南航理论力学课后笔记
理论力学笔记
理论力学2014.9.6力的效应:①运动效应(外效应——理论力学研究)②变形效应(内效应——材料力学研究)绝对刚体不存在,但研究力的外效应时可将变形体看成刚体。
研究力的内效应前也将物体看成刚体。
一些定理只对刚体成立,对于变形的物体不成立。
刚体就是在力的作用下,大小和形状都不变的物体公理1 力的平行四边形法则作用于物体上同一点的两个力可合成为一个合力,此合力也作用于该点,合力的大小和方向由这两个力为邻边所构成的平行四边形的对角线来确定。
即:合力为原两力的矢量和FR =F1+F2 力的三角形公理2 二力平衡条件说明:①对刚体来说,上面的条件是充要的;②对变形体来说,上面的条件只是必要条件。
作用于同一刚体(重要条件)上的两个力,使刚体保持平衡的必要与充分条件是:这两个力大小相等| F1 | = | F2 |方向相反F1 =-F2 (矢量)且在同一直线上。
以下条件不成立哈工大版理论力学课件(全套).PDF二力构件:只在两个力作用下平衡的刚体叫二力构件(二力构件是不计自重的)处于平衡状态的变形体,可用刚体静力学的平衡理论。
约束力,解除约束,按照约束性质代之以约束力。
约束类型和确定约束力方向的方法作用在物体上的力有两类:一类是主动力,如重力,风力,气体压力等。
主动力通常称为载荷。
二类是被动力,即约束力柔性体只能受拉,所以他们的约束力是作用在接触点,方向沿柔性体轴线而背离物体。
作用于刚体上的力可沿其作用线移动到同一刚体内的任意点,而不改变该力对刚体的作用效应。
刚体受三力作用而平衡,若其中两力作用线汇交于一点,则另一力的作用线必汇交于同一点,且三力的作用线共面。
平面汇交力系可简化为一合力,其合力的大小与方向等于各分力的矢量和。
几何法解题步骤:①选研究对象;②作出受力图;③作力多边形;④用几何方法求出未知数。
平面力对点之矩,平面力偶力F与点O位于同一平面内,称为力矩作用面。
点C称为矩心,点C到力作用线的垂直距离h称为力臂。
理论力学知识点总结(15篇)
理论力学知识点总结第1篇xxx体惯性力系的简化:在任意瞬时,xxx体惯性力系向其质心简化为一合力,方向与质心加速度(也就是刚体的加速度)的方向相反,大小等于刚体的质量与加速度的乘积,即。
平面运动刚体惯性力系的简化:如果刚体具有质量对称面,并且刚体在质量对称面所在的平面内运动,则刚体惯性力系向质心简化为一个力和一个力偶,这个力的作用线通过该刚体质心,大小等于刚体的质量与质心加速度的乘积,方向与质心加速度相反;这个力偶的力偶矩等于刚体对通过质心且垂直于质量对称面的轴的转动惯量与刚体角加速度的乘积,其转向与角加速度的转向相反。
即(10-3)定轴转动刚体惯性力系的简化:如果刚体具有质量对称面,并且转轴垂直于质量对称面,则刚体惯性力系向转轴与质量对称面的交点O简化为一个力和一个力偶,这个力通过O点,大小等于刚体的质量与质心加速度的乘积,方向与质心加速度的方向相反;这个力偶的力偶矩等于刚体对转轴的转动惯量与角加速度的乘积,其转向与角加速度的转向相反。
即(10-4)理论力学知识点总结第2篇定点运动刚体的动量矩。
定点运动刚体对固定点O的动量矩定义为:(12-6)其中:分别为刚体上的质量微团的矢径和速度,为刚体的角速度。
当随体参考系的三个轴为惯量主轴时,上式可表示成(12-7)(2)定点刚体的欧拉动力学方程。
应用动量矩定理可得到定点运动刚体的欧拉动力学方程(12-8)(3)陀螺近似理论。
绕质量对称轴高速旋转的定点运动刚体成为陀螺。
若陀螺绕的自旋角速度为,进动角速度为,为陀螺对质量对称轴的转动惯量,则陀螺的动力学方程为(12-9)其中是作用在陀螺上的力对O点之矩的矢量和。
理论力学知识点总结第3篇牛顿第二定律建立了在惯性参考系中,质点加速度与作用力之间的关系,即:其中:分别表示质点的质量、质点在惯性参考系中的加速度和作用在质点上的力。
将上式在直角坐标轴上投影可得到直角坐标形式的质点运动微分方程(6-2)如果已知质点的运动轨迹,则利用牛顿第二定律可得到自然坐标形式的质点运动微分方程(6-3)对于自由质点,应用质点运动微分方程通常可研究动力学的两类问题。
理论力学下知识点总结
理论力学下知识点总结一、静力学1. 作用力和反作用力作用力是指物体之间相互作用的力,它是使物体产生变化的原因。
而反作用力是作用力的作用对象对作用力的作用体产生的一种力,大小相等、方向相反。
2. 牛顿定律牛顿第一定律:一个物体如果受到平衡力的作用,将保持原来的状态,即匀速直线运动或静止状态。
牛顿第二定律:一个物体所受的合外力等于它的质量与加速度的乘积,即F=ma。
牛顿第三定律:相互作用的两个物体之间的作用力和反作用力大小相等、方向相反。
3. 力的分解在斜面上,对一个斜面上的物体,可以将它的重力分为垂直于斜面的力和平行于斜面的力,然后分解力的作用,得到物体的加速度和受力情况。
4. 力矩力矩是力偶对物体的作用引起的旋转效果,是物体受力的结果。
力矩的大小等于力乘以力臂的长度,方向垂直于力和力臂所在平面。
二、动力学1. 动量和冲量动量是物体运动时固有的属性,它等于物体的质量乘以速度。
而冲量是力对物体加速度的积分,是描述力的作用效果的物理量。
牛顿第二定律可以表示为动量定理:FΔt=Δp。
2. 动能和动能定理动能是物体运动时所具有的能量,它等于物体的质量乘以速度的平方再乘以1/2。
动能定理表明外力对物体做功,使得物体的动能发生改变。
动能定理可以表示为W=ΔK。
3. 力和功功是力对物体做的功,它等于力乘以位移,力与位移方向一致时做正功,反之做负功。
功可以用来表示物体的动能的变化。
4. 动量守恒定律动量守恒定律指的是在一个封闭系统中,如果系统内部没有受到外力的作用,系统内部各个物体的总动量保持不变。
5. 动能守恒定律动能守恒定律指的是在一个封闭系统中,如果系统内部没有受到非弹性碰撞和外力的作用,系统内部各个物体的总动能保持不变。
三、运动学1. 加速度和速度加速度是物体运动过程中速度变化的快慢程度的物理量,它等于速度的变化量除以时间。
速度是物体在单位时间内移动的距离。
在直线运动中,加速度可以表示为v=at。
2. 弹性碰撞和非弹性碰撞在弹性碰撞中,碰撞前后物体的总动能保持不变;而在非弹性碰撞中,碰撞前后物体的总动能发生改变,一部分能量转化为其他形式。
理论力学笔记
理论力学2014.9.6力的效应:①运动效应(外效应——理论力学研究)②变形效应(内效应——材料力学研究)绝对刚体不存在,但研究力的外效应时可将变形体看成刚体。
研究力的内效应前也将物体看成刚体。
一些定理只对刚体成立,对于变形的物体不成立。
刚体就是在力的作用下,大小和形状都不变的物体公理1 力的平行四边形法则作用于物体上同一点的两个力可合成为一个合力,此合力也作用于该点,合力的大小和方向由这两个力为邻边所构成的平行四边形的对角线来确定。
即:合力为原两力的矢量和FR =F1+F2 力的三角形公理2 二力平衡条件说明:①对刚体来说,上面的条件是充要的;②对变形体来说,上面的条件只是必要条件。
作用于同一刚体(重要条件)上的两个力,使刚体保持平衡的必要与充分条件是:这两个力大小相等| F1 | = | F2 |方向相反F1 =-F2 (矢量)且在同一直线上。
以下条件不成立哈工大版理论力学课件(全套).PDF二力构件:只在两个力作用下平衡的刚体叫二力构件(二力构件是不计自重的)处于平衡状态的变形体,可用刚体静力学的平衡理论。
约束力,解除约束,按照约束性质代之以约束力。
约束类型和确定约束力方向的方法作用在物体上的力有两类:一类是主动力,如重力,风力,气体压力等。
主动力通常称为载荷。
二类是被动力,即约束力柔性体只能受拉,所以他们的约束力是作用在接触点,方向沿柔性体轴线而背离物体。
作用于刚体上的力可沿其作用线移动到同一刚体内的任意点,而不改变该力对刚体的作用效应。
刚体受三力作用而平衡,若其中两力作用线汇交于一点,则另一力的作用线必汇交于同一点,且三力的作用线共面。
平面汇交力系可简化为一合力,其合力的大小与方向等于各分力的矢量和。
几何法解题步骤:①选研究对象;②作出受力图;③作力多边形;④用几何方法求出未知数。
平面力对点之矩,平面力偶力F与点O位于同一平面内,称为力矩作用面。
点O称为矩心,点O到力作用线的垂直距离h 称为力臂。
南航理论力学习题答案8(1)
第八章点的合成运动1.动点的牵连速度是指该瞬时牵连点的速度,它所相对的坐标系是()。
①动坐标系②不必确定的③定坐标系④都可以正确答案:③2.点的速度合成定理v a = v e + v r 的适用条件是()。
①牵连运动只能是平动②各种牵连运动都适合③牵连运动只能是转动④牵连运动为零正确答案:②3.两曲柄摇杆机构分别如图(a)、(b)所示。
取套筒A为动点,则动点A的速度平行四边形()。
①图(a)、(b)所示的都正确②图(a)所示的正确.,图(b)所示的不正确③图(a)所示的不正确.,图(b)所示的正确④图(a)、(b)所示的都不正确正确答案:②4.图示偏心凸轮如以匀角速度ω绕水平轴O逆时针转动,从而推动顶杆AB沿铅直槽上下移动,AB杆的延长线通过O点。
若取凸轮中心C为动点,动系与顶杆AB固连,则动点C的相对运动轨迹为( )。
①铅直直线②以O点为圆心的圆周③以A点为圆心的圆周④无法直接确定正确答案:③5.在图示机构中,已知s = a + b sinωt,且φ= ωt(其中a、b、ω均为常数),杆长为L,若取小球A为动点,动系固连于物块B,定系固连于地面,则小球A的牵连速度v e的大小为( );相对速度v r的大小为( )。
①Lω② bωcosωt③bωcosωt + Lωcosωt④bωcosωt + Lω正确答案:②①6.图示偏心轮摇杆机构中,ω、α为已知,要求摇杆的角加速度α1,应取( )。
① 杆上的M 为动点,轮为动系② 轮上的M 为动点,杆为动系③ 轮心C 为动点,杆为动系④ 轮心C 为动点,轮为动系正确答案:③7.如图所示,直角曲杆以匀角速度ω绕O 轴转动,套在其上的小环M 沿固定直杆滑动。
取M 为动点,直角曲杆为动系,则M 的( )。
① v e ⊥CD ,a C ⊥CD② v e ⊥OM ,a C ⊥CD③ v e ⊥OM ,a C ⊥OM④ v e ⊥CD ,a C ⊥OM正确答案:②8.平行四边形机构如图。
南航理论力学习题答案14(1)
第十四章达朗贝尔原理1.平移刚体上的惯性力系向任意点简化,所得主矢相同,R Q =-m a C 。
设质心为C ,点O 到质心的矢径为r C ,则惯性力系向O 点简化的主矩为( )。
① MQO =0② MQO =J O α③ MQO =J C α④ MQO =r C ×R Q正确答案:④2.定轴转动刚体,其转轴垂直于质量对称平面,且不通过质心C ,当角速度ω=0,角加速度α≠0时,其惯性力系的合力大小为R Q =ma C ,合力作用线的方位是( )。
(设转轴中心O 与质心C 的连线为OC ;J C 、J O 分别为刚体对质心及转轴中心的转动惯量)。
① 合力作用线通过转轴轴心,且垂直于OC② 合力作用线通过质心,且垂直于OC③ 合力作用线至轴心的垂直距离为h =J O α / ma C④ 合力作用线至轴心的垂直距离为h =OC +J C α / ma C正确答案:③、④3.刚体作定轴转动时,附加动反力等于零的充分必要条件是( )。
① 转轴是惯性主轴② 质心位于转轴上③ 转轴与质量对称面垂直④ 转轴是中心惯性主轴正确答案:④4.如图所示,质量为m 的质点A ,相对于半径为r 的圆环作匀速圆周运动,速度为u ;圆环绕O 轴转动,在图示瞬时角速度为ω,角加速度为α。
则图示瞬时,质点A 的惯性力为( )。
① )22(ωαu r m F gx +=)/2(22r u r m F gy +=ω② )22(ωαu r m F gx +−=)/2(22r u r m F gy +−=ω③ αmr F gx 2−=)22/(22ωωr u r u m F gy +−=④ 0=gx Fr mu F gy /2−=正确答案:③5.如图所示,半径为r ,质量为m 的均质圆盘与质量也为m 、长为l 的均质杆焊在一起,并绕O轴转动。
在图示瞬时,角速度为ω,角加速度为α 。
则惯性力系向O 点简化结果为( )。
① 2/)23(αm r l F g τ+=2/)23(2ωm r l F gn +=6/)1298(22αm lr r l M gO ++=② 2/)(αm r l F g τ+=2/)(2ωm r l F gn +=6/)1298(22αm lr r l M gO ++=③ 2/)23(αm r l F g τ+=2/)23(2ωm r l F gn +=2/)23(2αm r l M gO +=④ 2/)23(αm r l F g τ+=2/)23(2ωm r l F gn +=4/])(4[22αm r l l M gO ++=正确答案:①6.长度为r 的杆OA 与质量为m 、长度为2r 的均质杆AB 在A 端垂直固接,可绕轴O 转动。
南航理论力学习题答案3(1)
第三章平 面 任 意 力 系1.平面力系向点1简化时,主矢R F ′=0,主矩 M 1≠0,如将该力系向另一点2简化,则( )。
① RF ′≠0,M 2≠M 1 ② R F ′=0,M 2≠M 1 ③ RF ′≠0,M 2=M 1 ④ R F ′=0,M 2=M 1 正确答案:④2.关于平面力系的主矢与主矩,下列表述正确的是( )。
① 主矢的大小、方向与简化中心的选择无关② 主矩的大小、转向一定与简化中心的选择有关③ 当平面力系对某点的主矩为零时,该力系向任何一点简化的结果为一合力④ 当平面力系对某点的主矩不为零时,该力系向任何一点简化的结果均不可能为一合力 正确答案:①3.关于平面力系与其平衡方程,下列表述正确的是( )。
① 任何平面力系都具有三个独立的平衡方程② 任何平面力系只能列出三个平衡方程③ 在平面力系的平衡方程的基本形式中,两个投影轴必须互相垂直④ 平面力系如果平衡,则该力系在任意选取的投影轴上投影的代数和必为零 正确答案:④4.平面内一非平衡共点力系和一非平衡共点力偶系最后可能合成的情况是( )。
① 一合力偶 ② 一合力③ 相平衡 ④ 无法进一步合成正确答案:②5.某平面平行力系诸力与y 轴平行,如图所示。
已知:F 1=10N ,F 2=4N ,F 3=8N ,F 4=8N ,F 5=10N ,长度单位以cm 计,则力系的简化结果与简化中心的位置( )。
① 无关 ② 有关③ 若简化中心选择在x 轴上,与简化中心的位置无关④ 若简化中心选择在y 轴上,与简化中心的位置无关正确答案:①6.图示皮带轮半径为R ,皮带拉力分别为T 1和T 2(二力的大小不变),若皮带的包角为α,则皮带使皮带轮转动的力矩( )。
① 包角α越大,转动力矩越大② 包角α越大,转动力矩越小③ 包角α越小,转动力矩越大④ 包角α变大或变小,转动力矩不变正确答案:④7.已知F、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,因此可知()。
南航理论力学习题答案11(1)
第十一章动 量 定 理1.动量定理适用于()。
①惯性坐标系②与地球固连的坐标系③相对于地球作匀角速转动的坐标系④相对于地球作匀速直线运动的坐标系正确答案:①2.质点系动量守恒的条件是()。
①作用于质点系的外力主矢恒等于零②作用于质点系的内力主矢恒等于零③作用于质点系的约束反力主矢恒等于零④作用于质点系的主动力主矢恒等于零正确答案:①3.弹球铅垂落地并弹回,设落地和弹回瞬时的速度大小均为v。
则地面反力冲量的大小I()。
①I = 0②I = mv③I = 2mv④因碰地时间未知,故无法计算正确答案:③4.两个完全相同的圆盘,放在光滑水平面上,如图所示。
在两个圆盘的不同位置上,分别作用两个相同的力F和F′。
设两圆盘从静止开始运动。
某瞬时两圆盘动量p A和p B的关系是()。
①p A < p B②p A > p B③p A = p B④不能确定正确答案:③5.匀质杆AB重G,其A端置于光滑水平面上,B端用绳子悬挂,如图所示。
取坐标系Oxy,此时该杆质心C的x坐标x C= 0。
若将绳子剪断,则()。
①杆倒向地面的过程中,其质心C运动的轨迹为圆弧②杆倒至地面后,x C> 0③杆倒至地面后,x C= 0④杆倒至地面后,x C < 0正确答案:③6.图示四连杆机构中,各均质杆长度为O1A=O2B=AB=20 cm,它们的质量相等,均为m=1 kg。
在图示瞬时,O1A杆转动的角速度ω=2rad/s,O1A与O2B两杆的倾角均为45°。
此时该机构的动量K大小为( )。
①K = 0.4 N·s②K = 0.483 N·s③K = 0.6 N·s④K = 0.766 N·s正确答案:①7.OA杆绕O轴逆时针转动,匀质圆盘沿OA杆作纯滚动,如图所示。
已知圆盘的质量m=20 kg, 半径R=10 cm。
在图示位置时,OA杆的倾角为30°,其转角的角速度ω1=1 rad/s,圆盘相对于OA杆转动的角速度ω2=4 rad/s,OB=103 cm,则此时圆盘的动量K大小为( )。
南航理论力学习题答案2(1)
第二章平面汇交力系与平面力偶系1.如图所示,将大小为100N 的力F 沿x 、y 方向分解,若F 在x 轴上的投影为86.6N ,而沿x 方向的分力的大小为115.47N ,则F 沿y 轴上的投影为( )。
① 0 ② 50N③ 70.7N ④ 86.6N正确答案:①2.如图所示,OA 构件上作用一矩为M 1的力偶,BC 上作用一矩为M 2的力偶,若不计各处摩擦,则当系统平衡时,两力偶矩应满足的关系为( )。
① M 1=4M 2 ② M 1=2M 2③ M 1=M 2 ④ M 1=M 2/2正确答案:③3.如图所示的机构中,在构件OA 和BD 上分别作用着矩为M 1和M 2的力偶使机构在图示位置处于平衡状态,当把M 1搬到AB 构件上时使系统仍能在图示位置保持平衡,则应该有( )。
① 增大M 1② 减小M 1③ M 1保持不变④ 不可能在图示位置上平衡正确答案:④4.已知F 1、F 2、F 3、F 4为作用于刚体上的平面汇交力系,其力矢关系如图所示,由此可知( )。
① 该力系的合力F R = 0② 该力系的合力F R = F 4③ 该力系的合力F R = 2F 4④ 该力系平衡正确答案:③5.图示机构受力F 作用,各杆重量不计,则A 支座约束反力的大小为( )。
① 2F② F 23③ F ④ F 33正确答案:④6.图示杆系结构由相同的细直杆铰接而成,各杆重量不计。
若F A =F C =F ,且垂直BD ,则杆BD 的内力为( )。
① F − ② F 3− ③ F 33− ④ F 23− 正确答案:③7.分析图中画出的5个共面力偶,与图(a )所示的力偶等效的力偶是( )。
① 图(b ) ② 图(c ) ③ 图(d ) ④ 图(e )正确答案:②8.平面汇交力系平衡的几何条件是( );平衡的解析条件是( )。
正确答案:力多边形自形封闭 各力在两个坐标轴上投影的代数和分别等于零9.平面内两个力偶等效的条件是( );平面力偶系平衡的充分必要条件是( )。
理论力学笔记
1、绪论1、理论力学:研究机械运动(物体位置在空间的位置随时间的改变)一般规律的科学2、静力学:平衡时作用力应满足的条件,包括物体受力的分析方法及力简化方法;运动学:只从几何的角度来研究物体的运动;动力学:力+运动,研究受力物体的运动和作用力之间的关系。
2、静力学1、物体的受力分析、力系的简化、建立力系的平衡条件2、力的三要素:大小、方向、作用点3、载荷集度q:单位面积上的力4、平行四边形法则、作用力与反作用力定律5、力在坐标轴上的投影是一个代数,可正可负,而力是矢量。
力和投影轴可共面,可不共面6、画受力图步骤:取出分立体、画主动力(如重力等)、画出约束力7、受力图只画外力不画内力,,一定留意二力构件3、力系的静力等效和简化1、力使物体平移则为力,使物体转动则为力矩(逆时针为正,单位N·M)大小:矩心到力的矢径的距离与该力的矢量积2、合力矩定理3、力偶:大小相等,方向相反,作用线平行且不共线的两个力组成的力系,4、力偶臂:二力线间的距离。
5、力偶矩M:力和力偶臂的乘积,逆时针为正。
6、力偶矩矢M:大小等于力偶矩,有方向,由右手螺旋法则确定注意:力偶对点取矩与矩心无关,等于力偶的力偶矩矢,力偶矩矢为自由矢量7、力偶的性质:力偶无合力、力偶对刚体的作用效应完全取决于力偶矩矢、力偶等效定理:它们的力偶矩矢相等;力偶在其作用面内可以从一个位置平移或转动至另一个位置;力偶可以从某一平面移至另一平面8、主矢和主矩:主矢,力系中所有力的矢量和(主矢是一个自由矢量,不是一个力,更不是合力,随矩心位置的变化而变化);主矩,力系中所有力对同一点之矩(主矩是定位矢量,随矩心位置的不同而改变,其作用点在所选的矩心上)9、力系等效定理:两力系主矢相等,对同一点的主矢也相等10、力的可传递性:作用在刚体上某点的力,可以沿着力的作用线移至刚体内任一点,并不改变该力对刚体的作用11、平衡力系定理:力系是零力系12、二力平衡定理:作用在刚体上的两个力使刚体平衡需两个力大小相等、方向相反,且在同一直线上。
理论力学复习总结(重点知识点)
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。
公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。
(Mo(F)=±Fh)4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F’)。
南航理论力学习题答案9(1)
第九章刚体的平面运动1.平面运动刚体相对其上任意两点的( )。
① 角速度相等,角加速度相等② 角速度相等,角加速度不相等③ 角速度不相等,角加速度相等④ 角速度不相等,角加速度不相等正确答案:①2.在图示瞬时,已知O 1A = O 2B ,且O 1A 与O 2 B 平行,则( )。
① ω1 = ω2,α1 = α2② ω1≠ω2,α1 = α2③ ω1 = ω2,α1 ≠α2④ ω1≠ω2,α1 ≠α2正确答案:③3.设平面图形上各点的加速度分布如图①~④所示,其中不可能发生的是( )。
正确答案:②4.刚体平面运动的瞬时平动,其特点是( )。
① 各点轨迹相同;速度相同,加速度相同② 该瞬时图形上各点的速度相同③ 该瞬时图形上各点的速度相同,加速度相同④ 每瞬时图形上各点的速度相同正确答案:②5.某瞬时,平面图形上任意两点A 、B 的速度分别v A 和v B ,如图所示。
则此时该两点连线中点C 的速度v C 和C 点相对基点A的速度v CA 分别为( )和( )。
① v C = v A + v B ② v C = ( v A + v B )/2③ v C A = ( v A - v B )/2 ④ v C A = ( v B - v A )/2正确答案:② ④α1α2 ①②③④6.平面图形上任意两点A 、B 的加速度a A 、a B 与连线AB 垂直,且a A ≠ a B ,则该瞬时,平面图形的角速度ω和角加速度α应为( )。
① ω≠0,α ≠0② ω≠0,α = 0③ ω = 0,α ≠0④ ω = 0,α = 0正确答案:③7.平面机构在图示位置时,AB 杆水平,OA 杆鉛直。
若B 点的速度v B ≠0,加速度τB a = 0,则此瞬时OA 杆的角速度ω和角加速度α为( )。
① ω = 0,α ≠0② ω≠0,α = 0③ ω = 0,α = 0④ ω≠0,α ≠0正确答案:②8.在图示三种运动情况下,平面运动刚体的速度瞬心:(a )为( );(b )为( );(c )为( )。
理论力学笔记
常见约束类型1.柔绳、铰链、胶带约束约束反力特征:沿着绳索背离被约束的物体。
2.光滑接触面约束约束反力特征:沿着约束面的公法线方向,指向被约束物体。
3.光滑圆柱铰链约束约束反力特征:作用线指向圆心,作用方向根据具体情况确定。
4.光滑球铰链约束约束反力特征:作用线指向圆心,作用方向根据具体情况确定,属于空间约束。
5.双铰链刚杆约束约束反力特征:不受任何主动力,属于二力杆受力。
例2-3.如图所示是汽车制动机构的一部分。
司机踩到制动蹬上的力F =212N ,方向与水平面成α=45°。
当平衡时,BE 水平,AD 铅直,试求拉杆所受的力。
已知EA =24cm ,DE =6cm (点E 在铅直线DA 上),又B ,E ,D 都是光滑铰链,机构的自重不计。
解:受力图如上,分别列出x 和y 方向的力学平衡方程如下x 方向的力学平衡方程:0cos cos =--ϕαD B F F Fy 方向的力学平衡方程:0sin sin =-αϕF F D '214ο=ϕ,求得:750=B F N例2-4.利用铰车绕过定滑轮B 的绳子吊起一重W =20kN 的货物,滑轮由两端铰链的水平刚杆AB 和斜刚杆BC 支持于B 点。
不计铰车的自重,试求杆AB 和BC 所受的力。
解:取滑轮B (带轴销)为研究对象,受力图见上,分别列出x 和y 方向的平衡方程如下x 方向 030sin 30cos =-+οοD BC AB F F Fy 方向 030cos 30sin =--οοD BC F W F上式中,20=D F kN ,联合求得6.74=BC F kN ,=AB F -54.5kN (与假设方向相反) 思考题:力沿两轴分力的大小和在该两轴上的投影不一定相等,不相等情况如下图。
例2-6.一简支梁AB =d ,作用一力偶,求两支座的约束反力。
解:由于主动力为力偶,因此两支座的约束反力必然构成一个力偶来与M 平衡,故B A F F =,梁AB 的受力图见上,故d M F F B A /==。
理论力学知识点总结.doc
理论力学知识点总结相关热词搜索:理论力学知识点理论力学所有定理公式理论力学1详细总结理论力学题目答案篇一:理论力学重点总结绪论1. 学习理论力学的目的:在于掌握机械运动的客观规律,能动地改造客观世界,为生产建设服务。
2. 学习本课程的任务:一方面是运用力学基本知识直接解决工程技术中的实际问题;另一方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。
此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。
第一章静力学的基本公理与物体的受力分析1-1 静力学的基本概念1. 刚体:即在任何情况下永远不变形的物体。
这一特征表现为刚体内任意两点的距离永远保持不变。
2. 质点:指具有一定质量而其形状与大小可以忽略不计的物体。
1-3 约束与约束力1. 自由体:凡可以在空间任意运动的物体称为自由体。
2. 非自由体:因受到周围物体的阻碍、限制不能作任意运动的物体称为非自由体。
3. 约束:力学中把事先对于物体的运动(位置和速度)所加的限制条件称为约束。
约束是以物体相互接触的方式构成的,构成约束的周围物体称为约束体,有时也称为约束。
4. 约束力:约束体阻碍限制物体的自由运动,改变了物体的运动状态,因此约束体必须承受物体的作用力,同时给予物体以相等、相反的反作用力,这种力称为约束力或称反力,属于被动力。
5. 单面约束、双面约束:凡只能阻止物体沿一方向运动而不能阻止物体沿相反方向运动的约束称为单面约束;否则称为双面约束。
单面约束的约束力指向是确定的,即与约束所能阻止的运动方向相反;而双面约束的约束力指向还决定于物体的运动趋势。
6. 柔性体约束:为单面约束。
只能承受拉力,作用在连接点或假想截割处,方向沿着柔软体的轴线而背离物体,常用符号FT表示。
(绳索、胶带、链条)7. 光滑接触面(线)约束:为单面约束,其约束力常又称为法向约束力。
理论力学简明教程及案例解析阅读笔记
《理论力学简明教程及案例解析》阅读笔记目录一、基本概念和原理 (2)1.1 理论力学的定义和作用 (3)1.2 理论力学的研究对象和方法 (4)1.3 理论力学与其它物理分支的关系 (5)二、静力学 (6)2.1 静力学的基本概念和公理 (7)2.2 力矩和力偶 (8)2.3 刚体静力学平衡问题 (9)2.4 案例解析 (11)三、运动学 (12)3.1 运动学的基本概念和公式 (13)3.2 点的运动学 (14)3.3 刚体的基本运动 (14)3.4 案例解析 (15)四、动力学 (16)4.1 动力学的基本定律 (18)4.2 动量定理和动量守恒定律 (19)4.3 动能定理和机械能守恒定律 (19)4.4 简单碰撞问题 (21)4.5 案例解析 (22)五、分析力学 (23)5.1 分析力学的基本方法 (25)5.2 重心和形心 (26)5.3 简化的刚体动力学方程 (26)5.4 案例解析 (28)六、应用案例解析 (29)6.1 理论力学在工程结构设计中的应用 (31)6.2 理论力学在物理学研究中的应用 (32)6.3 理论力学在航空航天领域的应用 (34)七、思考与练习 (35)一、基本概念和原理作为力学的一个重要分支,为我们提供了理解和描述物体运动规律的工具和方法。
在学习这一课程之前,我们首先需要明确一些基本概念和原理。
牛顿运动定律:这是理论力学的基础,包括牛顿第一定律(惯性定律)、牛顿第二定律(加速度定律)和牛顿第三定律(作用与反作用定律)。
这些定律揭示了物体运动状态变化的本质原因,为我们分析和解决实际问题提供了理论支持。
动量和冲量:动量是物体的质量和速度的乘积,表示物体运动的“惯性”。
冲量则是力和时间的乘积,它反映了力对物体速度变化的影响。
这两个概念在分析碰撞、爆炸等复杂运动问题中具有重要意义。
动能与势能:动能是物体由于运动而具有的能量,其大小与物体的质量和速度的平方成正比。
南航理论力学考试题及答案
南航理论力学考试题及答案一、选择题(每题2分,共10分)1. 理论力学中,牛顿第一定律描述的是:A. 物体在没有外力作用下的运动状态B. 物体在受力作用下的运动状态C. 物体在任何情况下的运动状态D. 物体在受力作用下保持静止或匀速直线运动的状态答案:A2. 根据牛顿第二定律,力与加速度的关系是:A. F=maB. F=mvC. F=ma^2D. F=m/a答案:A3. 以下哪项不是理论力学的研究范畴?A. 质点的运动B. 刚体的运动C. 流体的运动D. 弹性体的运动答案:C4. 动量守恒定律适用于:A. 任何情况下的系统B. 只有当系统外力为零时C. 只有当系统内力远大于外力时D. 只有当系统外力和内力都为零时答案:B5. 角动量守恒定律成立的条件是:A. 系统不受外力矩作用B. 系统受外力矩作用C. 系统外力矩和内力矩都为零D. 系统外力矩不为零答案:A二、填空题(每题2分,共10分)1. 牛顿第三定律指出,作用力和反作用力大小相等、方向相反、作用在不同的物体上,且_______。
答案:同时产生,同时消失2. 刚体的平移运动中,所有点的_______相同。
答案:速度3. 刚体的定轴转动中,角速度的大小和方向在任何时刻都是_______的。
答案:恒定4. 质点系的质心位置可以通过计算质点的_______来确定。
答案:质量加权平均位置5. 虚功原理是求解_______平衡条件的一种方法。
答案:非线性系统三、简答题(每题5分,共15分)1. 简述牛顿第一定律的内容及其物理意义。
答案:牛顿第一定律,也称为惯性定律,指出在没有外力作用时,物体将保持静止或匀速直线运动状态。
其物理意义在于揭示了物体具有保持其运动状态不变的性质,即惯性。
2. 描述角动量守恒定律,并给出一个实际应用的例子。
答案:角动量守恒定律表明,在没有外力矩作用的情况下,一个系统的总角动量保持不变。
例如,花样滑冰运动员在旋转时,当他们收紧手臂,由于转动惯量的减小,角速度增加,但总角动量保持不变。
南航理论力学习题答案
第十三章动 能 定 理1.如图所示,半径为R ,质量为m 1的均质滑轮上,作用一常力矩M ,吊升一质量为m 2的重物。
当重物上升高度h 时,力矩M 所作的功为( )。
① Mh /R② m 2gh③ Mh/R -m 2gh④ 0正确答案:①2.三棱柱B 沿三棱柱A 的斜面运动,三棱柱A 沿光滑水平面向左运动。
已知A 的质量为m 1,B 的质量为m 2;某瞬时A 的速度为v 1,B 沿斜面的速度为v 2。
则此时三棱柱B 的动能为 ( )。
① 22221v m ② 2212)(21v v m − ③ )(2122212v v m − ④ ]sin )cos [(212222212θθv v v m +− 正确答案:④3.一质量为m ,半径为r 的均质圆轮以匀角速度ω沿水平面作纯滚动,均质杆OA 与圆轮在轮心O 处铰接,如图所示。
设OA 杆长l = 4r ,质量M = m /4。
在图示杆与铅垂线的夹角φ = 60°时,其角速度ωOA = ω/2,则此时该系统的动能为( )。
① 222425ωmr T =② 221211ωmr T = ③ 2267ωmr T = ④ 2232ωmr T = 正确答案:③4.均质圆盘A ,半径为r ,质量为m ,在半径为R 的固定圆柱面内作纯滚动,如图所示。
则圆盘的动能为( )。
① 2243ϕ mr T = ② 2243ϕ mR T = ③ 22)(21ϕ r R m T −= ④ 22)(43ϕ r R m T −= 正确答案:④5.图示均质圆盘沿水平直线轨道作纯滚动,在盘心移动了距离s 的过程中,水平常力F T 的功A T =( );轨道给圆轮的摩擦力F f 的功A f =( )。
① F T s② 2F T s③ 0④ -F f s正确答案:② ③6.图示二均质圆盘A 和B ,它们的质量相等,半径相同,各置于光滑水平面上,分别受到F 和F ′的作用,由静止开始运动。
理论力学知识点总结
理论力学知识点总结关键信息项:1、静力学受力分析力系简化平衡方程2、运动学点的运动学刚体的平动与转动点的合成运动3、动力学牛顿定律动量定理动量矩定理动能定理11 静力学111 受力分析受力分析是理论力学的基础,它的主要任务是确定研究对象所受的外力。
通过对物体的约束和接触情况进行分析,画出受力图。
常见的约束类型包括柔索约束、光滑面约束、铰链约束等。
112 力系简化力系简化的目的是将复杂的力系用一个简单的力系等效替代。
通过力的平移定理,可以将力系向一点简化,得到主矢和主矩。
113 平衡方程对于平衡的物体或系统,其合力和合力矩都为零。
根据不同的约束条件,可以列出相应的平衡方程,如平面力系的平衡方程、空间力系的平衡方程。
12 运动学121 点的运动学描述点在空间中的位置随时间的变化规律。
可以用直角坐标法、自然法和弧坐标法来表示点的运动方程。
122 刚体的平动与转动刚体的平动是指刚体上各点的运动轨迹相同,速度和加速度也相同。
刚体的转动则是围绕某一固定轴的旋转运动,其角速度和角加速度描述了转动的快慢和变化。
123 点的合成运动研究一个点相对于不同参考系的运动之间的关系。
通过牵连运动、相对运动和绝对运动的分析,运用速度合成定理和加速度合成定理求解问题。
13 动力学131 牛顿定律牛顿第一定律指出物体具有保持原有运动状态的惯性;牛顿第二定律阐明了力与加速度的关系;牛顿第三定律说明了作用力与反作用力的大小相等、方向相反且作用在同一直线上。
132 动量定理物体的动量变化等于作用在物体上的冲量。
通过动量定理可以解决涉及力的时间累积效应的问题。
133 动量矩定理对于绕定轴转动的刚体,其动量矩的变化等于作用于刚体上的外力矩的冲量矩。
134 动能定理合外力对物体做功等于物体动能的变化。
动能定理常用于分析物体的能量变化和运动状态的改变。
14 达朗贝尔原理引入惯性力,将动力学问题转化为静力学问题来求解。
15 虚位移原理利用虚功的概念,通过分析系统在虚位移上的功来确定系统的平衡条件。
理论力学知识点总结
vx
dx dt
vy
dy dt
vz
dz dt
速度大小 v vx2v2y vz2
速度的方向由其方向余弦确定
cos(
v,i )
vx
v
cos(
v,
j)
vy
v
cos(
v,k )
vz
v
ax
dvx dt
d2 x dt2
ay
dvy dt
d2 y dt2
az
dvz dt
d2z dt 2
加速度大小
a ax2ay2az2
1、一次投影法(直接投影法)
X F cos α , Y F cos β , Z F cos γ
应用此法必须注意:如果投影轴不通过力矢的始端,则可以 过该力矢始端作出与该投影轴平行并且正向相同的轴,根据 同一个力在所有互相平行且正向相同的轴上的投影都相等,
再按一次投影法计算该力的投影。注意力的投影用Fx 、Fy、 Fz或X、Y、Z表示。
值得注意得是,此时三个分力Fx、Fy、Fz与Z轴的空间 位置不是相交、就是平行或者垂直,可见又回到第一、 第二种情况,这时可按第一、第二种情况分别算之,然 后代入上式即可。最后要说明得是:上述计算空间力对 轴之矩的方法适用于动力学中动量矩的计算。
八、空间力偶矢量方法:用右手法则表示,即首 先任作一 法线垂直于力偶作用面,该法线的方位就表 示力偶矩矢的方位,然后沿着这条法线按一定比例尺 取一段长度表示力偶矩的大小,力偶矩矢的指向可按 右手法则确定,即以右手握住这条法线,四个手指表 示力偶矩的转向,大拇指向表示力偶矩矢的指向。
yCA ii A i
(3)负面积法
xCxC1A1 A1 xC A 12A 1 A3 xC1A1 yCyC1A1 A 1yC A 12A 1 A3yC1A1