对数和对数函数练习题

合集下载

高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析1.已知函数f(x)=x-1-(e-1)lnx,其中e为自然对数的底,则满足f(e x)<0的x的取值范围为.【答案】(0,1)【解析】因为由得:,又,所以由f(e x)<0得:【考点】利用导数解不等式2.函数f(x)=log2(2x-1)的定义域为________________.【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.函数y=(-x2+6x)的值域()A.(0,6)B.(-∞,-2]C.[-2,0)D.[-2,+∞)【答案】D【解析】∵-x2+6x=-(x-3)2+9,∴0<-x2+6x≤9,∴y≥9=-2,故选D.4.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a 【答案】A【解析】∵a=log3π>log33=1,b=log2<log22=1,∴a>b,又==(log23)2>1,∴b>c,故a>b>c.5.将函数的图象向左平移1个单位长度,那么所得图象的函数解析式为()A.B.C.D.【答案】C【解析】因为,所以将其图象向左平移1个单位长度所得函数解析式为.故C正确.【考点】1对数函数的运算;2函数图像的平移.6.设a=log36,b=log510,c=log714,则a,b,c的大小关系为________.【答案】a>b>c【解析】a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,则只要比较log32,log52,log72的大小即可,在同一坐标系中作出函数y=log3x,y=log5x,y=log7x的图像,由三个图像的相对位置关系,可知a>b>c.7. [2014·湛江模拟]已知函数y=loga(2-ax)在区间[0,1]上是关于x的减函数,则a的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)【答案】B【解析】由题意可知,a>0,故内函数y=2-ax必是减函数,又复合函数是减函数,所以a>1,同时在[0,1]上2-ax>0,故2-a>0,即a<2,综上可知,a∈(1,2).8.已知上的增函数,那么的取值范围是A.B.C.D.【答案】C【解析】由题设,故选C.【考点】1、分段函数;2、对数函数的性质;3、不等式组的解法.9. 2log510+log50.25=()A.0B.1C.2D.4【答案】C【解析】∵2log510+log50.25=log5100+log50.25=log525=2故选C.10.下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是()A.(﹣∞,1]B.C.D.(1,2)【答案】D【解析】∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D11.方程的解是.【答案】1【解析】原方程可变为,即,∴,解得或,又,∴.【考点】解对数方程.12.(1)设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差是,则a=________;(2)若a=log0.40.3,b=log54,c=log20.8,用小于号“<”将a、b、c连结起来________;(3)设f(x)=lg是奇函数,则使f(x)<0的x的取值范围是________;(4)已知函数f(x)=|log2x|,正实数m、n满足m<n且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m、n的值分别为________.【答案】(1)4(2)c<b<a(3)-1<x<0(4),2【解析】解析:(1)∵a>1,∴函数f(x)=loga x在区间[a,2a]上是增函数,∴loga2a-logaa=,∴a=4.(2)由于a>1,0<b<1,c<0,所以c<b<a.(3)由f(-x)+f(x)=0,得a=-1,则由lg<0,得解得-1<x<0.(4)结合函数f(x)=|log2x|的图象,易知0<m<1,n>1,且mn=1,所以f(m2)=|log2m2|=2,解得m=,所以n=2.13.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.【答案】(1)k=-.(2){-3}∪(1,+∞).【解析】(1)由函数f(x)是偶函数,可知f(x)=f(-x),∴log4(4x+1)+kx=log4(4-x+1)-kx.log4=-2kx,即x=-2kx对一切x∈R恒成立,∴k=-.(2)函数f(x)与g(x)的图象有且只有一个公共点,即方程log4(4x+1)-x=log4有且只有一个实根,化简得方程2x+=a·2x-a有且只有一个实根.令t=2x>0,则方程(a-1)t2-at-1=0有且只有一个正根.①a=1t=-,不合题意;②a≠1时,Δ=0a=或-3.若a=t=-2,不合题意,若a =-3t=;③a≠1时,Δ>0,一个正根与一个负根,即<0a>1.综上,实数a的取值范围是{-3}∪(1,+∞).14.已知实数a、b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中所有不可能成立的关系式为________.(填序号)【答案】③④【解析】条件中的等式Û2a=3bÛa lg2=b lg3.若a≠0,则∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.15. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a+log a+…+log a=log a m +log a n ,求m 、n 的值.【答案】【解析】左边=log a m +log a+log a+…+log a=log a=log a (m +n),∴已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1. ∵m 、n 为正整数,∴解得16. 若|log a |=log a ,|log b a|=-log b a,则a,b 满足的条件是( ) A .a>1,b>1 B .0<a<1,b>1 C .a>1,0<b<1 D .0<a<1,0<b<1【答案】B【解析】先利用|m|=m,则m≥0,|m|=-m,则m≤0,将条件进行化简,然后利用对数函数的单调性即可求出a 和b 的范围. ∵|log a |=log a ,∴log a ≥0=log a 1,根据对数函数的单调性可知0<a<1. ∵|log b a|=-log b a,∴log b a≤0=log b 1,但b≠1,所以根据对数函数的单调性可知b>1.17. 已知a>0,且a≠1,log a 3<1,则实数a 的取值范围是( ) A .(0,1) B .(0,1)∪(3,+∞) C .(3,+∞) D .(1,2)∪(3,+∞)【答案】B【解析】由已知得log a 3<log a a.当a>1时,3<a ,所以a>3;当0<a<1时,3>a ,因此0<a<1.综合选B.18. 已知A={x|,x ∈R },B={x||x-i|<,i 为虚数单位,x>0},则A B=( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】C 【解析】,即。

带标准答案对数与对数函数经典例题

带标准答案对数与对数函数经典例题

经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4]. 类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】(2011 天津理7)已知则()A.B.C.D.解析:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2 则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)若S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.将转化为对数形式,其中错误的是().A.B.C.D.【答案】D【解析】将转化为对数式应为,即;由换底公式,得;;故选项A,B,C正确;而选项D:,错误;故选D.【考点】指数式与对数式的互化、换底公式.2.已知则的值等于( )A.B.C.D.【答案】A【解析】因为,所以因此【考点】对数式化简3.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.4.已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.【答案】(1),0;(2)【解析】(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2)即,,应分和两种情况讨论的单调性在求其值域。

有分析可知在这两种情况下均为单调函数,所以的值域即为。

解关于m的不等式即可求得m。

所以本问的重点就是讨论单调性求其值域。

试题解析:(1)解:(1)(且),解得,所以函数的定义域为 2分令,则(*)方程变为,,即解得, 3分经检验是(*)的增根,所以方程(*)的解为,所以函数的零点为, 4分(2)∵函数在定义域D上是增函数∴①当时,在定义域D上是增函数②当时,函数在定义域D上是减函数 6分问题等价于关于的方程在区间内仅有一解,∴①当时,由(2)知,函数F(x)在上是增函数∴∴只需解得:或∴②当时,由(2)知,函数F(x)在上是减函数∴∴只需解得: 10分综上所述,当时:;当时,或(12分)【考点】对数函数的定义域,函数的零点,复合函数单调性5.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式6.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算7.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.8.计算的结果为___________.【答案】1.【解析】由对数恒等式知,根据对数运算法则知,∴.【考点】对数的运算及对数恒等式.9.。

对数与对数函数习题及答案

对数与对数函数习题及答案

对数和对数函数习题一、选择题1.若3a =2,则log 38-2log 36用a 的代数式可表示为( ) (A )a-2 (B )3a-(1+a)2 (C )5a-2 (D )3a-a 2 2.2log a (M-2N)=log a M+log a N,则NM的值为( ) (A )41(B )4 (C )1 (D )4或1 3.已知x 2+y 2=1,x>0,y>0,且log a (1+x)=m,logaya n xlog ,11则=-等于( ) (A )m+n (B )m-n (C )21(m+n) (D )21(m-n)4.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是( ) (A )lg5·lg7 (B )lg35 (C )35 (D )351 5.已知log 7[log 3(log 2x)]=0,那么x 21-等于( )(A )31(B )321 (C )221 (D )331 6.函数y=lg (112-+x)的图像关于( ) (A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )直线y=x 对称 7.函数y=log 2x-123-x 的定义域是( )(A )(32,1)⋃(1,+∞) (B )(21,1)⋃(1,+∞) (C )(32,+∞) (D )(21,+∞)8.函数y=log 21(x 2-6x+17)的值域是( )(A )R (B )[8,+∞] (C )(-∞,-3) (D )[3,+∞] 9.函数y=log 21(2x 2-3x+1)的递减区间为( )(A )(1,+∞) (B )(-∞,43] (C )(21,+∞) (D )(-∞,21] 10.函数y=(21)2x +1+2,(x<0)的反函数为( ) (A )y=-)2(1log )2(21>--x x (B ))2(1log )2(21>--x x(C )y=-)252(1log )2(21<<--x x (D )y=-)252(1log )2(21<<--x x11.若log m 9<log n 9<0,那么m,n 满足的条件是( )(A )m>n>1 (B )n>m>1 (C )0<n<m<1 (D )0<m<n<112.log a132<,则a 的取值范围是( ) (A )(0,32)⋃(1,+∞) (B )(32,+∞)(C )(1,32) (D )(0,32)⋃(32,+∞)14.下列函数中,在(0,2)上为增函数的是( )(A )y=log 21(x+1) (B )y=log 212-x (C )y=log 2x 1(D )y=log 21(x 2-4x+5) 15.下列函数中,同时满足:有反函数,是奇函数,定义域和值域相同的函数是( )(A )y=2x x e e -+ (B )y=lg xx+-11 (C )y=-x 3 (D )y=x16.已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( ) (A )(0,1) (B )(1,2) (C )(0,2) (D )[2,+∞) 17.已知g(x)=log a 1+x (a>0且a ≠1)在(-1,0)上有g(x)>0,则f(x)=a1+x 是( )(A )在(-∞,0)上的增函数 (B )在(-∞,0)上的减函数 (C )在(-∞,-1)上的增函数 (D )在(-∞,-1)上的减函数 18.若0<a<1,b>1,则M=a b ,N=log b a,p=b a 的大小是( )(A )M<N<P (B )N<M<P (C )P<M<N (D )P<N<M 二、填空题1.若log a 2=m,log a 3=n,a 2m+n = 。

高三数学对数与对数函数试题

高三数学对数与对数函数试题

高三数学对数与对数函数试题1.函数y=lnx+ax有两个零点,则a的取值范围是________.【答案】(-,0)【解析】因为函数y=lnx+ax,所以y′=+a,若函数存在两个零点,则必须a<0,令y′=+a=0得x=-.当0<x<-时,y′>0,函数单调递增;当x>-时,y′<0,函数单调递减,因为函数y=lnx+ax有两个零点,故ln-1>0,得-<a<0.2.将函数的图象向左平移1个单位长度,那么所得图象的函数解析式为()A.B.C.D.【答案】C【解析】因为,所以将其图象向左平移1个单位长度所得函数解析式为.故C正确.【考点】1对数函数的运算;2函数图像的平移.3.设,则( )A.B.C.D.【答案】D【解析】.【考点】对数的运算及性质.4.设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是A.B.C.D.【答案】B【解析】a, b,c≠1. 考察对数2个公式: ,对选项A: ,显然与第二个公式不符,所以为假。

对选项B: ,显然与第二个公式一致,所以为真。

对选项C: ,显然与第一个公式不符,所以为假。

对选项D: ,同样与第一个公式不符,所以为假。

所以选B5.(2013•浙江)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy【答案】D【解析】因为a s+t=a s•a t,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.6.若,则a的取值范围是.【答案】【解析】由题中隐含条件可得:,可得,则由,根据对数函数的单调性可得,可解得.【考点】1.对数函数的性质;2.解不等式7.函数,的值域是 .【答案】【解析】∵,∴,∴,∴,令,是增函数,又,故当时,取得最大值为1,∴函数值域为.【考点】1.三角函数的最值;2.对数函数的最值.8.函数,的值域是 .【答案】【解析】∵,∴,∴,∴,令,是增函数,又,故当时,取得最大值为1,∴函数值域为.【考点】1.三角函数的最值;2.对数函数的最值.9.设a是实数,讨论关于x的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数.【答案】两个【解析】原方程等价于方程组即在同一坐标系下作直线y=a 与抛物线y=-x2+5x-3(1<x<3)的图象,由图可知,当1<a≤3或a=时,原方程只有一个实数解;当3<a< 时,原方程有两个不同的实数解.10.不等式lg(x-1)<1的解集为________.【答案】(1,11)【解析】由0<x-1<10,∴1<x<11.11.已知实数a、b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中所有不可能成立的关系式为________.(填序号)【答案】③④【解析】条件中的等式Û2a=3bÛa lg2=b lg3.若a≠0,则∈(0,1).(1)当a>0时,有a>b>0,即关系式①成立,而③不可能成立;(2)当a<0时,则b<0,b>a,即关系式②成立,而④不可能成立;若a=0,则b=0,故关系式⑤可能成立.12.已知a=log36,b=log510,c=log714,则a、b、c的大小关系为________.【答案】a>b>c【解析】a=log36=1+log32,b=1+log52,c=1+log72,由于log32>log52>log72,所以a>b>c.13.已知f(x)是定义域为实数集R的偶函数,∀x1≥0,∀x2≥0,若x1≠x2,则<0.如果f=,4f()>3,那么x的取值范围为()A.B.C.∪(2,+∞)D.∪【答案】B【解析】依题意得,函数f(x)在[0,+∞)上是减函数,不等式4f()>3等价于f()>,f(||)>f,||<,即-<<,由此解得<x<2,故选B.14.已知函数y=log2(ax-1)在(1,2)上单调递增,则a的取值范围为________.【答案】[1,+∞)【解析】根据复合函数的单调性及对数函数的定义域求解.因为y=log2(ax-1)在(1,2)上单调递增,所以u=ax-1在(1,2)单调递增,且恒大于0,即⇒a≥1.15.已知函数若函数与的图象有三个不同交点,则实数的取值范围是 .【答案】【解析】根据题意,可作函数的图象如下图所示,又作图象如下图中的虚线所示,由图显然知,要有三个不同的交点,就要满足: ,得【考点】1.函数的图象;2.指数不等式16.函数f(x)=lnx的图象与函数g(x)=x2-4x+4的图象的交点个数为()A.0B.1C.2D.3【答案】C【解析】将题中所给的函数画出如下:,根据图像,易知有2个交点.【考点】1.函数的零点;2.函数的图像画法.17.函数的递减区间为()A.B.C.D.【答案】D【解析】令,则在是减函数.由及其在为减函数,在是增函数,得,函数的递减区间为,故选D.【考点】对数函数的性质,复合函数的单调性.18.数列为各项为正数的等比数列,且已知函数,则A.﹣6B.﹣21C.﹣12D.21【答案】B【解析】.【考点】等比数列的运算性质,对数的运算.19.若,则( )A.B.C.D.【答案】D【解析】选项A错误,当时,,且函数是单调递减的,所以有;选项B错误,当时,,所以;选项C错误,当时,,,所以;选项D正确,当时,,函数是单调递减的,又,所以.【考点】1.对数函数的单调性;2.对数函数的图像与性质;3.指数函数的单调性20.已知,则的大小关系为____________.【答案】【解析】因为,,由,所以,.【考点】对数的性质及其运算21.若函数(其中为常数且),满足,则的解集是 .【答案】【解析】函数定义域为,由,知函数为单调递减函数,所以.由知,满足:,解得.【考点】1.不等式求解;2.对数的单调性;3.函数的定义域.22.函数在上为减函数,则的取值范围是()A.B.C.D.【答案】B【解析】若,则不可能为减函数,当时,由函数在上为减函数,知在恒成立,等价于,即,得,所以的取值范围是是,选B.【考点】对数函数,复合函数的单调性.23.函数的定义域为____.【答案】【解析】由题意可得:,可得,解得.【考点】对数不等式.24.已知,且,,则实数的取值范围是( )A.B.C.D.【答案】B【解析】当时,,符合题意;当时,,.故选B.25.实数满足,则的值为()A.8B.C.0D.10【答案】A.【解析】因为,所以,,从而。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.若,,则().A.B.0C.1D.2【答案】A【解析】令,即;所以.【考点】复合函数求值.2.函数的定义域是().A.[2,+∞)B.(2,+∞)C.(﹣∞,2]D.(﹣∞,2)【答案】D【解析】要使有意义,则,即,所以定义域为.【考点】函数的定义域.3.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.4.求的值是 .【答案】【解析】【考点】对数运算公式5.已知函数为常数).(Ⅰ)求函数的定义域;(Ⅱ)若,,求函数的值域;(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.【答案】(Ⅰ);(Ⅱ);(Ⅲ)且【解析】(1)对数中真数大于0(2)思路:要先求真数的范围再求对数的范围。

求真数范围时用配方法,求对数范围时用点调性(3)要使函数的图像恒在直线的上方,则有在上恒成立。

把看成整体,令即在上恒成立,转化成单调性求最值问题试题解析:(Ⅰ)所以定义域为(Ⅱ)时令则因为所以,所以即所以函数的值域为(Ⅲ)要使函数的图像恒在直线的上方则有在上恒成立。

令则即在上恒成立的图像的对称轴为且所以在上单调递增,要想恒成立,只需即因为且所以且【考点】(1)对数的定义域(2)对数的单调性(3)恒成立问题6.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算7.已知,函数,若实数、满足,则、的大小关系为 .【答案】【解析】因为所以函数在R上是单调减函数,因为,所以根据减函数的定义可得:.故答案为:.【考点】对数函数的单调性与特殊点;不等关系与不等式.8.已知函数,则实数t的取值范围是____.【答案】【解析】令,值域为由题意函数的值域为则是函数值域的子集所以即【考点】对数函数图象与性质的综合应用.9.计算:=.【答案】【解析】根据题意,由于可以变形为,故可知结论为【考点】指数式的运用点评:主要是考查了指数式的运算法则的运用,属于基础题。

对数与对数运算练习题

对数与对数运算练习题

对数与对数运算练习题一、选择题1. 已知\( \log_{10}100 = 2 \),那么\( \log_{10}0.01 \)等于多少?A. -1B. -2C. 1D. 22. 对数函数\( y = \log_{a}x \)的底数a的取值范围是:A. \( a > 0 \)B. \( a < 0 \)C. \( a \neq 1 \)D. 所有以上3. 如果\( \log_{2}8 = 3 \),那么\( 2^{3} \)等于多少?A. 8B. 16C. 32D. 644. 对数运算中,\( \log_{b}b = \):A. 0B. 1C. 2D. 无法确定5. 根据换底公式,\( \log_{10}x \)可以表示为:A. \( \frac{\log x}{\log 10} \)B. \( \frac{\log 10}{\log x} \)C. \( \frac{\log x}{\log 2} \)D. \( \frac{\log 2}{\log x} \)二、填空题6. 计算\( \log_{4}16 \)的值是________。

7. 如果\( \log_{3}27 = 3 \),那么\( 3^{3} \)的值是________。

8. 利用对数的换底公式,\( \log_{8}16 \)可以表示为________。

9. 对数的幂运算法则中,\( \log_{a}(x^n) = \)________。

10. 对数的乘积运算法则中,\( \log_{a}(xy) = \)________。

三、简答题11. 解释对数函数\( y = \log_{a}x \)中底数a的取值范围,并说明为什么。

12. 给出对数函数\( y = \log_{a}x \)的图像,并描述其基本特征。

13. 利用对数的换底公式,将\( \log_{5}125 \)转换为以10为底的对数。

14. 说明对数运算中的商的运算法则,并给出一个具体的例子。

对数与对数函数练习(含详解)

对数与对数函数练习(含详解)

对数与对数函数练习(含详解)一、单选题(本大题共10小题,共50.0分)1. 已知22log (3)1ax ax ++>对于任意的x R ∈恒成立,则实数a 的取值范围为()A. (0,4)B. [0,4)C. (0,2)D. [0,2)2. 已知131()2a =,121log 3b =,13log 2c =,则() A. c b a <<B. c a b <<C. a b c <<D. a c b << 3. 计算:1324lg 100ln ()e +-= A. 7- B. 3- C. 1 D. 74. 已知 2.1log 0.3a =, 2.10.3b =,0.32.1c =,则a ,b ,c 的大小关系是() A. b c a >> B. c a b >> C. b a c >>D. c b a >> 5. 设0a >且1a ≠,则“log 1a b >”是“b a >”的() A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 已知4log 7,46b a ==,则42log 28()=A.12a a b ++ B. 1a a b -+ C. 12a a b ++ D. 1a a b++ 7. 若2log 13a <,则a 的取值范围是() A. 2(,1)3 B. 2()3+∞C. 2(0,)(1,)3+∞ D. 22(0,)(,)33+∞ 8. 计算2lg5lg12lg3()+-= A. 2B. 1C. 0D. 2-9. 函数()a f x x =满足(2)4f =,那么函数()|log (1)|a g x x =+的图象大致是()A. B. C. D.10. 当1a >时,在同一坐标系中,函数x y a -=与log a y x =-的图象是()A. B. C. D.二、单空题(本大题共3小题,共15.0分)11. 计算23log 5292log (log 3)++=__________.12. 设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________. 13. 20.5203252731()()(0.1)()lg 2lg 59649π--++-++= __________.三、解答题(本大题共2小题,共24.0分)14. 已知()f x 是定义在R 上的奇函数,且当0x >时,()13.xf x =- (1)求函数()f x 的解析式;(2)当[2,4]x ∈时,不等式222(log )(5log )0f x f a x +-恒成立,求实数a 的取值范围.15. 已知0a >且满足不等式2+15a-222.a >(1)求实数a 的取值范围.(2)求不等式log (31)log (75).a a x x +<-(3)若函数log (21)a y x =-在区间[]1,3有最小值为2-,求实数a 值.答案和解析1.【答案】B解:由题意知22log (3)1ax ax ++>对于任意的x R ∈恒成立,等价于232ax ax ++>,即210ax ax ++>在R 上恒成立,当0a =时,2110ax ax ++=>,满足题意,当0a ≠时,210ax ax ++>在R 上恒成立,则2040a a a >⎧⎨=-<⎩,解得:04a <<, 综上所述:[0,4).a ∈ 2.【答案】B 解:103110()()122<<=,112211log log 132>=,1133log 2log 10<=, .c a b ∴<<3.【答案】C解:()1132224lg100ln 2232231e +-=+-=+-=,4.【答案】D解: 2.1 2.1log 0.3log 10a =<=,2.1000.30.31b <=<=,0.302.1 2.11c =>=,则a ,b ,c 的大小关系为.c b a >>5.【答案】D解:由log 1a b >得log log a a b a >,若01a <<,则b a <,若1a >,则b a >,即充分性不成立,若01a <<时,若b a >,则log log 1a a b a <=,即必要性不成立, 则即“log 1a b >”是“b a >”的既不充分也不必要条件, 6.【答案】D解:由题意,得到4log 6b =,所以4442444log 281log 71log 28.log 42log 6log 7a b a++===++ 7.【答案】C 解:当1a >时,函数log a y x =在它的定义域(0,)+∞上是增函数, 由于2log 1log 3a a a <=,则23a >, 故可得 1.a >当01a <<时,函数log a y x =在它的定义域(0,)+∞上是减函数, 由于2log 1log 3aa a <=,故可得20.3a << 综上可得a 的取值范围是2(0,)(1,)3+∞, 8.【答案】A 解:225122lg5lg12lg3lg5lg12lg3lg 23⨯+-=+-==, 9.【答案】C解:由(2)24a f ==,得2a =,所以2()|log (1)|.g x x =+函数2log (1)y x =+在区间(1,0)-上单调递增且0y <,在区间(0,)+∞上单调递增且0y >,所以函数()g x 在区间(1,0)-上单调递减,在区间(0,)+∞上单调递增, 10.【答案】D解:由于1a >,所以1()x x y a a-==为R 上的递减函数,且过(0,1); log a y x =-为(0,)+∞上的单调递减函数,且过(1,0),11.【答案】39解:23log 5292log (log 3)++22log 8log 5122log 2+-=+2log 402140139.=-=-=12.【答案】解:设236x y z k ===,因为,,x y z R +∈,所以1k >, 所以236log ,log ,log x k y k z k ===, 所以22263111122log 2log log 6log 32log log 2og og k k k x k k k z y l k l k+-=+-=+-=+, 因为1k >,所以222log log 222log k k +=当且仅当22log log 2k k =时等号成立,所以112x z y+-的最小值为 13.【答案】101 解:20.5203252731()()(0.1)()lg 2lg59649π--++-++ ()1223223053131lg(52)34109π--⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++-+⨯⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦ 254311001339⎛⎫=++-+ ⎪⎝⎭ 516311001399=++-+ 101.=14.【答案】解:(1)当0x <时,0x ->,由已知()13x f x --=-, 又()f x 是奇函数,()=-()f x f x -,故()=-13xf x -+,当=0x 时,(0)=0f , 故13,0();13,0x x x f x x -⎧-=⎨-+<⎩(2)由()()222log 5log 0f x f a x +-,可得()()222log 5log .f x f a x -- ()f x 是奇函数,()()222log log 5.f x f a x ∴-又()f x 是减函数,所以222log log 50x a x -+对[2,4]x ∈恒成立.令2lo ,[2,4]t g x x =∈,则[]1,2t ∈,250t at ∴-+对[]1,2t ∈恒成立.方法一:令()25g t t at =-+, []1,2t ∈,(1)60(2)920g a g a =-⎧∴⎨=-⎩,解得 6.a ∴实数a 的取值范围为[)6,.+∞方法二(分离参数法5):t a t∴+对[]1,2t ∈恒成立. 记5()h t t t =+,函数5()h t t t =+在区间[]1,2上单调递减, 所以max ()(1)6a h t h == ,∴实数a 的取值范围为[)6,.+∞15.【答案】解:2152(1)22a a +->,2152a a ∴+>-,即33a <,1a ∴<,又0a >,0 1.a ∴<<(2)由(1)知01a <<,log (31)log (75).a a x x +<-等价于3107503175x x x x +>⎧⎪->⎨⎪+>-⎩, 即137534x x x ⎧>-⎪⎪⎪<⎨⎪⎪>⎪⎩, 3745x ∴<<, 即不等式的解集为37(,).45(3)01a <<,∴函数log (21)a y x =-在区间[1,3]上为减函数, ∴当3x =时,y 有最小值为2-,即log 52a =-, 2215a a -∴==,解得a =a =舍去),所以a =。

对数与对数函数专题

对数与对数函数专题

对数与对数函数1. log 29×log 34+2log 510+log 50.25=( ) A.0 B.2 C.4 D.62. 已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b3. 设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b4. 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <15. 已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=log 2(-x )+m ,且f ⎝ ⎛⎭⎪⎫12=2,则m =________.考点一 对数的运算【例1】 (1)设2a =5b=m ,且1a +1b=2,则m 等于( )A.10B.10C.20D.100(2)计算:(1-log 63)2+log 62·log 618log 64=________.【训练1】 (1) 在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1C.lg 10.1D.10-10.1(2) 2723+⎝ ⎛⎭⎪⎫14log23-log 814=________.考点二 对数函数的图象及应用【例2】 (1) 已知lg a +lg b =0,则函数f (x )=a -x 与函数g (x )=log b x 的图象可能是( )(2)已知函数f (x )=⎩⎨⎧2x,x <1,log 2x ,x ≥1,若方程f (x )-a =0恰有一个实根,则实数a 的取值范围是________.【训练2】 (1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b,f (c )c 的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )a C.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A.(0,1) B.(1,2) C.(1,2] D.⎝⎛⎭⎪⎫0,12考点三 解决与对数函数性质有关的问题角度1 比较大小【例3-1】 (1)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A.a =b <cB.a =b >cC.a <b <cD.a >b >c(2) 已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( ) A.c <b <a B.a <b <c C.b <c <a D.c <a <b角度2 解简单的对数不等式【例3-2】 (1) 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A.(2,+∞)B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞)C.⎝ ⎛⎭⎪⎫0,22∪(2,+∞) D.(2,+∞)(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.【训练3】 (1) 已知a =log 3 72,b =⎝ ⎛⎭⎪⎫1413,c =log 13 15,则a ,b ,c 的大小关系为( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2) 设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________. (3) 已知函数f (x )=log a (x +2)+3(a >0,且a ≠1)的图象恒过定点(m ,n ),且函数g (x )=mx 2-2bx +n 在[1,+∞)上单调递减,则实数b 的取值范围是________.【典例】 已知函数f (x )=e x ,g (x )=ln x 2+12,对任意a ∈R,存在b ∈(0,+∞),使f (a )=g (b ),则b -a 的最小值为( )A.2e -1B.e 2-12C.2-ln 2D.2+ln 2【训练】 若存在正数x ,使得2x (x -a )<1成立,则a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞)一、选择题1.已知函数f (x )=⎩⎨⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.82. 设a =log 35,b =1.51.5,c =ln 2,则a ,b ,c 的大小关系是( ) A.c <a <b B.c <b <a C.a <c <bD.a <b <c3.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=ln(x +1),则函数f (x )的大致图象为( )4. 若函数f (x )=|x |+x 3,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12+f (lg 5)+f ⎝ ⎛⎭⎪⎫lg 15=( )A.2B.4C.6D.85.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,且a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为( )A.(0,+∞)B.(2,+∞)C.(1,+∞)D.⎝ ⎛⎭⎪⎫12,+∞二、填空题6. 已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________.7. 已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.8.设函数f (x )=⎩⎨⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是________.三、解答题9.已知函数f (x )=log 21+axx -1(a 为常数)是奇函数.(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围.10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f(x)的解析式;(2)解不等式f(x2-1)>-2.11. 在同一直角坐标系中,函数y=1a x,y=log a⎝⎛⎭⎪⎫x+12(a>0,且a≠1)的图象可能是( )12. 设x,y,z为正数,且2x=3y=5z,则( )A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z13. 已知函数f(x)=sin x·lg(1+x2+ax)的图象关于y轴对称,则实数a的值为________.14.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4]不等式f(x2)·f(x)>k·g(x)恒成立,求实数k的取值范围.15. 函数f(x)的定义域为D,若满足:①f(x)在D内是单调函数;②存在[a,b ]⊆D ,使f (x )在[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,则t 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,14B.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫0,12D.⎝ ⎛⎭⎪⎫-12,12答 案 对数与对数函数1. log 29×log 34+2log 510+log 50.25=( ) A.0B.2C.4D.6解析 原式=2log 23×(2log 32)+log 5(102×0.25) =4+log 525=4+2=6. 答案 D2. 已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b解析 ∵0<a <1,b <0,c =log 1213=log 23>1.∴c >a >b .答案 D4. 设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<abD.ab <0<a +b解析 由题设,得1a =log 0.30.2>0,1b=log 0.32<0.∴0<1a +1b =log 0.30.4<1,即0<a +bab<1.又a >0,b <0,故ab <a +b <0.答案 B5. 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1解析 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1. 答案 D6. 已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=log 2(-x )+m ,且f ⎝ ⎛⎭⎪⎫12=2,则m =________.解析 由f ⎝ ⎛⎭⎪⎫12=2,且f (x )为奇函数.∴f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-2,因此log 212+m =-2,则m =1- 2.答案 1-2考点一 对数的运算【例1】 (1)设2a =5b =m ,且1a +1b=2,则m 等于( )A.10B.10C.20D.100(2)计算:(1-log 63)2+log 62·log 618log 64=________.解析 (1)由已知,得a =log 2m ,b =log 5m , 则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. 解得m =10.(2)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.答案 (1)A (2)1规律方法 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并. 2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【训练1】 (1) 在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1C.lg 10.1D.10-10.1(2) 2723+⎝ ⎛⎭⎪⎫14log23-log 814=________.解析 (1)依题意,m 1=-26.7,m 2=-1.45,代入所给公式得52lg E 1E 2=-1.45-(-26.7)=25.25.所以lg E 1E 2=25.25×25=10.1,即E 1E 2=1010.1.(2)原式=33×23+2-2log 23+23=10.答案 (1)A (2)10考点二 对数函数的图象及应用【例2】 (1) 已知lg a +lg b =0,则函数f (x )=a -x 与函数g (x )=log b x 的图象可能是( )(2)已知函数f (x )=⎩⎨⎧2x,x <1,log 2x ,x ≥1,若方程f (x )-a =0恰有一个实根,则实数a 的取值范围是________.解析 (1)由lg a +lg b =0,得ab =1.∴f (x )=a -x=⎝ ⎛⎭⎪⎫1b -x=b x ,因此f (x )=b x 与g (x )=log b x 单调性相同.A ,B ,D 中的函数单调性相反,只有C 的函数单调性相同. (2)作出函数y =f (x )的图象(如图所示).方程f (x )-a =0恰有一个实根,等价于函数y =f (x ) 的图象与直线y =a 恰有一个公共点,故a =0或a ≥2,即a 的取值范围是{0}∪[2,+∞). 答案 (1)C (2){0}∪[2,+∞)规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【训练2】 (1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b,f (c )c 的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )a C.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A.(0,1) B.(1,2) C.(1,2]D.⎝⎛⎭⎪⎫0,12解析 (1)由题意可得,f (a )a ,f (b )b ,f (c )c分别看作函数f (x )=log 2(x +1)图象上的点(a ,f (a )),(b ,f (b )),(c ,f (c ))与原点连线的斜率.结合图象可知当a>b>c时,f(c)c>f(b)b>f(a)a.(2)由题意,易知a>1.如图,在同一坐标系内作出y=(x-1)2,x∈(1,2)及y=log a x,x∈(1,2)的图象.若y=log a x过点(2,1),得log a2=1,所以a=2.根据题意,函数y=log a x,x∈(1,2)的图象恒在y=(x-1)2,x∈(1,2)的上方.结合图象,a的取值范围是(1,2].答案(1)B (2)C考点三解决与对数函数性质有关的问题多维探究角度1 比较大小【例3-1】 (1)已知a=log23+log23,b=log29-log23,c=log32,则a,b,c的大小关系是( )A.a=b<cB.a=b>cC.a<b<cD.a>b>c(2) 已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为( )A.c<b<aB.a<b<cC.b<c<aD.c<a<b解析(1)因为a=log23+log23=log233=32log23>1,b=log29-log23=log233=a,c=log32<log33=1.所以a=b>c.(2)显然c=0.30.2∈(0,1).因为log33<log38<log39,所以1<b<2.因为log27>log24=2,所以a>2.故c<b<a.答案(1)B (2)A规律方法比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较,若底数不同,可考虑利用中间量进行比较.角度2 解简单的对数不等式【例3-2】 (1) 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A.(2,+∞)B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞)C.⎝ ⎛⎭⎪⎫0,22∪(2,+∞) D.(2,+∞)(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.解析 (1)因为偶函数f (x )在(-∞,0]上是减函数,所以f (x )在(0,+∞)上是增函数,又f (1)=2,所以不等式f (log 2x )>2,即|log 2x |>1,解得0<x <12或x >2.(2)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,则f (x )min =f (2)=log a (8-2a )>1,且8-2a >a ,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数, 由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (1)=log a (8-a )>1,且8-2a >0. ∴8-a <a 且8-2a >0,此时解集为∅. 综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83.答案 (1)B (2)⎝⎛⎭⎪⎫1,83规律方法 形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论. 角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解 (1)若函数f (x )是R 上的奇函数,则f (0)=0, ∴log 2(1+a )=0,∴a =0.当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0.(2)若函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0),故只要a ≥0,则a 的取值范围是[0,+∞).(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设得log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2,则log 2(1+a )≥log 2(4a +2). ∴⎩⎨⎧1+a ≥4a +2,4a +2>0,解得-12<a ≤-13.故实数a 的取值范围是⎝ ⎛⎦⎥⎤-12,-13.规律方法 1.研究函数性质,要树立定义域优先的原则,讨论函数的一切问题都在定义域上进行.2.解题注意几点:(1)由f (0)=0,得a =0,需验证f (-x )=-f (x ).(2)f (x )的定义域为R ,转化为不等式恒成立问题.(3)第(3)问运用转化思想,把对数不等式转化为等价的代数不等式.【训练3】 (1) 已知a =log 3 72,b =⎝ ⎛⎭⎪⎫1413,c =log 13 15,则a ,b ,c 的大小关系为( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2) 设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________.(3) 已知函数f (x )=log a (x +2)+3(a >0,且a ≠1)的图象恒过定点(m ,n ),且函数g (x )=mx 2-2bx +n 在[1,+∞)上单调递减,则实数b 的取值范围是________.解析 (1)log 1315=log 3-15-1=log 35,因为函数y =log 3x 在(0,+∞)上为增函数,所以log 35>log 3 72>log 33=1,因为函数y =⎝ ⎛⎭⎪⎫14x在(-∞,+∞)上为减函数,所以⎝ ⎛⎭⎪⎫1413<⎝ ⎛⎭⎪⎫140=1,故c >a >b .(2)由f (x )是奇函数可得a =-1, ∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x<1,∴-1<x <0.(3)∵函数f (x )=log a (x +2)+3(a >0,且a ≠1)的图象恒过定点(m ,n ),令x +2=1,求得x =-1,f (x )=3,可得函数的图象经过定点(-1,3),∴m =-1,n =3.∵函数g (x )=mx 2-2bx +n =-x 2-2bx +3, 在[1,+∞)上单调递减,∴-2b2≤1,即b ≥-1,所以实数b 的取值范围为[-1,+∞). 答案 (1)D (2)(-1,0) (3)[-1,+∞) 赢得高分 基本初等函数的应用“瓶颈题”突破以基本初等函数为载体考查函数的应用,常考常新.命题多与函数零点(不等式)、参数的求值交汇,如2017·全国Ⅲ卷·T15,2018·全国Ⅰ卷·T9,2019·全国Ⅲ卷·T11,解题的关键是活用函数的图象与性质,重视导数的工具作用.【典例】 已知函数f (x )=e x ,g (x )=ln x 2+12,对任意a ∈R,存在b ∈(0,+∞),使f (a )=g (b ),则b -a 的最小值为( )A.2e-1B.e2-12C.2-ln 2D.2+ln 2解析存在b∈(0,+∞),使f(a)=g(b),则e a=ln b2+12,令t=e a=lnb2+12>0.∴a=ln t,b=2e t-12,则b-a=2e t-12-ln t.设φ(t)=2e t-12-ln t,则φ′(t)=2e t-12-1t(t>0).显然φ′(t)在(0,+∞)上是增函数,当t=12时,φ′⎝⎛⎭⎪⎫12=0.∴φ′(t)有唯一零点t=12 .故当t=12时,φ(t)取得最小值φ⎝⎛⎭⎪⎫12=2+ln 2.答案 D思维升华 1.解题的关键:(1)由f(a)=g(b),引入参数t表示a,b两个量.(2)构造函数,转化为求函数的最值.2.可导函数唯一极值点也是函数的最值点,导数是求解函数最值的工具.【训练】若存在正数x,使得2x(x-a)<1成立,则a的取值范围是( )A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)解析由2x(x-a)<1,得a>x-12x ,令f(x)=x-12x (x>0),若a>x-12x有解,则a>f(x)min.由于y=f(x)在(0,+∞)上递增,所以f(x)>f(0)=-1,因此a>-1,实数a的取值范围为(-1,+∞).答案 D一、选择题1.已知函数f (x )=⎩⎨⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.8解析 因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24. 答案 A2. 设a =log 35,b =1.51.5,c =ln 2,则a ,b ,c 的大小关系是( ) A.c <a <b B.c <b <a C.a <c <bD.a <b <c解析 1<a =log 35=12log 325<32,b =1.51.5>1.5,又c =ln 2<1.故b >a >c .答案 A3.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=ln(x +1),则函数f (x )的大致图象为( )解析 先作出当x ≥0时,f (x )=ln(x +1)的图象,显然图象经过点(0,0),再作此图象关于y 轴对称的图象,可得函数f (x )在R 上的大致图象,如选项C 中图象所示. 答案 C4. 若函数f (x )=|x |+x 3,则f (lg 2)+f ⎝⎛⎭⎪⎫lg 12+f (lg 5)+f ⎝ ⎛⎭⎪⎫lg 15=( ) A.2 B.4 C.6 D.8解析 由于f (x )=|x |+x 3,得f (-x )+f (x )=2|x |. 又lg 12=-lg 2,lg 15=-lg 5.所以原式=2|lg 2|+2|lg 5|=2(lg 2+lg 5)=2.答案 A5.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,且a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为( )A.(0,+∞)B.(2,+∞)C.(1,+∞)D.⎝ ⎛⎭⎪⎫12,+∞解析 令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),恒有f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因为M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞). 答案 A 二、填空题6. 已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. 解析 由f (3)=1得log 2(32+a )=1,所以9+a =2,解得a =-7. 答案 -77. 已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.解析 由题意得,当x >0,-x <0时,f (x )=-f (-x )=-(-e -ax )=e -ax ,所以f (ln 2)=e -a ln 2=eln 2-a =2-a =8=23,即2-a =23,所以a =-3. 答案 -38.设函数f (x )=⎩⎨⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是________.解析 当x ≤1时,由21-x ≤2,解得x ≥0,所以0≤x ≤1; 当x >1时,由1-log 2x ≤2,解得x ≥12,所以x >1.综上可知,x ≥0. 答案 [0,+∞)三、解答题9.已知函数f(x)=log21+axx-1(a为常数)是奇函数.(1)求a的值与函数f(x)的定义域;(2)若当x∈(1,+∞)时,f(x)+log2(x-1)>m恒成立,求实数m的取值范围.解 (1)因为函数f(x)=log21+axx-1是奇函数,所以f(-x)=-f(x),所以log21-ax-x-1=-log21+axx-1,即log2ax-1x+1=log2x-11+ax,所以a=1,f(x)=log21+x x-1,令1+xx-1>0,解得x<-1或x>1,所以函数的定义域为{x|x<-1或x>1}.(2)f(x)+log2(x-1)=log2(1+x),当x>1时,x+1>2,所以log2(1+x)>log22=1.因为x∈(1,+∞)时,f(x)+log2(x-1)>m恒成立,所以m≤1,所以m的取值范围是(-∞,1].10.已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,f(x)=log 12 x.(1)求函数f(x)的解析式;(2)解不等式f(x2-1)>-2.解(1)当x<0时,-x>0,则f(-x)=log 12(-x).因为函数f(x)是偶函数,所以f(-x)=f(x)=log 12(-x),所以函数f(x)的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,且f (0)=0>-2,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).11. 在同一直角坐标系中,函数y =1a x ,y =log a ⎝⎛⎭⎪⎫x +12(a >0,且a ≠1)的图象可能是( )解析 若a >1,则y =1a x 单调递减,A ,B ,D 不符合,且y =log a ⎝⎛⎭⎪⎫x +12过定点⎝ ⎛⎭⎪⎫12,0,C 项不符合,因此0<a <1. 当0<a <1时,函数y =a x的图象过定点(0,1),在R 上单调递减,于是函数y =1a x的图象过定点(0,1),在R 上单调递增,函数y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0,在⎝ ⎛⎭⎪⎫-12,+∞上单调递减.因此, 选项D 中的两个图象符合. 答案 D12. 设x ,y ,z 为正数,且2x =3y =5z ,则( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z 解析 令t =2x =3y =5z ,∵x,y,z为正数,∴t>1.则x=log2t=lg tlg 2,同理,y=lg tlg 3,z=lg tlg 5.∴2x-3y=2lg tlg 2-3lg tlg 3=lg t(2lg 3-3lg 2)lg 2×lg 3=lg t(lg 9-lg 8)lg 2×lg 3>0,∴2x>3y.又∵2x-5z=2lg tlg 2-5lg tlg 5=lg t(2lg 5-5lg 2)lg 2×lg 5=lg t(lg 25-lg 32)lg 2×lg 5<0,∴2x<5z,∴3y<2x<5z.答案 D13. 已知函数f(x)=sin x·lg(1+x2+ax)的图象关于y轴对称,则实数a的值为________.解析依题意,y=f(x)为偶函数,则g(x)=lg(1+x2+ax)为奇函数,∴g(-x)+g(x)=lg(1+x2-ax)+lg(1+x2+ax)=0,故1+x2-a2x2=1,即(1-a2)x2=0,则a=±1.答案±114.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4]不等式f(x2)·f(x)>k·g(x)恒成立,求实数k的取值范围.解(1)h(x)=(4-2log2x)log2x=2-2(log2x-1)2因为x∈[1,4],所以log2x∈[0,2],故函数h(x)的值域为[0,2].(2)由f(x2)·f(x)>k·g(x),得(3-4log2x)(3-log2x)>k·log2x,令t=log2x,因为x∈[1,4],所以t=log2x∈[0,2],所以(3-4t)(3-t)>k·t对一切t∈[0,2]恒成立,21①当t =0时,k ∈R;②当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t-15, 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以4t +9t-15的最小值为-3. 所以k <-3.综上,实数k 的取值范围为(-∞,-3).15. 函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调函数;②存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,则t 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,14B.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫0,12D.⎝ ⎛⎭⎪⎫-12,12 解析 函数f (x )=log a (a x +t 2)(a <0,且a ≠1)是“半保值函数”,且定义域为R.当a >1时,z =a x +t 2在R 上递增,y =log a z 在(0,+∞)上递增,可得f (x )为R 上的增函数;当0<a <1时,f (x )仍为R 上的增函数,∴f (x )在定义域R 上为增函数,f (x )=log a (a x +t 2)=12x , ∴a x +t 2=a 12x ,则a x -a x 2+t 2=0. 令u =a x 2,u >0,则u 2-u +t 2=0有两个不相等的正实根. 得Δ=1-4t 2>0,且t 2>0,∴0<t 2<14,解得t ∈⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12. 答案 B。

高三数学对数与对数函数试题

高三数学对数与对数函数试题

高三数学对数与对数函数试题1.若的最小值是A.B.C.D.【答案】D【解析】由题意,且,所以又,所以,,所以,所以,当且仅当,即,时,等号成立.故选D.【考点】1、对数的运算;2、基本不等式.2.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a 【答案】A【解析】∵a=log3π>log33=1,b=log2<log22=1,∴a>b,又==(log23)2>1,∴b>c,故a>b>c.3.设a>0且a≠1,函数f(x)=a lg(x2-2x+3)有最大值,则不等式loga(x2-5x+7)>0的解集为________.【答案】(2,3)【解析】∵函数y=lg(x2-2x+3)有最小值,f(x)=a lg(x2-2x+3)有最大值,∴0<a<1.∴由loga(x2-5x+7)>0,得0<x2-5x+7<1,解得2<x<3.∴不等式loga(x2-5x+7)>0的解集为(2,3).4.若函数,则=_______________。

【答案】2014【解析】===++++++++=++++=【考点】1.对数的运算.2.数列的递推的思想.3.分类归纳的思想.5.将函数的图象向左平移1个单位,再将位于轴下方的图象沿轴翻折得到函数的图象,若实数满足则的值是()A.B.C.D.【答案】C【解析】据题意得,,.因为,所以,由得,所以,.所以.由得(0舍去),,所以.【考点】1、图象的变换;2、对数运算;3、方程与不等式.6.设f(x)=loga (1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.(1)求a的值及f(x)的定义域.(2)求f(x)在区间上的最大值.【解析】解:∵f(1)=2,∴loga 4=2(a>0,a≠1),∴a=2.由,得x∈(-1,3),∴函数f(x)的定义域为 (-1,3).(2)f(x)=log2(1+x)+log2(3-x)=log2(1+x)(3-x)=log2[-(x-1)2+4],∴当x∈(-1,1]时,f(x)是增函数;当x∈(1,3)时,f(x)是减函数,函数f(x)在上的最大值是f(1)=log24=2.7.(5分)(2011•湖北)里氏震级M的计算公式为:M=lgA﹣lgA,其中A是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A为0.001,则此次地震的震级为级;9级地震的最大的振幅是5级地震最大振幅的倍.【答案】6,10000【解析】根据题意中的假设,可得M=lgA﹣lgA=lg1000﹣lg0.001=6;设9级地震的最大的振幅是x,5级地震最大振幅是y,9=lgx+3,5=lgy+3,由此知9级地震的最大的振幅是5级地震最大振幅的10000倍.解:根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA﹣lgA=lg1000﹣lg0.001=3﹣(﹣3)=6.设9级地震的最大的振幅是x,5级地震最大振幅是y,9=lgx+3,5=lgy+3,解得x=106,y=102,∴.故答案耿:6,10000.点评:本题考查对数的运算法则,解题时要注意公式的灵活运用.8.设,则( )A.B.C.D.【答案】D【解析】.【考点】对数的运算及性质.9.(log29)•(log34)=()A.B.C.2D.4【答案】D【解析】(log29)•(log34)===4.故选D.10.已知函数,若且,则的取值范围是【答案】【解析】作出函数的图象,如图所示.∵若且,∴,即,而,∴,∴的取值范围是.【考点】对数函数的单调性.11.函数,关于方程有三个不同实数解,则实数的取值范围为()A.B.C.D.【答案】D【解析】函数,根据的图象,设,∵关于x的方程有有三个不同的实数解,即为有两个根,且一个在上,一个在上.设,①当有一个根为时,,,此时另一根为,符合题意.②当没有根为时,则:,解得,综上可得,m的取值范围是.【考点】对数函数图象与性质的综合应用.12.函数,的值域是 .【答案】【解析】∵,∴,∴,∴,令,是增函数,又,故当时,取得最大值为1,∴函数值域为.【考点】1.三角函数的最值;2.对数函数的最值.13.实数a=0.,b=log30.3,c=的大小关系正确的是()A.a<c<b B.a<b<cC.b<a<c D.b<c<a【答案】C【解析】∵函数y=在(0,+∞)上是增函数,∴0<0.<,即c>a>0,而b=log30.3<0,∴c>a>b,即b<a<c.14.已知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,都有不等式f(x)+xf′(x)>0成立,若a=40.2f(40.2),b=(log43)f(log43),c=f,则a,b,c的大小关系是________.【答案】c>a>b【解析】由f(x)+xf′(x)>0得(xf(x))′>0,令g(x)=xf(x),则g(x)在(0,+∞)递增,且为偶函数,且a=g(40.2),b=g(log43),c=g=g(-2)=g(2),因为0<log43<1<40.2<2,所以c>a>b.15.已知,不等式成立,则实数a的取值范围是_____________.【答案】【解析】由绝对值的几何意义,,所以恒成立,须恒成立.所以,故答案为.【考点】绝对值的几何意义,对数函数的性质.16.已知函数,若,则 _________.【答案】2【解析】已知条件为,待求式为.【考点】对数的运算法则.17.在正项等比数列中,,则的值是( )A.B.C.D.【答案】A【解析】因为,正项等比数列中,,由对数运算法则及等比数列的性质,有,,,故选A.【考点】等比数列的性质,对数运算.18.对于以下结论:①.对于是奇函数,则;②.已知:事件是对立事件;:事件是互斥事件;则是的必要但不充分条件;③.若,,则在上的投影为;④.(为自然对数的底);⑤.函数的图像可以由函数图像先左移2个单位,再向下平移1个单位而来.其中,正确结论的序号为__________________.【答案】③④⑤【解析】对①,不一定有意义,所以不正确;对②,是的充分但不必要条件;所以不正确;对③,易得在上的投影为;所以正确;对④,构造函数,则.由此可得在上单调递减,故成立;所以正确;对⑤,原函数可变为:,所以将函数图像先左移2个单位,再向下平移1个单位可得函数的图像.正确.【考点】1、函数的性质;2、随机事件及二项分布;3、向量的投影;4、充分必要条件.19.已知,定义表示不超过的最大整数,则函数的值域是 .【答案】【解析】令,当时,或,于是,因为,所以函数的值域是.【考点】1.基本不等式;2.对数函数20.已知函数,若,则实数的取值范围是()A.B.C.D.【答案】A【解析】若,则;若,则;综上得,选对分段函数一定要注意自变量的范围,本题极易用错解析式.【考点】1、分段函数;2、对数函数的性质21.函数的定义域为()A.B.C.D.【答案】D【解析】要使函数解析式有意义需满足:解得且,即选D.【考点】1.对数函数;2.一元二次不等式.22.已知函数.(1)求函数的定义域;(2)若函数的最小值为,求实数的值.【答案】(1);(2)【解析】(1)函数的定义域是使函数解析式有意义的自变量的取值范围,由对数函数的性质得,解出,写成集合的形式就是函数的定义域;(2)将函数化简得,,由的取值范围得,,解得的值为试题解析:(1)要使函数有意义:则有,解之得. 3分所以函数的定义域为 4分(2)函数可化为. 6分,. 8分,,即. 9分由,得,. 11分故实数的值为 12分【考点】1.对数式的运算性质;2.对数函数单调性;3.不等式.23.定义:区间长度为.已知函数定义域为,值域为,则区间长度的最小值为 .【答案】【解析】如下图所示,解方程得或,令,即,得,由于函数在定义域上的值域为,则必有或,(1)当时,则,此时区间长度的最小值为;(2)当时,则,此时区间长度的最小值为;综上所述,区间长度的最小值为.【考点】对数函数、函数的定义域与值域24.已知函数。

高中数学《对数与对数函数》练习题

高中数学《对数与对数函数》练习题

高中数学《对数与对数函数》练习题A 组——基础对点练1.函数y =1log 2(x -2)的定义域是( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)解析:要使函数有意义应满足⎩⎪⎨⎪⎧x -2>0,log 2(x -2)≠0,即⎩⎪⎨⎪⎧x >2,x -2≠1,解得x >2且x ≠3.故选C. 答案:C2.设x =30.5,y =log 32,z =cos 2,则( ) A .z <x <y B .y <z <x C .z <y <xD .x <z <y解析:由指数函数y =3x 的图象和性质可知30.5>1,由对数函数y =log 3x 的单调性可知log 32<log 33=1,又cos 2<0,所以30.5>1>log 32>0>cos 2,故选C. 答案:C3.(2016·高考全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =x B .y =lg x C .y =2xD .y =1x解析:函数y =10lg x 的定义域为(0,+∞),又当x >0时,y =10lg x =x ,故函数的值域为(0,+∞).只有D 选项符合. 答案:D4.函数y =⎩⎨⎧3x ,x ∈(-∞,1),log 2x ,x ∈[1,+∞)的值域为( ) A .(0,3) B .[0,3] C .(-∞,3]D .[0,+∞)解析:当x <1时,0<3x <3;当x ≥1时,log 2x ≥log 21=0,所以函数的值域为[0,+∞). 答案:D5.若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )解析:若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =log a |x |的大致图象如图所示. 故选B. 答案:B6.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由对数函数的性质得0<a <1,因为函数y =log a (x +c )的图象在c >0时是由函数y =log a x 的图象向左平移c 个单位得到的,所以根据题中图象可知0<c <1. 答案:D7.(2018·吉安模拟)如果那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析:因为y =在(0,+∞)上为减函数,所以x >y >1.答案:D8.函数y =x 2ln|x ||x |的图象大致是( )解析:易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D. 答案:D9.已知f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f (lg 13)=( ) A.13 B .-13 C .5D .8解析:∵f (x )=a sin x +b 3x +4, ∴f (x )+f (-x )=8, ∵lg 13=-lg 3,f (lg 3)=3, ∴f (lg 3)+f (lg 13)=8, ∴f (lg 13)=5. 答案:C10.已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =c =f (log 25),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b解析:函数y =f (x )是定义在R 上的偶函数, 当x ∈(-∞,0]时,f (x )为减函数, ∴f (x )在[0,+∞)上为增函数, ∵b ==f (-2)=f (2),又1<20.3<2<log 25,∴c >b >a .故选B. 答案:B11.已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =adD .d =a +c解析:由已知得5a =b,10c =b ,∴5a =10c ,∵5d =10,∴5dc =10c ,则5dc =5a ,∴dc =a ,故选B. 答案:B12.已知函数f (x )=ln(1+4x 2-2x )+3,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=( )A .0B .-3C .3D .6解析:由函数解析式,得f (x )-3=ln(1+4x 2-2x ),所以f (-x )-3=ln(1+4x 2+2x )=ln11+4x 2-2x=-ln(1+4x 2-2x )=-[f (x )-3],所以函数f (x )-3为奇函数,则f (x )+f (-x )=6,于是f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=f (lg 2)+f (-lg 2)=6.故选D.答案:D13.已知4a =2,lg x =a ,则x =________. 解析:∵4a =2,∴a =12,又lg x =a ,x =10a =10. 答案:1014.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=log 2x -1,则f ⎝ ⎛⎭⎪⎫-22=________.解析:因为f (x )是定义在R 上的奇函数,所以f ⎝ ⎛⎭⎪⎫-22=-f ⎝ ⎛⎭⎪⎫22=-⎝ ⎛⎭⎪⎫log 222-1=32. 答案:3215.函数f (x )=log 2(-x 2+22)的值域为________. 解析:由题意知0<-x 2+22≤22=,结合对数函数图象(图略),知f (x )∈⎝ ⎛⎦⎥⎤-∞,32,故答案为⎝ ⎛⎦⎥⎤-∞,32. 答案:⎝ ⎛⎦⎥⎤-∞,3216.若log 2a 1+a 21+a <0,则a 的取值范围是________.解析:当2a >1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1. 当0<2a <1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a>1. ∵1+a >0,∴1+a 2>1+a .∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1.答案:⎝ ⎛⎭⎪⎫12,1B 组——能力提升练1.(2018·甘肃诊断考试)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4f (x +1),x <4,则f (1+log 25)的值为( ) A.14 B .⎝ ⎛⎭⎪⎫121+log25C.12D .120解析:∵2<log 25<3,∴3<1+log 25<4,则4<2+log 25<5,f (1+log 25)=f (1+1+log 25)=f (2+log 25)=⎝ ⎛⎭⎪⎫122+log25=14×⎝ ⎛⎭⎪⎫12log25=14×15=120,故选D.答案:D2.(2018·四川双流中学模拟)已知a =log 29-log 23,b =1+log 27,c =12+log 213,则( ) A .a >b >c B .b >a >c C .c >a >bD .c >b >a解析:a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 是增函数,且27>33>26,所以b >a >c ,故选B. 答案:B3.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:∵f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数, ∴对定义域内的x 值,有f (0)=0, 由此可得a =-1,∴f (x )=lg 1+x1-x ,根据对数函数单调性,由f (x )<0,得0<1+x1-x <1,∴x ∈(-1,0).答案:A4.当0<x <1时,f (x )=x ln x ,则下列大小关系正确的是( ) A .[f (x )]2<f (x 2)<2f (x ) B .f (x 2)<[f (x )]2<2f (x ) C .2f (x )<f (x 2)<[f (x )]2 D .f (x 2)<2f (x )<[f (x )]2解析:当0<x <1时,f (x )=x ln x <0,2f (x )=2x ln x <0,f (x 2)=x 2ln x 2<0,[f (x )]2=(x ln x )2>0.又2f (x )-f (x 2)=2x ln x -x 2ln x 2=2x ln x -2x 2ln x =2x (1-x )ln x <0,所以2f (x )<f (x 2)<[f (x )]2.故选C. 答案:C5.已知函数f (x )是定义在(-∞,+∞)上的奇函数,若对于任意的实数x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (2 014)+f (-2 015)+f (2 016)的值为( ) A .-1 B .-2 C .2D .1解析:∵当x ≥0时,f (x +2)=f (x ),∴f (2 014)=f (2 016)=f (0)=log 21=0,∵f (x )为R 上的奇函数,∴f (-2 015)=-f (2 015)=-f (1)=-1.∴f (2 014)+f (-2 015)+f (2 016)=0-1+0=-1.故选A.答案:A6.已知y =log a (2-ax )在区间[0,1]上是减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2)D .[2,+∞)解析:因为y =log a (2-ax )在[0,1]上单调递减,u =2-ax (a >0)在[0,1]上是减函数,所以y =log a u 是增函数,所以a >1,又2-a >0,所以1<a <2. 答案:C7.已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1100,1 B .⎝ ⎛⎭⎪⎫0,1100∪(1,+∞)C.⎝ ⎛⎭⎪⎫1100,100 D .(0,1)∪(100,+∞)解析:不等式可化为{lg x ≥0lg x <2或{lg x <0-lg x <2,解得1≤x <100或1100<x <1. ∴1100<x <100.故选C. 答案:C 8.已知函数f (x )=若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)解析:由f (x )=|log 12x |,m <n ,f (m )=f (n )可知,log 12m =-log 12n >0,从而0<m =1n <1,m +3n =m +3m (0<m <1),若直接利用基本不等式,则m +3m ≥23(当且仅当m =3m =3时取得最小值,但这与0<m <1矛盾),利用函数g (x )=x +3x 的单调性(定义或导数)判断当0<x <1时g (x )单调递减,故g (x )>g (1)=4,可知选D. 答案:D9.已知函数y =f (x )(x ∈D ),若存在常数c ,对于∀x 1∈D ,存在唯一x 2∈D ,使得f (x 1)+f (x 2)2=c ,则称函数f (x )在D 上的均值为c .若f (x )=lg x ,x ∈[10,100],则函数f (x )在[10,100]上的均值为( ) A .10 B .34 C.710D .32解析:因为f (x )=lg x (10≤x ≤100),则f (x 1)+f (x 2)2=lg x 1x 22等于常数c ,即x 1x 2为定值,又f (x )=lg x (10≤x ≤100)是增函数,所以取x 1=10时,必有x 2=100,从而c 为定值32.选D. 答案:D10.已知函数f (x )=(e x -e -x )x ,f (log 5x )+≤2f (1),则x 的取值范围是( )A.⎣⎢⎡⎦⎥⎤15,1 B .[1,5] C.⎣⎢⎡⎦⎥⎤15,5 D.⎝ ⎛⎦⎥⎤-∞,15∪[5,+∞) 解析:∵f (x )=(e x -e -x )x ,∴f (-x )=-x (e -x -e x )=(e x -e -x )x =f (x )(x ∈R),∴函数f (x )是偶函数. ∵f ′(x )=(e x -e -x )+x (e x +e -x )>0在(0,+∞)上恒成立. ∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+≤2f (1),∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C. 答案:C11.设方程log 2x -⎝ ⎛⎭⎪⎫12x =0与-⎝ ⎛⎭⎪⎫14x =0的根分别为x 1,x 2,则( ) A .0<x 1x 2<1 B .x 1x 2=1 C .1<x 1x 2<2D .x 1x 2≥2解析:方程log 2x -⎝ ⎛⎭⎪⎫12x =0与-⎝ ⎛⎭⎪⎫14x =0的根分别为x 1,x 2,所以log 2x 1=⎝ ⎛⎭⎪⎫12x 1,=⎝ ⎛⎭⎪⎫14x 2,可得x 2=12,令f (x )=log 2x -⎝ ⎛⎭⎪⎫12x,则f (2)f (1)<0,所以1<x 1<2,所以12<x 1x 2<1,即0<x 1x 2<1.故选A. 答案:A12.已知函数f (x )=ln e x e -x ,若f ⎝ ⎛⎭⎪⎫e 2 013+f ⎝ ⎛⎭⎪⎫2e 2 013+…+f ⎝ ⎛⎭⎪⎫2 012e 2 013=503(a +b ),则a 2+b 2的最小值为( ) A .6 B .8 C .9D .12解析:∵f (x )+f (e -x )=ln e x e -x +ln e (e -x )x =ln e 2=2,∴503(a +b )=f ⎝ ⎛⎭⎪⎫e 2 013+f ⎝ ⎛⎭⎪⎫2e 2 013+…+f ⎝ ⎛⎭⎪⎫2 012e 2 013=12⎣⎢⎡f ⎝ ⎛⎭⎪⎫e 2 013+f ⎝ ⎛⎭⎪⎫2 012e 2 013+f ⎝ ⎛⎭⎪⎫2e 2 013+f ⎝ ⎛⎭⎪⎫2 011e 2 013+…+f ⎝ ⎛⎭⎪⎫2 012e 2 013+f⎦⎥⎤⎝ ⎛⎭⎪⎫e 2 013=12×(2×2 012)=2 012, ∴a +b =4,∴a 2+b 2≥(a +b )22=422=8,当且仅当a =b =2时取等号. ∴a 2+b 2的最小值为8. 答案:B13.若函数f (x )={ log a x , x >2,-x 2+2x -2, x ≤2(a >0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是________. 解析:x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1,f (x )在(-∞,1)上递增,在(1,2]上递减,∴f (x )在(-∞,2]上的最大值是-1,又f (x )的值域是(-∞,-1],∴当x >2时, log a x ≤-1,故0<a <1,且log a 2≤-1, ∴12≤a <1. 答案:⎣⎢⎡⎭⎪⎫12,114.(2017·湘潭模拟)已知函数f (x )=ln x1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 解析:由题意可知lna 1-a +ln b1-b=0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b =1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝ ⎛⎭⎪⎫a -122+14,又0<a <b <1,∴0<a <12,故0<-⎝ ⎛⎭⎪⎫a -122+14<14.答案:⎝ ⎛⎭⎪⎫0,1415.已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由于f (x )>1恒成立,所以f (x )min =log a (8-2a )>1,故1<a <83.当0<a <1时,f (x )=log a (8-ax )在[1,2]上是增函数, 由于f (x )>1恒成立, 所以f (x )min =log a (8-a )>1, 且8-2a >0,∴a >4,且a <4, 故这样的a 不存在.∴1<a <83. 答案:⎝ ⎛⎭⎪⎫1,83高中数学《函数的图像》练习题A 组——基础对点练1.(2018·广州市模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥01x ,x <0,g (x )=-f (-x ),则函数g (x )的图象是( )解析:g (x )=-f (-x )=⎩⎨⎧-x 2,x ≤01x ,x >0,∴g (x )的图象是选项D 中的图象.答案:D2.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD分成两部分,设AE=x,左侧部分面积为y,则y关于x的大致图象为()解析:直线l在AD圆弧段时,面积y的变化率逐渐增大,l在DC段时,y随x 的变化率不变;l在CB段时,y随x的变化率逐渐变小,故选D.答案:D3.(2018·惠州市调研)函数f(x)=(x-1x)cos x(-π≤x≤π且x≠0)的图象可能为()解析:函数f(x)=(x-1x)cos x(-π≤x≤π且x≠0)为奇函数,排除选项A,B;当x=π时,f(x)=(π-1π)·cos π=1π-π<0,排除选项C,故选D.答案:D4.(2018·长沙市一模)函数y=ln|x|-x2的图象大致为()解析:令f(x)=ln|x|-x2,定义域为(-∞,0)∪(0,+∞)且f(-x)=ln |x|-x2=f(x),故函数y=ln |x|-x2为偶函数,其图象关于y轴对称,排除B,D;当x>0时,y=ln x-x2,则y′=1x -2x,当x∈(0,22)时,y′=1x-2x>0,y=ln x-x2单调递增,排除C.选A. 答案:A5.(2018·武昌调研)已知函数f(x)的部分图象如图所示,则f(x)的解析式可以是()A.f(x)=2-x2 2xB.f(x)=cos x x2C.f(x)=-cos2x xD.f(x)=cos x x解析:A中,当x→+∞时,f(x)→-∞,与题图不符,故不成立;B为偶函数,与题图不符,故不成立;C中,当x→0+时,f(x)<0,与题图不符,故不成立.选D.答案:D6.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x-1C.e-x+1D.e-x-1解析:与曲线y=e x关于y轴对称的图象对应的函数为y=e-x,将函数y=e-x 的图象向左平移1个单位长度即得y=f(x)的图象,∴f(x)=e-(x+1)=e-x-1,故选D.答案:D7.函数f(x)=2ln x的图象与函数g(x)=x2-4x+5的图象的交点个数为() A.3 B.2C.1 D.0解析:在同一直角坐标系中画出函数f(x)=2ln x与函数g(x)=x2-4x+5=(x-2)2+1的图象,如图所示.∵f(2)=2ln 2>g(2)=1,∴f(x)与g(x)的图象的交点个数为2.故选B.答案:B8.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1} D.{x|-1<x≤2}解析:作出函数y=log2(x+1)的图象,如图所示:其中函数f(x)与y=log2(x+1)的图象的交点为D(1,1),结合图象可知f(x)≥log2(x +1)的解集为{x|-1<x≤1},故选C.答案:C9.已知函数f(x)=|2x-m|的图象与函数g(x)的图象关于y轴对称,若函数f(x)与函数g(x)在区间[1,2]上同时单调递增或同时单调递减,则实数m的取值范围是()A.[12,2]B.[2,4]C.(-∞,12]∪[4,+∞)D.[4,+∞)解析:易知当m ≤0时不符合题意,当m >0时,g (x )=|2-x -m |,即g (x )=|(12)x -m |.当f (x )与g (x )在区间[1,2]上同时单调递增时,f (x )=|2x -m |与g (x )=|(12)x -m |的图象如图1或图2所示,易知⎩⎪⎨⎪⎧log 2m ≤1,-log 2m ≤1,解得12≤m ≤2;当f (x )在[1,2]上单调递减时,f (x )=|2x -m |与g (x )=|(12)x -m |的图象如图3所示,由图象知此时g (x )在[1,2]上不可能单调递减.综上所述,12≤m ≤2,即实数m 的取值范围为[12,2].答案:A10.若函数y =2-x +1+m 的图象不经过第一象限,则m 的取值范围是________. 解析:由y =2-x +1+m ,得y =⎝ ⎛⎭⎪⎫12x -1+m ;函数y =⎝ ⎛⎭⎪⎫12x -1的图象如所示,则要使其图象不经过第一象限,则m ≤-2. 答案:(-∞,-2]11.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c=________.解析:由图象可求得直线的方程为y =2x +2.又函数y =log c ⎝ ⎛⎭⎪⎫x +19的图象过点(0,2),将其坐标代入可得c =13,所以a +b +c =2+2+13=133. 答案:13312.(2018·枣庄一中模拟)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,如果函数g (x )=f (x )-m (m ∈R)恰有4个零点,则m 的取值范围是________.解析:f (x )的图象如图所示,g (x )=0即f (x )=m , y =m 与y =f (x )有四个交点, 故m 的取值范围为(-1,0). 答案:(-1,0)13.若函数f (x )=⎩⎪⎨⎪⎧ 1x ,x <0,⎝ ⎛⎭⎪⎫13x,x ≥0,则不等式-13≤f (x )≤13的解集为__________.解析:函数f (x )=⎩⎪⎨⎪⎧1x ,x <0,⎝ ⎛⎭⎪⎫13x,x ≥0和函数g (x )=±13的图象如图所示.当x <0时,是区间(-∞,-3],当x ≥0时,是区间[1,+∞),故不等式-13≤f(x)≤13的解集为(-∞,-3]∪[1,+∞).答案:(-∞,-3]∪[1,+∞)B组——能力提升练1.函数y=x+2x+1的图象与函数y=2sin πx+1(-4≤x≤2)的图象所有交点的横坐标之和等于()A.-6 B.-4C.-2 D.-1解析:依题意,注意到函数y=1x与函数y=-2sin πx(-3≤x≤3)均是奇函数,因此其图象均关于原点成中心对称,结合图象不难得知,它们的图象共有2对关于原点对称的交点,这2对交点的横坐标之和为0;将函数y=1x与函数y=-2sin πx(-3≤x≤3)的图象同时向左平移1个单位长度、再同时向上平移1个单位长度,所得两条新曲线(这两条新曲线方程分别为y=1+1x+1=x+2x+1、y=-2sin π(x+1)+1=2sin πx+1)仍有2对关于点(-1,1)对称的交点,这2对交点的横坐标之和为-4(其中每对交点的横坐标之和为-2),即函数y=x+2x+1的图象与函数y=2sinπx+1(-4≤x≤2)的图象所有交点的横坐标之和等于-4,因此选B.答案:B2.函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c >0,d >0D .a >0,b >0,c >0,d <0解析:∵函数f (x )的图象在y 轴上的截距为正值,∴d >0.∵f ′(x )=3ax 2+2bx +c ,且函数f (x )=ax 3+bx 2+cx +d 在(-∞,x 1)上单调递增,(x 1,x 2)上单调递减,(x 2,+∞)上单调递增,∴f ′(x )<0的解集为(x 1,x 2),∴a >0,又x 1,x 2均为正数,∴c 3a >0,-2b 3a >0,可得c >0,b <0. 答案:A3.设f (x )=|3x -1|,c <b <a ,且f (c )>f (a )>f (b ),则下列关系中一定成立的是( ) A .3c >3a B .3c >3b C .3c +3a >2D .3c +3a <2解析:画出f (x )=|3x -1|的图象,如图所示,要使c <b <a ,且f (c )>f (a )>f (b )成立,则有c <0,且a >0. 由y =3x 的图象可得0<3c <1<3a . ∴f (c )=1-3c ,f (a )=3a -1,∵f (c )>f (a ), ∴1-3c >3a -1,即3a +3c <2. 答案:D4.已知函数f (x )=-2x 2+1,函数g (x )=⎩⎪⎨⎪⎧log 12x ,x >02x ,x ≤0,则函数y =|f (x )|-g (x )的零点的个数为( ) A .2 B .3 C .4D .5解析:函数y =|f (x )|-g (x )的零点的个数,即|f (x )|-g (x )=0的根的个数,可得|f (x )|=g (x ),画出函数|f (x )|,g (x )的图象如图所示,观察函数的图象,则它们的交点为4个,即函数y =|f (x )|-g (x )的零点个数为4,选C.答案:C5.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,则a 的取值范围为( ) A.⎝ ⎛⎭⎪⎫0,12 B .⎝ ⎛⎦⎥⎤0,12C .[2,+∞)D .(2,+∞)解析:不等式4a x -1<3x -4等价于a x -1<34x -1.令f (x )=a x -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图象,如图1所示,由图知不满足条件;当0<a <1时,在同一坐标系中作出两个函数的图象,如图2所示,则f (2)≤g (2),即a 2-1≤34×2-1,即a ≤12,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,12,故选B.答案:B6.若函数f (x )=(2-m )xx 2+m的图象如图所示,则m 的取值范围为( )A .(-∞,-1)B .(-1,2)C .(0,2)D .[1,2)解析:根据题图可知,函数图象过原点,即f (0)=0,所以m ≠0.当x >0时,f (x )>0,所以2-m >0,即m <2.函数f (x )在[-1,1]上是单调递增的,所以f ′(x )≥0在[-1,1]上恒成立, 则f ′(x )=(2-m )(x 2+m )-2x (2-m )x(x 2+m )2=(m -2)(x 2-m )(x 2+m )2≥0, ∵m -2<0,(x 2+m )2>0,∴只需x 2-m ≤0在[-1,1]上恒成立即可,∴m ≥(x 2)max , ∴m ≥1.综上所述:1≤m <2,故选D.答案:D7.设函数若f (x 0)>1,则x 0的取值范围是________. 解析:在同一直角坐标系中,作出函数y =f (x )的图象和直线y=1,它们相交于(-1,1)和(1,1)两点,由f (x 0)>1,得x 0<-1或x 0>1.答案:(-∞,-1)∪(1,+∞)8.定义在R 上的函数f (x )=⎩⎨⎧ lg|x |,x ≠0,1, x =0,关于x 的方程y =c (c 为常数)恰有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3=________.解析:函数f (x )的图象如图,方程f (x )=c 有三个根,即y =f (x )与y =c 的图象有三个交点,易知c =1,且一根为0,由lg|x |=1知另两根为-10和10,∴x 1+x 2+x 3=0.答案:09.设f (x )是定义在R 上的偶函数,F (x )=(x +2)3f (x +2)-17,G (x )=-17x +33x +2,若F (x )的图象与G (x )的图象的交点分别为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=________.解析:∵f (x )是定义在R 上的偶函数,∴g (x )=x 3f (x )是定义在R 上的奇函数,其图象关于原点中心对称,∴函数F (x )=(x +2)3f (x +2)-17=g (x +2)-17的图象关于点(-2,-17)中心对称.又函数G (x )=-17x +33x +2=1x +2-17的图象也关于点(-2,-17)中心对称,∴F (x )和G (x )的图象的交点也关于点(-2,-17)中心对称,∴x 1+x 2+…+x m =m 2×(-2)×2=-2m ,y 1+y 2+…+y m =m 2×(-17)×2=-17m ,∴∑i =1m(x i +y i )=(x 1+x 2+…+x m )+(y 1+y 2+…+y m )=-19m .答案:-19m10.(2018·西安质检)已知函数f (x )=1|x |-1,下列关于函数f (x )的研究:①y =f (x )的值域为R.②y =f (x )在(0,+∞)上单调递减.③y =f (x )的图象关于y 轴对称.④y =f (x )的图象与直线y =ax (a ≠0)至少有一个交点.其中,结论正确的序号是________.解析:函数f (x )=1|x |-1=⎩⎨⎧ 1x -1,x ≥01-x -1,x <0,其图象如图所示,由图象可知f (x )的值域为(-∞,-1)∪(0,+∞),故①错;在(0,1)和(1,+∞)上单调递减,在(0,+∞)上不是单调的,故②错;f (x )的图象关于y 轴对称,故③正确;由于在每个象限都有图象,所以与过原点的直线y =ax (a ≠0)至少有一个交点,故④正确.答案:③④。

对数函数练习题

对数函数练习题

对数与对数函数练习题题型一、对数的运算1.已知13log 82x =,则=x2.若()()2334log log log log 0x y ==,则x y +=3.设()()()8112=1log x x f x x x -≤⎧⎨>⎩,则满足()1=4f x 的x 的值为4.设2=5=a bm ,且11+=2a b,则=m5.已知lg 2=a ,lg3=b ,则lg12=lg156.计算:2lg 2+lg2lg50+lg25=⋅7.计算:()()3948log 2+log 2log 3+log 3=8.计算:235log 25log 4log 9=⋅⋅9.计算:⑴()(21lg5lg8lg100lg lg lg 0.006=6⋅++++⑵211log 522+=⑶lg1.2-=10. 已知()()()()22log 01012x x x f x x x x ⎧>⎪=-<≤⎨⎪≤--⎩,则({}2f f f ⎡⎤-=⎣⎦11.已知()5=lg f x x ,则()2f =12.设函数()1=lg 1f x f x x ⎛⎫+⎪⎝⎭,则()10=f 13.如果αβ,是关于x 的方程()()lg 3lg 50x x ⋅=的两实根,则=αβ( )A.115B. lg15C. lg3lg5⋅D.15 14.已知18log 9=a ,185b=,用,a b 表示36log 45可写成15.已知lg 2=0.3010,lg3=0.4771,则 16.设方程()2lg lg 2lg3lg lg 2lg30x x ++⋅+⋅=的两个根是12x x ,,则12=x x ⋅题型二:对数型函数的定义域、值域问题 1.求下列函数的定义域.⑴()f x ⑵()()()1=log 164x x f x +- ⑶y =⑷()2log 2y x =+⑸()()121log 21f x x =+ ⑹()f x =2.函数()21142=log log 5f x x ⎛⎫-+ ⎪⎝⎭在区间[]2,4上的最小值是3.求下列函数的值域。

2023 届高考数学专项(对数与对数函数)经典好题练习(附答案)

2023 届高考数学专项(对数与对数函数)经典好题练习(附答案)

2023 届高考数学专项(对数与对数函数)经典好题练习1.(历年山东烟台模拟,1)已知集合A=x 14≤2x ≤4,B=y y lgx ,x 110,则A ∩B=( )A.[-2,2]B.(1,+∞)C.(-1,2]D.(-∞,-1]∪(2,+∞)2.(历年辽宁大连一中考前模拟,理7)已知a ,b 是非零实数,则“a>b ”是“ln |a|>ln |b|”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.(历年山东济宁二模,6)设a=14log 213,b=120.3,则有( )A.a+b>abB.a+b<abC.a+b=abD.a-b=ab4.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A.1033B.1053C.1073D.10935.(历年山东德州二模,6)已知a>b>0,若log a b+log b a=52,a b =b a ,则a b=( ) A.√2 B.2 C.2√2 D.46.(多选)有以下四个结论:①lg(lg 10)=0;②lg(ln e)=0;③若e =ln x ,则x=e 2;④ln(lg 1)=0.其中正确的是( ) A.① B.② C.③ D.④ 7.(多选)若函数f (x )=log a (ax-3)在[1,3]上单调递增,则a 的取值可以是( )A.6B.3C.4D.58.(多选)设f (x )=lg 21-x+a 是奇函数,则使f (x )<0的x 的取值可能为( )A.-1B.-13C.0D.-129.log 24+log 42= ,log a b+log b a (a>1,0<b<1)的最大值为 . 10.当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,则a 的取值范围为 . 11.若函数f (x )=log x ,x 2,-x 2x -2,x 2(a>0,且a ≠1)的值域是(-∞,-1],则实数a 的取值范围是 .12.函数f(x)=log2√xꞏlo g√ 2x的最小值为.13.(历年山东青岛二模,7)已知非零实数a,x,y满足lo g x<lo g y<0,则下列关系式恒成立的是()A.1x2 1 1y2 1B.x+y>yx xyC.1|a| 1x<1|a| 1yD.y x>x y14.设x,y,z为正数,且2x=3y=5z,则()A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z15.(历年山东模考卷,8)若a>b>c>1,且ac<b2,则()A.log a b>log b c>log c aB.log c b>log b a>log a cC.log c b>log a b>log c aD.log b a>log c b>log a c16.(历年山东菏泽一模,8)已知大于1的三个实数a,b,c满足(lg a)2-2lg a lg b+lg b lg c=0,则a,b,c的大小关系不可能是()A.a=b=cB.a>b>cC.b>c>aD.b>a>c17.(历年河北保定一模,理12)设函数f(x)=log0.5x,若常数A满足:对∀x1∈[2,22 020],存在唯一的x2∈[2,22 020],使得f(x1),A,f(x2)成等差数列,则A=()A.-1 010.5B.-1 011C.-2 019.5D.2 020参考答案1.C 由不等式142x ≤4,得-2≤x ≤2,即A={x|-2≤x ≤2}.因为函数y=lg x 单调递增,且x>110,所以y>-1,即B={y|y>-1},则A ∩B=(-1,2].故选C .2.D 由于ln |a|>ln |b|,则|a|>|b|>0.由a>b 推不出ln |a|>ln |b|,比如a=1,b=-2,有a>b ,但ln |a|<ln |b|;反之,由ln |a|>ln |b|推不出a>b ,比如a=-2,b=1,有ln |a|>ln |b|,但a<b.故“a>b ”是“ln |a|>ln |b|”的既不充分也不必要条件.故选D .3.A a=14log 213=log 21314=log 23-14>log 24-14=-12,b=120.3>120.5=√22,∴ab<0,a+b>0,∴a+b>ab ,故选A .4.D设M N =x=33611080,两边取对数,得lg x=lg33611080=lg 3361-lg 1080=361×lg 3-80≈93.28,所以x ≈1093.28,即与MN最接近的是1093.故选D . 5.B ∵log a b+log b a=52,∴log a b+1log a b52,解得log a b=2或log a b=12,若log a b=2,则b=a 2,代入a b =b a 得a=(a 2)a =a 2a , ∴a 2=2a ,又a>0,∴a=2,则b=22=4,不合题意; 若log a b=12,则b=√a ,即a=b 2,代入a b =b a 得(b 2)b =b 2b =,∴2b=b 2,又b>0,∴b=2,则a=b 2=4,∴a b=2.故选B .6.AB 因为lg 10=ln e =1,lg(lg 10)=lg 1=0,lg(ln e)=lg 1=0,所以①②均正确;若e =ln x ,则x=e e ,故③错误;因为lg 1=0,而ln 0没有意义,故④错误.故选AB .7.ACD 由于a>0,且a ≠1,∴u=ax-3为增函数,∴若函数f (x )为增函数,则f (x )=log a u 必为增函数,因此a>1.又y=ax-3在[1,3]上恒为正,∴a-3>0,即a>3,故选ACD . 8.BD 由f (-x )=-f (x ),即lg21 x+a =-lg21-x+a ,21 x +a=21-x+a -1,即2 a ax 1 x1-x2 a -ax,则1-x 2=(2+a )2-a 2x 2恒成立,可得a 2=1,且(a+2)2=1,解得a=-1,∴f (x )=lg 1 x1-x,定义域为(-1,1).由f (x )<0,可得0<1 x1-x<1,∴-1<x<0.故选BD .9.52-2 因为log 24+log 42=log 222+lo g 2=2+1252.由换底公式可得log b a=1log a b,因为a>1,0<b<1,所以log a b<0,log b a<0,所以log a b+log b a=-[(-log a b )+(-log b a )]≤-2,当且仅当log a b=log b a 时,等号成立,故log a b+log b a 的最大值为-2. 10.(1,2] 设f 1(x )=(x-1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,只需f 1(x )=(x-1)2在(1,2)上的图像在f 2(x )=log a x 的下方即可,如图所示.当0<a<1时,显然不成立.当a>1时,如图,要使在区间(1,2)上, f 1(x )=(x-1)2的图像在f 2(x )=log a x 图像的下方,只需f 1(2)≤f 2(2), 即(2-1)2≤log a 2.即log a 2≥1,则1<a ≤2,即a 的取值范围为(1,2]. 11.12,1 x ≤2时,f (x )=-x 2+2x-2=-(x-1)2-1,f (x )在(-∞,1)上单调递增,在(1,2]上单调递减,∴f (x )在(-∞,2]上的最大值是f (1)=-1,所以f (x )的值域是(-∞,-1];又当x>2时,log a x ≤-1,故0<a<1,且log a 2≤-1,∴12a<1,故实数a 的取值范围为12,1.12.-14由题得,x>0,∴f (x )=log 2√x lo g √ 2x=12log 2x ꞏlog 24x 2=12log 2x ꞏ(log 24+2log 2x )=log 2x+(log 2x )2=log 2x+122-14-14.当且仅当x=√22时,有f (x )min =-14.13.D 因a 2+1>1,且lo g x<lo g y<0,由对数函数的单调性,得0<x<y<1,令x=14,y=12,将x=14,y=12代入选项,得A,B,C 不成立,D 成立,故选D .14.D 由2x =3y =5z ,同时取自然对数,得x ln 2=y ln 3=z ln 5.由2x 3y2ln33ln2ln9ln8>1,可得2x>3y.再由2x 5z2ln55ln2ln25ln32<1,可得2x<5z.所以3y<2x<5z ,故选D .15.B 因为a>b>c>1,且ac<b 2,令a=16,b=8,c=2,则log c a=4>1>log a b ,故A,C 错误;log c b=3>log b a=43,故D 错误,B 正确.故选B.16.D 令f (x )=x 2-2x lg b+lg b lg c ,则lg a 为f (x )的零点,且该函数图像的对称轴为x=lg b ,故Δ=4lg 2b-4lg b lg c ≥0.因为b>1,c>1.故lg b>0,lg c>0.所以lg b ≥lg c ,即b ≥c.又f (lg b )=lg b lg c-lg 2b=lg b (lg c-lg b ),f (lg c )=lg 2c-lg b lg c=lg c (lg c-lg b ),若b=c ,则f (lg b )=f (lg c )=0.故lg a=lg b=lg c ,即a=b=c.若b>c ,则f (lg b )<0,f (lg c )<0,利用二次函数图像,可得lg a<lg c<lg b ,或lg c<lg b<lg a ,即a<c<b ,或c<b<a.故选D .17.A 因为对∀x 1∈[2,22 020],存在唯一的x 2∈[2,22 020],使得f (x 1),A ,f (x 2)成等差数列,所以2A=f (x 1)+f (x 2),即2A-f (x 1)=f (x 2).因为f (x )=log 0.5x 在[2,22 020]上单调递减,可得f (x )在[2,22 020]的值域为[-2 020,-1],故y=2A-f (x )在(0,+∞)单调递增,可得其在区间[2,22 020]的值域为[2A+1,2A+2 020].由题意可得[2A+1,2A+2 020]⊆[-2 020,-1],即2A+1≥-2 020,且2A+2 020≤-1,解得A ≥-2 0212,且A ≤-2 0212,可得A=-2 0212.故选A .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数和对数函数练习题1 求下列各式中的x 的值: (1)313x =;(2)6414x=;(3)92x =; (4)1255x 2=;(5)171x 2=-.2 有下列5个等式,其中a>0且a ≠1,x>0 , y>0①y log x log )y x (log a a a +=+,②y log x log )y x (log a a a ⋅=+, ③y log x log 21y x log a a a -=,④)y x (log y log x log a a a ⋅=⋅, ⑤)y log x (log 2)y x (log a a 22a -=-,将其中正确等式的代号写在横线上_____________.3 化简下列各式: (1)51lg 5lg 32lg 4-+; (2)536lg 27lg 321240lg 9lg 211+--+; (3)3lg 70lg 73lg -+; (4)120lg 5lg 2lg 2-+.4 利用对数恒等式N a N loga =,求下列各式的值: (1)5log 4log 3log354)31()51()41(-+ (2)2log 2log 4log 7101.0317103-+ (3)6lg 3log 2log100492575-+ (4)31log 27log 12log 2594532+-5 化简下列各式:(1))2log 2(log )3log 3(log 9384+⋅+; (2)6log ]18log 2log )3log 1[(46626⋅⋅+-6 已知a 5log 3=,75b =,用a 、b 的代数式表示105log 63=________.7 (1))1x (log y 3-= 的定义域为_________值域为____________.(2)22x log y = 的定义域为__________值域为_____________. 8 求下列函数的定义域: (1))2x 3(log x 25y a 2--=;(2))8x 6x (log y 2)1x 2(+-=-;(3))x (log log y 212=.9 (1)已知3log d 30log c 3b 30a 303303....====,,,,将a 、b 、c 、d 四数从小到大排列为_____________________.(2)若02log 2log m n >>时,则m 与n 的关系是( )A .m>n>1B .n>m>1C .1>m>n>0D .1>n>m>0 10 (1)若a>0且a ≠1,且143log a<,则实数a 的取值范围是( )A .0<a<1B .43a 0<<C .43a 043a <<>或D .43a 0<<或a>1 (2)若1<x<d ,令)x (log log c x log b )x (log a d d 2d 2d ===,,,则( )A .a<b<cB .a<c<bC .c<b<aD .c<a<b11 已知函数)x 35(log y )4x 2(log y 3231-=+=,.(1)分别求这两个函数的定义域;(2)求使21y y =的x 的值;(3)求使21y y >的x 值的集合.12 已知函数)x 1x lg()x (f 2-+=(1)求函数的定义域;(2)证明f(x)是减函数.一、选择题1.3log 9log 28的值是( )A .32B .1C .23 D .2 2.函数)1x 2x (log )x (f 22+-=的定义域是( )A .RB .(-∞,1)∪(1,+∞)C .(0,1)D .[1,+∞]3.若函数x 2)x (f =,它的反函数是)x (f 1-,)(f c )4(f b )3(f a 111π===---,,,则下面关系式中正确的是( )A .a<b<cB .a<c< bC .b<c<aD .b<a<c4.4log 33的值是( )A .16B .4C .3D .25.)2x 2x (log )x (f 25+-=,使f(x)是单调增函数的x 值的区间是( )A .RB .(-∞,1)C .[1,+∞]D .(-∞,1)∪(1,+∞) 6.2log 3log 3log 2log )3log 2(log 3223223--+的值是( )A .6log 2B .6log 3C .2D .17.命题甲:a>1且x>y>0 命题乙:y log x log a a >那么甲是乙的( )A .充分而非必要条件B .必要而非充分条件C .充分必要条件D .既不充分也不必要条件8.如果0<a<1,那么下列不等式中正确的是( )A .2131)a 1()a 1(-<- B .1)a 1(a 1>-+C .0)a 1(log )a 1(>+-D .0)a 1(log )a 1(<-+9.5log 222的值是( )A .5B .25C .125D .62510.函数)x 2(log )x (f 3-=在定义域区间上是( )A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调性11.x log )x (f 2=,若142)a (f 1=--,则实数a 的值是( )A .4B .3C .2D .112.在区间(0,+∞)上是增函数的函数是( )A .1x )32()x (f +=B .)1x (log )x (f 232+=C .)x x lg()x (f 2+=D .x 110)x (f -= 13.3log 15log 15log 5log 52333--的值是( )A .0B .1C .5log 3D .3log 514.函数2x log y 5+=(x ≥1)的值域是( )A .RB .[2,+∞]C .[3,+∞]D .(-∞,2)15.如果)x 2(log )x (f a -=是增函数,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(0,1)D .(0,2)16.函数)3x 2x (log y 23--=是单调增函数的区间是( )A .(1,+∞)B .(3,+∞)C .(-∞,1)D .(-∞,-1)17.如果02log 2log b a >>,那么下面不等关系式中正确的是( )A .0<a<b<1B .0<b<a<1C .a>b>1D .b>a>1二、填空题1.函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________.2.若412x log 3=,则x =_____________.3.若)1x (log )x (f 3-=使f(a)=2,那么a =_____________.4.函数)a ax x (log )x (f 23-+=的定义域是R(即(-∞,+∞)),则实数a 的取值范 围是_____________.5.函数x )31(y =的图象与函数x log y 3-=的图象关于直线_____________对称. 6.函数)1x (log )x (f 24-=,若f(a)>2,则实数a 的取值范围是_____________.7.已知1313)x (f x x +-=,则)21(f 1-=_____________. 8.x log )x (f 21=,当]a a [x 2,∈时,函数的最大值比最小值大3,则实数a =_____________.9.])2(log )41)[(log 2(lg 15121--+=_____________.1.试比较22x lg )x (lg 与的大小.2.已知)1a (log )x (f x a -=(a>1)(1) 求f(x)的定义域; (2)求使)x (f )x 2(f 1-=的x 的值.3.实数x 满足方程5)312(log x x2=-+,求x 值的集合.4.已知b 5log a 7log 1414==,,求28log 35(用a 、b 表示). 1. 把下列指数式化成对数式:(1)6264=→ ;(2)35125=→ ;(3)224525⎛⎫=→ ⎪⎝⎭ ;(4)121366-=→ ;(5)07.51=→ ;(641813-⎛⎫-=→ ⎪⎝⎭ .2. 把下列对数式化成指数式:(1)2log 164=→ ; (2)491log 72=→ ;(3) 0.5log 0.1253=→ ; (4) 31log 327=-→ ;(5)0.3log 0.31= → ; (6)lg0.00014=- → .3. 求下列各式的值:(1)5log 65= ;(2)32log 53= ;(3)2log 712⎛⎫⎪⎝⎭= 。

4.计算:(1)log = ;(2)6log 3= ;(3)661log 82log 3+= ;(46log 3=;(5)()2122log log log 0x ⎡⎤=⎢⎥⎣⎦,则x = ;(6)2log 5= 。

(7)2lg 5lg 2lg 50+•= ;(8)2lg 2lg32lg 0.362lg 2+++= .5. 若)log 1,x y =-=求x y +.。

相关文档
最新文档