D、1+2<6,不符合三角形三边关系定理,不能组成三角形,故本选项不符合题意;故选:B.2.解:∠AOC=∠DAB﹣∠C=15°,∴∠α=180°﹣15°=165°,故选:D.3.解:∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,∴∠B=60°,根据翻折不变性可知:∠CB′D=∠B=60°,∵∠DB′C=∠A+∠ADB′,∴60°=20°+∠ADB′,∴∠ADB′=40°,故选:A.4.解:∵在△ADE和△ADC中,,∴△ADE≌△ADC,∴CD=DE,∵BD=2CD,∴BC=BD+CD=3DE=9.故选:C.5.解:由作法得OD=OC=OD′=OC′,CD=C′D′,∴△OCD≌△O′C′D′(SSS),∴∠A'O'B'=∠AOB.故选:C.6.解:A、如果△ABC和△DEF中,BC=1,BC上的高AD=2,△DEF的边EF=2,EF上的高是1,两三角形的面积相等,但△ABC和△DEF不一定全等,故本选项正确;B、△ABC和△DEF,AB=BC=AC,DE=EF=DF,根据周长相等,则AB=BC=AC=DE=DF=EF,根据SSS即可推出两三角形全等,故本选项错误;C、根据直角三角形全等的判定定理HL,推出两三角形全等,故本选项错误;D、△ABC和△DEF中,AC=AB=DE=DF,只能是顶角是100°,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项错误;故选:A.7.解:A、∵∠B和∠ACD都是∠CAB的余角,∴∠ACD=∠B,故正确;B、∵CD⊥AB,EF⊥AB,∴EF∥CD∴∠AEF=∠CHE,∴∠CEH=∠CHE∴CH=CE=EF,故正确;C、∵角平分线AE交CD于H,∴∠CAE=∠BAE,又∵∠ACB=∠AFE=90°,AE=AE,∴△ACE≌△AEF,∴CE=EF,∠CEA=∠AEF,AC=AF,故正确;D、点H不是CD的中点,故错误.8.解:∵OB平分∠ABC,∴∠DBO=∠OBC,∵DE∥BC,∴∠DOB=∠OBC,∴∠DOB=∠DBO,∴BD=OD,同理可得:CE=OE,∴DE=DO+OE=BD+CE=5,故选:A.9.解:如图,DE为AC的垂直平分线,∵∠ACB=90°,∠A=30°,DE=2,∴CD=AD=2DE=4.∴∠DCA=∠A=30°,∴∠B=∠BCD=60°,∴BD=CD=4.故选:D.10.解:①∵AC∥BF,∴∠C=∠CBF,∵BD平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC;故①正确;②∵AB=AC,AD平分∠CAB,∴AD⊥BC;③∵AB=AC,AD平分∠CAB,∴BD=CD,在△CED和△BFD中,∵,∴△CED≌△BFD(ASA),∴DE=DF,故③正确,本题正确的结论有:①②③;故选:B.二.填空11.解:四个图案都是轴对称图形,在222,606,808,609四个数中,808是轴对称图形,故答案为:808.12.解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.13.解;∵点A(a,2)与B(3,b)关于x轴对称,∴a=3,b=﹣2,故答案为:3,﹣2.14.解:∵△ABC中,∠BAC=120°,AB=AC,∴∠C===30°,∵DE是线段AC的垂直平分线,∴AD=CD,∴∠C=∠CAD=30°,∵∠ADB是△ACD的外角,∴∠ADB=∠C+∠CAD=30°+30°=60°.故答案为:60.15.解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.16.解:∵AB=16cm,BC=10cm,点D为AB的中点,∴BD=×16=8cm,设点P、Q的运动时间为t,则BP=2t,PC=(10﹣2t)cm①当BD=PC时,10﹣2t=8,解得:t=1,则BP=CQ=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=10cm,∴BP=PC=5cm,∴t=5÷2=2.5(秒).故点Q的运动速度为8÷2.5=3.2(厘米/秒).故答案为:2或3.2.17.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:(10﹣x)2+42=x2故答案为:(10﹣x),(10﹣x)2+42=x2.18.解:延长BE、CA交于点G,∵AB=AC=2,∠BAC=90°,∴由勾股定理可知:BC=2,∵CD平分∠ACB,∴∠BCE=∠ACE,∵BE⊥CD,∴∠BEC=∠CEG.∴△BCG是等腰三角形,∴BE=GE,CG=CB=2,∵AC=2,∴AG=CG﹣AC=2﹣2,∵F是AB的中点,∴BE=GE,∴EF=AG=(2﹣2)=﹣1,故答案为:﹣1.三.解答19.解:(1)直线m如图所示.(2)直线n如图所示.20.解:(1)∵CD是高,∠DCB=40°,∴∠B=50°,又∵∠ACB=90°,∴∠BAC=40°,又∵AE是角平分线,∴∠BAE=∠BAC=20°,∴∠CEF=∠B+∠BAE=50°+20°=70°;(2)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BAC=∠B+∠BAC=90°,∴∠ACD=∠B,∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CFE是△ACF的外角,∠CEF是△ABE的外角,∴∠CFE=∠ACD+∠CAE,∠CEF=∠B+∠BAE,∴∠CFE=∠CEF.21.证明:(1)∵△ABC是等边三角形,∴AC=BC,∠A=∠BCF=60°,AB=AC,在△ACE与△BCF中,,∴△ACE≌△CBF(SAS),∴∠ACE=∠CBF;(2)解:∵由(1)知∠ACE=∠CBF,又∠ACE+∠PCB=∠ACB=60°,∴∠PBC+∠PCB=60°,∴∠BPE=60°,∵EG⊥BF,即∠PGE=90°,∴∠GEP=30°,∴在Rt△PGE中,PE=2PG,∵PG=1,∴PE=2.22.证明:(1)连接PB,PC,∵PM垂直平分线段BC,∴PB=PC,∵AP平分∠BAC,PK⊥AB,PL⊥AC,∴PK=PL,在Rt△BPK和Rt△CPL中,,∴Rt△BPK≌Rt△CPL(HL),∴BK=CL;(2)∵AP平分∠BAC,PK⊥AB,PL⊥AC,∴∠PKA=∠PLA=90°,∠PAK=∠PAL,在△PAK和△PAL中,,∴△PAK≌△PAL(AAS),∴AK=AL,∵Rt△BPK≌Rt△CPL,∴BK=CL,∴AB+AC=AK+AL=2AK,∴AK=(AB+AC).23.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.。

人教版八年级数学上期中复习提优试题精选附答案

人教版八年级数学上期中复习提优试题精选附答案

③②①人教版八年级数学上学期 期中复习提优测试题精选(全卷总分120分) 姓名 得分一、选择题(每小题3分,共30分)1.如图,直线a 、b 、c 、d 互不平行,对它们截出的一些角的数量关系描述错误的是( )A .∠1+∠6=∠2B .∠4+∠5=∠2C .∠1+∠3+∠6=180°D .∠1+∠5+∠4=180° 2.如图,若∠A =27°,∠B =45°,∠C =38°,则∠DFE 等于( )A .120°B .115°C .110°D .105°3.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上的点,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A =70°,则∠1+∠2=( )A .110°B .140°C .220°D .70° 4.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②5.如图,已知AB =AC ,AD =AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不成立的是( )A .BD =CEB .∠ABD =∠ACEC .∠BAD =∠CAE D .∠BAC =∠DAE6.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( )7.如图,在△ABC 中,AC =4 cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7 cm ,则BC 的长为( ) A .1 cm B .2 cm C .3 cm D .4 cm8.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( ) A .8 B .6 C .4 D .29.如图,在△ABC 中,AB =AC ,∠ABC =75°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( ) A .15° B .17.5° C .20° D .22.5°10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二、填空题(每小题3分,共18分)11.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是 . 12.如图,一副三角板AOC 和BCD 如图摆放,则∠AOB = . 13.如图,在△ABC 中,∠B =42°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC = .14.如图,在Rt △ABC 中,∠C =90°,AC =12 cm ,BC =6 cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP = .15.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM = .16.如图所示,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,若DE =2,则EC = .三、解答题(共72分) 17.(6分)一个有阴影的小正方形,使补画后的图形为轴对称图形.18.(6分)如图所示,求∠A +∠B +∠C +∠D +∠E.第1第2第3第4第5第7第8第16题第14题第15题 第12题第13题第11题第18题19.(12分)问题引入:(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (用α表示);如图2,∠CBO =13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC= (用α表示);拓展研究:(2)如图3,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,猜想∠BOC=(用α表示),并说明理由;(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,请猜想∠BOC=.20.(10分)如图,点C是线段AB上任意一点(点C与点A,B不重合),分别以AC,BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N,连接MN. 求证:(1)△ACM≌△DCN; (2)MN∥AB. 21.(9分) (1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE 交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.22.(10分)如图所示,MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.23.(10分)如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求AD的长.24.(9分)如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.第9第22题第19题第23题第20题第24题③②①人教版八年级数学上学期 期中复习提优测试题精选参 考 答 案一、选择题(每小题3分,共30分)1.如图,直线a 、b 、c 、d 互不平行,对它们截出的一些角的数量关系描述错误的是( A )A .∠1+∠6=∠2B .∠4+∠5=∠2C .∠1+∠3+∠6=180°D .∠1+∠5+∠4=180°2.如图,若∠A =27°,∠B =45°,∠C =38°,则∠DFE 等于( C ) A .120° B .115° C .110° D .105°3.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上的点,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A =70°,则∠1+∠2=( B ) A .110° B .140° C .220° D .70° 4.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( C )A .①B .②C .③D .①和②5.如图,已知AB =AC ,AD =AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不成立的是( B )A .BD =CEB .∠ABD =∠ACEC .∠BAD =∠CAE D .∠BAC =∠DAE6.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( D )7.如图,在△ABC 中,AC =4 cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7 cm ,则BC 的长为( C ) A .1 cm B .2 cm C .3 cm D .4 cm8.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( C ) A .8 B .6 C .4 D .29.如图,在△ABC 中,AB =AC ,∠ABC =75°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( A ) A .15° B .17.5° C .20° D .22.5°10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( C ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二、填空题(每小题3分,共18分)11.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是 三角形的稳定性 . 12.如图,一副三角板AOC 和BCD 如图摆放,则∠AOB = 165° . 13.如图,在△ABC 中,∠B =42°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC = 69° .14.如图,在Rt △ABC 中,∠C =90°,AC =12 cm ,BC =cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP = 6cm 或12cm .15.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 边OB 上,PM =PN ,若MN =2,则OM = 5 .16.如图所示,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,若DE =2,则EC = 8 .三、解答题(共72分) 17.(6分)如图是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形. 第1第2第3第4第5第11题第12题第13题第14题第15题第16题解:所补画的图形如图所示.18.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E.解:∵∠1=∠A+∠E,∠2=∠B+∠C,∴∠A+∠B+∠C+∠D+∠E=∠1+∠2+∠D=180°.19.(12分)问题引入:(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC =90°+12∠α (用α表示);如图2,∠CBO=13∠ABC ,∠BCO=13∠ACB,∠A=α,则∠BOC=120°+13∠α (用α表示);拓展研究:(2)如图3,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,猜想∠BOC=120°-13∠α(用α表示),并说明理由;(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,请猜想∠BOC=(n-1)·180°-∠αn.解:理由:∵∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,∴∠BOC=180°-13(∠DBC+∠ECB)=180°-13[360°-(∠ABC+∠ACB)]=180°-13[360°-(180°-∠A)]=180°-13(180°+∠α)=180°-60°-13∠α=120°-13∠α.20.(10分)如图,点C是线段AB上任意一点(点C与点A,B不重合),分别以AC,BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N,连接MN.求证:(1)△ACM≌△DCN;(2)MN∥AB.证明:(1)∵△ACD和△BCE都是等边三角形,∴AC=DC,BC=EC,∠ACD=∠BCE=60°.∵∠ACD+∠DCE+∠ECB=180°,∴∠DCE=60°.∴∠ACE=∠DCB=120°.在△ACE和△DCB中,⎩⎨⎧AC=DC,∠ACE=∠DCB,CE=CB,∴△ACE≌△DCB(SAS).∴∠EAC=∠BDC.在△ACM和△DCN中,⎩⎨⎧∠MAC=∠NDC,AC=DC,∠ACM=∠DCN=60°,∴△ACM≌△DCN(ASA).(2)由(1)知△ACM≌△DCN,∴CM=CN.又∵∠MCN=60°,∴△CNM为等边三角形,∠NMC=60°.∴∠NMC=∠ACM=60°.∴MN∥AB.第7第8第9第18题第20题21.(9分) (1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD 的取值范围是 2<AD<8 ;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.证明:延长FD至点G,使DG=DF,连接BG,EG.∵点D是BC的中点,∴DB=DC.∵∠BDG=∠CDF,DG=DF,∴△BDG≌△CDF(SAS).∴BG=CF.∵ED⊥FD,∴∠EDF=∠EDG=90°.又∵ED=ED,FD=DG,∴△EDF≌△EDG.∴EF=EG.∵在△BEG中,BE+BG>EG,∴BE+CF>EF.22.(10分)如图所示,MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.解:(1)∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ.∴△APQ的周长为AP+PQ+AQ=BP+PQ+CQ=BC.∵△APQ的周长为12,∴BC=12.(2)∵AP=BP,AQ=CQ,∴∠B=∠BAP,∠C=∠CAQ.∵∠BAC=105°,∴∠BAP+∠CAQ=∠B+∠C=180°-∠BAC=180°-105°=75°.∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°.23.(10分)如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求AD的长.解:(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=AC.又∵AE=CD,∴△ABE≌△CAD(SAS).∴∠ABE=∠CAD,BE=AD.(2)∵∠BPQ=∠BAP+∠ABE=∠BAP+∠PAE=∠BAC=60°,又∵BQ⊥PQ,∴∠PBQ=30°.∴PB=2PQ=6.∴BE=PB+PE=7.∴AD=BE=7.24.(9分)如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AE=DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.解:当点E为AB上任意一点时,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°. ∴△AEF是等边三角形.∴AE=EF=AF.∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,第21题第24题第22题第23题∴∠D =∠ECD. ∴∠BED =∠ECF.在△DEB 和△ECF 中,⎩⎨⎧∠DEB =∠ECF ,∠DBE =∠EFC ,DE =EC ,∴△DEB ≌△ECF(AAS). ∴BD =EF =AE ,即AE =BD.。

期中测试卷(培优卷)(解析版)

期中测试卷(培优卷)(解析版)

《阳光测评》2020-2021学年下学期八年级数学单元培优卷【湘教版】期中测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.以下列各组线段为边作三角形,不能构成直角三角形的是()A.3,4,5B.2,3,4C.5,12,13D.1,,【答案】B【解答】解:A.∵32+42=52,∴以3,4,5为边能组成直角三角形,故本选项不符合题意;B.∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项符合题意;C.∵52+122=132,∴以5,12,173为边能组成直角三角形,故本选项不符合题意;D.∵12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;故选:B.【知识点】勾股定理的逆定理2.一根旗杆在离地面3米处断裂,旗杆顶部落在离旗杆底部4米处,旗杆折断之前的高度是()A.5米B.7米C.8米D.9米【答案】C【解答】解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,∴AB=(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故选:C.【知识点】勾股定理的应用3.如图,在直角三角形ABC中,∠C=90°,点E、F分别为AC和AB的中点,AF=5,AE=4,则BC=()A.3B.6C.8D.10【答案】B【解答】解:∵点E、F分别为AC和AB的中点,∴EF∥BC,BC=2EF,∴∠AEF=∠C=90°,∴EF===3,∴BC=6,故选:B.【知识点】勾股定理、三角形中位线定理4.如图,AC,BD是矩形ABCD的对角线,∠AOB=50°,则∠ACD的度数为()A.50°B.55°C.60°D.65°【答案】D【解答】解:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OC=OD,∴∠ACD=∠ODC,∵∠COD=∠AOB=50°,∴∠ACD=(180°﹣50°)=65°;故选:D.【知识点】矩形的性质5.如图,一机器人从原点出发按图示方向作折线运动,第1次从原点到A1(1,0),第2次运动到A2(1,1),第3次运动到A3(﹣1,1),第4次运动到A4(﹣1,﹣1),第5次运动到A5(2,﹣1)…则第15次运动到的点A15的坐标是()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(5,﹣4)【答案】B【解答】解:∵15÷4=3…3,∴点A15在第二象限,∴点A15的坐标是(﹣4,4),故选:B.【知识点】规律型:点的坐标6.如图,在Rt△ABC中,CD、CE分别是斜边上的中线、高线.若∠A=25°,则∠DCE的大小为()A.50°B.40°C.30°D.25°【答案】B【解答】解:∵在Rt△ABC中,CD是斜边上的中线,∴CD=AD=AB,∴∠DCA=∠A=25°,∴∠CDE=∠A+∠DCA=50°,∵CE是斜边上的高线,∴CE⊥AB,∴∠CED=90°,∴∠DCE=90°﹣50°=40°,故选:B.【知识点】直角三角形斜边上的中线7.如图,在平面直角坐标系中,四边形OABC是矩形,点O是坐标原点,点A,C的坐标分别是(6,0),(0,3),点B在第一象限,则点B的坐标是()A.(3,6)B.(6,3)C.(6,6)D.(3,3)【答案】B【解答】解:∵四边形OABC是矩形,∴OC=AB,CB=OA,∵点A,C的坐标分别是(6,0),(0,3),∴AB=3,OA=6,∴点B坐标为(6,3),故选:B.【知识点】坐标与图形性质、矩形的性质8.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)【答案】D【解答】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故选:D.【知识点】坐标与图形变化-平移9.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB的中点,E是BC的中点,EF⊥CD于点F,则EF的长是()A.3B.4C.5D.【答案】D【解答】解:在Rt△ABC中,∵∠ACB=90°,AC=6,BC=8,∴AB===10,∵D是AB的中点,∴线段CD是中线,∴AD=BD=CD=5,△BDC=S△ABC=××6×8=12.如图,连接DE,∵E为BC边的中点,∴S△DEC=S△BDC=6,∵S△DEC=DC•EF,∴×5EF=6,解得:EF=,故选:D.【知识点】勾股定理、直角三角形斜边上的中线10.如图,DE、NM分别是△ABC、△ADE的中位线,NM的延长线交BC于点F,则S△DMN:S四边形MFCE等于()A.1:5B.1:4C.2:5D.2:7【答案】B【解答】解:过N作NH⊥DE于H,过A作AP⊥BC于P交DE于G,∴NM∥AG,∵DE是△ABC的中位线,∴DE∥BC,∴AG=PG,∵M是DE的中点,∴DM=ME=DE,∵NM∥AG,AN=DN,∴==,∴NM=AG=PG,∵DM=ME,∴S△DMN:S四边形MFCE===1:4.故选:B.【知识点】三角形中位线定理、三角形的面积二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.平行四边形ABCD中,AB、BC长分别为12和26,边AD与BC之间的距离为8,则AB与CD间的距离为.【解答】解:如图,过点A作AE⊥BC于点E、AF⊥CD于点F.由题意得,S四边形ABCD=AE×BC=CD×AF,∵AB=12,BC=26,AE=8,∴26×8=12×AF,∴AF=,即AB与CD间的距离为.故答案是:.【知识点】平行四边形的性质12.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=6,AD=3,那么BD=.【答案】9【解答】解:在Rt△ACD中,CD===3,在Rt△BCD中,BC==,在Rt△ABC中,BC==,∴=,解得,BD=9,故答案为:9.【知识点】勾股定理13.△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中能判定是直角三角形的是.(填写序号)(1)a:b:c=5:12:13,(2)a=1.5,b=2.5,c=2,(3)(a﹣b)2+2ab=c2,(4)∠A:∠B:∠C=3:4:5,(5)a=n2﹣1,b=2n,c=n2+1(n为大于1的正整数)【答案】(1)(2)(3)(5)【解答】解:(1)(5x)2+(12x)2=(13x)2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;(2)(1.5)2+(2)2=(2.5)2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;(3)由(a﹣b)2+2ab=c2,可得:a2+b2=c2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;(4)∠A:∠B:∠C=3:4:5,此时∠C=100°,不能够判断△ABC是直角三角形,不符合题意;(5)(n2﹣1)2+(2n)2=(n2+1)2,符合勾股定理的逆定理,能够判断△ABC是直角三角形,符合题意;故答案为:(1)(2)(3)(5).【知识点】三角形内角和定理、勾股定理的逆定理14.如图,在△ABC中,CD平分∠BCA,DE⊥BC于点E,且DE=3cm,BC=8cm,AC=4cm,则△ABC的面积是cm2.【答案】18【解答】解:过D点作DF⊥AC于F,如图,∵CD平分∠BCA,DE⊥BC,DF⊥AC,∴DF=DE=3,∴S△ABC=S△DBC+S△DAC=×8×3+×4×3=18(cm2).故答案为18.【知识点】角平分线的性质15.如图,若AB是已知线段,经过点B作BD⊥AB,使BD=AB;连接DA,在DA上截取DE=DB;在AB上截取AC=AE,则=.【解答】解:设DB=x,∵BD=AB,DE=DB,∴DE=DB=x,AB=2BD=2x,由勾股定理得:AD===x,∴AC=AE=AD﹣DE=x﹣x,∴==,故答案为:.【知识点】勾股定理16.如图,在平面直角坐标系中,点A的坐标是(2,4),点B的坐标是(6,2),在y轴和x轴上分别有两点P、Q,则A,B,P,Q四点组成的四边形的最小周长为.【解答】解:作点A关于y轴的对称点C,点B关于x轴的对称点D,连接CD交y轴于P,交x轴于Q,则此时,四边形APQB的周长最小,且四边形的最小周长=AB+CD,∵点A的坐标是(2,4),点B的坐标是(6,2),∴C(﹣2,4),D(6,﹣2),∵AB==2,CD==10,∴四边形APQB的最小周长=10+2,故答案为:10+2.【知识点】坐标与图形性质17.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.当∠ACB=°时,四边形ADCF是正方形.【答案】90【解答】解:当∠ACB=90°时,四边形ADCF是正方形,理由是:∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∵AC=BC,D为AB的中点,∴CD⊥AB,CD平分∠ACB,∴∠ADC=90°,∠ACD=ACB==45°=∠CAB,∴AD=CD,∵E为AC的中点,∴AE=CE,∵DE=EF,∴四边形ADCF是平行四边形,∵∠CDA=90°,AD=CD,∴四边形ADCF是正方形,即当∠ACB=90°时,四边形ADCF是正方形,故答案为:90.【知识点】正方形的判定、三角形中位线定理18.如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB绕点O旋转150°得到△OA′B′,则点A′的坐标为.【解答】解:∵∠ABO=90°,∠A=30°,∴∠AOB=60°,①若是顺时针旋150°,如图1,点A′在y轴负半轴,则OA′=OA=4,所以,点A′的坐标为(0,﹣4);②若是逆时针旋转150°,如图2,∵旋转角为150°,∴OA′与x轴负半轴夹角为30°,过点A′作A′C⊥x轴于C,则A′C=OA′=×4=2,由勾股定理得,OC===2,所以,点A′的坐标为(﹣2,﹣2),综上所述,点A′的坐标为(0,﹣4)或(﹣2,﹣2).故答案为:(0,﹣4)或(﹣2,﹣2).【知识点】坐标与图形变化-旋转三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,Rt△ABC中,∠ABC=90°,O是AC的中点,若AB=AO,求∠ABO的度数.【解答】解:在Rt△ABC中,∠ABC=90°,O是AC的中点,∴OB=AC=OA,∵AB=AO,∴OB=AB=AO,∴△ABO为等边三角形,∴∠ABO=60°.【知识点】直角三角形斜边上的中线20.把两个同样大小的含45°角的三角尺,按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AB=,求CD的长.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=1+﹣2=﹣1.【知识点】等腰直角三角形21.在平面直角坐标系中,已知点M(a+1,﹣3),N(3,2a+1)(1)若M点在y轴上,求点N的坐标;(2)若MN∥x轴,求a的值.【解答】解:(1)∵点M(a+1,﹣3)在y轴上,∴a+1=0,∴a=﹣1,∴2a+1=﹣1,∴N(3,﹣1);(2)∵MN∥x轴,点M(a+1,﹣3),N(3,2a+1),∴2a+1=﹣3,解得:a=﹣2.【知识点】坐标与图形性质22.如图,△ABC中,AB=AC,AD是BC边上的高,点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE是矩形;(2)若OE=2,求AB的长.【解答】(1)证明:∵点O是AC中点,∴AO=CO,又∵OE=OD,∴四边形ADCE为平行四边形,∵AD是BC边上的高,∴AD⊥DC,∴∠ADC=90°,∴四边形ADCE为矩形;(2)解:∵四边形ADCE为矩形,∴OE=AO=2,∵点O是AC中点,∴AC=2,AO=4,又∵AB=AC,∴AB=4.【知识点】全等三角形的判定与性质、三角形中位线定理、直角三角形斜边上的中线、矩形的判定与性质23.已知∠AOB=70°,∠BOC与∠AOB互余,OP是∠AOC的角平分线.(1)画出所有符合条件的图形.(2)计算∠BOP的度数.【解答】解:(1)如图所示:(2)当OC在∠AOB外部时,如图甲,∵∠AOB=70°,∠BOC与∠AOB互余,∴∠BOC=20°,∠AOC=90°,∵OP是∠AOC的平分线,∴∠POC=∠AOC=45°,∴∠BOP=∠POC﹣∠BOC=25°;当OC在∠AOB内部时,如图乙,∵∠AOB=70°,∠BOC与∠AOB互余,∴∠BOC=20°,∠AOC=50°,∵OP是∠AOC的平分线,∴∠POC=∠AOC=25°,∴∠BOP=∠POC+∠BOC=45°.综上所述,∠BOP的度数为25°或45°.【知识点】角平分线的定义、余角和补角24.如图,点F在平行四边形ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,已知∠ABF=∠FBC+∠DAC.(1)求证:四边形ABEF是菱形;(2)若BE=6,AD=10,tan∠CBE=,求AC的长.【解答】(1)证明:∵EF∥AB,BE∥AF,∴四边形ABEF是平行四边形,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠FCB,∵∠ABF=∠FBC+∠DAC,∴∠ABF=∠FBC+∠FCB,又∵∠AFB=∠FBC+∠FCB,∴∠ABF=∠AFB,∴AB=AF,∴▱ABEF是菱形;(2)解:过D作DH⊥AC于点H,如图所示:∵BE∥AC,∴∠1=∠CBE,∵AD∥BC,∴∠2=∠1,∴∠2=∠CBE,∴tan∠2=tan∠CBE=,在Rt△ADH中,tan∠2==,设DH=x(x>0),则AH=2x,由勾股定理得:x2+(2x)2=102,解得:x=2,∴AH=2x=4,DH=2,∵四边形ABEF是菱形,∴CD=AB=BE=6,Rt△CDH中,CH===4,∴AC=AH+CH=4+4.【知识点】菱形的判定与性质、解直角三角形、平行四边形的性质25.阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2)),M,N两点之间的距离可以用公式MN=计算.解答下列问题:(1)若点P(2,4),Q(﹣3,﹣8),求P,Q两点间的距离;(2)若点A(1,2),B(4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.(3)已知点A(5,5),B(﹣4,7),点P在x轴上,且要使P A+PB的和最小,求P A+PB的最小值.【解答】解:(1)P,Q两点间的距离PQ==13;(2)△AOB是直角三角形,理由如下:AO2=(1﹣0)2+(2﹣0)2=5,BO2=(4﹣0)2+(﹣2﹣0)2=20,AB2=(4﹣1)2+(﹣2﹣2)2=25,则AO2+BO2=AB2,∴△AOB是直角三角形;(3)如图,∵点A(5,5),B(﹣4,7),∴作点A关于x轴的对称点A′,则A′坐标为(5,﹣5),连接A′B交x轴于一点,此点就是点P,此时P A+PB最小,∴P A+PB最小值=A′B===15.【知识点】两点间的距离公式、轴对称-最短路线问题、勾股定理26.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,判断四边形BECD的形状,并说明理由;(3)若D为AB中点,则当∠A=时,四边形BECD是正方形?【答案】45°【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)当∠A=45°时,∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.【知识点】直角三角形斜边上的中线、正方形的判定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可证得 ≌ ,
, ,

作 于点N,
由已知 , ,
可证得 , ,



≌ ,
, ,

是等腰直角三角形,
点M是DF的中点,
则 是等腰直角三角形,
【点睛】
本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.
2.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F
(1)如图1,直接写出AB与CE的位置关系
(2)如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK
【答案】(1)AB⊥CE;(2)见解析.
【解析】
【分析】
(1)由全等可得∠ECD=∠A,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB⊥CE.
(2)延长HK于DE交于H,易得△ACD为等腰直角三角形,∠ADC=45°,易得DH=DE,然后证明△DGH≌△DGE,所以∠H=∠E,则∠H=∠B,可得HK=BK.
【分析】
(1)根据P点的运动速度可得BP的长,再利用BC的长减去BP的长即可得到PC的长;
(2)先根据三角形全等的条件得出当BP=CP,列方程求解即得;
(3)先分两种情况:当BP=CQ,AB=PC时,△ABP≌△PCQ;或当BA=CQ,PB=PC时,△ABP≌△QCP,然后分别列方程计算出t的值,进而计算出v的值.
【详解】
解:(1)∵Rt△ABC≌Rt△CED,
∴∠ECD=∠A,∠B=∠E,BC=DE,AC=CD
∵∠B+∠A=90°
∴∠B+ECD=90°
∴∠BFC=90°,∴AB⊥CE
(2)在Rt△ACD中,AC=CD,∴∠ADC=45°,
又∵∠CDE=90°,∴∠HDG=∠CDG=45°
∵CH=DB,∴CH+CD=DB+CD,即HD=BC,
八年级数学期中精选试卷培优测试卷
一、八年级数学全等三角形解答题压轴题(难)
1.如图1所示,已知点 在 上, 和 都是等腰直角三角形,点 为 的中点.
(1)求证: 为等腰直角三角形;
(2)将 绕点 逆时针旋转 ,如图2所示,(1)中的“ 为等腰直角三角形”是否仍然成立?请说明理由;
(3)将 绕点 逆时针旋转一定的角度,如图3所示,(1)中的“ 为等腰直角三角形”成立吗?请说明理由.

解得 ,
综上所述,存在 或 使得△ACP与△BPQ全等.
【点睛】
本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.
4.如图1,在长方形ABCD中,AB=CD=5 cm,BC=12 cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.
(1)PC=___cm;(用含t的式子表示)
(2)当t为何值时,△ABP≌△DCP?.
(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.
【答案】(1) ;(2) ;(3)存在, 或
【解析】
(1)如图①, , ,若点 的运动速度与点 的运动速度相等,当 时, 与 是否全等,请说明理由,并判断此时线段 和线段 的位置关系;
(2)如图②,将图①中的“ , ”为改“ ”,其他条件不变.设点 的运动速度为 ,是否存在实数 ,使得 与 全等?若存在,求出相应的 、 的值;若不存在,请说明理由.
【答案】(1)全等,PC与PQ垂直;(2)存在, 或
【解析】
【分析】
(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.
【详解】
解:(1)当t=1时,AP=BQ=1,BP=AC=3,
∴DH=DE,
在△DGH和△DGE中,
∴△DGH≌△DGE(SAS)
∴∠H=∠E
又∵∠B=∠E
∴∠H=∠B,
∴HK=BK
【点睛】
本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.
3.已知 , .点 在 上以 的速度由点 向点 运动,同时点 在 上由点 向点 运动,它们运动的时间为 .
【详解】
证明: 和 都是等腰直角三角形,

点M为EC的中点,
, ,
, , ,
, ,

同理 ,
是等腰直角三角形.
解:如图2, 是等腰直角三角形,
理由是:延长ED交AC于F,
和 是等腰直角三角形,



为EC中点,

, ,

, ,


在 和 中
≌ ,


是等腰直角三角形.
是等腰直角三角形,
理由是:过点C作 ,与DM的延长线交于点F,连接BF,
又∠A=∠B=90°,
在△ACP和△BPQ中,

∴△ACP≌△BPQ(SAS).
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
即线段PC与线段PQ垂直.
(2)①若△ACP≌△BPQ,
则AC=BP,AP=BQ,

解得 ,
②若△ACP≌△BQP,
则AC=BQ,AP=BP,∵∴∵∴解得∴


解得 .
综上所述,当 或 时, 与以P,Q,C为顶点的直角三角形全等.
【点睛】
本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.
【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.
【解析】
【分析】
根据等腰直角三角形的性质得出 , ,推出 , , ,推出 , ,求出 即可.
延长ED交AC于F,求出 , , ,根据ASA推出 ≌ ,推出 即可.
过点C作 ,与DM的延长线交于点F,连接BF,推出 ≌ ,求出 , ,作 于点N,证 ≌ ,推出 , ,求出 ,即可得出答案.
【详解】
解:(1)当点P以2cm/s的速度沿BC向点C运动时间为ts时


故答案为:
(2)∵


解得 .
(3)存在,理由如下:
①当BP=CQ,AB=PC时,△ABP≌△PCQ,
∴PC=AB=5
∴BP=BC-PC=12-5=7

∴2t=7
解得t=3.5
∴CQ=BP=7,则3.5v=7
解得 .
②当 , 时,
相关文档
最新文档