真空中静电场的基本方程
静电场分析

电位确定值(电位差)
两点间电位差有定值
选择电位参考点的原则: 应使电位表达式有意义 应使电位表达式最简单 同一个问题只能有一个参考点 电位参考点电位一般为0;
二、电位函数的求解
中国矿业大学
点电荷的电位
v E
q
40r 2
evr
vQ
Q v v P' Q v v
S
Ev(rv)g(4
r2
evr)0
Q
0
v E
Q
4 0 r 2
evr
r
Ñ 在球内区域:ra
Q 3Q
Ev(rv)gdSv
V 4 a3 S
Q
0
Ev(rv)g(4 r2
v E
Qr
4 0 a3
evr ) evr
4 r3
3
0
3.2 电位函数
中国矿业大学
一、电位函数与电位差
电位函数
v
E 0
中国矿业大学
补充内容:利用高斯定理求解静电场
Ñ Ev(rv)gdSv 1 (rv)dV Q
S
0 V
0
求解的关键:高斯面的选择。
高斯面的选择原则:
1)场点位于高斯面上;
2)高斯面为闭合面;
3)在整个或分段高斯面上,Ev
或
vv EgdS
为恒定值。
只有当电荷呈某种对称分布时才可能满足以上原则,因此用
中国矿业大学
真空中静电场性质小结:
微分形式
积分形式
gEv(rv) (rv)
Ev(rv)
0
0
ÑS Ev(rv)gdSv
ÑC
Ev(rv)
0
Q
0
静电场性质:是一种有源无旋场,是保守场。
第2讲 麦克斯韦方程组ppt课件

r E t
r )dS
C
S t
rr
Ñ S
B
dS
0
rr1
Ñ S
E
dS
0
V
ρdV
v v dq
ÑS JgdS dt
第二讲 麦克斯韦方程组
二、介质中的麦克斯韦方程
媒质对电磁场的响应可分为三种情况:极化、磁化和传导。 极化:媒质在电场作用下呈现宏观电荷(束缚电荷)分布 磁化:媒质在磁场作用下呈现宏观电流(磁化电流)分布 描述媒质电磁特性的参数为:介电常数、磁导率和电导率。
第二讲 麦克斯韦方程组
四、静态场与时变场的麦克斯韦方程
宏观电磁场的普遍规律是Maxwell方程组,而静态场是
时变场的特殊情况。
Maxwell方程组
H
E
J
D
t
B
t
B 0
D
0 t
静态场方程
静电场
E
0
( J = 0 ) D
J 0
恒定电场 (J≠0)
第二讲 麦克斯韦方程组
一、真空中的麦克斯韦方程
麦克斯韦方程组(Maxwell’s equations)
r B
r E r
微分形式
r 0(J
r B
t
0
r E t
)
B 0
r
E / 0
r gJ
t
Ñ
Ñ
C
r B r E
r dl
r dl
积分形式
r
0
(J
S
r
B
0 r
麦克斯韦第二方程,表明时变磁 场产生电场
麦克斯韦第三方程,表明磁场是 无源场,磁力线总是闭合曲线
电磁场理论基础试题集

电磁场理论基础习题集(说明:加重的符号和上标有箭头的符号都表示矢量)一、填空题1.矢量场的散度定理为(1),斯托克斯定理为(2)。
【知识点】:1.2 【难易度】:C 【参考分】:3【答案】:(1)()∫∫⋅=⋅∇SS d A d A v v v ττ (2)()S d A l d A SCvv v v ⋅×∇=⋅∫∫2.矢量场A v满足(1)时,可用一个标量场的梯度表示。
【知识点】:1.4 【难易度】:C 【参考分】:1.5【答案】:(1) 0=×∇A v 3.真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。
【知识点】:3.2 【难易度】:B【参考分】:6【答案】:(1) 0=⋅∫c l d E v v (2) ∑∫=⋅q S d D Sv v 0(3) 0=×∇E v (4)()r D vv ρ=⋅∇04.电位移矢量D v 、极化强度P v 和电场强度E v满足关系(1)。
【知识点】:3.6 【难易度】:B【参考分】:1.5【答案】:(1) P E P D D vv v v v +=+=00ε 5.有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。
【知识点】:3.8 【难易度】:B【参考分】:3【答案】:(1) ()021=−⋅B B n v v v (2) ()s J H H n v v vv =−×21 6.焦耳定律的微分形式为(1)。
【知识点】:3.8 【难易度】:B 【参考分】:1.5【答案】:(1) 2E E J p γ=⋅=v v 7.磁场能量密度=m w (1),区域V中的总磁场能量为=m W (2)。
【知识点】:5.9 【难易度】:B 【参考分】:3【答案】:(1) 221H μ (2) ∫Vd H τμ2218.理想导体中,时变电磁场的=(1),=(2) 。
【知识点】:6.1 【难易度】:A 【参考分】:3【答案】:(1)0 (2)0 9.理想介质中,电磁波的传播速度由(1)决定,速度=v (2)。
电磁场与波模拟题

电磁场与波模拟题一、填空题1.矢量分析中的散度定理(或高斯公式)是 ,斯托克斯定理(或斯托克斯公式)是 。
2.空间位场()+()()x y z R e x x e y y e z z '''=--+-,||R R =。
则R ∇= ,1R ⎛⎫∇= ⎪⎝⎭,R ∇⨯= 。
3.真空中静电场的基本方程的微分形式为 , ,静电场用静电位表示为 。
静电位满足的泊松微分方程为____________________。
4.导体中稳恒电流场的基本方程的微分形式为 , ,稳恒电流场用静电位表示为 。
静电位满足的拉普拉斯微分方程为____________________。
5.真空中恒定磁场的基本方程的微分形式为 , ,恒定磁场用矢量磁位表示为 。
若引入库伦规范条件___________,则矢量磁位满足的微分方程为__________。
6.在时变电磁场中,定义动态矢量位A 和标量位ϕ,则磁场B =__________,电场E =__________。
若引入洛仑兹规范条件___________,则动态位满足的微分方程为_____________、______________。
7.在理想介质分界面上磁场强度H 满足的关系是 ,磁感应矢量B 满足的关系 。
8.在理想介质分界面上电场强度E 满足的关系是 ,电位移矢量D 满足的关系 。
9.应用分离变量法在解矩形二维场的问题时,位函数所满足的拉普拉斯方程为_______,其第一步是令(,)x y ϕ=________,然后可将此偏微分方程分解为两个_____微分方程。
10.复数形式的麦克斯韦方程组是___________、______________、_____________、______________。
11.无源空间的电磁场波动方程为_____________、______________;时谐场的波动方程的复数形式即亥姆霍兹方程是_______________、________________。
高中物理-静电场

七静电场一、基本概念和规律1.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们之间距离的二次方成反比,作用力的方向在两点电荷的连线上。
(2)公式:F=k Q1Q2r2,式中的k=9×109 N·m2/C2,叫静电力常量。
(3)适用条件:点电荷且在真空中。
2.电场、电场强度(1)电场:电场是电荷周围存在的一种物质,电场对放入其中的电荷有力的作用。
静止电荷产生的电场称为静电场。
(2)电场强度①定义:放入电场中某点的电荷所受的电场力F与它的电荷量的比值。
②公式:E=F q。
(3)矢量性:规定正电荷在电场中某点所受电场力的方向为该点电场强度的方向。
(4)叠加性:如果有几个静止电荷在空间同时产生电场,那么空间某点的电场强度是各场源电荷单独存在时在该点所产生的电场强度的矢量和。
3.点电荷电场强度的计算式(1)设在场源点电荷Q形成的电场中,有一点P与Q相距r,则P点的电场强度E=k Qr2。
(2)适用条件:真空中的点电荷形成的电场。
4.电场线的用法(1)利用电场线可以判断电场强度的大小电场线的疏密程度表示电场强度的大小。
同一电场中,电场线越密集处电场强度越大。
(2)利用电场线可以判定电场强度的方向电场线的切线方向表示电场强度的方向。
(3)利用电场线可以判定场源电荷的电性及电荷量多少电场线起始于带正电的电荷或无限远,终止于无限远或带负电的电荷。
场源电荷所带电荷量越多,发出或终止的电场线条数越多。
(4)利用电场线可以判定电势的高低沿电场线方向电势是逐渐降低的。
(5)利用电场线可以判定自由电荷在电场中受力情况、移动方向等先由电场线大致判定电场强度的大小与方向,再结合自由电荷的电性确定其所受电场力方向,再分析自由电荷移动方向、形成电流的方向等。
5.电场的叠加(1)电场叠加:多个电荷在空间某处产生的电场强度为各电荷单独在该处所产生的电场强度的矢量和。
(2)运算法则:平行四边形定则。
第二章静电场恒定电场和恒定磁场

介质中的高斯定理表示为 式中电位移矢量为
在线性的各向同性的电介质中
例2.1在空气中放入一个带电量为Q、半径为a的球体,该球体的 相对介电常数为εr。求该球体内、外任意一点的电场强度。
解(1) 球内任意一点,设到球心距离为r,做高斯面为以r为半径的球面, 如图2.2所示。
由电场的对称性可知,E和D的方向为er,所以
大小、它们之间的距离和周围的电介质,即可以不用电容器。
例2.10同心金属球与球壳系统如图2.12所示,内导体球半径为a,外导体 球壳的内外半径分别为b和c,导体球与导体球壳带有等量异号电荷,它
们之间充满相对介电常数为 r 的电介质,球外为空气。求该导体系统
的电容。
解:根据高斯定理不难求出空间各点的电场强度,设导体球和导体球壳的 带电量分别是q和-q,则导体和导体球壳之间的电场强度的大小为
电场能为
WeΒιβλιοθήκη 1 2dVv
(2) 对于多导体系统
We
1 2
dV
v
例2.12半径分别为a和b的同轴线,外加电压为U,内圆柱体电荷量为正,外圆柱 面单位长度上的电荷量与内圆柱体等值异号。如图2.16(a)所示,两电极间在θ1的 角度内填充介电常数为ε的电介质,其余部分为空气,求同轴线单位长度上储存 的电场能量。
示,求在l长度上的外电感。
图2.25例2.20用图
例2.21一个半径为a的无限长直导线,在导线均匀流过的电流为I,求这个导线
在单位长度上的内电感,如图2.26所示(设导体内部的磁导率近似为μ0)。 解:截面上的磁通并没有与全部电流I交链,而只是与一部分电流交链,交链的总 磁链为
图2.26
2. 互 有两感个回路l1和l2,如图2.27所示。
真空中静电场(高斯定理)

QR
电场方向、大小
Q P
o
r
E
S
dS
• 选取合适的高斯面(闭合面)
E dS EdS E dS E4 r 2
S
S
S
• 再根据高斯定理解方程
qi内
E4r 2 i 0
E 1
4 0
qi
i
r2
E 1
4 0
qi
ir2ຫໍສະໝຸດ ds E
ds
E ds
S
侧面
两底面
E2rl 0
利用高斯定理解出 E
ds r
l
Eds
E 2rl l 0
E 1 2 0 r
例三. 无限大均匀带电平面的电场分布
分析:无限大带电面两侧电场分布对称
作高斯面如图示:
e
E dS
例四. 金属导体静电平衡时,体内场强处处为0 求证: 体内处处不带电
证明:
在导体内任取体积元 dV
由高斯定理
E dS 0
qi内 内dV 0
S
i
V
体积元任取
内 0
证毕
作业
习题P321-322
7-15,7-17,7-18,7-21
讨论
Q P
Ro r
E
S
dS
r R qi 0
i
r R qi Q
i
rR E0
rR
E
1
4 0
Q r2
如何理解面内场强为0 ?
dE1 dE2
P
理工类专业课复习资料-电磁场与电磁波公式总结

电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++=面积元:⎪⎩⎪⎨⎧===dxdy dS dxdzdS dydzdS zyx ,体积元:dxdydzd =τ(2)柱坐标系长度元:⎪⎩⎪⎨⎧===dz dl rd dl drdl z r ϕϕ,面积元⎪⎩⎪⎨⎧======rdrdzdl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ϕϕϕϕ,体积元:dzrdrd d ϕτ=(3)球坐标系长度元:⎪⎩⎪⎨⎧===ϕθθϕθd r dl rd dl drdl r sin ,面积元:⎪⎩⎪⎨⎧======θϕθϕθθθϕϕθθϕrdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:ϕθθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系⎪⎪⎩⎪⎪⎨⎧==+=⎪⎩⎪⎨⎧===z z x y yx r zz r y r x arctan,sin cos 22ϕϕϕ(2)直角坐标系与球坐标系的关系⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=⎪⎩⎪⎨⎧===z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222222ϕθθϕθϕθ(3)柱坐标系与球坐标系的关系⎪⎪⎩⎪⎪⎨⎧=+=+=⎪⎩⎪⎨⎧===ϕϕθθϕϕθ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x∂∂+∂∂+∂∂=∇=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r∂∂+∂∂+∂∂=∇=→→→μϕμμμμϕ1(3)球坐标系中:ϕμθθμμμμϕθ∂∂+∂∂+∂∂=∇=→→→sin 11r a r a r a grad r 4.散度(1)直角坐标系中:zA y A x A A div zy X ∂∂+∂∂+∂∂=→(2)柱坐标系中:z A A r rA r r A div zr ∂∂+∂∂+∂∂=→ϕϕ1)(1(3)球坐标系中:ϕθθθθϕθ∂∂+∂∂+∂∂=→A r A r A r rr A div r sin 1)(sin sin 1)(1225、高斯散度定理:⎰⎰⎰→→→→=⋅∇=⋅ττττd A div d A S d A S,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。
2.5介质中的静电场方程

ˆ qr D 4r 2
在 a<r<a+b
在r>a+b
D E
ˆ qr E 4r 2 ˆ qr E 4 0 r 2
a b qdr qdr q 1 r 1 (a) E dl ( ) 2 2 4r a b 4 0 r 4 a a b a a
D E
介质的结构方程
r
与坐标无关,是常数--均匀介质 与坐标有关,是函数--非均匀介质
(r )
与电场大小无关--线性介质 与电场大小有关——非线性介质 ( E )
与方向无关——各向同性介质 与方向有关——各向异性介质
各向异性介质的介电常数不是标量,而是矩阵
Dx 11 12 13 Ex D E y 21 22 23 y Dz 31 32 33 Ez
D(r ) dS q
S
积分形式
静电场高斯定理
E 0
D
微分形式
E dl 0
l
D E
E
电位方程
E
为常数时
2
图示平行板电容器中放入一块介质后,其D 线、E 线和P 线的分布。
1 1 ' ( 1) D
r
r
无源区的均匀介质中
' 0
r
4.高斯定律的积分形式
D
V 散度定理
DdV
S
V
dV
D dS q
D 的通量与介质无关,但不能认为D 的分布与介质无关。
2.2真空中的静电场方程

a b
2 2 ld l ( b 2ab) 0 0 a
q E dS 2lE
S
0; a 2 a2 ˆ 0 E ;a a b 2 0 b 2 2ab ˆ 0 ; a b 2 0
五、 高斯定律的应用 高斯定律适用于任何情况,但只有具有一定对称性的场才能得到解析解。 a)分析给定场分布的对称性,判断能否用高斯定律求解。 计算 机巧
例1 求电荷线密度为 的无限长均匀带电体的电场。
b)选择适当的闭合面作为高斯面,使 D dS 容易积分。
解:电场分布特点: D 线皆垂直于导线,呈辐射状态; 等 r 处D 值相等; 取长为L,半径为 r 的封闭圆柱面为高斯面。
r 2
2 r
r q dV 4r 2 dr a 3 a V 0
a
q E dS
S
0
r2 , r a r 4 a E 0 3 a , r a r 2 4 0 r
电场随半径的变化曲线
r2 , r a r 4 a E 0 3 a , r a r 2 4 0 r
ra
2 E dS E dS E dS 4 r Er r r
S
在半径为r的同心球面上,电场的大小相等, 方向与球面的法线方向一致,
S S
ra ra
r r 4 2 q dV r sin drdd 4r dr a a V 0 0 0 0
E
二、 真空中的高斯定律
1. 静电场的散度———高斯定律的微分形式
E( r )
1 4 0
静电场中的电介质

有介质时的静电场基本方程:
r
rr
引入电位移矢量:D 0 E P
rr
Ò D dS q0
Sr r
3
Ñ l E dl 0
对各向同性线性电介质 D E
电场的能量
§3.7 电场的能量
一. 电场是能量的携带者
➢ 对平行板电容器
We
1 CU 2 2
1
(
S )( Ed )2
2d
1
2
E 2V
E2
静电能由电场携带,存在于电场中.
b uur r
Aab q E d l q(Ua Ub ) qUab (E pb E pa )
a
10
3. 电势叠加原理
(1)点电荷的电势分布:
(2)点电荷系的电势分布:
(3)任意带电体的电势分布:
电势的计算
11
叠加法 定义法
Ui dU
UP E dl P
静电场中的导体和电介质
一.静电场中的导体 1.导体静电平衡条件:
4 r R d 2
q '內
( r 1)q r
q '外
( r 1)q r
r R
空间的电势分布是三个带电球面的电势叠加:
r
r R:
Ur
q
4 0 R
q '內
4 0 R
q '外
40 R d
q ( r 1)q ( r 1)q q ( 1 r 1 ) 4 0 R 4 0 r R 4 0 r ( R d ) 4 0 r R R d
B
A
5.静电屏蔽问题:
E
空腔导体屏蔽外电场
13
接地导体壳有效的屏蔽了内电场
2.1 静电场基本方程

2.1 静电场的基本方程
散度方程 旋度方程 物质本征方程
电磁场与电磁波
1
☆ 先认识一下这些方程
积分形式 1. 真空中的高斯定理 散度方程 微分形式
D dS q
E ? D 0E ?
电磁场与电磁波
8
方法二:静电场的基本方程 1 2 (r ) 场点在球内 D 2 (r D) = 场点在球外 r r 0 注意“边界条件”——微分方程定常数!
r=a时,…… r=∞时,…… 边界条件将在后文学到
电磁场与电磁波
微分形式说明:
静电场(电位移)散度=该点处电荷体密度; 进而,静电场具有散度源,即自由电荷的体密度。
电磁场与电磁波
7
例1. 求电位移
已知:真空中半径为a的球形区域内,电荷分布的按照某 个体密度分布, (r ) 0 (1 r 2 / a 2 ) 求电通量密度. 分析:
“球体”——“对称性”——球座标! 要分“球内”、“球外”分别计算!
方法一:Electrostatic Gauss’s Law
S S
E dS E R dS E R ( 4r )
S 2
r 2
1 E dS
0 V
dV
? 场点在球内 r a dV (r ) (4R )dR 0 ? 场点在球外 r a V
请注意:此处的 q 是指自由电荷qf !!! 详细证明过程从略。 详见书:P25-26 ?????
证明要点: 1. 仅一个电荷时,证明… 2. 多个电荷时,“叠加原理” 3. 任意曲面上求积分时,“立体角”
静电场 第3章 静电场分析

第3章静电场分析以矢量分析和亥姆霍兹定理为基础,讨论静电场(包括恒定电场) 的特性和求解方法。
建立真空、电介质和导电媒质中电场的基本方程,以及电介质的特性方程,将静电场的求解归结为电位问题的求解。
导出泊松方程和拉普拉斯方程,确立电场的边界条件。
介绍电容的计算,电场能量及静电力的计算。
§1 真空中静电场的基本方程由静止电荷形成的电场称为静电场。
一、静电场分析的基本变量1、场源变量—电荷体密度ρ(r )是一种标量性质的源变量,因而静电场是一种有散度的矢量场。
2、场变量(1)电场强度矢量E (r )表示电场对带电质点产生作用的能力。
(2)电位移矢量D (r )反映电介质内存在电场时,电介质内的束缚电荷在电场作用下出现的位移现象。
(3)电流密度矢量J (r )反映物质内存在电场时,构成物质的带电粒子在电场强度的作用下出现运动或移动。
3、本构关系D=εEJ=εE二、真空中静电场的基本方程1、电场的散度—高斯定理(1)定理内容在静电场中,电位移矢量D 0穿过任意闭合曲面S 的通量等于曲面S 所包围的总电荷。
D ?dS=积分形式?0S?ρd ττD=ρ微分形式0(2)物理意义静电场是有源场,是有散场。
(3)定理证明立体角概念一面积元对dS 对一点O 张的立体角dS ?e r R2d Ω==d S cos θR2闭合曲面对面内一点O 所张的立体角因为闭合曲面的外法线为正。
所以整个积分区域θπ2,即,cos θ>0,所以d S ?e r R2πΩ=?=?R122πR sin θd θ=4π2闭合曲面对面外一点O 所张的立体角此时在整个积分区域中有一半是θc o s θπ2,即c o s θ>0。
而另一半是θ>π2,即。
《电磁场理论》2.5 介质中的高斯定理

D E
P ( 0 )E
在真空中, P 0
,
r 1
D 0 E
5
各向异性介质的电位移与电场强度的关系可以表示为
D x 11 D y 21 D z 31
12 13 E x 22 23 E y 32 33 E z
7
例1:已知半径为a,介电常数为 的介质球带电荷为q, 球外为空气,分别在下列情况下求空间各点的电场和介 质中的极化电荷分布: 1)电荷q均匀分布在球体内; 2)电荷q集中在球心; 3)电荷q均匀分布在球面上。 解:1)电荷q均匀分布在球体内时,电场分布为
q
DdS q
S
4 3 a 3
P P1 ( 0 ) E1
1 d 2 q ( 0 ) 2 (r )0 2 r dr 4 r
r=0处为电场的奇异点,该处应有一极化点电荷,设此 10 极化点电荷为qP,根据高斯定理,有
S
0
E 1 d S q qP
取S为以介质球心为中心,r(r<a) 为半径的球面, q 0 2 4 r q qP 2 4 r
如图,柱形面上、下底面积 1 媒质 1 S ΔS很小,故穿过截面ΔS的电 分界面 通量密度可视为常数,假设 h 0 2 媒质 2 柱形面的高 h→0 ,则其侧面 2 积可以忽略不计。 D2 设分界面上存在的自由面电荷密度为 ,由高斯定理
1
1
S
D dS D1 nS D2 nS S
S
D dS q
( D1 D2 ) n
15
说明:1) 为分界面上自由电荷面密度,不包括自 由极化电荷。 2)若媒质为理想媒质,则
《电磁场理论》2.2 真空中静电场的基本方程

2)解为球坐标系下的表达形式。
Q ( 4 r 2 er ) (r a) 0 (r a) 0 1 2 Qr E ( Qr e ) (r a) r 2 r (r 4 a3 ) (r a) r 0 3 4 a 0 0 E 3Q 4 a3 0 0
S
E (r ) dS
1
(r )dV
Q
球对称分布:
8
a
ρ0 O
9
轴对称分布
无限大平面电荷
例1 求电荷密度为 S 的无限大面电荷在空间中产生的 电场。 分析:电场方向垂直表面。在 S n 平行电荷面的面上大小相等。 解:取如图所示高斯面。 由高斯定律,有
s S E1 (r ) ez S E2 (r ) (ez ) S 0 s ez ( z 0) s 2 0 E 2 0 E s ez ( z 0) 2 0 10
E (r )
1 4 0
V'
(r ')
R dV ' 3 R
(r ') R E 3 dV ' V ' 4 R 0
R 3 0 R
E 0 ——静电场是无旋场,或保守场。 5
2.静电场的环路定理 对静电场取任意闭合回路L作路径积分: 由Stokes定理得: E d l ( E ) d S 0
对高斯定理的讨论 物理意义:静电场 E 穿过闭合面S的通量只与闭合面内
所围电荷量有关
静电场是有源场,静电荷是其散度源。
4
二、真空中静电场的旋度
1.静电场的旋度:
静电场的基本方程

N
W楠 E
S
在外电场作用下,或者电介 质中的分子产生附加电矩,或者 固有偶极矩取得了外电场的取 向,这种现象就称为介质的极化
从微观角度看,电介质的极 化可以分为两种:非线性分子的 极化叫做位移极化,极性分子的 极化叫做取向极化。
电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V=4r3/3 dv=4r2dr
r0
r 0
r2
r4 a2
4
r 2 dr
4r0
r3 3
r5
5a2
D内
r0
r 3
r3 5a2
r=a时 (连续)
D内
D外
2 15
r0a
解法二: 微分形式解 • Dvr r r 球坐标
∵对称性,D外仅有er 分量:
evr ev 0 evr ev 0
在球外 r r 0
1 r2 r
r 2 D外
0
D外
C2 r2
当 r ∞ 时可看成点电荷:
D外
1
4
q r2
1
4
8
15
r
0
a
3
1 r2
C2
2 15
r0a3
D外
2 15
r0
a3 r2
球内(r≤a):
1
r2
r
r 2D内
r0
1
r2 a2
r 2D内
2r 0
r0 1
r2 a2
r
2dr
q
4e 0 R
c
点
1
4e
0
1
rd c
R
sds c
4e
0
1
4e0
s l
R
rl dl
R
c
体 面 线
式子中: R r r为场与源的距离
电位——电场的表示式对比
f 1 rd c 3.7
4e 0 R
Er
1
4e
0
r r
1 R
d
2.6
可见f 的计算式简便得多 标量积分,
D0
dS
i
q
E dl 0
l
3.2.1 (高斯定理) 3.2.2 (静电守恒定理)
在半径为R的球面上取面元dS,与球 心构成的锥体。
定义立体角
d
ds R2
球面度
整个球面: 4 R2 4
R2
dS 在er
上的投
任意面对中心 点的立体角:
d
dS •
er
影 r
R2
与是否球 面无关
特性:d 与R无关
及D0 e0E 能解出E
{亥姆霍兹定理:场可由散度与旋度共同确定
F(r)=Fl (r)+FS(r) 无旋量+无散量}
当电荷对称分布时,适当选取坐标系,可使D
或E只有一个分量,且仅是坐标的函数,则
E自动满足
v E
0
,此时只要计算
D
即可
得场解。
例 3.2.1 电荷按 r r0
a 的球体,求球内外的D
静电守恒定理证明
vv E dl
q
evr
v dl
l
4 e0 l R2
Ñ
闭合
q
4 ev0 E
RB dR R RA 2
v dl
0
q
4 e0
1 RA
1 RB
由斯托克斯定理
vv
v v 任意回路
微分形式
Ñ E dl
l
S
E
dS
任意限定面
0
E 0 无旋场、保守场
理论上由
D0
r
E 0
静电场分析
第三章 静场分析
矢量分析
内容:以第一章
为基础
亥姆霍兹定律
静电场的解
1.电场基本方程 2.电位 3.泊松、拉普拉斯方程 4.格林函数 5.介质极化(微观宏观) 6.边界条件 7.电容 8.电场能量
§3.1 静电场分析的基本变量:
1.矢量场 场变量 E
体
2.标量源 恒定电荷 面
线
变量 r 有散场
三个基本量:1.源r rv
e13
e
23
e33
2.场
v D
v
E v D
Dx
Dy
Dz
rv
rv
v E
Ex Ey
Ez
§3.2 真空中静电场的基本
方程
▪ 场的求解一般有两种方法:
微分方程 但都要分析
积分方程
矢量在闭合面上的通量 矢量在闭合回路上的环流
真空中的基本方程
+++++++++ ||||||||
对带电物体产生力
导体电子运动 J
介质极化
D
电位移C/m2
法拉第定律:
v D
q
4 r2
evr
均匀介质点电荷周围
1840’s
麦克斯韦本构关系
v D
rv
e
v E
F m
e为材料特性参数
均匀—e常数 e e0 e r
e11 e12 非均匀—张量 e21 e22
e31 e32
dS
dl1
dl2
1R 2 R
d
dS R2
1 2
dl1 dl2
对闭合面
d
4( 在闭合面内)
0( 在闭合面外)
证明高斯通量定律
首先设仅有单个点电荷 q
蜒 s Ñ
v D0
q
4
ds SvevrRgd2sSv4qevrRq0( (2 gqqd在 在Sv 闭 闭合 合面 面内 外) )
N
(E矢量积分有3个分量), 而微分总是可 计算的,也简单(引入 f的原因)。
R
y : (,)
因为电荷密度均匀,故电通密度D0垂直与这个无限大平 面,且仅与距离有关取柱面垂直于S 作底面积为S
的小柱体,则由高斯定理有:
侧面D S, D dS侧 0
D
dS
D0S
ez
ez
D0S
(ez )
(ez )
s
2D0S S
v D0
2
evz
2
(evz
)
z0 z0
z 0处,
D0
z 0
D0
z 0
2
( )
2
对于均匀介质: Er Dr
e
e er e0
介质中电场
e
Er
r为相对介电系数(一至几千)
减少
§3.3
静电场
电 Ev位 0函, 数Ev 可用一标量梯度表示,
即电位函数f
Q
0,
等效得
v E
直角坐标
Ev=-evx
x
evy
y
evz
z
电场等于电位梯度的负值
电场沿任意方向l的变化: E在l v上的投v 影
El
l
d El dl E dl
电位差
Bv v
A B
E dl
A
A(x, y, z)相对参考点 P(xp , yp , zp ), p 0 的
电位为 (x, y, z)
(
x
p
,
y
p
,
z
p
)
E
dl
3.3.5
(x,y,z)
将电场(点、体、面、线)表达式代入上式, 即可得电位的相应表示式
再用叠加原理 D0 • dS D0i • dS
S
S i1
N N
D0i • dS qi
i1 S
i 1
可推广到体、面、线电荷情况(对源点积
分即可)
•
D0dV
D0 • dS q
r (rr)dV
s
对任意面(体积)均成立 ,我们可得到高斯
定理的微分形式: v
D0 r
体分布
c
D内
r0
r2
r3 3
r5 5a 2
c r2
r
0
r3 3
r5 5a2
c r2
r
0时,D有限,
c r2
0
*解题时,依照题作图、矢径、源、计算。
例 3.2.2 计算均匀面电荷密度为s 无限大平
面的电场。
解:显然如果用库仑定律的电场强度公式
计算较繁复;
E
1
4e 0 S
x : (,),
r 1 dS
1。 ar22
分布在半径为
显见:电场为球对称, D沿径向且仅为r的函数
总电量:Q rr d
a 0
r0
1
r2 a2
4r
2dr
8 15
r
0a3
球外场(r≥a):以球心中心到场点作球面(高斯面)
s
D外
dS
4r 2D外
Q
8 15
r
0a3
D外
2 15
r0
a3 r2
球内(r<av): v
Ñ D内 dS 4 r2D内