高等数学1试卷(附答案)
完整)高等数学考试题库(附答案)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
大学高数一试题及答案
大学高数一试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. 2D. 4答案:B2. 极限lim(x→0)(sin x/x)的值是:A. 0B. 1C. 2D. ∞答案:B3. 曲线y=x^3-3x+2在x=1处的切线斜率是:A. 0B. 1C. -2D. 2答案:D4. 定积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题5分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的极值点是______。
答案:1, 2, 32. 曲线y=x^2与直线y=4x相切的点的横坐标是______。
答案:23. 函数f(x)=ln(x)的不定积分是______。
答案:xln(x)-x+C4. 级数∑(1到∞) (1/n^2)的和是______。
答案:π^2/6三、计算题(每题10分,共30分)1. 计算定积分∫(0到π) sin x dx。
答案:22. 求函数f(x)=x^3-3x^2+2的一阶导数和二阶导数。
答案:一阶导数:3x^2-6x;二阶导数:6x-63. 求极限lim(x→∞) (1+1/x)^x。
答案:e四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在R上是单调递增的。
答案:略2. 证明极限lim(x→0) (1-cos x)/x^2=0。
答案:略。
高等数学1试题(附答案解析)
WORD 文档 可编辑一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。
2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。
3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。
4.11dx =⎰。
5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。
6. 222222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭=4π。
二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。
A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点2. 设()232x x f x =+-,则当0x →时,下列结论正确的是 B 。
A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )(3.1+∞=⎰C 。
A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。
A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2xy d t π-=⎰的全长为 D 。
A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点? A 。
A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。
高等数学(一)试题(附答案)
高等数学(一)试题(附答案)一、填空题(每小题1分,共10分)_________ 11.函数y=arcsin√1-x2+──────的定义域为_______________。
_________√1-x22.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────=___。
h→o h4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是___。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫f(X2+Y2)dy化为极坐标下的累次积分为_______。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞∞10.设级数∑an发散,则级数∑an_______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的○内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=( )x111①1-──②1+──③────④xxx1-x12.x→0 时,xsin──+1是( )x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是( )①若f(X )在X=Xo连续,则f(X )在X=Xo可导②若f(X )在X=Xo不可导,则f(X )在X=Xo不连续③若f(X )在X=Xo不可微,则f(X )在X=Xo极限不存在④若f(X )在X=Xo不连续,则f(X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为( ) ①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则( )①F(X)+G(X) 为常数②F(X)-G(X) 为常数③F(X)-G(X) =0dd④──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=( )-1①0②1③2④37.方程2x+3y=1在空间表示的图形是( )①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=( )1①tf(x,y)②t2f(x,y)③t3f(x,y)④──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an( )n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是( )①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是( )①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在X=Xo 的左右导数存在且相等是f(X)在X=Xo 可导的( )①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=( )dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=( )①x4②x4+c③x4+1④x4-11x16.lim─── ∫ 3tgt2dt=( )x→0x301①0②1③──④∞3xy17.limxysin─────=( )x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是( )①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│ ( ) n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=( )D x1 1 sinx①∫ dx∫ ───── dy0 x x1 √ysinx②∫ dy∫─────dx0 y x__1 √x sinx③∫ dx∫─────dy0 x x__1 √xsinx④∫ dy∫─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/──────求y' 。
高等数学(一)练习题及答案
《高等数学(一)》练习题一一.是非题1.函数1()cos f x x x=的定义域是[1,0)(0,1]-。
( ) 2.函数2sin y x x =+是偶函数。
( )3. 函数()y f x =在点0x x =不连续,则函数()y f x =在该点处不可导。
( ) 4.若)(x f 当0x x →时的左、右极限都存在,则)(x f 的极限存在。
( ) 5. )(2)()(lim/0a f hh a f h a f h =--+→。
( ) 6.函数()sin f x x =是有界函数.( ) 7.函数1()f x x=在(,0)-∞上是减函数.( ) 8. 极限10lim 2xx →存在.( )9.两个无穷小的乘积一定是无穷小. ( ) 10.初等函数在其定义域内都是连续的.( )11.函数()f x 在点x a =处有定义,是当x a →时()f x 有极限的充分必要条件。
( )12.函数31y x =+的反函数是y =( )二、单项选择题 1.函数y =的定义域是:( ) A. (1,)-+∞ B. [1,)-+∞ C. (1,)+∞ D. [1,)+∞2.设2,1,()1,1x e x f x x x ⎧<-=⎨-≥-⎩,则(1)f =( )。
A. 1-B. 0C. 1D. 2 3. 函数()y f x =在点x a =连续是()y f x =在该点处有极限的( )。
A.充要条件B.充分非必要条件C.必要非充分条件偶函数D.无关条件4.要使函数()f x x=在点0x =处连续,则(0)f =( )。
A. 2B. 1C. 1.5D. 05.设函数2,01,()3,12x x f x x x ≤<⎧=⎨-≤≤⎩,则()f x 的连续区间为( )A. [0,1)(1,2]B. [0,1)C. [1,2]D. [0,2] 6.函数y =的定义域是( )。
A. (1,)-+∞ B. [1,)-+∞ C. (1,)+∞ D. [1,)+∞7.设2,1,()1,1x e x f x x x ⎧<-=⎨-≥-⎩,则(0)f =( )。
高等数学考试题库(附答案解析)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e - (B)12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学试题题库及答案1
《高等数学》试题(一)姓名 学号 专业 班级2.试卷若有雷同以零分计。
一. 选择填空:(每小题3分,共15分,把所选答案填入右括号中.) 1.设L 是从点(,0)a 到点(,0)a -的一直线段,则()2Lx y dx +⎰=( )A .221a B . 0 C.a 2 D 1 2.幂级数∑∞=0!n nxn 的收敛半径为( )A .+∞=RB .R=0 C.R=1 D.R=23.下列曲线积分在XOY 面内与路径无关的是( )A .(2,3)(1,1)(23)(3)x y dx x y dy ++-⎰B .dy y x dx y x )()()3,2()1,1(++-⎰C.(2,3)(1,1)()(2)x y dx x y dy ++-⎰D.dy y x dx y x )2()2()3,2()1,1(-++⎰4. 244xy y y e '''-+= 的一个特解应具有形式( )A . 2x BeB .2x Bxe C. 22x Bx e D. ()xBx C e + 5.下列级数中,发散的是( )A. 211n n ∞=∑ B. ()111n n n ∞=-∑ C. 0sin 2n nn x ∞=∑ D. ()0312n n n n ∞=-∑ 二. 填空题(每小题4分,共40分,把答案填入括号中) 6. 若G 是单连通开区域,,P Q 在G 内具有一阶的连续偏导,则P Qy x ∂∂=∂∂是积分⎰+LQdy Pdx 在G 内与路径无关的( )条件;7.设L 为闭区域D 的正向边界曲线,闭区域D 的面积值为A ,则,12l ydx xdy -⎰Ñ=( ); 8.向量场()()()A x y i y z j z x k =-+-+-r r r r,则A r 的散度 divA r =( ),A r的旋度rotA r =( ); 9.设幂级数∑∞=0n nn xa 的收敛半径为R (0>R ),则其和函数)(x S 在(-R ,R )内是可导的,且有(1n nn a x∞=∑)'=( ); 10.()cos3f x x =关于x 的幂级数展开式为( ) 其收敛区间为( ); 11.若级数1nn u∞=∑收敛,则级数∑∞=1n nu必定( ); lim 0n n u →∞=是级数1nn u∞=∑收敛的( )条件;12.以212=+x xy C e C e 为通解(其中12,C C 为任意常数)的微分方程为( ); 13.)()()(x s x s x r n n -=称为)(1x u n n∑∞=的余项(和函数与部分和之差),则在)(1x u n n∑∞=的收敛域上,必有( );; 14.方程)1,0()()(≠=+n y x Q y x P dxdyn 中,令z =( ),可化为一阶线性方程,方程dy y dx x ϕ⎛⎫= ⎪⎝⎭中,令u =( )可化为一阶可分离变量方程; 15.方程()()x y dx dy dx dy +-=+的积分因子是( ).三. 解答题 (每小题7分,共35分)16. ()f x 连续,且满足330(),x f x f dt x =-⎰求)(x f .17.计算(2)(2)Lx y dx y x dy -+-⎰,其中L 是抛物线2x y =上从(0,0)到(1,1)的一段弧. 18.计算22()x y ds ∑+⎰⎰,其中∑是为抛物面221()z x y =-+在XOY 面上方的部分. 19.将 1,01,()0,1x f x x π≤<⎧=⎨≤<⎩ 展开成正弦级数.20.在收敛域()1,1-内,求函数项级数 01nn x n ∞=+∑的和函数)(x S .四.应用题 (10分)21 .一单位质点从静止开始作直线运动, 受到一个与运动方向一致,大小与时间成正比(比例系数是3) 的力的作用,此外还受到一个与速度成正比(比例系数是2)的阻力作用,求此质点的运动速度与时间的函数关系.答案及评分标准一.BBACD (每小题3分)三.(每小题7分)16.解: 记()y f x =,两端对求x 导,化简得2233y x y x '-=-2233332233x dx x dx x x y e x e dx C e x e dx C --⎡⎤⎰⎰⎡⎤=-+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 3331x x xe e C Ce -⎡⎤=+=+⎣⎦注意 0,0x y ==,代入上式解得 1C =-所以,31x y e =- 17.解: (法1) 2:l y x =,由()()0,01,1O B →,2dy xdx =原式=()()()1122320022226x x x x x dx x x x dx ⎡⎤-+-=-+⎣⎦⎰⎰=14320112122x x x ⎡⎤-+=-⎢⎥⎣⎦(法二)2,2,2P QP x y Q y x y x∂∂=-=-==-∂∂,积分与路径无关. 选折线路径:()()()0,01,01,1O A B →→,则 原式=()112xdx y dy +-⎰⎰=112200112122x y +-=-18.计算22()x y ds ∑+⎰⎰,其中∑是为抛物面221()z x y =-+在XOY 面上方的部分. 解:∑在XOY 面上投影区域: (){}22,1D x y xy =+≤ds ==2222()(Dxy ds x y ∑+=+⎰⎰⎰⎰()()()2111222000112141141484d r r r d r πϑπ⎡⎤=⋅⋅+-++⎣⎦⎰⎰⎰极坐标 ()()()()()1312222015232220141414162214141653r r d r r r ππ⎡⎤=+-++⎢⎥⎣⎦⎡⎤=+-+⎢⎥⎣⎦⎰=19.解:将()f x 在(,)ππ-+上奇延拓后,再以2π为周期延拓到R 上的()F x ,则()F x 满足Dirichlet 定理条件,且 ()()(),0,F x f x x π=∈显然 0,0,1,2,n a n ==L()21014sin 2221sin 0sin 1cos n nb nxdx nxdx n n n ππππ⎡⎤=⋅+⋅=-=⎢⎥⎣⎦⎰⎰214()sin sin 2n n f x nx n π∞==⋅∑,()()0,11,x π∈⋃ 20.解: 显然,(0)1S =,0x ≠时,10()1n n x xS x n +∞==+∑,因为在收敛域内,可逐项求导,所以, []1001(),0111n n n n x xS x x x n x +∞∞=='⎡⎤'===<<⎢⎥+-⎣⎦∑∑ ()101()ln 1,011xS x dx x x x==--<<-⎰综上述1,0()ln(1),01x S x x x x=⎧⎪=-⎨<<⎪-⎩ 四.(10分) 21解 由已知 121,32m F f f t v ==+=-r rr , 根据Newton 第二定律有 32,0,0dvt v t v dt=-== ()()22222333212144Pdt Pdt t t t t tv e Qe dt C e te dt C e t e C t Ce ----⎡⎤⎰⎰⎡⎤=+=+⎢⎥⎣⎦⎣⎦⎡⎤=-+=-+⎢⎥⎣⎦⎰⎰由初始条件, 解得34C =, 所以 ()2321,(0)4t v e t t -=+-≥《高等数学》试题(二)(姓名 学号 专业 班级2.试卷若有雷同以零分记.一、 选择填空(每小题3分,共18分)1、数列{}n x 有界是数列{}n x 收敛的 ( )A .必要条件B .充分条件C .充要条件D .无关条件2、若()f x 是奇函数,且'(0)f 存在,则0x =是函数xx f x F )()(=的 ( ) A .连续点 B .极大值点 C .可去间断点 D .极小值点3、设函数20(2)xy t dt =+⎰则y 在1x =-有 ( )A .极小值B .极大值C . 无极值D .有极小值也有极大值4、当0→x 时,sin x x 与x 1-cos 比较为 ( ) A .等价无穷小 B .同阶无穷小 C . 高阶无穷小 D .低阶无穷小5、下列命题中正确的是 ( ) A .二元函数在某点可导,则在该点连续.B .若0()0f x '=,则0()f x 是极值点或拐点.C .若(,)f x y 在闭区域上可微,则在该闭区域上一定可导.D .函数)(x f 在开区间(),a b 内可导,则(),a b ξ∃∈,使()()()()f b f a f b a ξ'-=-.6、在yoz 面上的直线2z y =绕oz 轴旋转所得的旋转面方程为 ( )A .2222()z x y =-B .()2z x y =+C .2224()z x y =+ D.z =- 二、 填空题(每小题4分,共36分):7、()20sin 2lim ln 1x x x x x →⎡⎤-+=⎢⎥⎣⎦( );8、设0a >,且1ln 1axdx =⎰,则a = ( );9、若二元函数),(y x f z =在),(00y x 处可微,则必有=→),(lim ),(),(00y x f y x y x ( );10、若已知()2cos ln 12arcsin t x t t y t⎧=++⎪⎨=+⎪⎩,则=t dx dy =( );11、cos 1sin xddx x =+⎰( ); 12、)12ln(2+-=x y z 定义域为( ); 13、231(ln )dx x x +∞⎰=( ); 14、平面曲线221x y -=在点()1,1处的曲率K =( ); 15、设32),,(z y x z y x f ++=,则grad )1,1,0(-f =( );三、 计算题(每小题7分,共28分): 16、设222()()4xx f t dtF x x =-⎰,其中)(x f 为连续函数,求2lim ()x F x →.17、求曲面2224zx y xz e +++= 在点()1,1,0处的切面方程和法线方程.18、设22'(sin )cos =f x x ,求()f x . 19、求21-⎰.四、综合题(每小题9分,共18分)20.设()f x 在区间[],a b 上连续,且()0f x >,()(),[,]()x xabdtF x f t dt x a b f t =+∈⎰⎰,(1).证明'()2F x ≥;(2)求()F x 的最值. 21.设 ()22x zyf x z +=-,f可微,求z z zy x y∂∂+∂∂. 答案和评分标准一.选择填空 (每小题3分 共18分) ACABCC二.填空 (每小题4分,共36分)三.解答题 (每小题7分 共28分) 16、设222()()4xxf t dtF x x =-⎰,其中)(x f 为连续函数,求2lim ()x F x →.解一 因为)(x f 为连续函数,所以由罗必大法则原式()2222()lim2xx x f t dt x f x x→+=⎰()2.f =解二 因为)(x f 为连续函数,所以由积分中值定理原式()()()()22(2)2lim 22x x f x x x ξξ→→-=+-()2.f =17、求曲面2224zx y xz e +++= 在点()1,1,0处的切面方程和法线方程.解 令2224zF x y xz e =+++-(1,1,0)(2)2x F x z '=+=,(1,1,0)22y F y'==,(1,1,0)(2)3z z F x e '=+=所求切面方程()()212130x y z -+-+=即 22340x y z ++-= 所求法线方程11223x y z--== 18、设22'(sin )cos =f x x ,求()f x .解 令 22sin cos 1t x x t =→=-,()01t ≤≤,则()21()()12f t f t dt t dt t t C '==-=-+⎰⎰即()21()012f x x x Cx =-+≤≤19、求21-⎰.解原式211dx --=+⎰⎰(211212022x dx dx x=+=-⎰⎰⎰22242ππ=-=-四、综合题(每小题9分,共18分)20.设()f x 在区间[],a b 上连续,且()0f x >,()(),[,]()x xabdtF x f t dt x a b f t =+∈⎰⎰,(1).证明'()2F x ≥;(2)求()F x 的最值. 证 (1)因为()f x 在区间[],a b 上连续,且()0f x >,所以1()()2,[,]()F x f x x a b f x '=+≥=∈ (2)由(1)知()F x 在区间[],a b 上是增函数,所以,函数最值在端点处取得.最小值 (),()abdtF a f t =⎰最大值 ()().baF b f t dt =⎰21.设 ()22x zyf x z +=-,f可微,求z z zy x y∂∂+∂∂. 解 令 22t x z =-,()Fx z yf t =+-,()()()1212x F yf t x xyf t '''=-=- ()y F f t '=-()()()1212z F yf t z yzf t '''=--=+()()2112x z xyf t F zx F yzf t '-'∂=-=''∂+ ()()12y z F f t zy F yzf t '∂=-=''∂+ ()()()()()221212xyzf t z yf t xyzf t z x z z z zy x x y yzf t yzf t ''-+-++∂∂+===''∂∂++。
《大一高等数学》试卷(十份)
《高等数学》试卷(一)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =12.函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ).(A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x ⎛⎫'⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x⎛⎫-+⎪⎝⎭8.xxdx e e-+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x xe eC --+ (D )ln()x xe eC -++9.下列定积分为零的是( ).(A )424arctan 1x dx xππ-+⎰(B )44arcsin x x dx ππ-⎰(C )112x xe edx --+⎰(D )()121sin xx x dx -+⎰10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x xa x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21x y x =-的垂直渐近线有条.4.()21ln dx x x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限 ①21limxx x x →∞+⎛⎫ ⎪⎝⎭②()2sin 1limxx x x x e→--2.求方程()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()0a >⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高等数学》试卷(一)参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctan ln x c + 5.2三.计算题 1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②ln ||x C +③()1xex C--++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x =(B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x fx →=( ).(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且0)(0>'x f , 则曲线()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12x x e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12x xe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫'⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分) 1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211x y x =+-的水平和垂直渐近线共有_______条.4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________.三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12x x x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰②)0a>⎰③2xx e dx ⎰四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yxey y '=-3.①3sec 3x c + ②)lnx c + ③()222xx x e c -++四.应用题:1.略 2.13S =《高等数学》试卷3(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21MM ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x yx y 的定义域是( ).A.(){}21,22≤+≤y x y xB.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a与b 垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则( ).A.p 1<B.1≤pC.1>pD.1≥p8.幂级数∑∞=1n nnx的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x-11 B.x-22 C.x-12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________.5.微分方程044=+'+''y y y 的通解为_________________________________.三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin,其中22224:ππ≤+≤yx D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷3参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()nn n nx ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题 1.()()[]y x y x y exz xy+++=∂∂cos sin ,()()[]y x y x x eyz xy+++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z yy z z x xz . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R .5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷4(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21MM ( ).A.12B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6πB.4πC.3πD.2π3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.97.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r 8.幂级数()n n x n ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n nna 是( ).A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.x ce y = C.x e y = D.xcxe y = 二.填空题(4分⨯5) 1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y tx 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242yx z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________.5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtx d -=22.当0=t 时,有0x x =,0v dtdx =)试卷4参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n nx .5.x y =. 三.计算题1.k j i238+-.2.()()()yy xy y y y x yz y y y y x xz 3333223cossincos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,zxy xz yz zxy yz x z +-=∂∂+-=∂∂.4.⎪⎭⎫ ⎝⎛-3223323πa . 5.xxeC e C y --+=221.四.应用题1.316.2. 00221x t v gtx ++-=.《高数》试卷5(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x xa x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim_________________.25x x x x →∞+=+-6. 321421sin 1x x dx x x -+-⎰=______________.7.2_______________________.x td e dt dx-=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2.; 233lim 9x x x →-- 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分) 1. 2x y x =+, 求(0)y '. 2. cos xy e=, 求dy .3. 设x y xy e +=, 求d y d x.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xe dx ⎰五、(8分)求曲线1cos x ty t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程xy y ex '+=满足初始条件()10y =的特解.《高数》试卷5参考答案一.1.(3,3)- 2.4a= 3.2x = 4.()x xe f e '5.126.07.22xxe- 8.二阶二.1.原式=0lim1x x x →=2.311lim36x x →=+3.原式=112221lim[(1)]2xx ex--→∞+=三.1.221,(0)(2)2y y x ''==+2.c o s sin xdy xedx =-3.两边对x 求写:(1)x y y xy e y +''+=+'x yx yeyxy y y x ex xy++--⇒==--四.1.原式=ln 2cos x x C -+2.原式=2221ln(1)()ln(1)[ln(1)]222x xx d x x d x +=+-+⎰⎰=222111ln(1)ln(1)(1)221221x xxx dx x x dxxx+-=+--+++⎰⎰=221ln(1)[ln(1)]222xxx x x C +--+++3.原式=12212111(2)(1)222xxe d x ee ==-⎰五.2sin ,1.,,122t dy dy t t x y dxdxπππ======且当时切线:1,1022y x x y ππ-=--+-=即法线:1(),1022y x x y ππ-=--+--=即六.1231014(1)()33Sx dx x x =+=+=⎰22211221(1)11()22V x dy y dy y y ππππ==-=-=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]xx e C x=-+由10,0x yC ==⇒=1xx y ex-∴=《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( d )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( c ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( c ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( a )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、zy zR x --, B 、zy zR x ---, C 、zy zR x ,--D 、zy zR x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 2217、级数∑∞=-1)1(n nnnx的收敛半径为( )A 、2B 、21 C 、1 D 、38、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n xnB 、∑∞=-1)1(n n)!2(2n xnC 、∑∞=-0)1(n n)!2(2n xnD 、∑∞=-0)1(n n)!12(12--n xn9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
《高等数学1(一)》课程考试试卷A及答案
《高等数学1(一)》课程考试试卷(A 卷参考答案)注意:1、本试卷共3页; 2、考试时间:120分钟; 3、姓名、学号必须写在指定地方。
一. 单项选择题,请将答案填入题后的方括号内(每小题2分, 共20分)1.与函数2()f x ln x =相同的函数是[ C ]. A .lnx B .21()2ln x C .lnx D .ln x2.若(1)(2)(3)(4)(5)lim (32)x x x x x x x αβ→∞-----=-,则α与β的值为[ D ]. A .11,3αβ== B .15,3αβ== C .511,3αβ== D .515,3αβ==3.设函数()y f x =在点0x 处可导,dy 为()f x 在0x 处的微分,当自变量x 由0x 增加到0x x +∆时, 极限0limx y dyx∆→∆-∆等于[ B ].A .-1B .0C .1D .∞4.若()f x 在x a =的某个邻域内有定义,则()f x 在x a =处可导的一个充分条件是[ D ].A .1lim [()()]h h f a f a h →+∞+-存在B .0(2)()lim h f a h f a h h→+-+存在C .0()()lim2h f a h f a h h →+--存在 D .0()()lim h f a f a h h→--存在5.已知函数1sin ,0(),0x x f x xax b x ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续,则a 与b 等于[ C ].A .1,1a b ==B .0,a b R =∈C .,0a R b ∈=D .,a R b R ∈∈6.若函数32()f x x ax bx =++在1x =处取得极值2-,则下列结论中正确的是[ B ].A .3,0a b =-=,且1x =为函数()f x 的极小值点B .0,3a b ==-,且1x =为函数()f x 的极小值点C .1,0a b =-=,且1x =为函数()f x 的极大值点D .0,3a b ==-,且1x =为函数()f x 的极大值点7.设1()1f x x =-,其n 阶麦克劳林展开式的拉格朗日型余项()n R x 等于[ C ]. A .11,(01)(1)(1)n n x n x θθ++<<+- B .11(1),(01)(1)(1)n n n x n x θθ++-<<+-C .12,(01)(1)n n x x θθ++<<-D .11(1),(01)(1)n n n x x θθ++-<<-8.若sin 2x 为函数()f x 的一个原函数,则()xf x dx ⎰等于[ D ]. A .sin 2cos 2x x x C ++ B .sin 2cos 2x x x C -+C .1sin 2cos 22x x x C -+ D .1sin 2cos 22x x x C ++9.若非零向量,,a b c满足0a b ⋅= 与0a c ⨯= ,则b c ⋅ 等于[ A ].A .0B .-1C .1D .310.直线2020x y z x y z -+=⎧⎨+-=⎩与平面1x y z ++=的位置关系是[ C ].A .直线在平面内B .平行C .垂直D .相交但不垂直二.填空题(每小题2分,共10分)1.一质点作直线运动,其运动规律为426s t t t =-+,则速度增加的时刻t = 1 . 2.若21arctan (1)2y x x ln x =-+,则dy =arctan xdx . 3.已知21adx x π+∞-∞=+⎰,则a = 1 .4.已知()xf x e =,则()f lnx dx x'=⎰ x C + . 5.设向量,,m n p 满足0m n p ++=,且6m = ,8n = ,10p = ,则m n n p p m ⨯+⨯+⨯=144 .三.求解下列各题(每小题5分,共10分)阅卷人 得分阅卷人 得分阅卷人 得分三峡大学试卷 教学班号 序号 班级学号 姓名密 封 线1.11lim(1)21n n n +→∞-+解:原式=((21)(1)1)/21lim(1)21n n n -+-+→∞-+ 2=(21)(1/2)(1/2)11lim(1)lim(1)2121n n n n n -+-→∞→∞-⋅-++ 41/2e -= 52.20(13)lim (sec cos )x ln x x x →+-解:原式=203cos lim (1cos )(1cos )x x xx x →-+ 2=223cos lim1(1cos )2x x x x x →+ 4=6 5四. 求解下列各题(每小题6分,共12分)1.若方程arctan 1xyy e =+确定了y 是x 的函数,求函数y 的微分dy . 解:原方程两边同时对x 求导,有2()1xyy e y xy y ''=++ 则22(1)1(1)xy xyy y e y x y e+'=-+ 4 则22(1)1(1)xyxyy y e dy dx x y e +=-+ 62.设参数方程21cos x t y t⎧=+⎨=⎩确定了y 是x 的函数,求22d ydx .解:sin 2dy tdx t-= 3 222cos sin 122t t td y t dx t-=- 5 3sin cos 4t t tt-= 6五.求解下列各题(每小题6分,共18分)1.222()lnx dx xlnx +⎰解:原式=212()()d xlnx xlnx ⎰ 42C xlnx-=+ 6 2.222max{,}x x dx -⎰解:原式=0122221x dx xdx x dx -++⎰⎰⎰ 4323012201[][][]323x x x -=++ 5=11/2 63.设21sin ()x tf x dt t =⎰,求10()xf x dx ⎰解:21100()()()2x xf x dx f x d =⎰⎰ 2221100[()](())22x x f x d f x =-⎰ 422112200sin 02sin 2x x xdx x x dx x =-=-⎰⎰ 2101[cos ]2x =cos112-= 6六. (本题10分)y阅卷人 得分阅卷人 得分阅卷人 得分已知星形线33cos sin x a ty a t⎧=⎨=⎩如右图所示,其中0a >, a 1) 计算星形线的全长; a - 0 a x 2) 求星形线与坐标轴所围成图形的面积.解:1)长度 2224()()dy dx L dt dt dtπ=+⎰2 a - 222249sin cos a t tdt π=⎰46a = 52)面积024202443sin cos a S ydx a t tdt π==-⎰⎰ 82422012sin cos at tdt π=⎰238a π= 10七. (本题7分)已知某直角三角形的边长之和为常数,求该直角三角形面积的最大值. 解:设两直角边与斜边分别为,,x y z ,其和为常数k ,所求面积为S因x y z k ++=及222x y z +=,则222()kx k y x k -=- 3则221224()kx xk S xy x k -==-,且222(24)()4()k x kx k S x x k -+'=- 有驻点222x k -= 5 则22max132241282S k k -==+为所求 7八. (本题7分)求过点(2,1,3)M 且与直线11321x y z+-==-垂直相交的直线方程. 解:记直线111:321x y zL +-==-,设过点(2,1,3)M 且垂直相交于直线1L 的平面为π 则平面π方程为3(2)2(1)(3)0x y z -+---= 2令11321x y zt +-===-则13,12,x t y t z t =-+=-+=- 代入平面π得3/7t =,即交点为2133(,,)777A - 4以12624(,,)777MA --= 为所求直线的方向向量得到 所求直线为:213214x y z ---==- 7九. (本题6分)设函数()f x 在闭区间[0,1]上连续且0()1f x <<,试判断方程02()1x x f t dt -=⎰在(0,1)内有几个实根,并证明你的结论. 证:记0()2()1x g x x f t dt =--⎰则10(0)10,(1)1()0g g f t dt =-<=->⎰2且0()1f x <<知()2()0g x f x '=->,即在闭区间[0,1]上单调增加 4 故02()1x x f t dt -=⎰在(0,1)内有一个实根 6阅卷人 得分阅卷人 得分阅卷人 得分。
高等数学考试题库(附答案)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共30 分).1.下列各组函数中,是相同的函数的是().(A )2f x ln x 和g x 2ln x (B)f x| x|和2g xx(C)f x x 和2g x x(D)f x| x |x 和g x1sin x 4 2f x ln 1 x x 02.函数在x 0 处连续,则a () .a x 0(A )0 (B)14(C)1(D)23.曲线y xln x 的平行于直线x y 1 0 的切线方程为() .(A )y x 1 (B)y (x1) (C)y ln x 1 x 1 (D)y x4.设函数 f x | x|,则函数在点x 0处().(A )连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点x 0 是函数4y x 的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1|x|的渐近线情况是().(A )只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线1 1 7. 2fdxx x 的结果是().(A )1f Cx(B)1f Cx(C)1f Cx(D)1fCx8.dxxxe e的结果是().(A )arctanxe C (B)arctanxe C(C)x x xxe e C (D)ln( ee ) C9.下列定积分为零的是().(A )44 arctanx1 2 xdx(B)4 x arcsin x dx(C)4xx ee112dx(D)112x x sin xdx10.设f x 为连续函数,则 10 f 2x dx 等于().(A )f 2 f 0 (B)12f11 f 0(C)12f f (D)f 1f 02 0二.填空题(每题 4 分,共20 分)2 1xef x x x 01.设函数在x 0 处连续,则a .a x 02.已知曲线y f x 在x 2 处的切线的倾斜角为56 ,则f2 .3.yx21x的垂直渐近线有条.4.dx2x 1 ln x.5. 2 4 x sin x cosxdx .2三.计算(每小题 5 分,共 30 分) 1.求极限① lim x1 xx2x②lim x 0x sinx 2 xx e1 2.求曲线 y ln x y所确定的隐函数的导数y.x3.求不定积分 ①dxx 1 x 3② dx 22x aa 0③ xxedx四.应用题(每题 10 分,共 20 分)1. 作出函数3 3 2y xx 的图像 .2.求曲线 2 2 y x 和直线 yx 4所围图形的面积 .《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C二.填空题 1.22.333. 24. arctan ln x c5.2三.计算题 1① 2e②1 62. yx1 xy13.①1 x 1 ln || 2 x 3C② 22xln | xax | C③ex1 C四.应用题 1.略 2. S 18《高数》试卷 2(上)一. 选择题 ( 将答案代号填入括号内 , 每题 3 分, 共 30 分) 1.下列各组函数中 ,是相同函数的是 ( ).(A) f x x 和2g xx(B)f x 21xx 1和 y x 1(C) f xx 和22g xx(sin x cos x) (D)2fx ln x 和 g x 2ln xsin 2 x 1x 1 x1 f x2 x 12.设函数,则2x1x 1lim x 1 f x().(A)(B)1(C)2(D)不存在3.设函数 y f x 在点 x 0 处可导,且 f x >0, 曲线则 yf x 在点 x 0, f x 0 处的切线的倾斜角为 {}.(A)(B)(C) 锐角(D)钝角24.曲线 y ln x 上某点的切线平行于直线y 2x 3 ,则该点坐标是 ( ).(A)2,ln 12(B)2, ln1 2(C)1 2,ln 2 (D) 1 2 , ln 25.函数2xyx e 及图象在 1,2 内是().(A) 单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ( ). (A) 若 x 0 为函数 y f x 的驻点 ,则 x 0 必为函数 y f x 的极值点 . (B) 函数 y f x 导数不存在的点 ,一定不是函数 yf x 的极值点 .(C) 若函数 yf x 在 x 0 处取得极值 ,且 f x 0 存在,则必有 f x 0 =0.(D) 若函数y f x 在x0 处连续,则f x0 一定存在.14.设函数 y f x 的一个原函数为 2 xx e ,则 f x=().1111(A)2x 1 e x(B)2x e x(C)2x 1 e x(D) 2 x e x5.若 f x dx F x c ,则 sin xf cos x dx ().(A)F sin x c (B)F sin xc (C) F cos x c (D) F cosx c6.设 F x 为连续函数 ,则1x fdx=().2(A)f 1f 0 (B) 2 f 1 f 0 (C) 2 f 2f 0(D)1 2 ff27.定积分 ba dx ab 在几何上的表示().(A) 线段长 b a (B) 线段长 a b (C) 矩形面积 a b 1 (D) 矩形面积 b a 1二. 填空题 ( 每题 4 分, 共 20 分)2ln 1xf x x1 cosx 07.设, 在 x0连续,则a =________.ax 08.设 2ysin x , 则dy _________________ dsin x .x9.函数21yx 1的水平和垂直渐近线共有_______条.10.不定积分 x ln xdx ______________________.11. 定积分1 1 2x sin x 1 dx 2 1 x___________.三. 计算题 ( 每小题 5 分, 共 30 分) 1.求下列极限 : ① 1lim 1 2x x②x 0lim x2arctan x 1 xy2.求由方程y 1 xe 所确定的隐函数的导数 y x .3.求下列不定积分 : ①3tan x sec xdx②dx22 xaa 0 ③ 2 x x edx四. 应用题 ( 每题 10 分, 共 20 分)1.作出函数 13 y x x 的图象 .(要求列出表格 )32.计算由两条抛物线:2, 2yx y x 所围成的图形的面积 .《高数》试卷 2 参考答案一.选择题: CDCDB CADDD 二填空题: 1.-2 2. 2sin x3.34.1 12 2 x ln x xc5.242三.计算题: 1.①2e ②1 2. yxy ye2 8.①3 sec 3 x c ②22lnxaxc ③22 2 x xx ec四.应用题: 1.略2.S1 3《高数》试卷 3(上)一、 填空题( 每小题 3 分, 共24 分) 12. 函数 y 9 12 x的定义域为 ________________________.sin4x f xx , x 0 13. 设函数, 则当 a=_________时, f x 在x 0处连续.a,x 014. 函数 f(x)2x 1 2x3x2的无穷型间断点为________________. x15. 设 f (x) 可导, y f (e ) , 则 y ____________.16.2x1lim_________________.2x x x 2 5 17. 1 13 2 x sin x 42 x x1 dx =______________. 18. d dx2 x 0 te dt _______________________.19.3y y y是_______阶微分方程 .二、求下列极限 ( 每小题 5 分, 共 15 分)4. lim x 0 xe si n1 x x ;2. lim 2x 3x3 9 ;3.x1lim 1. x2x三、求下列导数或微分 ( 每小题 5 分, 共 15 分)3. x y, 求 y (0) . 2.x 2cos xy e , 求dy .3. 设 x y xy e , 求dy dx .四、求下列积分 ( 每小题 5 分, 共15 分)1.1 2sin x dxx.2.x ln(1x )dx .3. 1 2xedx五、(8 分) 求曲线x ty 1cost在t 处的切线与法线方程.2六、(8 分) 求由曲线2 1,y x 直线y 0, x 0 和x 1所围成的平面图形的面积, 以及此图形绕y轴旋转所得旋转体的体积.七、(8 分) 求微分方程 y6y 13y 0 的通解.八、(7 分) 求微分方程yxy ex满足初始条件 y 10的特解.《高数》试卷 3 参考答案一.1. x32. a 43. x 24.'( )xxe f e9. 1 220. 7.xe8.二阶x 22x 二.1. 原式= lim1x 0x5. lim x x 3 1 13 66. 原式=1 1 12 x 22lim[(1) ]ex2x三.1.2 1y ', y '(0)2(x 2) 24. cosxdy sin xedx5.两边对 x 求写:'(1 ')x yyxyeyy' x ye yxy yx yx e xxy四.1. 原式=lim x2cos x C4. 原式=22x x 12lim(1 x)d ( ) lim(1 x) x d[lim(1 x)] 2 x 2=2 1 2 1 1 x x x lim(1 x) dx lim(1 x) ( x 1 )dx 2 2 1 x 2 2 1 x=2 2 x 1 x lim(1 x) [ x lim(1 x)] C 2 2 25. 原式=1 12 1 2 1 12x x1 121211 2 e d (2 x) e (e 1)222dydy五.sin 1, 1tt ty 且dxdx2 2切线:1 ,1 0yx 即y x2 2 法线:1( ),1 0yx 即y x 22六.121213S(x 1)dx ( xx)221 22 1 42V(x1) dx( x2x1)dx5x 2 282 1( x x)5 3 15七. 特征方程:2r 6r 13 0 r3 2i3xy e (C cos 2x C sin 2x)1 2八. 1 1dx x dxx xy e ( e e dxC)1 x x[( x 1)eC]由y x 1 0, C 0x 1 xy ex《高数》试卷4(上)一、选择题(每小题 3 分)1、函数y ln(1 x) x 2 的定义域是().A2,1B2,1C2,1D2,12、极限 xlim e 的值是( ).xA 、B 、 0C 、D 、 不存在sin( x 1) 3、2 limx 11 x().A 、1B 、 0C 、 1 2D 、1 23x4、曲线 y x2 在点 (1, 0) 处的切线方程是()A 、 y 2(x 1)B 、 y 4( x 1)C 、 y4x 1D 、 y 3(x 1)5、下列各微分式正确的是( ).2A 、 xdx d(x )B 、 cos 2xdx d (sin 2x)C 、 dxd(5 x)D 、d(xdx2 ) ( ) 2 ) ( )2x 6、设f (x )dx2 cos C ,则 f (x) ().2A 、 sin x2B 、 sin x 2xC 、 sinCD 、22 s inx22 ln x 7、dxx ( ).2 1 2A 、2ln x Cx21 2B 、(2 ln x)C21 ln xC 、ln 2 ln x CD 、C2x8、曲线 2yx , x 1 , y 0所围成的图形绕 y 轴旋转所得旋转体体积V().A 、 1 0xB 、 4dx 4dx1yd yC 、 1 0 (1 y) dyD 、1(1 x dx 4 )4 )9、 1 0 1 x e x e dx ( ).A 、 ln1 e2 e1 e 1 B 、 C 、D 、ln lnln2232e 210、微分方程 y yy 2x2e 的一个特解为().A 、y3 7 2x eB 、y3 7 x e C 、y 2 7 2 xe xD 、y2 7 2x e二、填空题(每小题 4 分) 1、设函数xy xe ,则y;2、如果 3 s in mx lim x 0 x 22 3 , 则m.3、1x; 3 cos xdx 3 cos xdx 14、微分方程y 4y4y0 的通解是.5、函数 f (x) x 2 x 在区间0,4 上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限limx 0 1x 1xx1 2;2、求y cot xln sin x2的导数;3、求函数3x 1y 的微分;4、求不定积分3x 1dx1 x 1;5、求定积分e1 ln x dx ;6、解方程edydx yx1x2;四、应用题(每小题10 分)1、求抛物线2y x与2y 2 x 所围成的平面图形的面积.2、利用导数作出函数2 3y 3x x 的图象.参考答案一、1、C;2、D;3、C;4、B;5、C;6、B;7、B;8、A;9、A ;10、D;二、1、x(x 2)e ;2、49;3、0 ;4、y 2x(C1 C x)e ;5、8,0226x三、1、1;2、cot 3 x ;3、dx3 2(x 1)1;4、2 x 1 2 ln(1 x 1) C ;5、2(2 )e2 2 12 ;;6、y x C四、1、83 ;2、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数1y 2 x 的定义域是().lg( x 1)A、2, 1 0,B、1,0 (0, )C、( 1,0 )(0, )D、( 1, )2、下列各式中,极限存在的是().A、lim c o s xx 0 B、lim arctan x C、lim sin xD、x xlimx2 x3、xx lim ( )(). x 1 xA 、e B、2e C、1D、1e4、曲线y xln x 的平行于直线x y 1 0的切线方程是().A、y xB、y (ln x 1)( x 1)C、y x 1D、y (x1)5、已知y x s in 3x ,则dy ().A、( cos3x 3 s in 3x )dxB、(sin 3x 3x cos3x) dxC、(cos 3x sin 3 x)dxD、(sin 3x x cos3x)dx6、下列等式成立的是().11A、x dx x C1x lnxB、 a dx a x C1C、cos xdx sin x CD、tan xdx C21 xsinx sin cos 7、计算 e x xdx 的结果中正确的是().sin B、e sin x cos x C xA、e CC、e x Csin x sin D、e sin x (sin x 1) C8、曲线2y x ,x 1 ,y 0所围成的图形绕x轴旋转所得旋转体体积V ().A、1xB 、4dx4dx1ydyC、1(1 y) dyD、1(1 xdx4 )4 )a2 ().29、设a﹥0 ,则 a x dxA 、2aB、22aC、142a 0D、14a210、方程()是一阶线性微分方程.y2 xA、x y ln 0B、y e y 0xC、(1 x ) sin 0D、xy dx ( y 6 ) 02 y y y 2 x dy二、填空题(每小题 4 分)1、设f ( x)xeax1,,bxx,则有lim f (x)x 0,lim f (x)x 0;2、设xy xe ,则y ;23、函数 f (x) ln(1 x ) 在区间1,2 的最大值是,最小值是;4、1x; 3 cos xdx 3 cos xdx 15、微分方程y 3y2y0 的通解是.三、计算题(每小题 5 分)1 3 1、求极限lim( )2x 1 x x x21 ;2 2、求y 1 x arccosx 的导数;3、求函数xy 的微分;21 x14、求不定积分dxx 2 ln x;5、求定积分e1 ln x dx ;e26、求方程x y xy y1满足初始条件y( ) 4 的特解.2四、应用题(每小题10 分)1、求由曲线 2y 2 x 和直线x y 0 所围成的平面图形的面积.3 x x22、利用导数作出函数y x 6 9 4 的图象.参考答案( B 卷)一、1、B;2、A ;3、D;4、C;5、B;6、C;7、D;8、A ;9、D;10、B.二、1、 2 ,b ;2、( x 2) e x ;3、ln 5 ,0 ;4、0 ;5、C e x C e2 x1 .2三、1、13x;2、arccosx 121 x1;3、dx(1 x x2 ) 1 22 ) 1 2;14、2 2 ln x C ;5、2(2 )e ;6、y2x2e1x;四、1、92;2、图略。
高等数学试题(含答案)
7.解.特征方程为 k 2 k 0 ,得到特征根 k1 0, k2 1,
故对应的齐次方程的通解为 y c1 c2ex ,
由观察法,可知非齐次方程的特解是 y 1 e x , 2
因而,所求方程的通解为
y
c1
c2ex
1 2
e x ,其中 c1 , c2
第4页,共12页
报考学校:______________________报考专业:______________________姓名:
准考证号:
-------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------
是任意常数.
………..1 分 ………..3 分 ………..5 分
……….6 分
8.解.因为 ln1 x x x 2 x3 x 4 1n x n1 (1 x 1) ,
234
n 1
….3 分
所以 x 2 ln1 x x 2 (x x 2 x3 x 4 1n x n1 )
1
1.解法一(1). S e e x dx
0
ex e x 1 e e 1 1 . 0
1
(2).V e2 e2x dx
0
e2 x 1 e2x 1
2 0
e2
1 2
e2
1
2
e2 1
1
解法二.(1) S e e x dx
考研高数1试题及答案
考研高数1试题及答案一、选择题(每题5分,共20分)1. 已知函数 \( f(x) = x^3 + 2x^2 - 5x + 1 \),下列选项中,\( f(x) \) 的导数正确的是:A. \( 3x^2 + 4x - 5 \)B. \( x^3 + 2x^2 - 5 \)C. \( 3x^2 + 2x - 5 \)D. \( 3x^3 + 4x^2 - 5x \)答案:A2. 设 \( A \) 是 \( 3 \times 3 \) 矩阵,\( \det(A) = 2 \),则\( \det(2A) \) 的值是:A. 4B. 8C. 16D. 32答案:B3. 计算极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是:A. 0B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{3} \)答案:B4. 已知 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. 2答案:A二、填空题(每题5分,共20分)1. 求定积分 \( \int_{0}^{1} (2x - 1) dx \) 的值是 _______。
答案:\( \frac{1}{2} \)2. 函数 \( y = \ln(x) \) 的定义域是 _______。
答案:\( (0, +\infty) \)3. 函数 \( y = e^x \) 的导数是 _______。
答案:\( e^x \)4. 已知 \( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \),则\( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是 _______。
答案:1三、解答题(每题10分,共60分)1. 求函数 \( f(x) = x^3 - 3x \) 在 \( x = 1 \) 处的切线方程。
高等数学1试卷(附答案)
一、填空题(共6小题,每小题3分,共18分)1. 由曲线2cos r θ=所围成的图形的面积是π。
2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dxx=-。
3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。
4.11dx =⎰。
5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。
6. 222222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭=4π。
二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。
A .可去间断点 B .跳跃间断点 C .振荡间断点 D .连续点暨南大学《高等数学I 》试卷A 考生姓名: 学号:2. 设()232x xf x =+-,则当0x →时,下列结论正确的是 B 。
A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )( 3.1+∞=⎰C 。
A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是 A 。
A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值5.曲线2x y d t π-=⎰的全长为 D 。
A .1B .2C .3D .46. 当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点? A 。
A .32a =-,92b = B. 32a =,92b =- C .32a =-,92b =- D. 32a =,92b = 7. 曲线2xy x -=⋅的凸区间为 D 。
大学高等数学第一册考试试题+答案
一、选择题(本大题共5小题,每题3分,共15分)1.设-∞=→)(lim 0x f x x ,-∞=→)(lim 0x g x x ,Ax h x x =→)(lim 0,则下列命题不正确的是( B )A. -∞=+→)]()([lim 0x g x f x x ; B. ∞=→)]()([lim 0x h x f x x ;C.-∞=+→)]()([lim 0x h x f x x ; D.+∞=→)]()([lim 0x g x f xx . 2. 若∞→n lim 2)51(++n n=( A )A.5e ; B. 4e ; C. 3e ; D. 2e . 3. 设0lim →x xf x f cos 1)0()(--=3,则在点x=0处 ( C )A. f(x)的导数存在,且)0('f ≠0;B. f(x)的导数不存在;C. f(x)取极小值;D. f(x)取极大值.4设xe 2-是f(x)的一个原函数,则⎰dx x xf )(= ( A )A.x e 2-(x+21)+c; B; x e 2- (1-x)+c; C. x e 2- (x -1)+c; D. -x e 2- (x+1)+c.5.⎰xadt t f )3('= ( D )A. 3[f(x)-f(a)] ;B. f(3x)-f(3a);C. 3[f(3x)-f(3a)] ;D. 31[f(3x)-f(3a)].二、填空题(本大题共7小题,每题3分,共21分)1. 若+∞→x lim (11223-+x x +αx+β)=1,则 α= -2 , β= 1 . .2. 设f(x)在x=a 处可导,则0lim →h hh a f h a f )3()(--+= 4)('a f .3. 设y=522)ln(e x a x +++,则dy. 4. 不定积分dx e xx⎰2=c e xx ++2ln 12 .5. 广义积分⎰-311dx x x = 2310. . 6. ⎰-++1121sin dx x xx x = 0 .7. 用定积分的定义计算:∞→n lim∑=+n i nin 1sin 31π=π2.三、计算题(本大题共7小题,每题7分,共49分)1. 设函数f(x)= ⎩⎨⎧>+≤+0012x b ax x e x 在点x=0可导,求a 与b 的值 .1. 解:f(x)在x=0可导⇒ f(x)在x=0连续⇒-→0lim x f(x)=f(0)= +→0lim x f(x)=b ⇒b=2,又)0('=f =-→0lim x xf x f )0()(-=-→0lim x x e x 12-=2)0('+f =+→0lim x x f x f )0()(-=+→0lim x x ax 22-+=a(因b=2),由已知有)0('=f =)0('+f ,故a=2,b=2 .2.求)1ln(x y +=的n 阶导数 .2.解:nn n x n y)1()!1()1(1)(+--=-3. 求由参数方程2ln(1)arctan x t y t t⎧=+⎨=-⎩ 所确定的隐函数y=y(x)的一阶,二阶导数dx dy ,22dx yd . 3.解: dx dy =2t, 22dx y d =214t t +4. 求0lim →x )sin 1ln(cos sin 1x x xx x +-+ .4.解:原式=0lim→x )cos sin 1(sin cos sin 12x x x x x xx x ++-+=210lim →x x xx sin +=1 5. 求⎰+dx x x )ln 31(1.5.解:原式=⎰++)ln 31()ln 31131x d x =…=c x ++ln 31ln 316. 求⎰-dx xa x 222(a>0). 6.解:令t a x sin =原式=……=c x a ax a x a +--)(arcsin 222227. 求I=⎰21arcsin xdx .7.解:I=210]arcsin [x x ⎰--+21021)2(21dx xx =……….=12312-+π 四、应用题(5分) 摆线的一拱:)20(,)cos 1(2)sin (2π≤≤⎩⎨⎧-=-=t t y t t x 与直线y=0围成一平面图形, (1)求此平面图形的面积;(2)求此平面图形绕x 轴旋转而成的旋转体的体积.解:(1) S=⎰⋅220πydx =⎰--π20')]sin (2)[cos 1(2dt t t t =… =12π,(2) V x =π⎰⋅2202πdx y =⎰--π20'22)]sin ([)cos 1(dt t t a t a = (240)五、证明题(本大题共2小题,每题5分,共10分) (1) 利用函数图形的凹凸性证明不等式:),0,0(2ln)(ln ln y x y x yx y x y y x x ≠>>++>+. (1)证:令,0)(",ln )(>=t f t t x f 图形凹,由定义得证.(2) 设函数f(x)在[a,b]上连续,在(a,b)上可导,0<a<b,证明:必有二点ξ,η∈(a,b),使得ab )('ξf =)('2ηηf 成立 .(2) 证:结论变为 ab)('ξf =2'1)(ηηf , 设g(x)=x1, f(x),g(x)在[a,b]上满足柯西定理的条件,必存在一点η∈(a,b), 使得a b a f b f 11)()(--=2'1)(ηηf ,即ab a f b f --)()(ab=2η)(;ηf .又f(x)在[a,b]上满足拉氏定理的条件,必存在一点ξ∈(a,b), 使得 ab a f b f --)()(=)('ξf ,即ab )('ξf =2η)(;ηf ,得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 由曲线2cos r θ=所围成的图形的面积是π。
2. 设由方程22x y =所确定的隐函数为)(x y y =,则2y dy dx x=-。
3. 函数2sin y x =的带佩亚诺余项的四阶麦克劳林公式为2441()3x x o x -+。
4.11dx =⎰。
5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为6π+。
6. 222222lim 12n nn n n n n n →∞⎛⎫+++ ⎪+++⎝⎭=4π。
二、选择题(共7小题,每小题3分,共21分)1. 设21cos sin ,0()1,0x x x f x x x x ⎧+<⎪=⎨⎪+≥⎩,则0x =是()f x 的 D 。
A .可去间断点B .跳跃间断点 C .振荡间断点D .连续点 2. 设()232x x f x =+-,则当0x →时,下列结论正确的是B 。
A .是等价无穷小与x x f )(B .同阶但非等价无穷小与x x f )(C .高阶的无穷小是比x x f )(D .低阶的无穷小是比x x f )( 3.1+∞=⎰C 。
A .不存在B .0C .2πD .π4. 设()f x 具有二阶连续导数,且(0)0f '=,0lim ()1x f x →''=-,则下列叙述正确的是A 。
A .(0)f 是()f x 的极大值B .(0)f 是()f x 的极小值C .(0)f 不是()f x 的极值D .(0)f 是()f x 的最小值 5.曲线2xy d t π-=⎰的全长为D 。
A .1B .2C .3D .46.当,a b 为何值时,点( 1, 3 )为曲线32y ax bx =+的拐点?A 。
A .32a =-,92b = B.32a =,92b =- C .32a =-,92b =- D.32a =,92b = 7.曲线2xy x -=⋅的凸区间为D 。
A.2(,)-∞- B.2(,)2-+∞ C.2(,)ln 2+∞ D.2(,)ln 2-∞ 三、计算题(共7小题,其中第1~5题每小题6分,第6~7题每小题8分,共46分)1. 21lim cos x x x →∞⎛⎫ ⎪⎝⎭解:()21cos lim ,1t t t xt →==原式令)0(cos ln lim20型t t t e →=(3分)tt t t e cos 2sin lim⋅-→=12e-=(6分)2.222,arctan )1ln()(dx yd tt y t x x y y 求确定所由参数方程设函数⎩⎨⎧-=+==。
解:)]1[ln()arctan (2t d t t d dx dy +-=2212111t t t ++-=2t =,(3分)22dx y d dx dx dy d ⎪⎭⎫ ⎝⎛=dtdx dt t d 1)2(⋅=212121t t +⋅=tt 412+=.(6分)3.2(1)xx xe dx e +⎰. 解:=原式1()1x x d e -+⎰(2分) =111x x x dx e e -+++⎰ =11()11x x x x x de e e e -+-++⎰ =ln 11xx x x e C e e -++++(6分) 4.求⎰(0)t t =≥,则22x t dx tdt ==, (2分)242220000221222(1)1112[ln 1]2ln32t t tdt dt t dt t t t t t t ===-++++=-++=⎰⎰⎰⎰(6分) 5. 设曲线()n f x x =在(1, 1) 处的切线与x 轴的交点为(,0)n x ,求n n n x )(lim ∞→。
解:11(1)n x f nx n -='==,所以()f x 在点(1,1)处的切线方程为:(1)1y n x =-+…….. (*)(2)分由题意知切线(*)与x 轴的交点为(,0)n x ,即n x x n nn 111)1(0-=⇒+-=(5)分 从而可得:n n n n n nx )11(lim )(lim -=∞→∞→=1-e .(6)分 6. 设连续函数)(x f 满足x x f x f 2sin )()(=-+,求积分222()sin I f x x dx ππ-=⎰.解:方程两端同乘2sin x 并从2π-积分到2π,得:222222222444()sin ()sin sin 2sin 2(*)f x xdx f x xdxxdx xdx I πππππππ---+-===⎰⎰⎰⎰)3(分222()sin f x xdx t xππ--=-⎰又令222222()sin ()()()sin f t t dt f t tdt ππππ----=⎰⎰(5分)由(*)得:22241()sin 22I f x xdx I ππ-==⨯⎰13122422π=⨯⨯⨯⨯316π=.(8)分 7.设()f x 连续,1()()F x f t x dt =⎰,且0()lim x f x A x→=(A 为常数),求()dF x x 。
解:由A xx f x =→)(lim0知:(0)0f =。
u t x =令,⎩⎨⎧→→xu t 0:10:则,x du dt xdt du =⇒= ⎰⎰⇒=x xdu u f dt tx f x F 01)()()(于是)0()(1≠=⎰x du u f x x可见:⎪⎩⎪⎨⎧=≠=⎰0,00,)(1)(0x x du u f x x F x(4)分 时当0≠x ,22)()()(1)(1)(x du u f x xf x f x du u f xx F xx ⎰⎰-=+-=';)6(分时当0=x ,0()(0)(0)lim x F x F F x∆→∆-'=∆2001()0lim ()lim()()1lim ,22x x x x x f u du xxf u dux f x A x ∆∆→∆∆→∆→-∆=∆=∆∆==∆⎰⎰所以:02()(),0(),02x xf x f u dux x F x Ax ⎧-⎪≠⎪'=⎨⎪=⎪⎩⎰.)8(分四、应用题(共1小题,每小题9分,共9分)设直线y a x =)10(<<a 与抛物线2x y =所围成的图形为1D ,它们与直线1=x 所围成的图形为2D ,若1D 、2D 同时绕x 轴旋转一周得到一旋转体,试确定a 的值,使该旋转体的体积最小.解:∵⎩⎨⎧≤≤≤≤axy x ax 20:1D , ⎩⎨⎧≤≤≤≤21:x y ax x a 2D []⎰-=a dx x ax 0222)()(π1V ()⎰-=adx x x a 0422π []⎰-=1222)()(adx ax x π2V ()⎰-=1224adx x a x π∴()()⎰⎰-+-=+=12240422aadx x a x dx x x a a ππ21)(V V V132505323553aa x a x x x a ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=ππ5315425πππ+-=a a ……………..(5)分 由da a )(dV a a 32344ππ-=,令0a da=dV ()得:321=a .………….(7)分又由 2a a da2d V ()3162161260333233a a πππππ⎛⎫=-=⋅-=> ⎪⎝⎭ 可见: 当321=a 时, 该旋转体的体积最小. ………………..(9)分五、证明题(共1小题,每小题6分,共6分)设函数)(x f 在[]b a ,上连续,在()b a ,内可导,且()0f x '≠,试证存在),(,b a ∈ηξ,使得()()b af e e e f b aηξη-'-=⋅'-证明:设()xg x e =,则()()()()()()f b f a f g b g a g ηη'-='-,即()()()b af b f a f e e eηη'-=-. ………………..(3分) 又因为存在(,)a b ξ∈,使得()()()(),f b f a b a f ξ'-=-……………………..(4分)所以 ()()()b ab a f f e e eηξη''-=-,即结论成立.………………..(6分)。