学案6 空间直角坐标系空间向量及其运算
高二数学9.6空间向量的直角坐标及其运算(一)教案
立如图所示的空间直角坐标系,试写出图中各点的坐标 分析:要求点 E 的坐标,过点 E 与 x 轴、 y 轴垂直的平面 已存在,只要过 E 作平面垂直于 z 轴交 E‘点,此时 |x|=
| DA |, |y|= | DC |, |z|= | DE ' |,当 DA 的方向与 x 轴正向
相同时, x> 0,反之 x<0,同理确定 y、 z 的符号,这样 可求得点 E 的坐标 解:D(0,0,0) ,A(2,0,0) ,B(0,2,0) ,C(0,0,2) ,A1(2,0,2) , B1(2,2,2) ,C1(0,2,2) ,,D 1(0,0,2) ,E(2,2,1) ,F(0,1,0)
2
∴ D1F AD ,
1
11
又 AE
(0,1, ) , AE 2
D1 F
(0,1, ) (0, , 1) 0 , 22
∴ D1F AE , AD AE A ,
所以, D1F 平面 ADE .
四、课堂练习 : 1.已知 ABCD-A1B1C1D1 是棱长为 2 的正方体, E、F 分别是 BB1 和 DC的中点,建
量,
则 存 在 唯 一 的 有 序 实 数 组 ( a1 ,a2, a3 ) , 使
x
a 1a i 2 a j 3,a k
z 标系为 右
k
O i
j
A(x,y,z) y
有序实数组 (a1, a2, a3) 叫作向量 a 在空间直角坐标系 O xyz
中的坐标,记作 a (a1, a2 ,a3) . 在空间直角坐标系 O xyz 中,对空间任一点 A ,存在唯一
∴ 点 A( 2 , 3 , 关1 于 x O y平 面 的 对 称 点 为 A
C (2, 3,1) ,
空间直角坐标系空间向量及其运算
:a ,b 共面;a ,b ,若a ·b =0,则a ⊥b ; (a ·b )·c =a ·(b ·c ); b ,由a ·b =b ·c ,则a =c ;. ( )B.①③④ D.①)a =λb (λ是实数)是a 与b 共线的( ) B .必要不充分条件D .既不充分也不必要条件,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( ) ∥c B .a ∥b ,a ⊥c a ∥c ,a ⊥b D .以上都不对ABCD-A1B1C1D1中,点E 为上底面A1C1的中心,若 则x,y 的值分别为( ) B .x=1,y=D .x= ,y=1O-ABC,点M,N 分别为AB,OC 的中点,且 用a ,b ,c 表示 ,则 等于( )A. (b +c -a )B. (a +b -c )C. (a -b +c )D. (c -a -b )121212AA xAB yAD ++,,OC ,=c MN MN考点1 空间向量的线性运算【典例1】(1)在四面体O-ABC 中, =a , =b , =c ,D 为BC 的中点,E 为AD 的中点,则 = .(用a ,b ,c 表示) (2)如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设 =a,=b , =c ,M,N,P 分别是AA1,BC,C1D1的中点,试用a ,b ,c 表示以下各向量:【变式训练】如图,在长方体ABCD-A1B1C1D1中,O 为AC 的中点.(1)化简:(2)用 (3)设E 是棱DD1上的点,且 试求x,y,z 的值.【加固训练】1.已知空间四边形OABC ,其对角线为OB,AC ,M,N 分别是边 OA,CB 的中点,点G 在线段MN 上,且使MG=2GN ,则用向量 表示向量 正确的是()2.已知P 为矩形ABCD 所在平面外一点,PA ⊥平面ABCD ,M 在线段 PC 上,N 在线段PD 上,且PM=2MC,PN=ND ,若 则x+y+z= .3.如图,已知M,N 分别为四面体ABCD 的面BCD 与面ACD 的重心,G 为AM 上一点,且GM ∶GA=1∶3.设 试用 a ,b ,c 表示考点2 共线向量定理、共面向量定理的应用【典例2】(1)已知向量a ,b ,且 =a +2b , =-5a +6b , =7a -2b ,则一定共线的三点是( )A.A ,B ,DB.A ,B ,CC.B ,C ,DD.A ,C ,D(2)如图,已知各面均为平行四边形的四棱柱ABCD-A ′B ′C ′D ′,E,F,G ,H 分别是棱A ′D ′,D ′C ′,C ′C 和AB 的中点,求证:E,F,G ,H 四点共面.【加固训练】OA OB OC OE 1AA AB AD 1AP;MP NC .+①②111A O AB AD.22--11AB,AD,AA OC .表示112DE DD EO xAB yAD zAA 3==,若++,OA OBOC ,,OG 22A.OG OA OB OC33122B.OG OA OB OC233111C.OG OA OB OC633112D.OG OA OB OC633====++++++++MN xAB yAD zAP =++,AB AC AD ===,,,a b c ABBC CD1.有下列命题:①若p=x a +y b ,则p 与a ,b 共面;②若p 与a ,b 共面,则p=x a +y b ;③若 则P,M,A,B 共面; ④若P,M,A,B 共面,则 其中真命题的个数是( ) A .1 B .2 C .3 D .4 2.已知E,F,G ,H 分别是空间四边形ABCD 的边AB,BC,CD,DA 的中点, (1)求证:E,F,G ,H 四点共面. (2)设M 是EG 和FH 的交点, 求证:对空间任一点O ,有3.如图所示,已知四边形ABCD 是平行四边形,P 点是四边形ABCD 所在平面外一点,连接PA,PB,PC,PD.设点E,F,G ,H 分别为△PAB,△PBC,△PCD,△PDA 的重心.试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断.考点3 空间向量的坐标运算及数量积的应用【典例3】(1)(2014·合肥模拟)已知a =(1,0,-1),b =(-1,1,2).①a -b 与a 夹角的余弦值为 ;②若k a +b 与a -2b 平行,则k= ; ③若k a +b 与a +3b 垂直,则k= .(2)(2014·安阳模拟)如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算: ①②EG 的长.【通关题组】1.(2014·随州模拟)已知空间四边形ABCD 的每条边和对角线的 长都等于a ,点E,F 分别是BC,AD 的中点,则 的值为( ) 2.(2014·珠海模拟)已知平行六面体ABCD-A1B1C1D1中,以顶点A 为端点的三条棱长都等于1,且两两夹角都是60°,则对角线AC1的长是 . 3.(2014·焦作模拟)已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).则以 为边的平行四边形的面积等于( )2.(2014·东北联考)已知O(0,0,0),A(1,2,3),B(2,1,2),P(1,1,2),点Q 在直线OP 上运动,当 取最小值时,点Q 的坐标是 .MP xMA yMB =+,MP xMA yMB=+,()1OM OA OB OC OD 4=+++.EF BA ;AE AF 2222113A a B.a C.a D.a 244.AB AC ,QA QB。
空间直角坐标系及空间向量的线性运算
? ?
y
?
?
y1 ? y2 , 2
? ??
z
?
z1 ? z2 . 2
3.空间向量的有关概念
名称
空间向量
单位向量 零向量 相等向量 相反向量 共线向量 (或平行向量) 共面向量
定义 在空间中,具有 大小和方向 的量叫做空间向量,向量的 大小叫做向量的 长度或模 .
长度(或模)为 1 的向量 长度(或模)为 0 的向量
因为 A(1,2,2), 所以点 A 到平面 yOz 的距离为|1|=1.
答案:3 1
反思归纳
(1)点P(x,y,z)关于各点、线、面的对称点的坐标
点、线、面 原点 x轴 y轴 z轴
坐标平面xOy 坐标平面yOz 坐标平面zOx
对称点坐标 (-x,-y,-z) (x,-y,-z) (-x,y,-z) (-x,-y,z) (x,y,-z) (-x,y,z) (x,-y,z)
第六节 空间直角坐标系及空间向量的线性运算
备考方向明确
方向比努力更重要
复习目标
1.会确定空间点的坐标. 2.会求直线方向向量及平 面法向量. 3.会进行空间向量的几何 运算及代数运算. 4.会进行空间向量的数量 积及坐标运算.
学法指导
1.空间直角坐标系中的点是由横、纵、竖三个 数组成的有序数组. 2.直线的方向向量与直线上的向量是共线向量 , 平面的法向量与平面上的任何直线都垂直 . 3.空间向量的几何运算及代数运算与平面向量 类似. 4.会通过数量积进行空间向量的坐标运算表达 直线、平面位置关系.
(2)右手直角坐标系
在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如 果中指指向 z轴 的正方向,则称这个坐标系为右手直角坐标系.
空间向量的直角坐标及其运算
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD
,
H
是
C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平
教案)空间向量及其运算
教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
空间直角坐标系及坐标运算
基础知识梳理
4.空间向量坐标表示及应用 (1)数量积的坐标运算 则a·b若=aa=1b(1a+1,a2ab22,+aa33)b,3 .b=(b1,b2,b3), (2)共线与垂直的坐标表示 设a=(a1,a2,a3),b=(b1,b2,b3), 则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3= λb3,a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3= 0(a,b均为非零向量).
课堂互动讲练
2.证明空间四点共面的方法 对空间四点P,M,A,B可通过 证明下列结论成立来证明四点共面 (1)M→P=xM→A+yM→B; (2)对空间任一点 O,O→P=O→M+xM→A +yM→B;
课堂互动讲练
(3)对空间任一点 O,O→P=xO→M+yO→A +zO→B(x+y+z=1);
A.x=1,y=1 B.x=12,y=-12 C.x=16,y=-32
D.x=-16,y=32 答案:C
三基能力强化
3.已知空间四边形 OABC 中,点 M 在 线段 OA 上,且 OM=2MA,点 N 为 BC 的中
点,设O→A=a,O→B=b,O→C=c,则M→N等于
() A.12a+12b-23c
【解】 法一:(1)原式可变形为 O→P=O→M+(O→A-O→P)+(O→B-O→P) =O→M+P→A+P→B. ∴O→M=O→P-P→A-P→B. 由共面向量定理的推论知 M 与 P、A、 B 共面.
课堂互动讲练
(2)
原
式
可
变
形
为
→ OP
=
2
→ OA
+
→ OA
-
O→B+O→A-O→M=2O→A+B→A+M→A.
基础知识梳理
3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角
空间向量的坐标运算精选全文完整版
| AC | | BB1 | cos 900 0 AD1 DB1 AD1 DA AD1 AB AD1 BB1 | AD1 | | DA | cos1350 | AD1 | | AB | cos 900
| AD1 | | BB1 | cos 450 0 又AD1 AC A,
AD1 DB1, AC DB1. DB1 平面ACD1.
xA‘
y B(3,4,0)
与y轴垂直的坐标平面是___x_o__z___ A'(3, 4, 5)
与z 轴垂直的坐标平面是___x_o_y____
(2)点P(2,3,4)在 xoy平面内的射影是_(_2_,3_,_0_)
在 xoz 平面内的射影是_(2_,_0_,4_)_
在 yoz平面内的射影是_(0_,_3_,4_)_
(2)a 6b 8c _(2_,_-3_,_1_)_+_(_12,0,18)+(0,0,-16)
=(14,-3,3)
练习P39 8.判定下列各题中的向量是否平行: (1) (1,2,-2)和(-2,-4,4), (2) (-2,3,5)和(16,-24,40). 解: (1) (-2,-4,4) = -2 (1,2,-2)
数轴:x轴、y轴、z轴,它们都叫做坐标轴.这样
就建立了一个空间直角坐标系O — x y z .
点O叫做原点,向量 i, j, k
z k
都叫做坐标向量.通过每两个
y
i 坐标轴的平面叫做坐标平面。
O
j
x
三、向量的直角坐标系
给定一个空间坐标系和向量
a ,且设 i, j, k为坐标向量,由空z a
间向量基本定理,存在唯一的有
D1 A1
D
空间向量及其运算详细教案
空间向量及其运算3。
1。
1 空间向量及其加减运算教学目标:(1)通过本章的学习,使学生理解空间向量的有关概念。
(2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。
能力目标:(1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。
(2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。
(3)培养学生空间向量的应用意识教学重点:(1)空间向量的有关概念(2)空间向量的加减运算及其运算律、几何意义.(3)空间向量的加减运算在空间几何体中的应用教学难点:(1)空间想象能力的培养,思想方法的理解和应用。
(2)空间向量的加减运算及其几何的应用和理解.考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想.易错点:空间向量的加减运算及其几何意义在空间几何体中的应用教学用具:多媒体教学方法:研讨、探究、启发引导。
教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。
教学过程:(老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定?(学生):矢量,由大小和方向确定(学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板?(老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么?(学生)向量(老师):这三个向量和以前我们学过的向量有什么不同?(学生)这是三个向量不共面(老师):不共面的向量问题能直接用平面向量来解决么?(学生):不能,得用空间向量(老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算(老师):实际上空间向量我们随处可见,同学们能不能举出一些例子?(学生)举例(老师):然后再演示(课件)几种常见的空间向量身影。
教案)空间向量及其运算
教案)空间向量及其运算一、教学目标1. 理解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的表示方法,能够熟练地在坐标系中表示和计算空间向量。
3. 理解空间向量的运算规则,包括加法、减法、数乘和点乘。
4. 能够运用空间向量的运算解决实际问题。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向。
2. 空间向量的表示方法:坐标表示、图形表示。
3. 空间向量的运算规则:a. 加法:三角形法则、平行四边形法则。
b. 减法:向量的减法等于加法的相反向量。
c. 数乘:数乘向量的概念、运算规则。
d. 点乘:点乘的定义、运算规则、几何意义。
三、教学重点与难点1. 教学重点:a. 空间向量的概念及其基本性质。
b. 空间向量的表示方法。
c. 空间向量的运算规则。
2. 教学难点:a. 空间向量的运算规则的理解与应用。
b. 空间向量在实际问题中的应用。
四、教学方法与手段1. 教学方法:a. 采用讲授法,讲解空间向量的概念、性质和运算规则。
b. 采用示例法,展示空间向量的运算过程和应用实例。
c. 采用练习法,让学生通过练习巩固空间向量的知识。
2. 教学手段:a. 使用多媒体课件,展示空间向量的图形和运算过程。
b. 使用黑板和粉笔,绘图和演算空间向量的运算。
五、教学安排1课时教案)空间向量及其运算六、教学过程1. 导入:通过简单的二维向量例子,引导学生思考空间向量的概念。
2. 新课:讲解空间向量的定义、性质,以及各种表示方法。
3. 示范:展示空间向量的加法、减法、数乘和点乘运算,并用多媒体课件演示运算过程。
4. 练习:让学生在多媒体课件上进行空间向量的运算练习,巩固所学知识。
5. 应用:举例说明空间向量在实际问题中的应用,如物体运动、空间几何等。
七、教学反思课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、教学内容的掌握程度等。
针对存在的问题,调整教学方法,为下一节课的教学做好准备。
八、课后作业1. 复习空间向量的概念、性质和运算规则。
空间直角坐标系中的向量
空间直角坐标系中的向量在空间直角坐标系中,向量是一种既有大小又有方向的量,常用箭头来表示。
本文将讨论空间直角坐标系中向量的基本概念、表示方法以及向量运算等内容。
向量的基本概念在空间直角坐标系中,一个向量可以由起点和终点确定。
向量的模表示向量的大小,用 ||a|| 或 |AB| 表示,其中a为向量AB的模,AB为向量的名称。
向量的方向表示向量的朝向,可以用箭头表示。
向量既有大小,也有方向,所以向量是有向线段。
向量的表示方法向量的表示方法有两种:点表示法和分量表示法。
- 点表示法:用向量的起点和终点表示向量。
例如,向量AB用A 点和B点表示。
- 分量表示法:用向量在坐标轴上的投影表示向量。
空间直角坐标系中的向量可以表示为三个有序数对,即(x,y,z)。
其中x、y、z分别为向量在x轴、y轴和z轴上的分量。
向量的运算在空间直角坐标系中,向量的运算包括向量的加法、减法、数量乘法和数量除法。
- 向量的加法:向量的加法满足三角形法则,即将一个向量平移后与另一个向量首尾相接,用结果向量的起点和终点表示。
向量的加法满足交换律和结合律。
- 向量的减法:向量的减法可以看作是向量加法的逆运算,即将减去的向量取负。
例如,向量AB-向量AC可以表示为向量CB。
- 数量乘法:向量与实数的乘积,即将向量的模与实数相乘后保持方向不变。
- 数量除法:向量除以实数,即将向量的模除以实数后保持方向不变。
向量的坐标表示在空间直角坐标系中,向量的坐标表示为(x,y,z),其中x为向量在x 轴上的分量,y为向量在y轴上的分量,z为向量在z轴上的分量。
向量的数量乘法和数量除法的性质向量的数量乘法和数量除法满足以下性质:- 量的分配律:a(向量BC + 向量CD) = a向量BC + a向量CD,(a+b)向量AB = a向量AB + b向量AB。
- 量的结合律:a(b向量AB) = (ab)向量AB。
- 一对称性:-1向量AB = -向量AB。
第6-1节(空间直角坐标系、向量及其运算
江西理工大学理学院第 六 章 向量代数与 空间解析几何江西理工大学理学院第 1 节 空间直角坐标系 向量及其运算江西理工大学理学院数轴上的点与数 x具有一一对应的关系。
平面直角坐标系使我们建立了平面上的点( x , y ) 与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究。
为了沟通空间图形与数的研究,我们用类 似于平面解析几何的方法,通过引进空间直角 坐标系来实现。
江西理工大学理学院一、空间点的直角坐标三个坐标轴的正方向 符合右手系.即以右手握住 z 轴, 当右手的四个手指从z 竖轴π 正向 x 轴以 角 2定点 o•y 纵轴度转向正向 y 轴时, 横轴 x 大拇指的指向就是 z 空间直角坐标系 轴的正向.注:为使空间直角坐标系画得更富于立体感通 常把 x 轴和 y轴间的夹角画成 130 0 左右。
江西理工大学理学院Ⅲzzox 面Ⅱyoz 面Ⅳxoy 面Ⅶ ⅧoyⅥ ⅤⅠx空间直角坐标系共有八个卦限江西理工大学理学院⎯ 空间的点 ←⎯ → 有序数组 ( x , y , z )特殊点的表示: 坐标轴上的点 P , Q , R, 坐标面上的点 A, B , C ,1− −1O ( 0, 0, 0 )B ( 0, y , z )•zR ( 0, 0, z )C ( x , o, z )M ( x, y, z )o xP ( x , 0 ,0 )Q ( 0 , y ,0 )yA( x , y ,0)江西理工大学理学院)各坐标面;( 2 )各坐 例1 求点 ( a , b, c )关于(1 标轴;(3 )坐标原点的对称点的 坐标。
解 (1)点( a , b , c )关于 xOy 面的对称点是 ( a , b ,− c );关于 yOz 面的对称点是 ( − a , b , c ); 关于 zOx 面的对称点是 ( a ,− b , c );( 2 )点( a , b , c )关于 x轴的对称点是 ( a ,− b ,− c ); 关于 y轴的对称点是 ( − a , b ,− c ); 关于 z轴的对 称点是 ( − a ,− b , c ); ( 3 )点( a , b , c )关于原点的对称点是 ( − a ,− b ,− c );江西理工大学理学院二、空间两点间的距离设 M 1 ( x1 , y1 , z1 ) 、 M 2 ( x 2 , y 2 , z 2 ) 为空间两点zR• M2M1d = M1 M 2 = ?•Po x2在直角 ∆M 1 NM 2 Q 及 直 角 ∆M PN 1 N 中,使用勾股定 y 理知2 2d = M 1 P + PN + NM 2 ,2江西理工大学理学院Q M 1 P = x2 − x1 , PN = y2 − y1 , NM 2 = z2 − z1 ,zR• M2M1 •Po x2 2Q Ny∴d =M 1 P + PN + NM 222M1 M 2 =( x2 − x1 ) + ( y2 − y1 ) + ( z2 − z1 ) .2 2空间两点间距离公式 特殊地:若两点分别为 M ( x , y , z ) , O ( 0,0,0)d = OM = x 2 + y 2 + z 2 .江西理工大学理学院例 2 求证以 M 1 (4,3,1)、 M 2 (7,1,2)、 M 3 (5,2,3) 三点为顶点的三角形是一个等腰三角形.解 M1 M 22(7 − 4)2 + (1 − 3)2 + ( 2 − 1)2 = 14, =M 2 M 3 = (5 − 7)2 + ( 2 − 1)2 + ( 3 − 2)2 = 6,2M 3 M1 =2(4 − 5)2 + ( 3 − 2)2 + (1 − 3)2 = 6,∴ M 2 M 3 = M 3 M1 ,原结论成立.。
(全国通用)最新高考复习 7第6节 空间直角坐标系、空间向量及其运算课件 理
点、线、面 原点 x轴 y轴 z轴
坐标平面 xOy 坐标平面 yOz 坐标平面 zOx
对称点坐标
(-x,-y,-z) (x,-y,-z) (-x,y,-z) (-x,-y,z) (x,y,-z) (-x,y,-z) (x,-y,z)
考点 2 空间向量的线性运算
典例2 已知i=(2,0,3),j=(1,0,4),则k=(0,0,2015)可以表示为 ( )
【参考答案】 B
3������-2������ = ������,
证明空间四点共面的方法 对空间四点 P,M,A,B 可通过证明下列结论成立来证明四点共面. (1)������������ =x������������ +y������������ . (2)对空间任一点 O,������������ = ������������+x������������+y������������. (3)对空间任一点 O,������������=x������������+y������������+z������������(x+y+z=1). (4)������������ ∥ ������������(或������������ ∥ ������������或������������ ∥ ������������).
5.空间向量的数量积
内容
定义 向量 夹角
性质 和结
论
运算 律
已知空间两个非零向量 a,b,将|a||b|cos θ 叫做向量 a,b 的数量积,记作 a·b.
已知两个非零向量 a,b,在空间任取一点 O,作������������=a,������������=b,则∠AOB 叫做两向量 a,b 的夹角,记作<a,b>,其范围是[0,π].若<a,b>=π,则称向量 a,b 互相垂直,记作 a
第六节 空间直角坐标系及空间向量的线性运算(知识梳理)
第六节空间直角坐标系及空间向量的线性运算复习目标学法指导1.会确定空间点的坐标.2.会求直线方向向量及平面法向量.3.会进行空间向量的几何运算及代数运算.4.会进行空间向量的数量积及坐标运算. 1.空间直角坐标系中的点是由横、纵、竖三个数组成的有序数组.2.直线的方向向量与直线上的向量是共线向量,平面的法向量与平面上的任何直线都垂直.3.空间向量的几何运算及代数运算与平面向量类似.4.会通过数量积进行空间向量的坐标运算表达直线、平面位置关系.一、空间直角坐标系及空间向量的有关概念1.空间直角坐标系及有关概念(1)空间直角坐标系以空间一点O为原点,建立三条两两垂直的数轴:x轴、y轴、z轴.这时我们说建立了一个空间直角坐标系Oxyz,其中点O叫做坐标原点,x 轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.(3)空间一点M 的坐标空间一点M 的坐标可以用有序实数组(x,y,z)来表示,记作M(x,y,z),其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标. 2.空间两点间的距离公式、中点公式 (1)距离公式①设点A(x 1,y 1,z 1),B(x 2,y 2,z 2),则②点P(x,y,z)与坐标原点O 之间的距离为 .(2)中点公式设点P(x,y,z)为线段P 1P 2的中点,其中P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则有121212,2,2.2x x x y y y z z z +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩3.空间向量的有关概念向量零向量长度(或模)为0的向量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量(或平行向量)如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a平行于b记作 a∥b共面向量平行于同一个平面的向量叫做共面向量概念理解(1)空间直角坐标系的建立原则是:合理利用几何体中的垂直关系,特别是面面垂直;尽可能地让相关点落在坐标轴或坐标平面上.(2)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称ABu u u r为直线l的方向向量,与ABu u u r平行的任意非零向量也是直线l的方向向量.(3)平面的法向量可利用方程组求出:设a,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为0,0.n a n b ⋅=⎧⎨⋅=⎩ (4)共线向量定理中a ∥b ⇔存在λ∈R,使a=λb,不要忽视b ≠0. (5)一个平面的法向量有无数个,但要注意它们是共线向量,不要误认为是共面向量. 二、数量积与坐标运算 1.数量积及相关概念(1)两向量的夹角:已知两个非零向量a,b,在空间任取一点O,作OA u u u r =a,OB u u u r=b,则∠AOB 叫做向量a 与b 的夹角,记作<a,b>,其范围是[0,π].若<a,b>=π2,则称向量a 与b 互相垂直,记作a ⊥b.若<a,b>=0,则称向量a 与b 同向共线,若<a,b>=π,则称向量a 与b 反向共线. (2)两向量的数量积:已知两个非零向量a,b,则|a||b|cos<a,b>叫做向量a,b 的数量积,记作 a ·b,即a ·b=|a||b|cos<a,b>. 2.两个向量数量积的性质和结论 已知两个非零向量a 和b.(1)a ·e=|a|cos<a,e>(其中e 为单位向量). (2)a ⊥b ⇔a ·b=0. (3)cos<a,b>=a b a b⋅.(4)a 2=a ·a=|a|2,|a|=.(5)|a ·b|≤|a||b|.3.空间向量数量积的运算律 (1)数乘结合律:(λa)·b=λ(a ·b).(2)交换律:a ·b=b ·a.(3)分配律:a ·(b+c)=a ·b+a·c. 4.向量坐标的定义设i,j,k 为空间三个两两垂直的单位向量,如果OP u u u r=xi+yj+zk,则(x,y,z)叫做向量OP u u u r的坐标. 5.空间向量运算的坐标表示 设a=(x 1,y 1,z 1),b=(x 2,y 2,z 2),那么(1)加、减运算:a ±b=(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积:a ·b=x 1x 2+y 1y 2+z 1z 2. (3)夹角公式:cos<a,b>=121212222222111222x y z x y z ++++.(4)模长公式:|a|=a a ⋅=222111x y z ++.(5)数乘运算:λa=(λx 1,λy 1,λz 1)(λ∈R).(6)平行的充要条件:a ∥b ⇔x 1=λx 2,y 1=λy 2,z 1=λz 2(λ∈R). (7)垂直的充要条件:a ⊥b ⇔x 1x 2+y 1y 2+z 1z 2=0.1.概念理解(1)探求两向量的夹角时, 必须从两向量共起点来看.(2)空间向量的数量积运算律与平面向量数量积运算律保持一致. (3)向量OP u u u r的坐标是终点坐标减去起点坐标.(4)立体几何中的平行或共线问题一般可以用向量共线定理解决,求两点间距离可以用向量的模解决;解决垂直问题一般可化为向量的数量积为零;求角问题可以转化为两向量的夹角.2.与数量积及坐标运算相关联的结论(1)aa表示单位向量.(2)|a|2=a·a.(3)空间向量不满足结合律,即(a·b)·c≠a·(b·c).1.在平行六面体ABCD-EFGH中,若AG u u u r=2xABu u u r+3yBCu u u r+3zHDu u u r,则x+y+z等于( D )(A)76(B)23(C)56(D)12解析:因为AG u u u r=AB u u u r+BC u u u r-HD u u u r,所以21,31,31,xyz=⎧⎪=⎨⎪=-⎩所以1,21,31,3xyz⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩所以x+y+z=12.故选D.2.平行六面体ABCD-A1B1C1D1中,向量AB u u u r,AD u u u r,1AAu u u r两两的夹角均为60°,且|AB u u u r|=1,|AD u u u r|=2,|1AAu u u r|=3,则|1ACu u u u r|等于( A )(A)5 (B)6 (C)4 (D)8解析:设AB u u u r=a,AD u u u r=b,1AAu u u r=c,则1ACu u u u r=a+b+c,21ACu u u u r=(a+b+c)2=a2+b2+c2+2a·b+2b·c+2c·a=25,因此|1ACu u u u r|=5.故选A.3.在空间四边形ABCD中,AB u u u r·CD u u u r+AC u u u r·DB u u u r +AD u u u r·BC u u u r等于( B )(A)-1 (B)0(C)1 (D)不确定解析:如图,令AB u u u r=a,AC u u u r=b,AD u u u r=c,则AB u u u r·CD u u u r+AC u u u r·DB u u u r+AD u u u r·BC u u u r=a·(c-b)+b·(a-c)+c·(b-a)=a·c-a·b+b·a-b·c+c·b-c·a=0.考点一空间直角坐标系[例1] 在空间直角坐标系Oxyz中,点A(1,2,2),则|OA|= ;点A到坐标平面yOz的距离是.解析:根据空间直角坐标系中两点间的距离公式,得|OA|=()()()222-+-+-=3.102020因为A(1,2,2),所以点A到平面yOz的距离为|1|=1.答案:3 1(1)点P(x,y,z)关于各点、线、面的对称点的坐标点、线、面对称点坐标原点(-x,-y,-z)x轴(x,-y,-z)y轴(-x,y,-z)z轴(-x,-y,z)坐标平面xOy (x,y,-z)坐标平面yOz (-x,y,z)坐标平面zOx (x,-y,z)(2)两点间距离公式的应用①求两点间的距离或线段的长度;②已知两点间的距离,确定坐标中参数的值;③根据已知条件探求满足条件的点的存在性.设点M(2,1,3)是直角坐标系Oxyz中一点,则点M关于x轴对称的点的坐标为( A )(A)(2,-1,-3) (B)(-2,1,-3)(C)(-2,-1,3) (D)(-2,-1,-3)解析:点M关于x轴对称的点与点M的横坐标相同,纵坐标、竖坐标均互为相反数,所以对称点为(2,-1,-3).故选A.考点二空间向量的线性运算[例2] 在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重u u u u r.心,用基向量OA u u u r,OB u u u r,OC u u u r表示OG u u u r,MG解:OG u u u r =OA u u u r +AG u u u r=OA u u u r +23AN u u u r=OA u u u r +23(ON u u u r -OA u u u r)=OA u u u r+23[12(OB u u u r +OC u u u r )-OA u u u r]=13OA u u u r+13OB u u u r+13OC u u u r. MG u u u u r =OG u u u r -OM u u u u r=OG u u u r -12OA u u u r=13OA u u u r +13OB u u u r +13OC u u u r -12OA u u u r=-16OA u u u r+13OB u u u r+13OC u u u r. (1)选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.如本例用OA u u u r ,OB u u u r ,OC u u u r 表示OG u u u r ,MG u u u u r等,另外解题时应结合已知和所求观察图形,联想相关的运算法则和公式等,就近表示所需向量.(2)首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量.所以求若干向量的和,可以通过平移将其转化为首尾相接的向量求和.如图,已知空间四边形OABC,其对角线为OB,AC,M,N 分别是对边OA,BC 的中点,点G 在线段MN 上,且分MN 所成的比为2,现用基向量OA u u u r ,OB u u u r ,OC u u u r 表示向量OG u u u r ,设OG u u u r =x OA u u u r +y OB u u u r+z OCu u u r ,则x,y,z 的值分别是( D ) (A)x=13,y=13,z=13(B)x=13,y=13,z=16(C)x=13,y=16,z=13 (D)x=16,y=13,z=13解析:设OA u u u r =a,OB u u u r =b,OC u u u r=c, 因为G 分MN 所成的比为2,所以MG u u u u r =23MN u u u u r, 所以OG u u u r=OM u u u u r +MG u u u u r =OM u u u u r +23(ON u u u r -OM u u u u r) =12a+23(12b+12c-12a) =12a+13b+13c-13a =16a+13b+13c, 即x=16,y=13,z=13. 考点三 空间向量的数量积与坐标运算[例3] 已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a=AB u u u r ,b=AC u u u r,(1)求a 和b 的夹角θ的余弦值;(2)若向量ka+b 与ka-2b 互相垂直,求k 的值.解:因为A(-2,0,2),B(-1,1,2),C(-3,0,4),a=AB u u u r,b=AC u u u r,所以a=(1,1,0),b=(-1,0,2). (1)cos θ=a b a b⋅=10025-++⨯=-1010,所以a 和b 的夹角θ的余弦值为-1010.解:(2)因为ka+b=k(1,1,0)+(-1,0,2)=(k-1,k,2), ka-2b=(k+2,k,-4)且(ka+b)⊥(ka-2b),所以(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k 2-8=2k 2+k-10=0. 解得k=-52或k=2. (1)求空间向量数量积的方法①定义法.设向量a,b 的夹角为θ,则a ·b=|a||b|cos θ; ②坐标法.设a=(x 1,y 1,z 1),b=(x 2,y 2,z 2),则a ·b=x 1x 2+y 1y 2+z 1z 2. ③基向量法.将所求向量用基向量表示,再进行运算. (2)数量积的应用①求夹角.设非零向量a,b 的夹角为θ,则cos θ=a b a b⋅,进而可求两异面直线所成的角;②求长度(距离).运用公式|a|2=a ·a,可将线段长度的计算问题转化为向量数量积的计算问题;③解决垂直问题.利用a ⊥b ⇔a ·b=0(a ≠0,b ≠0),可将垂直问题转化为向量数量积的计算问题.1.如图,在棱长为2的正四面体A-BCD 中,E,F 分别为直线AB,CD 上的动点,且3若记EF 中点P 的轨迹为L,则|L|等于 .(注:|L|表示L 的测度,在本题,L 为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积)解析:为了便于计算,将正四面体放置于如图的正方体中,可知,正方体的棱长为2,建立如图所示的空间直角坐标系,设E(0,y 1,y 1),F(2,y 2,2-y 2),P(x,y,z),|EF|=()()()222121222yy y y +-+-+=3,即(y 1-y 2)2+(y 1+y 2-2)2=1,又12122,22x y y y y y z ⎧⎪⎪⎪+=⎨⎪⎪+-=⎪⎩即121222,2x y y y y y z ⎧⎪⎪⎪+=⎨⎪+-⎪⎪⎩代入上式得2222=1,即2)22)2=14,即P 的轨迹为半径为12的圆,周长为|L|=2πr=π. 答案:π2.A,B,C,D 是空间不共面的四点,且满足AB u u u r ·AC u u u r =0,AC u u u r ·AD u u u r =0,AB u u u r ·AD u u u r=0,M为BC 的中点,则△AMD 是( C )(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)不确定 解析:因为M 为BC 的中点, 所以AM u u u u r =12(AB u u u r +AC u u u r).所以AM u u u u r·AD u u u r =12(AB u u u r +AC u u u r )·AD u u u r=12AB u u u r·AD u u u r +12AC u u u r ·AD u u u r=0.所以AM ⊥AD,即△AMD 为直角三角形. 考点四 易错辨析[例4] 如图所示,在空间直角坐标系中,BC=2,原点O 是BC 的中点,点A 的坐标是(32,12,0),点D 在平面yOz 内,且∠BDC=90°,∠DCB=30°.(1)求OD u u u r的坐标;(2)设AD u u u r 和BC u u u r的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC,垂足为E.在Rt △DCB 中,由∠BDC=90°,∠DCB=30°,BC=2,得BD=1,CD=3.所以DE=CDsin 30°3.OE=OB-BDcos 60°=1-12=12.所以D 点坐标为(0,-12,3),即OD u u u r的坐标为(0,-12,3).解:(2)依题意,OA u u u r=(3, 12,0), OB u u u r =(0,-1,0), OC u u u r=(0,1,0),所以AD u u u r =OD u u u r -OA u u u r=(-3,-1,3),BC u u u r =OC u u u r -OB u u u r=(0,2,0).由AD u u u r 和BC u u u r的夹角为θ,得 cos θ=AD BC AD BC⋅u u u r u u u ru u u r u u u r=()()2222223301202233102022-⨯+-⨯+⨯⎛⎫⎛⎫-+-+⨯++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=-10.所以cos θ=-10.解答空间向量的计算问题时,以下两点容易造成失分,在备考时要高度关注:(1)对向量运算法则特别是坐标运算的法则掌握不熟练导致失误. (2)不能熟练地运用向量共线、垂直的充要条件将问题转化.类型一 空间直角坐标系1.在四棱锥O-ABCD 中,底面ABCD 是平行四边形,设OA u u u r=a, OB u u u r=b,OC u u u r =c,则OD u u u r可表示为(A )(A)a+c-b (B)a+2b-c(C)b+c-a (D)a+c-2b 解析:因为OA u u u r=a,OB u u u r=b,OC u u u r=c,在▱ABCD 中,BA u u u r =OA u u u r -OB u u u r =a-b,OD u u u r - OC u u u r =CD u u u r =BA u u u r=a-b, 所以OD u u u r=OC u u u r+CD u u u r =a-b+c.故选A.2.已知空间任意一点O 和不共线的三点A,B,C,若OP u u u r =x OA u u u r +y OB u u u r +z OC u u u r(x,y,z ∈R),则“x=2,y=-3,z=2”是“P,A,B,C四点共面”的( B ) (A)必要不充分条件 (B)充分不必要条件 (C)充要条件(D)既不充分也不必要条件 解析:当x=2,y=-3,z=2时, 即OP u u u r=2OA u u u r-3OB u u u r+2OC u u u r.则AP u u u r -AO u u u r =2OA u u u r -3(AB u u u r -AO u u u r )+2(AC u u u r -AO u u u r), 即AP u u u r=-3AB u u u r +2AC u u u r,根据共面向量定理知,P,A,B,C 四点共面; 反之,当P,A,B,C 四点共面时,根据共面向量定理, 设AP u u u r =m AB u u u r +n AC u u u r(m,n ∈R), 即OP u u u r-OA u u u r=m(OB u u u r-OA u u u r)+n(OC u u u r-OA u u u r), 即OP u u u r=(1-m-n)OA u u u r+m OB u u u r+n OC u u u r,即x=1-m-n,y=m,z=n,这组数显然不止2,-3,2.故“x=2,y=-3,z=2”是“P,A,B,C 四点共面”的充分不必要条件.故选B.3.已知a=(2,3,1),b=(-4,2,x),且a ⊥b,则|b|= . 解析:因为a ⊥b,所以-8+6+x=0,解得x=2, 故|b|=()222422-++=26.答案:26类型二 空间向量线性运算4.在正方体ABCD-A 1B 1C 1D 1中,向量1DD u u u u r -AB u u u r +BC u u u r化简后的结果是( A )(A)1BD u u u u r (B)1D B u u u u r (C)1B D u u u u r (D)1DB u u u u r解析:根据空间向量加法的平行四边形法则,把向量平移到同一起点,得1DD u u u u r -AB u u u r +BC u u u r =BA u u u r +BC u u u r +1BB u u u r =1BD u u u u r,故选A.类型三 空间向量数量积及坐标运算5.点P 是棱长为1的正方体ABCD-A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则PA u u u r·1PC u u u u r 的取值范围是(D )(A)[-1,-14] (B)[-12,-14] (C)[-1,0] (D)[-12,0] 解析:如图,以D 1为原点,以D 1C 1,D 1A 1,D 1D 方向为x 轴,y 轴,z 轴,建立空间直角坐标系,则A(0,1,1),C 1(1,0,0),P(x,y,0), PA u u u r=(-x,1-y,1),1PC u u u u r=(1-x,-y,0), PA u u u r ·1PC u u u u r =(x-12)2+(y-12)2-12,(其中0≤x ≤1,0≤y ≤1),所以PA u u u r ·1PC u u u u r的取值范围是[-12,0].故选D.6.已知空间四边形ABCD 的每条边和对角线的长都等于a,点E,F 分别是BC,AD 的中点,则AE u u u r ·AF u u u r 的值为( C )(A)a 2 (B)12a 2 (C)14a 2(a 2解析:AE u u u r ·AF u u u r =12(AB u u u r +AC u u u r)·12AD u u u r =14(AB u u u r ·AD u u u r +AC u u u r ·AD u u u r)=14(a 2cos 60°+a 2cos 60°)=14a 2.故选C. 7.在四棱锥P-ABCD 中,AB u u u r =(4,-2,3),AD u u u r=(-4,1,0),AP u u u r=(-6,2,-8),则这个四棱锥的高h 等于( B )(A)1 (B)2 (C)13 (D)26解析:设平面ABCD 的法向量为n=(x,y,z),则,,n AB n AD ⎧⎪⎨⎪⎩u u u ru u u r ⊥⊥⇒4230,40,x y z x y -+=⎧⎨-+=⎩ 令y=4,则n=(1,4,43), 则h=n AP n⋅u u u r=326833-+-=2.故选B.8.OA u u u r=(1,2,3),OB u u u r=(2,1,2),OP u u u r=(1,1,2)(其中O 为坐标原点),点Q 在OP 上运动,当QA u u u r ·QB u u u r取最小值时,点Q 的坐标为( C )(A)( 12,34,13) (B)( 12,23,34) (C)( 43,43,83) (D)( 43,43,73) 解析:设OQ u u u r =λOP u u u r=λ(1,1,2)=(λ,λ,2λ), 则QA u u u r=(1-λ,2-λ,3-2λ), QB u u u r=(2-λ,1-λ,2-2λ),QA u u u r ·QB u u u r=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10 =6(λ-43)2-23.当λ=43时,QA u u u r ·QB u u u r取得最小值,此时Q(43,43,83).故选C.9.A,B,C,D 是空间不共面的四点,且满足AB u u u r ·AC u u u r =0,AC u u u r ·AD u u u r =0,AB u u u r ·AD u u u r=0,则△BCD是( B )(A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)不确定 解析:BC u u u r ·BC u u u r =(AD u u u r -AB u u u r )·(AC u u u r -AB u u u r) =AD u u u r ·AC u u u r -AD u u u r ·AB u u u r -AB u u u r ·AC u u u r +2AB u u u r =2AB u u u r >0,所以cos ∠DBC>0,∠DBC 为锐角, 同理∠BDC,∠BCD 为锐角. 所以△BCD 为锐角三角形,故选B.。
空间直角坐标系空间向量及其运算
【名师说“法”】
空间共线向量定理、共面向量定理的应用
三点(P,A,B)共线 空间四点(M,P,A,B)共面
P→A=λP→B
M→P=xM→A+yM→B
对空间任一点 O,O→P= 对空间任一点 O,O→P=O→M+
O→A+tA→B
xM→A+yM→B
三点(P,A,B)共线 空间四点(M,P,A,B)共面
[解析] 因为 α⊥β,所以两个平面的法向量也垂直,因此 (-1,3,4)·(x,1,-2)=0,即 x=-5.
[答案] -5
5.已知空间三点 A(1,1,1),B(-1,0,4),C(2,-2,3),则A→B
与C→A的夹角 θ 的大小是________.
[解析] 由题意知A→B=(-2,-1,3),C→A=(-1,3,-2),故
[答案] C
角度二 利用数量积求长度 2.如图,在 60°的二面角 α、l、 β 的棱 上有两点 A,B,点 C,D 分别在 α,β 内, 且 AC⊥AB,BD⊥AB,AC=BD=AB=1,则 CD 的长度为 ______________.
2
O→M)=12(O→B+O→C-O→A)=12(b+c-a).
[答案]
12(b+c-a)
3.如图所示,已知空间四边形 OABC,其
对角线为 OB、AC,M、N 分别为 OA、BC 的中
点,点 G 在线段 MN 上,且M→G=2G→N,若O→G=
x
→ OA
+
y
→ OB
+
z
→ OC
,
则
x,y,z
的值分别为
平行于同一个__平__面____的向量
0
a=b a的相反向 量为-a
a∥b
立体几何空间直角坐标系空间向量及其运算课件理ppt
空间向量的投影是指一个向量在另一个向量上的投影,通常用平行四边形法则来计算。而分解则是将一个复杂 向量分解为几个简单向量的组合。
空间向量在几何学中的运用
总结词
空间向量在几何学中有着广泛的应用,如 证明平行、垂直、计算角度和距离等。
VS
详细描述
通过建立空间直角坐标系,可以用空间向 量来表示和解决几何问题。例如,利用向 量证明平行或垂直,通过计算向量的模长 来计算距离,以及利用投影来计算角度等 。
实例分析
例如,在解决一些三角形问题时,可以通过 将三角形表示为向量形式,然后利用向量的
点乘和叉乘等性质进行求解。Βιβλιοθήκη 向量法在立体几何题中的应用
要点一
向量法在立体几何中的表现形式
要点二
实例分析
向量法在立体几何中通常表现为向量的加、减、数乘、 点乘和叉乘等运算,通过这些运算可以揭示出空间几何 体的内在关系。
向量的向量积不满足交 换律和结合律。
向量的向量积与向量的 模长无关,只与两个向 量的方向和夹角有关。
混合积及其应用
• 混合积定义:三个向量的混合积是一个标量,其定义为$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$。
• 混合积的性质 • 混合积的值等于三个向量所确定的平行四边形的面积乘以三个向量的模长之积。 • 混合积的方向与三个向量的顺序有关,具体来说,如果三个向量的顺序改变,则混合积的方向也会改变。 • 混合积的应用 • 在几何学中,混合积可以用于计算平行四边形的面积和体积。 • 在物理学中,混合积可以用于计算电磁场的强度和方向。
空间直角坐标系的定义
将空间中的点用三个实数坐标表示,即为空间直角坐标系。
高中数学教(学)案第6讲:空间向量的坐标运算
题目 第九章(B)直线、平面、简单几何体空间向量的坐标运算高考要求要使学生理解空间向量、空间点的坐标的意义,掌握向量加法、减法、数乘、点乘的坐标表示以及两点间的距离、夹角公式通过解题,会应用空间向量的坐标运算解决立体几何中有关平行、垂直、夹角、距离等问题 知识点归纳1空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面; 2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 3.空间向量的直角坐标运算律: (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++, 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4模长公式:若123(,,)a a a a =,123(,,)b b b b =, 则21||a a a a =⋅=+21||b b b b =⋅=+5.夹角公式:21cos ||||a ba b a b a ⋅⋅==⋅+. 6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB ==或,A B d =题型讲解例1 已知AB =(2,2,1),AC =(4,5,3),求平面ABC 的单位法向量 解:设面ABC 的法向量(,,)n x y z =,则n ⊥且n ⊥,即n ·=0,且n ·=0,即2x +2y +z=0且4x +5y +3z=0,解得1,2,x z y z ⎧=⎪⎨⎪=-⎩∴n =z (21,-1,1),单位法向量0||n n n ==±(31,-32,32) 点评:一般情况下求法向量用待定系数法由于法向量没规定长度,仅规定了方向,所以有一个自由度,可把n 的某个坐标设为1,再求另两个坐标平面法向量是垂直于平面的向量,故法向量的相反向量也是法向量,所以本题的单位法向量应有两解例2 已知A (3,2,1)、B (1,0,4),求: (1)线段AB 的中点坐标和长度;(2)到A 、B 两点距离相等的点P (x ,y ,z )的坐标满足的条件 解:(1)设P (x ,y ,z )是AB 的中点,则OP =21(OA +OB )=21[(3,2,1)+(1,0,4)]=(2,1,25),∴点P 的坐标是(2,1,25),d AB =222)14()20()31(-+-+-=17 (2)设点P (x ,y ,z )到A 、B 的距离相等,则222)1()2()3(-+-+-z y x =222)4()1(-++-z y x化简得4x +4y -6z +3=0(线段AB 的中垂面方程,其法向量的坐标就是方程中x,y,z 的系数),即为P 的坐标应满足的条件点评:空间两点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2)的中点为(221x x +,221y y +,221z z +),且|P 1P 2|=221221221)()()(z z y y x x -+-+-例3 棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?解:以D 为原点建立如图所示的坐标系,设存在点P (0,0,z ),AP =(-a ,0,z ), AC =(-a ,a ,0),1DB =(a ,a ,a ), ∵B 1D ⊥面P AC ,∴1DB ·AP =0,1DB ·AC =0∴-a 2+az =0∴z =a ,即点P 与D 1重合∴点P 与D 1重合时,DB 1⊥面P AC例 4 在三棱锥S —ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29(1)求证:SC ⊥BC ;(2)求SC 与AB 所成角的余弦值解法一:如图,取A 为原点,AB 、AS 分别为y 、z 轴建立空间直角坐标系,则有AC =2,BC =13,SB =29, 得B (0,17,0)、S (0,0,23)、C (21713,174,0), ∴SC =(21713,174,-23),CB =(-21713,1713,0) (1)∵SC ·CB =0,∴SC ⊥BC (2)设SC 与AB 所成的角为α,∵AB =(0,17,0),SC ·AB =4,|SC || AB |=417,∴cos α=1717,即为所求 解法二:(1)∵SA ⊥面ABC ,AC ⊥BC ,AC 是斜线SC 在平面ABC 内的射影,∴SC ⊥B C (2)如图,过点C 作CD ∥AB ,过点A 作AD ∥BC 交CD 于点D ,连结SD 、SC ,则∠SCD 为异面直线SC 与AB 所成的角∵四边形ABCD 是平行四边形,CD =17,SA =23,SD =22AD SA +=1312+=5,∴在△SDC 中,由余弦定理得cos ∠SCD =1717,即为所求 点评:本题(1)采用的是“定量”与“定性”两种证法题(2)的解法一应用向量的数量积直接计算,避免了作辅助线、平移转化的麻烦,但需建立恰当的坐标系;解法二虽然避免了建系,但要选点、平移、作辅助线、解三角形例5 如图,直棱柱ABC —A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点 (1)求BN 的长;(2)求cos 〈1BA ,1CB 〉的值;(3)求证:A 1B ⊥C 1M(1)解:如图建立坐标系,依题意得B (0,1,0),N (1,0,1), ∴|BN |=222)01()10()01(-+-+-=3(2)解:A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2), ∴1BA =(1,-1,2),1CB =(0,1,2), ∴1BA ·1CB =3,|1BA |=6,|1CB |=5 ∴cos 〈1BA ,1CB 〉=1111||||BA CB BA CB ⋅=1030(3)证明:∵C 1(0,0,2),M (21,21,2), ∴1A B =(-1,1,-2),1C M =(21,21,0),∴1A B ·1C M =0,∴A 1B ⊥C 1M例6 如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点 (1)证明AD ⊥D 1F ; (2)求AE 与D 1F 所成的角; (3)证明面AED ⊥面A 1D 1F 解:取D 为原点,DA 、DC 、DD 1为x 轴、y 轴、z 轴建立直角坐标系,取正方体棱长为2, 则A (2,0,0)、A 1(2,0,2)、 D 1(0,0,2)、E (2,2,1)、F (0,1,0)(1)∵DA ·1D F =(2,0,0)·(0,1,-2)=0,∴AD ⊥D 1F (2)∵AE ·1D F =(0,2,1)·(0,1,-2)=0,∴AE ⊥D 1F ,即AE 与D 1F 成90°角(3)∵DE ·1D F =(2,2,1)·(0,1,-2)=0,∴DE ⊥D 1F ∵AE ⊥D 1F ,∴D 1F ⊥面AE D ∵D 1F 面A 1D 1F ,∴面AED ⊥面A 1D 1F点评:①通过建立空间直角坐标系,点用三维坐标表示,向量用坐标表示,进行向量的运算,轻而易举地解决立体几何问题,不需要添加辅助线一个需要经过严密推理论证的问题就这样被简单机械的运算代替了②本题是高考题,标准答案的解法较为复杂,而运用代数向量求解则轻而易举,充分显示出代数化方法研究几何图形的优越性,这应作为立体几何复习的一个重点去掌握通过坐标法计算数量积去证垂直,求夹角、距离,是高考的重点例7 如图,正三棱柱ABC-A 1B 1C 1的底边长为a,侧棱长为2a建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角分析:(1)所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算,(2)首先要找出所求的角,或找出平面的法向量与直线所成的角,然后再求之 解:(1)建系如图,则A (0,0,0) B (0,a,0) A 1(0,0,2a),C 1(-23a,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M ,于是M (0,a 2,2a),连结AM ,MC 1则有13(,0,0)MC =-(0,,0)AB a =,1(0,02)AA a =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角13(,2)22a AC a a =-,(0,2)2aAM a =, ∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==由cos<1,AC AM >=113||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°解法二: 13(,2)22aAC a a =-, A BCA 1B 1C 1MzyxA BCA 1B 1C 1Mzyx平面ABB 1A 1的一个法向量(1,0,0)n =- ∴AC 1与侧面ABB 1A 1所成的角θ的正弦为:1sin cos ,AC n θ=<>=1112||||AC n AC n ⋅=∴AC 1与侧面ABB 1A 1所成的角为30°例8 棱长为2的正方体A 1B 1C 1D 1-ABCD 中,E 、F 分别是C 1C 和D 1A 1的中点,(1)求EF 长度;(2)求<,AB EF >;3)求点A 到EF 的距离分析:一般来说,与长方体的棱或棱上的点有关的问题,建立空间直角坐标系比较方便,适当建立坐标系后,正确地写出相关点的坐标及向量然后进行运算即可得解 解:以D 为原点,DA ,DC ,DD 1分别为x 轴, y 轴,z 轴建立直角坐标系,则A (2,0,0),B (2,2,0), E (0,2,1),F (1,0,2) 由此可得:AB =(0,2,0),EF =(1,-2,1)FA =(1,0,-2),|AB |=2,|FA |=5,AB EF ⋅= - 4, FA EF ⋅=1-2=-1, 所以(1)||EF =6 (2)c os<,AB EF >=||||AB EFAB EF ⋅=-36,所以<,AB EF >=π-arcc os 36 (3)FA 在EF 上的射影的数量FA c os<,FA FE >=||FA FE FE ⋅=61∴ A 到EF 的距离21||(6FA -= 点评:点到直线的距离的向量求法,就是先求出该点与直线上某点连线在直线上的射影,再用勾股定理求对应的距离例9 平面ABCD ⊥平面ABEF ,ABCD 是正方形,ABEF 是矩形,且,21a AD AF ==G 是EF 的中点,(1)求证平面AGC ⊥平面BGC ;(2)求GB 与平面AGC 所成角正弦值; (3)求二面角B —AC —G 的大小解:如图,以A 为原点建立直角坐标系, 则A (0,0,0),B (0,2a ,0),C (0,2a ,2a ), G (a ,a ,0),F (a ,0,0)(1)证明:(,,0),(0,2,2)AG a a AC a a ==,(,,0),(0,0,2)BG a a BC a =-=,设平面AGC 的法向量为111(,,1)n x y =, 设平面BGC 的法向量为222(1,,)n y z =,∴120n n ⋅= 即 12n n ⊥ ∴平面AGC ⊥平面BGC ; (2)由⑴知平面AGC 的法向量为1(1,1,1)n =-(,,0),(0,0,2)BG a a BC a =-=,∴||sin ||||2BG n BG n a θ⋅===⋅⋅(3)因1(1,1,1)n =-是平面AGC 的法向量,又AF ⊥平面ABCD , 平面ABCD 的法向量(,0,0)AF a =, 得11|||cos |||||3n AF n AF θ⋅===⋅∴二面角B —AC —G 的大小为求平面法向量的另一种方法:由 A (0,0,0),B (0,2a ,0),C (0,2a ,2a ), G (a ,a ,0),F (a ,0,0) 设平面AGC 的方程为:11110A x B y C z D +++=则11111111111111111111100000000,002200A B C D D A a B a C D A B A C B D A aB aC D B C +++==⎧⎧⎪⎪+++=⇒+=⇒==-=⎨⎨⎪⎪+++=+=⎩⎩ ∴平面AGC 的法向量为11111(,,)(1,1,1)n A B C A ==- 设平面BGC 的方程为:22220A x B y C z D +++=则222222222222222222222220200200220220,0000A aBCD aB D A aB aC D aB aC D B A C aA aB C D aA aB D +++=+=⎧⎧⎪⎪+++=⇒++=⇒==⎨⎨⎪⎪+++=++=⎩⎩∴平面BGC 的法向量为12222(,,)(1,1,0)n A B C A ==点评:①平面平行于哪一个轴,其法向量的对应坐标就是0;②平面经过原点时平面方程中的常数项等于0; ③平面法向量的两种求法的区别 小结:1运用空间向量的坐标运算解决几何问题时,首先要恰当建立空间直角坐标系,计算出相关点的坐标,进而写出向量的坐标,再结合公式进行论证、计算,最后转化为几何结论2本节知识是代数化方法研究几何问题的基础,向量运算分为向量法与坐标法两类,以通过向量运算推理,去研究几何元素的位置关系为重点利用两个向量(非零)垂直⇔数量积为零,可证明空间直线垂直;利用数量积可计算两异面直线的夹角,可求线段的长度;运用共面向量定理可证点共面、线面平行等;利用向量的射影、平面的法向量,可求点面距、线面角、异面直线的距离等 学生练习1若a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则 A x =1,y =1 B x =21,y =-21 C x =61,y =-23 D x =-61,y =23解析:∵a =(2x ,1,3)与b =(1,-2y ,9)共线,故有12x=y 21-=93 ∴x =61,y =-23应选C 答案:C 2在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z )A3 B2 C1 D0 解析:P 关于x 轴的对称点为P 1(x ,-y ,-z ),关于yOz 平面的对称点为P 2(-x ,y ,z ),关于y 轴的对称点为P 3(-x ,y ,-z )故①②③错误 答案:C3已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 值是A1B51C53 D57 解析:k a +b =k (1,1,0)+(-1,0,2)=(k -1,k ,2),2a -b =2(1,1,0)-(-1,0,2)=(3,2,-2)∵两向量垂直,∴3(k -1)+2k -2×2=0∴k =57答案:D 4设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为A (41,41,41) B (43,43,43)C (31,31,31)D (32,32,32) 解析:∵OG =43 1OG = 43(OA +1AG )=43OA + 43·32[21(AB +AC )]=43OA +41[(OB -OA )+(OC -OA )]=41OA + 41OB + 41OC ,而OG =x OA +y OB +z OC ,∴x =41,y =41,z =41答案:A5在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角为Aarccos23 Barccos1010 Carccos53 Darccos 52 解:建立坐标系,把D 点视作原点O ,分别沿DA 、DC 、1DD 方向为x 轴、y 轴、z 轴的正方向,则A (1,0,0),M (1,21,1),C (0,1,0),N (1,1,21) ∴AM =(1,21,1)-(1,0,0)=(0,21,1),CN =(1,1,21)-(0,1,0)=(1,0,21)故AM ·CN =0×1+21×0+1×21=21,|AM |=2221)21(0++= 25,|CN |=222)21(01++=25∴cos α=||||AM CNAM CN ⋅=252521⋅=52∴α=arccos 52答案:D 6已知空间三点A (1,1,1)、B (-1,0,4)、C (2,-2,3),则AB 与CA 的夹角θ的大小是_________解析:AB =(-2,-1,3),CA =(-1,3,-2), cos 〈AB ,CA 〉=1414)2(33)1()1()2(⋅-⨯+⨯-+-⨯-=147-=-21, ∴θ=〈AB ,CA 〉=120° 答案:120°7已知点A (1,2,1)、B (-1,3,4)、D (1,1,1),若AP =2PB ,则|PD |的值是__________解析:设点P (x ,y ,z ),则由AP =2PB ,得(x -1,y -2,z -1)=2(-1-x ,3-y ,4-z ),即1,3122,8262,,3182,3,x x x y y y z z z ⎧=-⎪-=--⎧⎪⎪⎪-=-=⎨⎨⎪⎪-=-⎩=⎪⎪⎩解得则|PD |=222)13()138()131(-+-+--=377答案: 3778设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,求a 的值解:PA =(-1,-3,2),PB =(6,-1,4) 根据共面向量定理,设PC =x PA +y PB (x 、y ∈R ),则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4)=(-x +6y ,-3x -y ,2x +4y ),∴⎪⎩⎪⎨⎧+=--=++-=-.422,31,612y x y x a y x a 解得x =-7,y =4,a =16 另法:先求出三点确定的平面方程,然后代入求a 的值9已知正方体ABCD —A 1B 1C 1D 1的棱长为2,P 、Q 分别是BC 、CD 上的动点,且|PQ |=2,建立坐标系,把D 点视作原点O ,分别沿DA 、DC 、1DD 方向为x 轴、y 轴、z 轴的正方向,(1)确定P 、Q 的位置,使得B 1Q ⊥D 1P ;(2)当B 1Q ⊥D 1P 时,求二面角C 1—PQ —A 的大小解:(1)设BP =t ,则CQ =2)2(2t --,DQ =2-2)2(2t --∴B 1(2,0,2),D 1(0,2,2),P (2,t ,0),Q (2-2)2(2t --,2,0), ∴1QB =(2)2(2t --,-2,2),1PD =(-2,2-t ,2) ∵B 1Q ⊥D 1P 等价于1QB ·1PD =0, 即-22)2(2t ---2(2-t )+2×2=0, 整理得2)2(2t --=t ,解得t =1此时,P 、Q 分别是棱BC 、CD 的中点,即P 、Q 分别是棱BC 、CD 的中点时,B 1Q ⊥D 1P ;(2)二面角C 1—PQ —A 的大小是π-arctan2210已知三角形的顶点是A (1,-1,1),B (2,1,-1),C (-1,-1,-2)试求这个三角形的面积解:S ABC ∆=21|AB ||AC |sin α,其中α是AB 与AC 这两条边的夹角 则S ABC ∆=21|AB ||AC |α2cos 1- =21|AB ||AC |2)||||ABAC =21在本题中,AB =(2,1,-1)-(1,-1,1)=(1,2,-2),AC =(-1,-1,-2)-(1,-1,1)=(-2,0,-3),∴|AB |2=12+22+(-2)2=9, |AC |2=(-2)2+02+(-3)2=13,AB ·AC =1·(-2)+2·0+(-2)·(-3)=-2+6=4, ∴S ABC ∆=2124139-⨯=210111证明正三棱柱的两个侧面的异面对角线互相垂直的充要条件是它的底面边长与侧棱长的比为2∶1证明:如图,以正三棱柱的顶点O 为原点,棱OC 、OB 为y 轴、z轴,建立空间直角坐标系,设正三棱柱底面边长与棱长分别为2a 、b ,则A (3a ,a ,b )、B (0,0,b )、C (0,2a ,0)因为异面对角线OA ⊥BC ⇔·BC =0⇔(3a ,a ,b )·(0,2a ,-b )=2a 2-b 2=0⇔b =2a ,即2a ∶b =2∶1,所以OA ⊥BC 的充要条件是它的底面边长与侧棱长的比为2∶112如图,ABCD 是边长为a 的菱形,且∠BAD =60°,△P AD为正三角形,且面P AD ⊥面ABCD(1)求cos 〈,〉的值;(2)若E 为AB 的中点,F 为PD 的中点,求||的值;(3)求二面角P —BC —D 的大小 解:(1)选取AD 中点O 为原点,OB 、AD 、OP 所在直线A分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A (0,-2a,0),B (23a ,0,0),P (0,0,23a ),D (0,2a,0) ∴AB =(23a ,2a ,0),PD =(0,2a,-23a ),则cos 〈AB ,PD 〉=||||AB PDAB PD⋅00()a a +⨯+⨯41(2)∵E 、F 分别为AB 、PD 的中点, ∴E (43 a ,-4a ,0),F (0,4a ,43a ) 则|EF=410a (3)∵面P AD ⊥面ABCD ,PO ⊥AD ,∴PO ⊥面ABCD∵BO ⊥AD ,AD ∥BC ,∴BO ⊥BC 连结PB ,则PB ⊥BC ,∴∠PBO 为二面角P —BC —D 的平面角 在Rt △PBO 中,PO =23a ,BO =23a , ∴tan ∠PBO =BO PO =a a2323=1则∠PBO =45°故二面角P —BC —D 的大小为45° 课前后备注。
《空间向量的直角坐标运算》 学历案
《空间向量的直角坐标运算》学历案一、学习目标1、理解空间向量直角坐标的概念。
2、掌握空间向量的直角坐标运算规则。
3、能够运用空间向量的直角坐标运算解决空间几何中的相关问题。
二、学习重难点1、重点(1)空间向量直角坐标的定义。
(2)空间向量的直角坐标运算公式。
2、难点(1)空间向量直角坐标运算在空间几何问题中的应用。
(2)空间向量的坐标表示与空间几何图形的关系。
三、知识回顾在平面向量中,我们已经学习了平面向量的坐标表示和运算。
对于平面向量\(\overrightarrow{a}=(x_1,y_1)\),\(\overrightarrow{b}=(x_2,y_2)\),有加法\(\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2)\),减法\(\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2)\),数乘\(k\overrightarrow{a} =(kx_1, ky_1)\),数量积\(\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2\)。
四、新课导入在空间中,为了更精确地描述物体的位置和方向,我们引入空间向量。
那么如何用坐标来表示空间向量,并进行相关运算呢?五、空间向量直角坐标的定义在空间直角坐标系\(Oxyz\)中,分别取与\(x\)轴、\(y\)轴、\(z\)轴方向相同的单位向量\(\overrightarrow{i}\),\(\overrightarrow{j}\),\(\overrightarrow{k}\)。
对于空间任意一个向量\(\overrightarrow{A}B\),都存在有序实数组\((x,y,z)\),使得\(\overrightarrow{A}B = x\overrightarrow{i} +y\overrightarrow{j} + z\overrightarrow{k}\),则称\((x,y,z)\)为向量\(\overrightarrow{A}B\)的直角坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考纲解读 考向预测 课前热身
考点突破
考点 一
考点 二
考点 三
即时巩固 课后拔高
真题再现 误区警示 规律探究
考纲解读
返回
考向预测
返回
课前热身
返回
返回
返回
返回
考点突破
考点 一
返回
返回
返回
返回
返回
返回
考点 二
返回
返回
返回
返回
返回
考点 三
返回
返回
返回
返回
返回
返回
返回
真题再现
返回
返回
误区警示
返回
规律探究
返回
返回
即时巩固
返回
返回
返回
返回
返回
课后拔高
返回
返回
返回
返回
返回
返回
返回
返回
返回Βιβλιοθήκη 返回返回返回
返回
返回
返回
返回
返回
返回