2022年全国高考数学真题及模拟题汇编:函数(附答案解析)

合集下载

专题02 函数的概念与基本初等函数I-2022年高考真题和模拟题数学分类汇编(解析版)

专题02 函数的概念与基本初等函数I-2022年高考真题和模拟题数学分类汇编(解析版)

专题02 函数的概念与基本初等函数I1.【2022年全国甲卷】函数y=(3x−3−x)cosx在区间[−π2,π2]的图象大致为()A.B.C.D.【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解. 【详解】令f(x)=(3x−3−x)cosx,x∈[−π2,π2 ],则f(−x)=(3−x−3x)cos(−x)=−(3x−3−x)cosx=−f(x),所以f(x)为奇函数,排除BD;又当x∈(0,π2)时,3x−3−x>0,cosx>0,所以f(x)>0,排除C.故选:A.2.【2022年全国甲卷】已知9m=10,a=10m−11,b=8m−9,则()A.a>0>b B.a>b>0C.b>a>0D.b>0>a 【答案】A【解析】【分析】根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. 【详解】由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0. 又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . 故选:A.3.【2022年全国乙卷】如图是下列四个函数中的某个函数在区间[−3,3]的大致图像,则该函数是( )A .y =−x 3+3x x 2+1B .y =x 3−x x 2+1C .y =2xcosx x 2+1D .y =2sinx x 2+1【答案】A 【解析】 【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】 设f(x)=x 3−x x 2+1,则f(1)=0,故排除B;设ℎ(x)=2xcosx x 2+1,当x ∈(0,π2)时,0<cosx <1, 所以ℎ(x)=2xcosx x 2+1<2xx 2+1≤1,故排除C;设g(x)=2sinxx 2+1,则g(3)=2sin310>0,故排除D.故选:A.4.【2022年全国乙卷】已知函数f(x),g(x)的定义域均为R ,且f(x)+g(2−x)=5,g(x)−f(x −4)=7.若y =g(x)的图像关于直线x =2对称,g(2)=4,则∑f(k)k=122=( )A .−21B .−22C .−23D .−24【答案】D 【解析】 【分析】根据对称性和已知条件得到f(x)+f(x −2)=−2,从而得到f (3)+f (5)+⋯+f (21)=−10,f (4)+f (6)+⋯+f (22)=−10,然后根据条件得到f(2)的值,再由题意得到g (3)=6从而得到f (1)的值即可求解. 【详解】因为y =g(x)的图像关于直线x =2对称, 所以g (2−x )=g (x +2),因为g(x)−f(x −4)=7,所以g(x +2)−f(x −2)=7,即g(x +2)=7+f(x −2), 因为f(x)+g(2−x)=5,所以f(x)+g(x +2)=5, 代入得f(x)+[7+f(x −2)]=5,即f(x)+f(x −2)=−2, 所以f (3)+f (5)+⋯+f (21)=(−2)×5=−10, f (4)+f (6)+⋯+f (22)=(−2)×5=−10.因为f(x)+g(2−x)=5,所以f(0)+g(2)=5,即f (0)=1,所以f(2)=−2−f (0)=−3. 因为g(x)−f(x −4)=7,所以g(x +4)−f(x)=7,又因为f(x)+g(2−x)=5, 联立得,g (2−x )+g (x +4)=12,所以y =g(x)的图像关于点(3,6)中心对称,因为函数g(x)的定义域为R , 所以g (3)=6因为f(x)+g(x +2)=5,所以f (1)=5−g (3)=−1. 所以∑k=122f(k)=f (1)+f (2)+[f (3)+f (5)+⋯+f (21)]+[f (4)+f (6)+⋯+f (22)]=−1−3−10−10=−24. 故选:D 【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.5.【2022年新高考2卷】已知函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f(k)22k=1=( ) A .−3 B .−2 C .0 D .1【答案】A 【解析】 【分析】根据题意赋值即可知函数f (x )的一个周期为6,求出函数一个周期中的f (1),f (2),⋯,f (6)的值,即可解出. 【详解】因为f (x +y )+f (x −y )=f (x )f (y ),令x =1,y =0可得,2f (1)=f (1)f (0),所以f (0)=2,令x =0可得,f (y )+f (−y )=2f (y ),即f (y )=f (−y ),所以函数f (x )为偶函数,令y =1得,f (x +1)+f (x −1)=f (x )f (1)=f (x ),即有f (x +2)+f (x )=f (x +1),从而可知f (x +2)=−f (x −1),f (x −1)=−f (x −4),故f (x +2)=f (x −4),即f (x )=f (x +6),所以函数f (x )的一个周期为6.因为f (2)=f (1)−f (0)=1−2=−1,f (3)=f (2)−f (1)=−1−1=−2,f (4)=f (−2)=f (2)=−1,f (5)=f (−1)=f (1)=1,f (6)=f (0)=2,所以 一个周期内的f (1)+f (2)+⋯+f (6)=0.由于22除以6余4, 所以∑f (k )22k=1=f (1)+f (2)+f (3)+f (4)=1−1−2−1=−3. 故选:A .6.【2022年北京】己知函数f(x)=11+2x ,则对任意实数x ,有( ) A .f(−x)+f(x)=0 B .f(−x)−f(x)=0 C .f(−x)+f(x)=1 D .f(−x)−f(x)=13【答案】C 【解析】 【分析】直接代入计算,注意通分不要计算错误. 【详解】f (−x )+f (x )=11+2−x +11+2x =2x1+2x +11+2x =1,故A 错误,C 正确; f (−x )−f (x )=11+2−x−11+2x =2x1+2x −11+2x =2x −12x +1=1−22x +1,不是常数,故BD 错误;7.【2022年北京】在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和lgP的关系,其中T表示温度,单位是K;P表示压强,单位是bar.下列结论中正确的是()A.当T=220,P=1026时,二氧化碳处于液态B.当T=270,P=128时,二氧化碳处于气态C.当T=300,P=9987时,二氧化碳处于超临界状态D.当T=360,P=729时,二氧化碳处于超临界状态【答案】D【解析】【分析】根据T与lgP的关系图可得正确的选项.【详解】当T=220,P=1026时,lgP>3,此时二氧化碳处于固态,故A错误.当T=270,P=128时,2<lgP<3,此时二氧化碳处于液态,故B错误.当T=300,P=9987时,lgP与4非常接近,故此时二氧化碳处于固态,另一方面,T=300时对应的是非超临界状态,故C错误.当T=360,P=729时,因2<lgP<3, 故此时二氧化碳处于超临界状态,故D正确.故选:D8.【2022年浙江】已知2a=5,log83=b,则4a−3b=()A.25 B.5 C.259D.53【解析】 【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 【详解】因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a43b =(2a )2(23b )2=5232=259.故选:C.9.【2022年新高考1卷】(多选)已知函数f(x)及其导函数f ′(x)的定义域均为R ,记g(x)=f ′(x),若f (32−2x),g(2+x)均为偶函数,则( ) A .f(0)=0 B .g (−12)=0C .f(−1)=f(4)D .g(−1)=g(2)【答案】BC 【解析】 【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解. 【详解】因为f(32−2x),g(2+x)均为偶函数,所以f(32−2x)=f(32+2x)即f(32−x)=f(32+x),g(2+x)=g(2−x), 所以f(3−x)=f(x),g(4−x)=g(x),则f(−1)=f(4),故C 正确; 函数f(x),g(x)的图象分别关于直线x =32,x =2对称, 又g(x)=f ′(x),且函数f(x)可导, 所以g(32)=0,g(3−x)=−g(x),所以g(4−x)=g(x)=−g(3−x),所以g(x +2)=−g(x +1)=g(x), 所以g(−12)=g(32)=0,g(−1)=g(1)=−g(2),故B 正确,D 错误;若函数f(x)满足题设条件,则函数f(x)+C (C 为常数)也满足题设条件,所以无法确定f(x)的函数值,故A 错误. 故选:BC.关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.10.【2022年全国乙卷】若f (x )=ln |a +11−x |+b 是奇函数,则a =_____,b =______. 【答案】 −12; ln2. 【解析】 【分析】根据奇函数的定义即可求出. 【详解】因为函数f (x )=ln |a +11−x |+b 为奇函数,所以其定义域关于原点对称. 由a +11−x ≠0可得,(1−x )(a +1−ax )≠0,所以x =a+1a=−1,解得:a =−12,即函数的定义域为(−∞,−1)∪(−1,1)∪(1,+∞),再由f (0)=0可得,b =ln2.即f (x )=ln |−12+11−x|+ln2=ln |1+x 1−x|,在定义域内满足f (−x )=−f (x ),符合题意.故答案为:−12;ln2.11.【2022年北京】函数f(x)=1x +√1−x 的定义域是_________. 【答案】(−∞,0)∪(0,1] 【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】解:因为f (x )=1x +√1−x ,所以{1−x ≥0x ≠0,解得x ≤1且x ≠0,故函数的定义域为(−∞,0)∪(0,1]; 故答案为:(−∞,0)∪(0,1]12.【2022年北京】设函数f(x)={−ax +1, x <a,(x −2)2, x ≥a.若f(x)存在最小值,则a 的一个取值为________;a 的最大值为___________. 【答案】 0(答案不唯一) 1 【解析】根据分段函数中的函数y =−ax +1的单调性进行分类讨论,可知,a =0符合条件,a <0不符合条件,a >0时函数y =−ax +1没有最小值,故f(x)的最小值只能取y =(x −2)2的最小值,根据定义域讨论可知−a 2+1≥0或−a 2+1≥(a −2)2, 解得 0<a ≤1. 【详解】解:若a =0时,f(x)={1(x −2)2,x <0,x ≥0,∴f(x)min =0; 若a <0时,当x <a 时,f(x)=−ax +1单调递增,当x →−∞时,f(x)→−∞,故f(x)没有最小值,不符合题目要求; 若a >0时,当x <a 时,f(x)=−ax +1单调递减,f(x)>f(a)=−a 2+1, 当x >a 时,f(x)min ={0(a −2)2(0<a <2)(a ≥2) ∴−a 2+1≥0或−a 2+1≥(a −2)2, 解得0<a ≤1, 综上可得0≤a ≤1;故答案为:0(答案不唯一),113.【2022年浙江】已知函数f(x)={−x 2+2, x ≤1,x +1x −1, x >1, 则f (f (12))=________;若当x ∈[a,b]时,1≤f(x)≤3,则b −a 的最大值是_________. 【答案】 3728 3+√3##√3+3 【解析】 【分析】结合分段函数的解析式求函数值,由条件求出a 的最小值,b 的最大值即可. 【详解】由已知f(12)=−(12)2+2=74,f(74)=74+47−1=3728,所以 f [f(12)]=3728,当x ≤1时,由1≤f(x)≤3可得1≤−x 2+2≤3,所以−1≤x ≤1, 当x >1时,由1≤f(x)≤3可得1≤x +1x −1≤3,所以1<x ≤2+√3, 1≤f(x)≤3等价于−1≤x ≤2+√3,所以[a,b]⊆[−1,2+√3],所以b −a 的最大值为3+√3. 故答案为:3728,3+√3.1.(2022·河南·模拟预测(文))已知函数()3sin 3f x ax b x =++,若()1f m =,则()f m -=( )A .1-B .2C .5D .7【答案】C 【解析】 【分析】令()3sin g x ax b x =+,利用函数奇偶性计算作答.【详解】设()()33sin g x f x ax b x =-=+,则()()()()33sin sin g x a x b x ax b x g x -=-+-=--=-,即函数()g x 是奇函数, ()()3f x g x =+,则()()()3()36f m f m g m g m +-=++-+=,而()1f m =所以()5f m -=. 故选:C2.(2022·全国·模拟预测(理))若幂函数()(R)a f x x a =∈满足(1)()(e )a f x f x +=,则下列关于函数()f x 的说法正确的是( )①()f x 不是周期函数 ②()f x 是单调函数 ③()f x 关于原点对称 ④()f x 关于点()0,1对称A .①③B .②④C .①④D .②③【答案】C 【解析】 【分析】根据题意可得e 10a a --=,求导利用函数单调性解不等式可得0a =,即0()1(0)f x x x ==≠,结合性质分析判断. 【详解】∵(1)()(e )a f x f x +=,即(1)(e )a a a x x +=,则e 10a a --=构建()=e 1--x g x x ,则()=e 1'-xg x令0g x ,则0x >()g x 在(),0-∞上单调递减,在()0,+∞上单调递增则()()00g x g ≥=当且仅当0x =时等号成立 ∴0a =,则0()1(0)f x x x ==≠,若()f x 是周期函数,则存在非零实数T ,使得()()f x T f x +=对任意的0x ≠总成立, 但x T =-时,()f x T +无意义,()1f T -=,故两者不相等,故()f x 不是周期函数, ①正确;()f x 不是单调函数,②错误;()1()f x f x -=≠-,()f x 不是奇函数,③错误; ()f x 关于点0,1对称,④正确;故选:C .3.(2022·河南省杞县高中模拟预测(理))已知函数()()()22sin 11f x x x x x =--++,则()222log 6log 3f f ⎛⎫+= ⎪⎝⎭( )A .6B .4C .2D .3-【答案】B 【解析】 【分析】构造函数()()()211g x f x x =+=-sin 2x x ++,由()()21sin h x x x x =-+为奇函数,()222log 6log 3f f ⎛⎫+= ⎪⎝⎭()()()()2222log 3log 3log 32log 32g g h h +-=++-+即可得解. 【详解】将()y f x =的图像向左平移1个单位长度, 得到()y g x =的图像,则()()()211g x f x x =+=-sin 2x x ++,令()()21sin h x x x x =-+,显然()h x 为奇函数,所以()()()22222log 6log 1log 31log 33f f f f ⎛⎫+=++- ⎪⎝⎭()()()()2222log 3log 3log 32log 324g g h h =+-=++-+=.故选:B .4.(2022·全国·模拟预测(理))已知定义在R 上的函数()f x ,对任意的x ∈R ,都有()(4)f x f x =--,且()(2)f x f x =-,则下列说法正确的是( )A .()f x 是以2为周期的偶函数B .()f x 是以2为周期的奇函数C .()f x 是以4为周期的偶函数D .()f x 是以4为周期的奇函数【答案】D 【解析】 【分析】由()(4)f x f x =--可得()(2)20f x f x ++-=,结合()(2)f x f x =-可得出()(2)f x f x =-+,再由()(2)f x f x =-+即可求出()f x 的周期,再由()()()(4)44f x f x f x f x =--=--+=--⎡⎤⎣⎦,即可求出()f x 为奇函数.【详解】()(4)f x f x =--即()(4)0f x f x +-=①,在①中将x 变换为2x +,则()(2)420f x f x ++-+=⎡⎤⎣⎦,则()(2)20f x f x ++-=, 又因为()(2)f x f x =-,所以()()20f x f x +=+,所以()(2)f x f x =-+②, 在②将x 变换为2x +,所以()()2(4)f x f x f x +=-+=-,所以()(4)f x f x =+, 所以()f x 的周期为4.因为()()()(4)44f x f x f x f x =--=--+=--⎡⎤⎣⎦,所以()()f x f x -=-, 所以()f x 为奇函数. 故选:D.5.(2022·河南安阳·模拟预测(理))关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ①()f x 的图象关于直线1x =对称 ②()f x 在区间(2,)+∞单调递减③()f x 的极大值为0 ④()f x 有3个零点 其中所有正确结论的编号为( ) A .①③ B .①④ C .②③④ D .①③④【答案】D 【解析】 【分析】根据给定函数,计算(2)f x -判断①;探讨()f x 在(2,)+∞上单调性判断②;探讨()f x 在(0,1)和(1,2)上单调性判断③;求出()f x 的零点判断④作答. 【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于①,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,①正确;对于②,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,②不正确; 对于③,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,③正确;对于④,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,④正确, 所以所有正确结论的编号为①③④. 故选:D 【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.6.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则( ) A .()f x 是偶函数 B .()f x 的图象关于直线12x =对称 C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称【答案】C 【解析】 【分析】由周期函数的概念易知函数()f x 的周期为2,根据图象平移可得()f x 的图象关于点()1,0对称,进而可得奇偶性. 【详解】由()()24f x f x +=+可得2是函数()f x 的周期,因为()1f x +是奇函数,所以函数()f x 的图象关于点()1,0对称, 所以()()2f x f x =--,()()f x f x =--,所以()f x 是奇函数, 故选:C.7.(2022·黑龙江·鸡西市第四中学三模(理))若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列三个函数:()13=x f x ,()243x f x =⨯,()385log 53log 2x f x =⋅⋅,则( )A .()1f x ,()2f x ,()3f x 为“同形”函数B .()1f x ,()2f x 为“同形”函数,且它们与()3f x 不为“同形”函数C .()1f x ,()3f x 为“同形”函数,且它们与()2f x 不为“同形”函数D .()2f x ,()3f x 为“同形”函数,且它们与()1f x 不为“同形”函数 【答案】A 【解析】 【分析】根据题中“同形”函数的定义和2()f x 、3()f x 均可化简成以3为底的指数形式,可得答案. 【详解】解:()33log 4log 4243333x x xf x +=⨯=⨯=,()518385813log 5g lo l log 23lo 233g 53og 23x x x x x f x -=⋅⋅=⋅⋅==⋅⋅=,故2()f x ,3()f x 的图象可分别由1()3x f x =的图象向左平移3log 4个单位、向右平移1个单位得到,故()1f x ,()2f x ,()3f x 为“同形”函数. 故选:A .8.(2022·河南·平顶山市第一高级中学模拟预测(文))定义在R 上的函数()f x 满足(1)(1)f x f x -=+,当1x 时,225,12,()2log ,2,x x f x x x ⎧-+<=⎨-⎩若对任意的[,1]x t t ∈+,不等式()(1)f x f t x --恒成立,则实数t 的取值范围是( ) A .1(,1],3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭B .1(,2],3⎡⎫-∞-⋃+∞⎪⎢⎣⎭C .12,3⎡⎤-⎢⎥⎣⎦D .11,3⎡⎤--⎢⎥⎣⎦【答案】D 【解析】 【分析】由解析式得到函数的单调性和对称轴,结合条件可得|1||11|x t x ----,两边平方转为恒成立求解即可. 【详解】当12x <时,25y x =-+单调递减,2()(2)2log 21f x f >=-=;当2x 时,()f x 单调递减,故()f x 在[1,)+∞上单调递减:由(1)(1)f x f x -=+,得()f x 的对称轴方程为1x =.若对任意的[,1]x t t ∈+,不等式()(1)f x f t x --恒成立,所以|1||11|x t x ----,即22(1)()x x t -+,即22(1)10t x t ++-对任意的[,1]x t t ∈+恒成立,所以()()()222110,21110,t t t t t t ⎧++-⎪⎨+++-⎪⎩解得113t --. 故选:D .9.(2022·青海·大通回族土族自治县教学研究室三模(文))若函数()f x 满足()()31f x f x +=-,且当[]2,0x ∈-时,()31x f x -=+,则()2022f =( )A .109B .10C .4D .2【答案】B 【解析】 【分析】首先得到()f x 的周期,再根据函数的周期性计算可得; 【详解】解:由()()31f x f x +=-,得()()4f x f x +=, ∴函数()f x 是周期函数,且4是它的一个周期,又当[]2,0x ∈-时,()31xf x -=+,∴()()()20224506229110f f f =⨯-=-=+=; 故选:B.10.(2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( ) A .2x y = B .3y x =- C .cos 2x y =D .2ln2xy x-=+ 【答案】C 【解析】 【分析】利用函数的奇偶性和单调性的定义以及导数分别判断四个选项即可得出答案. 【详解】对于A ,函数()2x f x =的定义域为R ,关于原点对称,且()22()x xf x f x --===,所以函数()f x 为偶函数,当(0,2)x ∈时()2x f x =,函数()f x 单调递增,故A 不符合题意; 对于B ,函数3()f x x =-的定义域为R ,关于原点对称, 且33()()()f x x x f x -=--==-,所以函数()f x 为奇函数, 由幂函数的性质知函数3y x =在R 上单调递增, 所以函数3()f x x =-在R 上单调递减,故B 不符合题意; 对于C ,函数()cos 2x f x =的定义域为R ,关于原点对称,且()cos()cos ()22x xf x f x -=-==,所以函数()f x 为偶函数,当(0,2)x ∈时(0,1)2x ∈,又()0,10,2π⎛⎫⊆ ⎪⎝⎭,所以函数()cos 2x f x =在(0,1)上单调递减,故C 符合题意; 对于D ,函数2()ln 2xf x x-=+的定义域为(2,2)-,关于原点对称, 且()()1222lnln()ln 222x x xf f x x x xx -+--==--+==--+, 所以()f x 是奇函数,又112()22(2)(2)x f x x x x x '=-=-+-+, 令()020f x x '<⇒-<<,令()002f x x '>⇒<<,所以函数()f x 在(2,0)-上单调递减,在(0,2)上单调递增,故D 不符合题意. 故选:C.11.(2022·浙江绍兴·模拟预测)已知函数()()2()log 9,()log x a a f x a g x x ax =-=-,若对任意1[1,2]x ∈,存在2[3,4]x ∈使得()()12f x g x ≥恒成立,则实数a 的取值范围为____________. 【答案】()()0,11,3【解析】 【分析】恒成立存在性共存的不等式问题,需要根据题意确定最值比大小解不等式即可. 【详解】根据题意可得只需()()12min min f x g x ≥即可,由题可知a 为对数底数且29001a a ->⇒<<或13a <<.当01a <<时,此时(),()f x g x 在各自定义域内都有意义,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递减,所以()21min (2)log (9)a f x f a ==-,()2min (4)log (164)a g x g a ==-,所以22log (9)log (164)9164a a a a a a -≥-⇒-≤-,即2470a a -+≥,可得01a <<;当13a <<时,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递增,所以()21min (2)log (9)a f x f a ==-,()2min (3)log (93)a g x g a ==-,所以22log (9)log (93)993a a a a a a -≥-⇒-≥-,即230a a -≤,可得13a <<.综上:()()0,11,3a ∈⋃.故答案为:()()0,11,3.12.(2022·河南安阳·模拟预测(文))已知函数()x x f x ae e a -=-+是偶函数,则=a _________. 【答案】-1 【解析】 【分析】利用偶函数的定义直接求解. 【详解】函数()x x f x ae e a -=-+的定义域为R.因为函数()x x f x ae e a -=-+是偶函数,所以()()f x f x =-,即x x x x ae e a ae e a ---+=-+对任意R x ∈恒成立,亦即()()11x xa e a e -+=+对任意R x ∈恒成立,所以1a =-. 故答案为:-113.(2022·全国·模拟预测(理))已知函数())33()lnf x x x x -=-为偶函数,则=a ______. 【答案】1 【解析】 【分析】利用偶函数定义列出关于a 的方程,解之即可求得实数a 的值 【详解】函数())33()ln f x x x x -=-为偶函数,则有()()f x f x -=,即())())3333lnlnx x x x x x ---+=-恒成立则))lnln x x =-恒成立即))ln ln ln 0x x a +==恒成立则1a =,经检验符合题意. 故答案为:114.(2022·安徽·合肥市第八中学模拟预测(文))已知定义在(0,+∞)上的函数f (x )满足:ln ,01()2(1),1x x x f x f x x <≤⎧=⎨->⎩,若方程()12f x kx =-在(0,2]上恰有三个根,则实数k 的取值范围是___________. 【答案】11ln 2,2⎛⎫- ⎪⎝⎭【解析】 【分析】由题意知直线12y kx =-与函数()y f x =的图像有三个交点,利用导数研究函数()f x 的性质,结合数形结合的数学思想即可求出k 的取值范围. 【详解】方程()12f x kx =-在(0,2]上恰有三个根,即直线12y kx =-与函数()y f x =的图像有三个交点,当01x <≤时,()ln f x x x =,则()ln 1f x x '=+, 当10e x <<时,()0f x '<;当11ex <≤时,()0f x '>,所以f (x )在(0,1e )上单调递减,f (x )在(1e,1]上单调递增.结合函数的“周期现象”得f (x )在(0,2]上的图像如下:由于直线l ;12y kx =-过定点A (0,12-).如图连接A ,B (1,0)两点作直线11122l y x =-:,过点A 作()()ln 01f x x x x =<≤的切线l 2,设切点P (0x ,0y ),其中000ln l 1()n y x x x f x '==+,,则斜率20ln 1l k x =+ 切线20000:ln (ln 1)()l y x x x x x -=+-过点A (0,12-).则00001ln (ln 1)(0)2x x x x --=+-,即012x =,则21ln 11ln 22l k =+=-,当直线1:2l y kx =-绕点A (0,12-)在1l 与2l 之间旋转时.直线1:2l y kx =-与函数()y f x =在[-1,2]上的图像有三个交点,故1(1ln 2,)2k ∈-故答案为:1(1ln 2,)2-15.(2022·北京·景山学校模拟预测)已知函数()y f x =,x D ∈,若存在实数m ,使得对于任意的x D ∈,都有()f x m ≥,则称函数()y f x =,x D ∈有下界,m 为其一个下界;类似的,若存在实数M ,使得对于任意的x D ∈,都有()f x M ≤,则称函数()y f x =,x D ∈有上界,M 为其一个上界.若函数()y f x =,x D ∈既有上界,又有下界,则称该函数为有界函数.对于下列4个结论中正确的序号是______.①若函数()y f x =有下界,则函数()y f x =有最小值;②若定义在R 上的奇函数()y f x =有上界,则该函数是有界函数; ③对于函数()y f x =,若函数()y f x =有最大值,则该函数是有界函数; ④若函数()y f x =的定义域为闭区间[],a b ,则该函数是有界函数. 【答案】②③ 【解析】 【分析】根据函数上界,下界,有界的定义分别进行判断即可. 【详解】解:①当0x >时,1()f x x=,则()0f x 恒成立,则函数()y f x =有下界,但函数()y f x =没有最小值,故①错误;②若定义在R 上的奇函数()y f x =有上界,不妨设当0x 时,()f x M 成立,则当0x <时,0x ->,则()f x M -,即()f x M -,则()f x M -,该()f x 的下界是M -,则函数是有界函数,故②正确; ③对于函数()y f x =,若函数|()|y f x =有最大值,设|()|f x M ,则()M f x M -,该函数是有界函数,故③正确;④函数tan ,02()02x x f x x ππ⎧<⎪⎪=⎨⎪=⎪⎩,则函数()y f x =的定义域为闭区间02,π⎡⎤⎢⎥⎣⎦, 则函数()f x 的值域为[)0+∞,,则()f x 只有下界,没有上界,即该函数不是有界函数.故④错误;故答案为:②③.。

专题03 导数及其应用-2022年高考真题和模拟题数学分类汇编(解析版)

专题03 导数及其应用-2022年高考真题和模拟题数学分类汇编(解析版)

专题03 导数及其应用1.【2022年全国甲卷】当x =1时,函数f(x)=alnx +bx 取得最大值−2,则f ′(2)=( ) A .−1 B .−12C .12D .1【答案】B 【解析】 【分析】根据题意可知f (1)=−2,f ′(1)=0即可解得a,b ,再根据f ′(x )即可解出. 【详解】因为函数f (x )定义域为(0,+∞),所以依题可知,f (1)=−2,f ′(1)=0,而f ′(x )=ax −bx 2,所以b =−2,a −b =0,即a =−2,b =−2,所以f ′(x )=−2x +2x 2,因此函数f (x )在(0,1)上递增,在(1,+∞)上递减,x =1时取最大值,满足题意,即有f ′(2)=−1+12=−12. 故选:B.2.【2022年全国甲卷】已知a =3132,b =cos 14,c =4sin 14,则( ) A .c >b >a B .b >a >c C .a >b >c D .a >c >b【答案】A 【解析】 【分析】由cb =4tan 14结合三角函数的性质可得c >b ;构造函数f(x)=cosx +12x 2−1,x ∈(0,+∞),利用导数可得b >a ,即可得解. 【详解】因为cb =4tan 14,因为当x ∈(0,π2),sinx <x <tanx 所以tan 14>14,即cb >1,所以c >b ; 设f(x)=cosx +12x 2−1,x ∈(0,+∞),f ′(x)=−sinx +x >0,所以f(x)在(0,+∞)单调递增, 则f (14)>f(0)=0,所以cos 14−3132>0,所以b >a ,所以c >b >a , 故选:A3.【2022年新高考1卷】设a =0.1e 0.1,b =19,c =−ln0.9,则( ) A .a <b <c B .c <b <a C .c <a <b D .a <c <b【答案】C 【解析】 【分析】构造函数f(x)=ln(1+x)−x , 导数判断其单调性,由此确定a,b,c 的大小. 【详解】设f(x)=ln(1+x)−x(x >−1),因为f ′(x)=11+x −1=−x1+x , 当x ∈(−1,0)时,f ′(x)>0,当x ∈(0,+∞)时f ′(x)<0,所以函数f(x)=ln(1+x)−x 在(0,+∞)单调递减,在(−1,0)上单调递增, 所以f(19)<f(0)=0,所以ln109−19<0,故19>ln109=−ln0.9,即b >c ,所以f(−110)<f(0)=0,所以ln 910+110<0,故910<e −110,所以110e 110<19,故a <b ,设g(x)=xe x +ln(1−x)(0<x <1),则g ′(x)=(x +1)e x +1x−1=(x 2−1)e x +1x−1,令ℎ(x)=e x (x 2−1)+1,ℎ′(x)=e x (x 2+2x −1),当0<x <√2−1时,ℎ′(x)<0,函数ℎ(x)=e x (x 2−1)+1单调递减, 当√2−1<x <1时,ℎ′(x)>0,函数ℎ(x)=e x (x 2−1)+1单调递增, 又ℎ(0)=0,所以当0<x <√2−1时,ℎ(x)<0,所以当0<x <√2−1时,g ′(x)>0,函数g(x)=xe x +ln(1−x)单调递增, 所以g(0.1)>g(0)=0,即0.1e 0.1>−ln0.9,所以a >c 故选:C.4.【2022年新高考1卷】(多选)已知函数f(x)=x 3−x +1,则( ) A .f(x)有两个极值点B .f(x)有三个零点C .点(0,1)是曲线y =f(x)的对称中心D .直线y =2x 是曲线y =f(x)的切线【答案】AC【解析】 【分析】利用极值点的定义可判断A ,结合f(x)的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,f ′(x )=3x 2−1,令f ′(x )>0得x >√33或x <−√33,令f ′(x)<0得−√33<x <√33,所以f(x)在(−√33,√33)上单调递减,在(−∞,−√33),(√33,+∞)上单调递增, 所以x =±√33是极值点,故A 正确;因f(−√33)=1+2√39>0,f(√33)=1−2√39>0,f (−2)=−5<0,所以,函数f (x )在(−∞,−√33)上有一个零点,当x ≥√33时,f (x )≥f (√33)>0,即函数f (x )在(√33,+∞)上无零点,综上所述,函数f(x)有一个零点,故B 错误;令ℎ(x)=x 3−x ,该函数的定义域为R ,ℎ(−x )=(−x )3−(−x )=−x 3+x =−ℎ(x ), 则ℎ(x)是奇函数,(0,0)是ℎ(x)的对称中心, 将ℎ(x)的图象向上移动一个单位得到f(x)的图象, 所以点(0,1)是曲线y =f(x)的对称中心,故C 正确; 令f ′(x )=3x 2−1=2,可得x =±1,又f(1)=f (−1)=1,当切点为(1,1)时,切线方程为y =2x −1,当切点为(−1,1)时,切线方程为y =2x +3, 故D 错误. 故选:AC.5.【2022年全国乙卷】已知x =x 1和x =x 2分别是函数f(x)=2a x −ex 2(a >0且a ≠1)的极小值点和极大值点.若x 1<x 2,则a 的取值范围是____________. 【答案】(1e ,1) 【解析】 【分析】由x 1,x 2分别是函数f (x )=2a x −ex 2的极小值点和极大值点,可得x ∈(−∞,x 1)∪(x 2,+∞)时,f′(x)<0,x∈(x1,x2)时,f′(x)>0,再分a>1和0<a<1两种情况讨论,方程2lna ⋅a x−2ex=0的两个根为x1,x2,即函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,构造函数g(x)=lna⋅a x,利用指数函数的图象和图象变换得到g(x)的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详解】解:f′(x)=2lna⋅a x−2ex,因为x1,x2分别是函数f(x)=2a x−ex2的极小值点和极大值点,所以函数f(x)在(−∞,x1)和(x2,+∞)上递减,在(x1,x2)上递增,所以当x∈(−∞,x1)∪(x2,+∞)时,f′(x)<0,当x∈(x1,x2)时,f′(x)>0,若a>1时,当x<0时,2lna⋅a x>0,2ex<0,则此时f′(x)>0,与前面矛盾,故a>1不符合题意,若0<a<1时,则方程2lna⋅a x−2ex=0的两个根为x1,x2,即方程lna⋅a x=ex的两个根为x1,x2,即函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,∵0<a<1,∴函数y=a x的图象是单调递减的指数函数,又∵ln a<0,∴y=lna⋅a x的图象由指数函数y=a x向下关于x轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的|ln a|倍得到,如图所示:设过原点且与函数y=g(x)的图象相切的直线的切点为(x0,lna⋅a x0),则切线的斜率为g′(x0)=ln2a⋅a x0,故切线方程为y−lna⋅a x0=ln2a⋅a x0(x−x0),则有−lna⋅a x0=−x0ln2a⋅a x0,解得x0=1lna,则切线的斜率为ln2a⋅a1lna=eln2a,因为函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,所以eln2a<e,解得1e<a<e,又0<a<1,所以1e<a<1,综上所述,a的范围为(1e,1).【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.6.【2022年新高考1卷】若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是________________.【答案】(−∞,−4)∪(0,+∞)【解析】【分析】设出切点横坐标x0,利用导数的几何意义求得切线方程,根据切线经过原点得到关于x0的方程,根据此方程应有两个不同的实数根,求得a的取值范围.【详解】∵y=(x+a)e x,∴y′=(x+1+a)e x,设切点为(x0,y0),则y0=(x0+a)e x0,切线斜率k=(x0+1+a)e x0,切线方程为:y−(x0+a)e x0=(x0+1+a)e x0(x−x0),∵切线过原点,∴−(x0+a)e x0=(x0+1+a)e x0(−x0),整理得:x02+ax0−a=0,∵切线有两条,∴∆=a2+4a>0,解得a<−4或a>0,∴a的取值范围是(−∞,−4)∪(0,+∞),故答案为:(−∞,−4)∪(0,+∞)7.【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,___ _________.【答案】y=1e x y=−1ex【解析】【分析】分x>0和x<0两种情况,当x>0时设切点为(x0,lnx0),求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出x0,即可求出切线方程,当x <0时同理可得;【详解】解:因为y=ln|x|,当x>0时y=lnx,设切点为(x0,lnx0),由y′=1x ,所以y′|x=x0=1x,所以切线方程为y−lnx0=1x0(x−x0),又切线过坐标原点,所以−lnx0=1x0(−x0),解得x=e,所以切线方程为y−1=1e(x−e),即y=1ex;当x<0时y=ln(−x),设切点为(x1,ln(−x1)),由y′=1x ,所以y′|x=x1=1x1,所以切线方程为y−ln(−x1)=1x1(x−x1),又切线过坐标原点,所以−ln(−x1)=1x1(−x1),解得x1=−e,所以切线方程为y−1=1−e(x+e),即y=−1ex;故答案为:y=1e x;y=−1ex8.【2022年全国甲卷】已知函数f(x)=x3−x,g(x)=x2+a,曲线y=f(x)在点(x1,f(x1))处的切线也是曲线y=g(x)的切线.(1)若x1=−1,求a;(2)求a的取值范围.【答案】(1)3(2)[−1,+∞)【解析】【分析】(1)先由f(x)上的切点求出切线方程,设出g(x)上的切点坐标,由斜率求出切点坐标,再由函数值求出a即可;(2)设出g(x)上的切点坐标,分别由f(x)和g(x)及切点表示出切线方程,由切线重合表示出a,构造函数,求导求出函数值域,即可求得a的取值范围.(1)由题意知,f(−1)=−1−(−1)=0,f′(x)=3x2−1,f′(−1)=3−1=2,则y=f(x)在点(−1,0)处的切线方程为y=2(x+1),即y=2x+2,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2=2,解得x2=1,则g(1)=1+a=2+2,解得a=3;(2)f′(x)=3x2−1,则y=f(x)在点(x1,f(x1))处的切线方程为y−(x13−x1)=(3x12−1)(x−x1),整理得y=(3x12−1)x−2x13,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2,则切线方程为y−(x22+a)=2x2(x−x2),整理得y=2x2x−x22+a,则{3x12−1=2x2−2x13=−x22+a ,整理得a=x22−2x13=(3x122−12)2−2x13=94x14−2x13−32x12+14,令ℎ(x)=94x4−2x3−32x2+14,则ℎ′(x)=9x3−6x2−3x=3x(3x+1)(x−1),令ℎ′(x)>0,解得−13<x<0或x>1,令ℎ′(x)<0,解得x<−13或0<x<1,则x变化时,ℎ′(x),ℎ(x)的变化情况如下表:则ℎ(x)的值域为[−1,+∞),故a的取值范围为[−1,+∞).9.【2022年全国甲卷】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.【答案】(1)(−∞,e+1](2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为e xx −x e1x−2[lnx−12(x−1x)]>0,再利用导数即可得证.(1)f(x)的定义域为(0,+∞),f′(x)=(1x −1x2)e x−1x+1=1x(1−1x)e x+(1−1x)=x−1x(e xx+1)令f(x)=0,得x=1当x∈(0,1),f′(x)<0,f(x)单调递减当x∈(1,+∞),f′(x)>0,f(x)单调递增f(x)≥f(1)=e+1−a,若f(x)≥0,则e+1−a≥0,即a≤e+1所以a的取值范围为(−∞,e+1](2)由题知,f(x)一个零点小于1,一个零点大于1不妨设x1<1<x2要证x1x2<1,即证x1<1x2因为x1,1x2∈(0,1),即证f(x1)>f(1x2)因为f(x1)=f(x2),即证f(x2)>f(1x2)即证e xx −lnx+x−x e1x−lnx−1x>0,x∈(1,+∞)即证e xx −x e1x−2[lnx−12(x−1x)]>0下面证明x>1时,e xx −x e1x>0,lnx−12(x−1x)<0设g(x)=e xx−x e1x,x>1,则g′(x)=(1x −1x2)e x−(e1x+x e1x⋅(−1x2))=1x(1−1x)e x−e1x(1−1x)=(1−1x)(exx−e1x)=x−1x(exx−e1x)设φ(x)=e xx (x>1),φ′(x)=(1x−1x2)e x=x−1x2ex>0所以φ(x)>φ(1)=e,而e1x<e所以e xx−e1x>0,所以g′(x)>0所以g(x)在(1,+∞)单调递增即g(x)>g(1)=0,所以e xx−x e1x>0令ℎ(x)=lnx−12(x−1x),x>1ℎ′(x)=1x−12(1+1x2)=2x−x2−12x2=−(x−1)22x2<0所以ℎ(x)在(1,+∞)单调递减即ℎ(x)<ℎ(1)=0,所以lnx−12(x−1x)<0;综上, e xx −x e1x−2[lnx−12(x−1x)]>0,所以x1x2<1.【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式ℎ(x)=lnx−12(x−1x)这个函数经常出现,需要掌握10.【2022年全国乙卷】已知函数f(x)=ax−1x−(a+1)lnx.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.【答案】(1)−1(2)(0,+∞)【解析】【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得f′(x)=(ax−1)(x−1)x2,按照a≤0、0<a<1及a>1结合导数讨论函数的单调性,求得函数的极值,即可得解.(1)当a=0时,f(x)=−1x −lnx,x>0,则f′(x)=1x2−1x=1−xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减;所以f(x)max=f(1)=−1;(2)f(x)=ax−1x −(a+1)lnx,x>0,则f′(x)=a+1x2−a+1x=(ax−1)(x−1)x2,当a≤0时,ax−1≤0,所以当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减;所以f(x)max=f(1)=a−1<0,此时函数无零点,不合题意;当0<a<1时,1a >1,在(0,1),(1a,+∞)上,f′(x)>0,f(x)单调递增;在(1,1a)上,f′(x)<0,f(x)单调递减;又f(1)=a−1<0,当x趋近正无穷大时,f(x)趋近于正无穷大,所以f(x)仅在(1a,+∞)有唯一零点,符合题意;当a=1时,f′(x)=(x−1)2x2≥0,所以f(x)单调递增,又f(1)=a−1=0,所以f(x)有唯一零点,符合题意;当a>1时,1a <1,在(0,1a),(1,+∞)上,f′(x)>0,f(x)单调递增;在(1a,1)上,f′(x)<0,f(x)单调递减;此时f(1)=a−1>0,又f(1a n )=1a n−1−a n+n(a+1)lna,当n趋近正无穷大时,f(1a n)趋近负无穷,所以f(x)在(0,1a )有一个零点,在(1a,+∞)无零点,所以f(x)有唯一零点,符合题意;综上,a的取值范围为(0,+∞).【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.11.【2022年全国乙卷】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.【答案】(1)y=2x(2)(−∞,−1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a分类讨论,对x分(−1,0),(0,+∞)两部分研究(1)f(x)的定义域为(−1,+∞)当a=1时,f(x)=ln(1+x)+xe x ,f(0)=0,所以切点为(0,0)f′(x)=11+x+1−xe x,f′(0)=2,所以切线斜率为2所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x (2)f(x)=ln(1+x)+ax e xf′(x)=11+x+a(1−x)e x=ex+a(1−x2)(1+x)e x设g(x)=e x+a(1−x2)1°若a>0,当x∈(−1,0),g(x)=e x+a(1−x2)>0,即f′(x)>0所以f(x)在(−1,0)上单调递增,f(x)<f(0)=0故f(x)在(−1,0)上没有零点,不合题意2°若−1⩽a⩽0,当x∈(0,+∞),则g′(x)=e x−2ax>0所以g(x)在(0,+∞)上单调递增所以g(x)>g(0)=1+a⩾0,即f′(x)>0所以f(x)在(0,+∞)上单调递增,f(x)>f(0)=0故f(x)在(0,+∞)上没有零点,不合题意3°若a<−1(1)当x∈(0,+∞),则g′(x)=e x−2ax>0,所以g(x)在(0,+∞)上单调递增g(0)=1+a<0,g(1)=e>0所以存在m∈(0,1),使得g(m)=0,即f′(m)=0当x∈(0,m),f′(x)<0,f(x)单调递减当x∈(m,+∞),f′(x)>0,f(x)单调递增所以当x∈(0,m),f(x)<f(0)=0当x→+∞,f(x)→+∞所以f(x)在(m,+∞)上有唯一零点又(0,m)没有零点,即f(x)在(0,+∞)上有唯一零点(2)当x∈(−1,0),g(x)=e x+a(1−x2)设ℎ(x)=g′(x)=e x−2axℎ′(x)=e x−2a>0所以g′(x)在(−1,0)单调递增g′(−1)=1e+2a<0,g′(0)=1>0所以存在n∈(−1,0),使得g′(n)=0当x∈(−1,n),g′(x)<0,g(x)单调递减当x∈(n,0),g′(x)>0,g(x)单调递增,g(x)<g(0)=1+a<0又g(−1)=1e>0所以存在t∈(−1,n),使得g(t)=0,即f′(t)=0当x∈(−1,t),f(x)单调递增,当x∈(t,0),f(x)单调递减有x→−1,f(x)→−∞而f(0)=0,所以当x∈(t,0),f(x)>0所以f(x)在(−1,t)上有唯一零点,(t,0)上无零点即f(x)在(−1,0)上有唯一零点所以a<−1,符合题意所以若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围为(−∞,−1)【点睛】方法点睛:本题的关键是对a的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.12.【2022年新高考1卷】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)a=1(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当b>1时,e x−x=b的解的个数、x−lnx=b的解的个数均为2,构建新函数ℎ(x)=e x+lnx−2x,利用导数可得该函数只有一个零点且可得f(x),g(x)的大小关系,根据存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点可得b的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)f(x)=e x−ax的定义域为R,而f′(x)=e x−a,若a≤0,则f′(x)>0,此时f(x)无最小值,故a>0.g(x)=ax−lnx的定义域为(0,+∞),而g′(x)=a−1x =ax−1x.当x<lna时,f′(x)<0,故f(x)在(−∞,lna)上为减函数,当x>lna时,f′(x)>0,故f(x)在(lna,+∞)上为增函数,故f(x)min=f(lna)=a−alna.当0<x<1a 时,g′(x)<0,故g(x)在(0,1a)上为减函数,当x>1a 时,g′(x)>0,故g(x)在(1a,+∞)上为增函数,故g(x)min=g(1a )=1−ln1a.因为f(x)=e x−ax和g(x)=ax−lnx有相同的最小值,故1−ln1a =a−alna,整理得到a−11+a=lna,其中a>0,设g(a)=a−11+a −lna,a>0,则g′(a)=2(1+a)2−1a=−a2−1a(1+a)2≤0,故g(a)为(0,+∞)上的减函数,而g(1)=0,故g(a)=0的唯一解为a=1,故1−a1+a=lna的解为a=1.综上,a=1.(2)由(1)可得f(x)=e x−x和g(x)=x−lnx的最小值为1−ln1=1−ln11=1.当b>1时,考虑e x−x=b的解的个数、x−lnx=b的解的个数.设S(x)=e x−x−b,S′(x)=e x−1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(−∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1−b<0,而S(−b)=e−b>0,S(b)=e b−2b,设u(b)=e b−2b,其中b>1,则u′(b)=e b−2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e−2>0,故S(b)>0,故S(x)=e x−x−b有两个不同的零点,即e x−x=b的解的个数为2.设T(x)=x−lnx−b,T′(x)=x−1x,当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1−b<0,而T(e−b)=e−b>0,T(e b)=e b−2b>0,T(x)=x−lnx−b有两个不同的零点即x−lnx=b的解的个数为2.当b=1,由(1)讨论可得x−lnx=b、e x−x=b仅有一个零点,当b<1时,由(1)讨论可得x−lnx=b、e x−x=b均无零点,故若存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点,则b>1.设ℎ(x)=e x+lnx−2x,其中x>0,故ℎ′(x)=e x+1x−2,设s(x)=e x−x−1,x>0,则s′(x)=e x−1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0即e x>x+1,所以ℎ′(x)>x+1x−1≥2−1>0,所以ℎ(x)在(0,+∞)上为增函数,而ℎ(1)=e−2>0,ℎ(1e3)=e1e3−3−2e3<e−3−2e3<0,故ℎ(x)在(0,+∞)上有且只有一个零点x 0,1e3<x 0<1且:当0<x <x 0时,ℎ(x)<0即e x −x <x −lnx 即f(x)<g(x), 当x >x 0时,ℎ(x)>0即e x −x >x −lnx 即f(x)>g(x),因此若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 故b =f(x 0)=g(x 0)>1,此时e x −x =b 有两个不同的零点x 1,x 0(x 1<0<x 0), 此时x −lnx =b 有两个不同的零点x 0,x 4(0<x 0<1<x 4), 故e x 1−x 1=b ,e x 0−x 0=b ,x 4−lnx 4−b =0,x 0−lnx 0−b =0 所以x 4−b =lnx 4即e x 4−b =x 4即e x 4−b −(x 4−b)−b =0, 故x 4−b 为方程e x −x =b 的解,同理x 0−b 也为方程e x −x =b 的解又e x 1−x 1=b 可化为e x 1=x 1+b 即x 1−ln(x 1+b)=0即(x 1+b)−ln(x 1+b)−b =0, 故x 1+b 为方程x −lnx =b 的解,同理x 0+b 也为方程x −lnx =b 的解, 所以{x 1,x 0}={x 0−b,x 4−b},而b >1, 故{x 0=x 4−b x 1=x 0−b 即x 1+x 4=2x 0. 【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系. 13.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;(2)当x >0时,f(x)<−1,求a 的取值范围; (3)设n ∈N ∗,证明:√12+1√22+2⋯√n 2+n>ln(n +1).【答案】(1)f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)a ≤12 (3)见解析 【解析】 【分析】(1)求出f ′(x),讨论其符号后可得f(x)的单调性.(2)设ℎ(x)=x e ax −e x +1,求出ℎ″(x),先讨论a >12时题设中的不等式不成立,再就0<a≤12结合放缩法讨论ℎ′(x)符号,最后就a ≤0结合放缩法讨论ℎ(x)的范围后可得参数的取值范围.(3)由(2)可得2lnt <t −1t 对任意的t >1恒成立,从而可得ln(n +1)−lnn <√n 2+n 对任意的n ∈N ∗恒成立,结合裂项相消法可证题设中的不等式. (1)当a =1时,f(x)=(x −1)e x ,则f ′(x)=x e x , 当x <0时,f ′(x)<0,当x >0时,f ′(x)>0, 故f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)设ℎ(x)=x e ax −e x +1,则ℎ(0)=0,又ℎ′(x)=(1+ax)e ax −e x ,设g(x)=(1+ax)e ax −e x , 则g ′(x)=(2a +a 2x)e ax −e x , 若a >12,则g ′(0)=2a −1>0, 因为g ′(x)为连续不间断函数,故存在x 0∈(0,+∞),使得∀x ∈(0,x 0),总有g ′(x)>0, 故g(x)在(0,x 0)为增函数,故g(x)>g(0)=0,故ℎ(x)在(0,x 0)为增函数,故ℎ(x)>ℎ(0)=−1,与题设矛盾. 若0<a ≤12,则ℎ′(x)=(1+ax)e ax −e x =e ax+ln(1+ax)−e x , 下证:对任意x >0,总有ln(1+x)<x 成立,证明:设S(x)=ln(1+x)−x ,故S ′(x)=11+x −1=−x1+x <0, 故S(x)在(0,+∞)上为减函数,故S(x)<S(0)=0即ln(1+x)<x 成立. 由上述不等式有e ax+ln(1+ax)−e x <e ax+ax −e x =e 2ax −e x ≤0, 故ℎ′(x)≤0总成立,即ℎ(x)在(0,+∞)上为减函数, 所以ℎ(x)<ℎ(0)=−1.当a ≤0时,有ℎ′(x)=e ax −e x +ax e ax <1−1+0=0, 所以ℎ(x)在(0,+∞)上为减函数,所以ℎ(x)<ℎ(0)=−1. 综上,a ≤12. (3)取a=12,则∀x>0,总有x e12x−e x+1<0成立,令t=e12x,则t>1,t2=e x,x=2lnt,故2tlnt<t2−1即2lnt<t−1t对任意的t>1恒成立.所以对任意的n∈N∗,有2ln√n+1n <√n+1n−√nn+1,整理得到:ln(n+1)−lnn<√n2+n,故√12+1√22+2⋯√n2+n>ln2−ln1+ln3−ln2+⋯+ln(n+1)−lnn=ln(n+1),故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.14.【2022年北京】已知函数f(x)=e x ln(1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f′(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).【答案】(1)y=x(2)g(x)在[0,+∞)上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令m(x)=f(x+t)−f(x),(x,t>0),即证m(x)>m(0),由第二问结论可知m(x)在[0,+∞)上单调递增,即得证.(1)解:因为f(x)=e x ln(1+x),所以f(0)=0,即切点坐标为(0,0),又f′(x)=e x(ln(1+x)+11+x),∴切线斜率k=f′(0)=1∴切线方程为:y=x(2)解:因为g(x)=f′(x)=e x(ln(1+x)+11+x),所以g′(x)=e x(ln(1+x)+21+x−1(1+x)2),令ℎ(x)=ln(1+x)+21+x−1(1+x)2,则ℎ′(x)=11+x −2(1+x)2+2(1+x)3=x2+1(1+x)3>0,∴ℎ(x)在[0,+∞)上单调递增,∴ℎ(x)≥ℎ(0)=1>0∴g′(x)>0在[0,+∞)上恒成立,∴g(x)在[0,+∞)上单调递增.(3)解:原不等式等价于f(s+t)−f(s)>f(t)−f(0),令m(x)=f(x+t)−f(x),(x,t>0),即证m(x)>m(0),∵m(x)=f(x+t)−f(x)=e x+t ln(1+x+t)−e x ln(1+x),m′(x)=e x+t ln(1+x+t)+e x+t1+x+t −e x ln(1+x)−e x1+x=g(x+t)−g(x),由(2)知g(x)=f′(x)=e x(ln(1+x)+11+x)在[0,+∞)上单调递增,∴g(x+t)>g(x),∴m′(x)>0∴m(x)在(0,+∞)上单调递增,又因为x,t>0,∴m(x)>m(0),所以命题得证.15.【2022年浙江】设函数f(x)=e2x+lnx(x>0).(1)求f(x)的单调区间;(2)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1)),(x2,f(x2)),(x3,f(x3))处的切线都经过点(a,b).证明:(ⅰ)若a >e ,则0<b −f(a)<12(ae−1);(ⅱ)若0<a <e ,x 1<x 2<x 3,则2e+e−a 6e2<1x 1+1x 3<2a −e −a 6e2. (注:e =2.71828⋯是自然对数的底数)【答案】(1)f(x)的减区间为(0,e 2),增区间为(e 2,+∞). (2)(ⅰ)见解析;(ⅱ)见解析. 【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ) k =x 3x 1,m =a e<1,则题设不等式可转化为t 1+t 3−2−2m<(m−13)(m 2−m+12)36m(t 1+t 3),结合零点满足的方程进一步转化为lnm +(m−1)(m−13)(m 2−m+12)72(m+1)<0,利用导数可证该不等式成立. (1)f ′(x)=−e 2x 2+1x=2x−e 2x 2,当0<x <e 2,f ′(x)<0;当x >e2,f ′(x)>0, 故f(x)的减区间为(0,e 2),f(x)的增区间为(e 2,+∞). (2)(ⅰ)因为过(a,b)有三条不同的切线,设切点为(x i ,f(x i )),i =1,2,3, 故f(x i )−b =f ′(x i )(x i −a),故方程f(x)−b =f ′(x)(x −a)有3个不同的根,该方程可整理为(1x −e 2x 2)(x −a)−e 2x −lnx +b =0, 设g(x)=(1x −e 2x 2)(x −a)−e 2x −lnx +b , 则g ′(x)=1x −e 2x 2+(−1x 2+e x 3)(x −a)−1x +e 2x 2 =−1x 3(x −e )(x −a),当0<x <e 或x >a 时,g ′(x)<0;当e <x <a 时,g ′(x)>0, 故g(x)在(0,e ),(a,+∞)上为减函数,在(e ,a)上为增函数,因为g(x)有3个不同的零点,故g(e )<0且g(a)>0, 故(1e −e2e 2)(e −a)−e 2e−ln e +b <0且(1a −e 2a 2)(a −a)−e2a −lna +b >0, 整理得到:b <a 2e+1且b >e2a +lna =f(a),此时b −f(a)−12(ae−1)<a2e+1−(e 2a +lna)−a2e+12=32−e 2a −lna , 设u(a)=32−e 2a −lna ,则u ′(a)=e -2a2a 2<0, 故u(a)为(e ,+∞)上的减函数,故u(a)<32−e 2e −ln e =0,故0<b −f(a)<12(ae−1).(ⅱ)当0<a <e 时,同(ⅰ)中讨论可得:故g(x)在(0,a),(e ,+∞)上为减函数,在(a,e )上为增函数, 不妨设x 1<x 2<x 3,则0<x 1<a <x 2<e <x 3, 因为g(x)有3个不同的零点,故g(a)<0且g(e )>0, 故(1e −e2e 2)(e −a)−e 2e−ln e +b >0且(1a −e 2a 2)(a −a)−e2a −lna +b <0, 整理得到:a2e+1<b <a 2e+lna ,因为x 1<x 2<x 3,故0<x 1<a <x 2<e <x 3, 又g(x)=1−a+e x+e a2x 2−lnx +b ,设t =ex ,a e=m ∈(0,1),则方程1−a+e x+e a2x 2−lnx +b =0即为: −a+e et +a2et 2+lnt +b =0即为−(m +1)t +m 2t 2+lnt +b =0,记t 1=e x 1,t 2=e x 2,t 3=e x 3, 则t 1,t 1,t 3为−(m +1)t +m 2t 2+lnt +b =0有三个不同的根, 设k =t1t 3=x3x 1>e a >1,m =a e<1,要证:2e+e−a 6e2<1x 1+1x 2<2a −e −a 6e2,即证2+e −a 6e<t 1+t 3<2ea−e −a6e,即证:13−m6<t 1+t 3<2m −1−m6,即证:(t 1+t 3−13−m6)(t 1+t 3−2m +1−m6)<0, 即证:t 1+t 3−2−2m <(m−13)(m 2−m+12)36m(t 1+t 3),而−(m +1)t 1+m 2t 12+lnt 1+b =0且−(m +1)t 3+m 2t 32+lnt 3+b =0,故lnt 1−lnt 3+m 2(t 12−t 32)−(m +1)(t 1−t 3)=0,故t 1+t 3−2−2m =−2m ×lnt 1−lnt 3t 1−t 3,故即证:−2m ×lnt 1−lnt 3t 1−t 3<(m−13)(m 2−m+12)36m(t 1+t 3),即证:(t 1+t 3)ln t 1t 3t 1−t 3+(m−13)(m 2−m+12)72>0即证:(k+1)lnk k−1+(m−13)(m 2−m+12)72>0,记φ(k)=(k+1)lnk k−1,k >1,则φ′(k)=1(k−1)2(k −1k −2lnk)>0,设u(k)=k −1k −2lnk ,则u ′(k)=1+1k 2−2k >2k −2k =0即φ′(k)>0, 故φ(k)在(1,+∞)上为增函数,故φ(k)>φ(m), 所以(k+1)lnk k−1+(m−13)(m 2−m+12)72>(m+1)lnm m−1+(m−13)(m 2−m+12)72,记ω(m)=lnm +(m−1)(m−13)(m 2−m+12)72(m+1),0<m <1,则ω′(m)=(m−1)2(3m 3−20m 2−49m+72)72m(m+1)2>(m−1)2(3m 3+3)72m(m+1)2>0,所以ω(m)在(0,1)为增函数,故ω(m)<ω(1)=0, 故lnm +(m−1)(m−13)(m 2−m+12)72(m+1)<0即(m+1)lnm m−1+(m−13)(m 2−m+12)72>0,故原不等式得证: 【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.1.(2022·全国·南京外国语学校模拟预测)设函数()f x 在R 上存在导数()f x ',对于任意的实数x ,有()()22f x f x x +-=,当(],0x ∈-∞时,()42f x x '+<,若()()2422f m f m m m +++≤-,则实数m 的取值范围是( ) A .[)1,2 B .(](),12,-∞+∞ C .[)2,2-D .(](),12,-∞-+∞【解析】 【分析】构造函数()()24g x f x x x =-+,得到()g x 为奇函数,()g x 在R 上单调递减,分20m -<和20m ->两种情况,利用奇偶性和单调性解不等式,求出实数m 的取值范围.【详解】∵()42f x x '+<,∴()420f x x '+-<.令()()24g x f x x x =-+,且()()24g x f x x ''=-+,则()g x 在(],0-∞上单调递减.又∵()()22f x f x x +-=,∴()()()()2244g x g x f x x x f x x x +-=-++---=()()220f x f x x +--=,∴()g x 为奇函数,()g x 在R 上单调递减. ∵()()2422f m f m m m +++≤-,∴()()2242402f m f m m m m +++-+≤-.当20m -<,即2m <时,()()224240f m f m m m +++-+≥,即()()()()2222424f m m m f m m m ⎡⎤+-+++≥--+⎣⎦即()()2g m g m +≥-,由于()g x 在R 上递减,则2m m +≤-, 解得:1m ≤-, ∴1m ≤-.当20m ->,即2m >时,()()224240f m f m m m +++-+≤,即()()2g m g m +≤-.由()g x 在R 上递减,则2m m +≥-, 解得:1m ≥-,所以2m >.综上所述,实数m 的取值范围是(](),12,-∞-+∞.【点睛】构造函数,研究出构造的函数的奇偶性和单调性,进而解不等式,是经常考查的一类题目,结合题干信息,构造出函数是关键.2.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( ) A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】将所求不等式变形为()()ln 1ln eln eln 1x x ax a x -+++≥+-,构造函数()e x g x x =+,可知该函数在R 上为增函数,由此可得出()ln ln 1a x x ≥--,其中1x >,利用导数求出()()ln 1h x x x =--的最大值,即可求得实数a 的取值范围. 【详解】当1x >时,由()()ln 1f x x ≥-可得()ln eln 1ln 1x aa x +++≥-, 即()()()ln 1ln eln 1ln 1eln 1x x ax a x x x -+++≥-+-=+-,构造函数()e x g x x =+,其中x ∈R ,则()e 10xg x '=+>,所以,函数()g x 在R 上为增函数, 由()()ln 1ln eln eln 1x x ax a x -+++≥+-可得()()ln ln 1g x a g x +≥-⎡⎤⎣⎦,所以,()ln ln 1x a x +≥-,即()ln ln 1a x x ≥--,其中1x >, 令()()ln 1h x x x =--,其中1x >,则()12111xh x x x -'=-=--. 当12x <<时,()0h x '>,函数()h x 单调递增, 当2x >时,()0h x '<,函数()h x 单调递减,所以,()()max ln 22a h x h ≥==-,21e a ∴≥. 故选:D. 【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,解题的关键就是将所求不等式进行转化,通过不等式的结构构造新函数,结合新函数的单调性来求解.3.(2022·江苏无锡·模拟预测)已知13e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( ) A .a b c << B .a c b << C .c a b << D .b c a <<【答案】C 【解析】 【分析】根据给定条件,构造函数ln ()(e)xf x x x=≥,利用函数的单调性比较大小作答. 【详解】 令函数ln ()(e)x f x x x =≥,当e x >时,求导得:()21ln 0xf x x '-=<, 则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===,显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C 【点睛】思路点睛:某些数或式大小比较问题,探讨给定数或式的内在联系,构造函数,分析并运用函数的单调性求解.4.(2022·福建·三明一中模拟预测)己知e 为自然对数的底数,a ,b 均为大于1的实数,若1e ln a a b b b ++<,则( )A .1e a b +<B .1e a b +>C .e ab <D .e ab >【答案】B 【解析】 【分析】由题意化简得到e ln e ln e e a a b b <,设()ln f x x x =,得到(e )()eab f f <,结合题意和函数()f x 的单调性,即可求解. 【详解】由1e ln a a b b b ++<,可得1eln (ln 1)ln ea b a b b b b b b +<-=-=,即e ln e ln e e a a b b<,设()ln f x x x =,可得(e )()eab f f <,因为0a >,可得e 1a >,又因为(ln 1)0,0b b b ->>,所以ln 1b >,即e b >,所以1eb>, 当1x >时,()ln 10f x x '=+>,可得函数()f x 在(1,)+∞为单调递增函数,所以e eab<,即1e a b +>. 故选:B.5.(2022·河南·开封市东信学校模拟预测(文))已知函数e ()e ln 2xf x x =-,则曲线()y f x =在点(1,(1))f 处的切线方程为( ) A .e 2e 0x y +-= B .e e 02x y +=- C .e 2e 0x y --= D .e 2e 0x y ++=【答案】B 【解析】 【分析】根据导数的几何意义及点斜式方程即可求解. 【详解】 ∵e ()e 2x f x x ='-,∴e e (1)e 22f '=-=. 又1e (1)e ln12e f =-⨯=,切点为(1,e)所以曲线()y f x =在点(1,(1))f 处的切线的斜率为e (1)2k f '==, 所以曲线()y f x =在点(1,(1))f 处的切线方程为 ee (1)2y x -=-,即e e 02x y +=-. 故选:B.6.(2022·湖北·模拟预测)若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<-B .3n m >-C .0n <D .30n m <=-【答案】A 【解析】 【分析】设切点为()3,t t -,根据导数的几何意义写出切线的方程,代入点()(),0m n m <,转化为方程有3个根,构造函数()3223g t t mt n =--,利用导数可知函数的极值,根据题意列出不等式组求解即可. 【详解】设切点为()3,t t -,由323y x y x '=-⇒=-,故切线方程为()323y t t x t +=--,因为()(),0m n m <在切线上,所以代入切线方程得32230t mt n --=, 则关于t 的方程有三个不同的实数根,令()3223g t t mt n =--,则()2660g t t mt t m '=-=⇒=或0=t ,所以当(),t m ∈-∞,()0,∞+时,()0g t '>,()g t 为增函数, 当(),0t m ∈-时,()0g t '<,()g t 为减函数, 且t →-∞时,()g t →-∞,t →+∞时,()g t →+∞,所以只需()()()()300g t g m m n g t g n ⎧==-->⎪⎨==-<⎪⎩极大值极小值,解得30n m <<-故选:A7.(2022·全国·模拟预测(理))若关于x 的方程22e ln (eln )0()x a x x x a ++=∈R 有两个不相等的实数根,则a 的取值范围是( ) A .(,2)(2,)-∞-+∞ B .(,2][2,)-∞-+∞ C .(2,2)- D .[2,2]-【答案】A 【解析】 【分析】首先判断1x =不是方程的根,再方程两边同除以2(e ln )x ,即可得到210eln eln x x a x x ⎛⎫++= ⎪⎝⎭,令()eln xf x x=,利用导数说明函数的单调性,即可得到函数的图象,令()t f x =,设方程210t at ++=的两根分别为1t 、2t ,对∆分类讨论,结合函数图象即可得解;【详解】解:当1x =时等式显然不成立,故1不是方程的根,当1x ≠时,将22e ln (eln )0x a x x x ++=的两边同除以2(e ln )x ,可得210eln eln x x a x x ⎛⎫++= ⎪⎝⎭, 令()eln x f x x =,则0x >且1x ≠,所以()2ln 1eln x f x x-'=, 所以当01x <<和1e x <<时()0f x '<,当e x >时()0f x '>,即()f x 在()0,1和()1,e 上单调递减,在()e,+∞上单调递增,且()e 1f =, 函数()f x 的图象如下所示:令()t f x =,设方程210t at ++=的两根分别为1t 、2t ,24a ∆=-, ①当∆<0时,方程无解,舍去;②当0∆=时,2a =±,若2a =,则1t =-,由图可得()1f x =-有且仅有一个解,故舍去, 若2a =-,则1t =,由图可得()1f x =有且仅有一个解,故舍去, ③当0∆>时,2a >或2a <-,若2a >,由120t t a +=-<,1210t t ⋅=>,所以10t <,10t <由图可得()1f x t =与()2f x t =各有一个解,符合题意,若2a <-,由122t t a +=->,1210t t ⋅=>,可设210t t >>,()10,1t ∈,()21,t ∈+∞, 由图可得()1f x t =无解,()2f x t =有两个解,符合题意, 综上可得a 的取值范围为(,2)(2,)-∞-+∞; 故选:A8.(2022·河南安阳·模拟预测(理))已知函数2()3(ln )=-+f x x ax ,若21,e x ⎡⎤∈⎣⎦时,()f x 在1x =处取得最大值,则实数a 的取值范围是( )A .26,e ⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .260,e ⎛⎫⎪⎝⎭D .266,e e ⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】根据题意()(1)f x f ≤当21,e x ⎡⎤∈⎣⎦时恒成立,整理得()213(ln )a x x -≤,当21,e x ⎡⎤∈⎣⎦时,()1y a x =-在()23(ln )g x x =图像的下方,结合图像分析处理.【详解】根据题意得()(1)f x f ≤当21,e x ⎡⎤∈⎣⎦时恒成立则23(ln )x ax a -+≤,即()213(ln )a x x -≤∴当21,e x ⎡⎤∈⎣⎦时,()1y a x =-在()23(ln )g x x =图像的下方 ()6ln xg x x'=,则()10g '=,则0a ≤ 故选:B .9.(2022·河南开封·模拟预测(理))若关于x 的不等式ln ln 0e x x a a xx+->对()0,1x ∀∈恒成立,则实数a 的取值范围为( ) A .1,e ⎛⎤-∞ ⎥⎝⎦B .1e ,⎡⎫+∞⎪⎢⎣⎭C .1,1e ⎡⎫⎪⎢⎣⎭D .10,e ⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】由题设有ln e ln e x x a xa x>,构造ln ()x f x x =,利用导数研究其单调性及值域,将问题转化为e x a x >在0,1上恒成立,再构造()ex xg x =结合导数求参数范围.【详解】由题设可得ln e ln e xx a xa x>,令ln ()x f x x =,则(e )()x f a f x >在0,1上恒成立, 由21ln ()xf x x -'=,在()0,e 上()0f x '>;在()e,+∞上()0f x '<;所以()f x 在()0,e 上递增;在()e,+∞上递减,且(1)0f =, 在0,1上()0f x <,(1,)+∞上()0f x >,而0a >, 所以,只需e x a x >在0,1上恒成立,即e xxa >恒成立, 令()e x x g x =,则1()0e x x g x -'=>,即()g x 在0,1上递增,故1(1)e a g ≥=. 故a 的取值范围为1e ,⎡⎫+∞⎪⎢⎣⎭.故选:B 【点睛】。

2022年高考数学真题分类汇编专题:三角函数

2022年高考数学真题分类汇编专题:三角函数

2022年高考数学真题分类汇编专题08:三角函数一、单选题(共11题;共55分)1.(5分)(2022·浙江)为了得到函数y=2sin3x的图象,只要把函数y=2sin(3x+π5)图象上所有的点()A.向左平移π5个单位长度B.向右平移π5个单位长度C.向左平移π15个单位长度D.向右平移π15个单位长度【答案】D【解析】【解答】函数图象平移满足左加右减,y=2sin(3x+π5)=2sin[3(x−π15)+π5]=2sin3x,因此需要将函数图象向右平移π15个单位长度,可以得到y=2sin3x的图象.故答案为:D【分析】由已知结合正弦函数图象的平移即可求解.2.(5分)(2022·浙江)设x∈R,则“ sinx=1”是“ cosx=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【解答】sinx=1,则x=π2+2kπ,k∈Z;cosx=0,则x=π2+kπ,k∈Z,若sinx=1可推出cosx=0,充分性成立;反之不成立,必要性不成立,故充分部必要条件.故答案为:A【分析】利用同角三角函数间的基本关系,充要条件的定义判定即可.3.(5分)(2022·新高考Ⅱ卷)若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则()A.tan(α+β)=−1B.tan(α+β)=1C.tan(α−β)=−1D.tan(α−β)=1【答案】C【解析】【解答】根据两角和的正弦、余弦公式化简已知式子得:sinαcosβ+cosαsinβ+ cosαcosβ−sinαsinβ=2(cosα−sinα)sinβ,即:sinαcosβ−cosαsinβ+cosαcosβ+sinαsinβ=0,即:sin(α−β)+cos(α−β)=0,所以tan(α−β)=−1,故答案为:C【分析】由两角和差的正、余弦公式化简,结合同角三角函数的商数关系即可得解.4.(5分)(2022·全国甲卷)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB⌢是以O为圆心,OA为半径的圆弧,C是AB的中点,D在AB⌢上,CD⊥AB.“会圆术”给出AB⌢的弧长的近似值s的计算公式:s=AB+CD 2OA.当OA= 2,∠AOB=60°时,s=()A.11−3√32B.11−4√32C.9−3√32D.9−4√32【答案】B【解析】【解答】解:如图,连接OC,因为C是AB的中点,所以OC⊥AB,又CD⊥AB,所以O,C,D三点共线,即OD=OA=OB=2 ,又⊥AOB=60° , 所以AB=OA=OB=2, 则OC =√3 , 故CD =2−√3 , 所以s =AB +CD 2OA =2+(2−√3)22=11−4√32. 故选:B.【分析】连接OC ,分别求出AB ,OC ,CD ,再根据题意的新定义即可得出答案.5.(5分)(2022·全国甲卷)设函数 f(x)=sin(ωx +π3) 在区间 (0,π) 恰有三个极值点、两个零点,则 ω 的取值范围是( ) A .[53,136)B .[53,196)C .(136,83]D .(136,196]【答案】C【解析】【解答】解:依题意可得ω>0 ,因为x⊥(0,π),所以ωx +π3∈(π3,ωπ+π3) , 要使函数在区间(0,π)恰有三个极值点、两个零点,又y=sinx ,(π3,3π) 的图象如下所示:则5π2<ωπ+π3≤3π, 解得136<ω≤83,即ω⊥ (136,83] .故选:C【分析】由x 的取值范围得到ωx +π3的取值范围,再结合正弦函数的性质得到不等式,解得即可.6.(5分)(2022·全国甲卷)已知 a =3132,b =cos 14,c =4sin 14,则( ) A .c >b >aB .b >a >cC .a >b >cD .a >c >b【答案】A【解析】【解答】解:因为c b =4tan 14,因为当x ∈(0,π2),sinx<x<tanx ,所以tan 14>14 ,即c b >1, 所以c>b ;设f (x )=cosx +12x 2−1,x ∈(0,+∞),f'(x)=-sinx+x>0 ,所以f(x)在(0,+∞)单调递增,则f (14)>f (0)=0, 所以cos 14−3132>0 ,所以b>a , 所以c>b>a , 故选:A【分析】由c b =4tan 14结合三角函数的性质可得c>b ;构造函数f (x )=cosx +12x 2−1,x ∈(0,+∞),利用导数可得b>a ,即可得解.7.(5分)(2022·全国甲卷)将函数 f(x)=sin(ωx +π3)(ω>0) 的图像向左平移 π2 个单位长度后得到曲线C ,若C 关于y 轴对称,则 ω 的最小值是( ) A .16B .14C .13D .12【答案】C【解析】【解答】解:由题意知:曲线C 为 y =sin [ω(x +π2)π3]=sin (ωx +ωπ2+π3) , 又曲线C 关于y 轴对称,则ωπ2+π3=π2+kπ,k ∈Z , 解得ω=13+2k ,k ∈Z ,又ω>0,故当k=0时,ω的最小值为 13 .故选:C.【分析】先由平移求出曲线C 的解析式,再结合对称性得ωπ2+π3=π2+kπ,k ∈Z ,即可求出ω的最小值.8.(5分)(2022·北京)已知函数 f(x)=cos 2x −sin 2x ,则( )A .f(x) 在 (−π2,−π6) 上单调递增 B .f(x) 在 (−π4,π12) 上单调递增C .f(x) 在 (0,π3) 上单调递减D .f(x) 在 (π4,7π12) 上单调递增【答案】C【解析】【解答】 f(x)=cos 2x −sin 2x =cos2x ,选项A 中: 2x ∈(−π,−π3) ,此时 f(x) 单调递增;选项B 中: 2x ∈(−π2,π6) ,此时 f(x) 先递增后递减;选项C 中: 2x ∈(0,2π3) ,此时 f(x) 单调递减;选项D 中: 2x ∈(π2,7π6) ,此时 f(x) 先递减后递增.故答案为:C【分析】先根据余弦的二倍角公式化简 f(x)=cos2x ,再逐项分析选项即可.9.(5分)(2022·新高考Ⅱ卷)记函数 f(x)=sin(ωx +π4)+b(ω>0) 的最小正周期为T ,若 2π3<T <π, 则 y =f(x) 的图像关于点 (3π2,2) 中心对称,则 f(π2)= ( )A .1B .32C .52D .3【答案】A【解析】【解答】解:由题意得,ω=2πT∈(2,3), 又 y =f(x) 的图像关于点 (3π2,2) 中心对称,则b=2,且f (3π2)=2,所以sin (3π2ω+π4)+2=2,则3π2ω+π4=2kπ,k ∈Z ,解得ω=8k−16,又ω∈(2,3), 则k=2,ω=52,故f (π2)=sin (52·π2+π4)+2=1,故选:A【分析】由正弦函数的图象与性质,先求得b ,ω,再求得f (π2)即可.10.(5分)(2022·浙江学考)已知α⊥R ,则cos (π-α)=()A .sinαB .-sinαC .cosαD .-cosα【答案】D【解析】【解答】因为 cos(π−α)=−cosα 。

2022年高考数学函数极限历年真题解析

2022年高考数学函数极限历年真题解析

2022年高考数学函数极限历年真题解析一、函数极限的定义和概念在解析数学中,函数极限是一个非常重要的概念。

函数极限描述了当自变量无限接近某个特定值时,函数的取值趋于何处的情况。

理解和掌握函数极限的定义和性质对于解决数学问题至关重要。

二、历年真题解析2022年高考数学函数极限题目如下:【题目一】已知函数$f(x)=\frac{x^2-4}{x-2}$,求$\lim\limits_{x \to 2}f(x)$的值。

解析:观察到当$x$无限接近2时,分子$x^2-4$可以因式分解为$(x+2)(x-2)$,分母$x-2$为0,因此我们可以进行因式分解简化。

$\lim\limits_{x \to 2}f(x) = \lim\limits_{x \to 2}\frac{(x+2)(x-2)}{x-2}= \lim\limits_{x \to 2}(x+2) = 2+2 = 4$因此,$\lim\limits_{x \to 2}f(x)$的值为4。

【题目二】已知函数$g(x)=\begin{cases} x^2-1, & \text{当}x>1 \\2x-1, & \text{当}x\leq 1 \end{cases}$,求$\lim\limits_{x \to 1}g(x)$的值。

解析:考虑到函数$g(x)$在$x=1$处的定义分段,我们可以分别求解左极限和右极限。

对于$x>1$的情况,函数$g(x) = x^2-1$,则$\lim\limits_{x \to1^+}g(x) = \lim\limits_{x \to 1^+}(x^2-1) = 1^2-1 = 0$。

对于$x\leq 1$的情况,函数$g(x) = 2x-1$,则$\lim\limits_{x \to 1^-}g(x) = \lim\limits_{x \to 1^-}(2x-1) = 2\times 1-1 = 1$。

2022年高考数学真题:函数与导数(解析版)

2022年高考数学真题:函数与导数(解析版)

第2讲函数与导数一、单选题1.(2022·全国·高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ,则221()k f k ()A .3B .2C .0D .1【答案】A 【解析】【分析】根据题意赋值即可知函数 f x 的一个周期为6,求出函数一个周期中的 1,2,,6f f f 的值,即可解出.【详解】因为 f x y f x y f x f y ,令1,0x y 可得, 2110f f f ,所以 02f ,令0x 可得,2f y f y f y ,即 f y f y ,所以函数 f x 为偶函数,令1y 得,111f x f x f x f f x ,即有 21f x f x f x ,从而可知 21f x f x ,14f x f x ,故 24f x f x ,即 6f x f x ,所以函数 f x 的一个周期为6.因为 210121f f f , 321112f f f , 4221f f f , 5111f f f , 602f f ,所以一个周期内的 1260f f f .由于22除以6余4,所以 221123411213k f k f f f f .故选:A .2.(2022·全国·高考真题(理))已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x .若()y g x 的图像关于直线2x 对称,(2)4g ,则221()k f k ()A .21B .22C .23D .24【答案】D 【解析】【分析】根据对称性和已知条件得到()(2)2f x f x ,从而得到 352110f f f ,462210f f f ,然后根据条件得到(2)f 的值,再由题意得到 36g 从而得到 1f 的值即可求解.【详解】因为()y g x 的图像关于直线2x 对称,所以 22g x g x ,因为()(4)7g x f x ,所以(2)(2)7g x f x ,即(2)7(2)g x f x ,因为()(2)5f x g x ,所以()(2)5f x g x ,代入得 ()7(2)5f x f x ,即()(2)2f x f x ,所以 35212510f f f ,46222510f f f .因为()(2)5f x g x ,所以(0)(2)5f g ,即 01f ,所以 (2)203f f .因为()(4)7g x f x ,所以(4)()7g x f x ,又因为()(2)5f x g x ,联立得, 2412g x g x ,所以()y g x 的图像关于点 3,6中心对称,因为函数()g x 的定义域为R ,所以 36g 因为()(2)5f x g x ,所以 1531f g .所以 221123521462213101024()k f f f f f f f f f k .故选:D 【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36 ,且3l )A .8118,4B .2781,44C .2764,43D .[18,27]【答案】C 【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为36 ,所以球的半径3R ,设正四棱锥的底面边长为2a ,高为h ,则2222l a h ,22232(3)a h ,所以26h l ,2222a l h所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ,所以5233112449696l l V l l,当3l 0V ,当l 时,0V ,所以当l 时,正四棱锥的体积V 取最大值,最大值为643,又3l 时,274V,l 814V ,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443,.故选:C.4.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ,,则()A .a b cB .c b aC .c a bD .a c b【答案】C 【解析】【分析】构造函数()ln(1)f x x x ,导数判断其单调性,由此确定,,a b c 的大小.【详解】设()ln(1)(1)f x x x x ,因为1()111x f x x x,当(1,0)x 时,()0f x ,当,()0x 时()0f x ,所以函数()ln(1)f x x x 在(0,) 单调递减,在(1,0) 上单调递增,所以1((0)09f f ,所以101ln 099 ,故110ln ln 0.999,即b c ,所以1((0)010f f ,所以91ln +01010 ,故1109e 10 ,所以11011e 109,故a b ,设()e ln(1)(01)xg x x x x ,则 21e 11()+1e 11x xx g x x x x,令2()e (1)+1x h x x ,2()e (21)x h x x x ,当01x 时,()0h x ,函数2()e (1)+1x h x x 单调递减,11x 时,()0h x ,函数2()e (1)+1x h x x 单调递增,又(0)0h ,所以当01x 时,()0h x ,所以当01x 时,()0g x ,函数()e ln(1)x g x x x 单调递增,所以(0.1)(0)0g g ,即0.10.1e ln 0.9 ,所以a c 故选:C.5.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3] 的大致图像,则该函数是()A .3231x x y x B .321x xy x C .22cos 1x x y xD .22sin 1x y x【答案】A 【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设 321x xf x x ,则 10f ,故排除B;设 22cos 1x x h x x,当π0,2x时,0cos 1x ,所以 222cos 2111x x xh x x x ,故排除C;设 22sin 1x g x x ,则2sin 33010g ,故排除D.故选:A.6.(2022·全国·高考真题(文))函数 cos 1sin 1f x x x x 在区间 0,2π的最小值、最大值分别为()A .ππ22,B .3ππ22,C .ππ222,D .3ππ222,【答案】D 【解析】【分析】利用导数求得 f x 的单调区间,从而判断出 f x 在区间 0,2π上的最小值和最大值.【详解】sin sin 1cos 1cos f x x x x x x x ,所以 f x 在区间π0,2 和3π,2π2 上 0f x ,即 f x 单调递增;在区间π3π,22上 0f x ,即 f x 单调递减,又 02π2f f ,ππ222f ,3π3π3π11222f,所以 f x 在区间 0,2π上的最小值为3π2 ,最大值为π22.故选:D7.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ,则()A .c b aB .b a cC .a b cD .a c b【答案】A 【解析】【分析】由14tan 4c b 结合三角函数的性质可得c b ;构造函数21()cos 1,(0,)2f x x x x ,利用导数可得b a ,即可得解.【详解】因为14tan 4c b ,因为当π0,,sin tan 2x x x x所以11tan44,即1cb ,所以c b ;设21()cos 1,(0,)2f x x x x,()sin 0f x x x ,所以()f x 在(0,) 单调递增,则1(0)=04f f,所以131cos 0432 ,所以b a ,所以c b a ,故选:A8.(2022·全国·高考真题(理))函数 33cos x xy x 在区间ππ,22的图象大致为()A .B .C .D .【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令33cos ,,22x xf x x x,则 33cos 33cos x x x xf x x x f x ,所以 f x 为奇函数,排除BD ;又当0,2x时,330,cos 0x x x ,所以 0f x ,排除C.故选:A.9.(2022·全国·高考真题(理))当1x 时,函数()ln bf x a x x取得最大值2 ,则(2)f ()A .1B .12C .12D .1【答案】B 【解析】【分析】根据题意可知()12f =-, 10f 即可解得,a b ,再根据 f x 即可解出.【详解】因为函数 f x 定义域为 0, ,所以依题可知,()12f =-, 10f ,而 2a b f x x x,所以2,0b a b ,即2,2a b ,所以 222f x x x,因此函数 f x 在 0,1上递增,在 1, 上递减,1x 时取最大值,满足题意,即有 112122f .故选:B.10.(2022·全国·高考真题(文))已知910,1011,89m m m a b ,则()A .0a bB .0a b C .0b a D .0b a【答案】A 【解析】【分析】根据指对互化以及对数函数的单调性即可知9log 101m ,再利用基本不等式,换底公式可得lg11m ,8log 9m ,然后由指数函数的单调性即可解出.【详解】由910m可得9lg10log 101lg9m ,而222lg 9lg11lg 99lg 9lg111lg1022,所以lg10lg11lg9lg10,即lg11m ,所以lg11101110110m a .又 222lg8lg10lg80lg8lg10lg 922,所以lg9lg10lg8lg9 ,即8log 9m ,所以8log 989890m b .综上,0a b .故选:A.二、多选题11.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x 的图像关于点2π,03中心对称,则()A .()f x 在区间5π0,12单调递减B .()f x 在区间π11π,1212有两个极值点C .直线7π6x 是曲线()y f x 的对称轴D .直线32y x 是曲线()y f x 的切线【答案】AD 【解析】【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f,所以4ππ3k ,k Z ,即4ππ,3k kZ ,又0π ,所以2k 时,2π3,故2π()sin 23f x x.对A ,当5π0,12x时,2π2π3π2,332x,由正弦函数sin y u 图象知()y f x 在5π0,12上是单调递减;对B ,当π11π,1212x时,2ππ5π2,322x ,由正弦函数sin y u 图象知()y f x 只有1个极值点,由2π3π232x,解得5π12x ,即5π12x 为函数的唯一极值点;对C ,当7π6x时,2π23π3x ,7π(06f ,直线7π6x 不是对称轴;对D ,由2π2cos 213y x 得:2π1cos 232x,解得2π2π22π33x k或2π4π22π,33x k k Z ,从而得:πx k 或ππ,3x k kZ ,所以函数()y f x 在点处的切线斜率为02π2cos 13x k y ,切线方程为:(0)y x 即y x .故选:AD .12.(2022·全国·高考真题)已知函数()f x 及其导函数() f x 的定义域均为R ,记()()g x f x ,若322f x,(2)g x 均为偶函数,则()A .(0)0fB .102gC .(1)(4)f f D .(1)(2)g g 【答案】BC 【解析】【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】因为322f x,(2)g x 均为偶函数,所以332222f x f x即3322f x f x,(2)(2)g x g x ,所以 3f x f x ,(4)()g x g x ,则(1)(4)f f ,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x 对称,又()()g x f x ,且函数()f x 可导,所以 30,32g g x g x,所以 (4)()3g x g x g x ,所以 (2)(1)g x g x g x ,所以13022g g, 112g g g ,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C (C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.13.(2022·全国·高考真题)已知函数3()1f x x x ,则()A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x 的对称中心D .直线2y x 是曲线()y f x 的切线【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【详解】由题, 231f x x ,令 0f x 得x 33x ,令()0f x 得x所以()f x 在(,33上单调递减,在(,)3 ,3(,)3上单调递增,所以3x 是极值点,故A 正确;因(10f,10f , 250f ,所以,函数 f x在,3上有一个零点,当x时,03f x f ,即函数 f x在3+上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x ,该函数的定义域为R , 33h x x x x x h x ,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x 的对称中心,故C 正确;令 2312f x x ,可得1x ,又 (1)11f f ,当切点为(1,1)时,切线方程为21y x ,当切点为(1,1) 时,切线方程为23y x ,故D 错误.故选:AC.三、双空题14.(2022·全国·高考真题)曲线ln ||y x 过坐标原点的两条切线的方程为____________,____________.【答案】1e y x1ey x【解析】【分析】分0x 和0x 两种情况,当0x 时设切点为 00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x 时同理可得;【详解】解:因为ln y x ,当0x 时ln y x ,设切点为 00,ln x x ,由1y x,所以001|x x y x ,所以切线方程为 0001ln y x x x x ,又切线过坐标原点,所以 0001ln x x x,解得0e x ,所以切线方程为 11e e y x ,即1ey x ;当0x 时 ln y x ,设切点为 11,ln x x ,由1y x,所以111|x x y x ,所以切线方程为1111ln y x x x x ,又切线过坐标原点,所以 1111ln x x x,解得1e x ,所以切线方程为 11e e y x ,即1e y x ;故答案为:1ey x ;1e y x 15.(2022·全国·高考真题(文))若 1ln 1f x a b x 是奇函数,则 a _____,b ______.【答案】12 ;ln 2.【解析】【分析】根据奇函数的定义即可求出.【详解】因为函数 1ln 1f x a b x为奇函数,所以其定义域关于原点对称.由101a x 可得, 110x a ax ,所以11a x a ,解得:12a ,即函数的定义域为 ,11,11, ,再由 00f 可得,ln 2b .即 111ln ln 2ln 211x f x x x,在定义域内满足 f x f x ,符合题意.故答案为:12;ln 2.四、填空题16.(2022·全国·高考真题(理))已知1x x 和2x x 分别是函数2()2e x f x a x (0a 且1a )的极小值点和极大值点.若12x x ,则a 的取值范围是____________.【答案】1,1e【解析】【分析】由12,x x 分别是函数 22e x f x a x 的极小值点和极大值点,可得 12,,x x x 时, 0f x ,12,x x x 时, 0f x ,再分1a 和01a 两种情况讨论,方程2ln 2e 0x a a x 的两个根为12,x x ,即函数ln x y a a 与函数e y x 的图象有两个不同的交点,构造函数 ln xg x a a ,利用指数函数的图象和图象变换得到 g x 的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详解】解: 2ln 2e x f x a a x ,因为12,x x 分别是函数 22e x f x a x 的极小值点和极大值点,所以函数 f x 在 1,x 和 2,x 上递减,在 12,x x 上递增,所以当 12,,x x x 时, 0f x ,当 12,x x x 时, 0f x ,若1a 时,当0x 时,2ln 0,2e 0x a a x ,则此时 0f x ,与前面矛盾,故1a 不符合题意,若01a 时,则方程2ln 2e 0x a a x 的两个根为12,x x ,即方程ln e x a a x 的两个根为12,x x ,即函数ln x y a a 与函数e y x 的图象有两个不同的交点,∵01a ,∴函数x y a 的图象是单调递减的指数函数,又∵ln 0a ,∴ln x y a a 的图象由指数函数x y a 向下关于x 轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的ln a 倍得到,如图所示:设过原点且与函数 y g x 的图象相切的直线的切点为00,ln x x a a ,则切线的斜率为 020ln x g x a a ,故切线方程为 0020ln ln x x y a a a a x x ,则有0020ln ln x x a a x a a ,解得01ln x a,则切线的斜率为122ln ln e ln a a a a ,因为函数ln x y a a 与函数e y x 的图象有两个不同的交点,所以2eln e a ,解得1e ea ,又01a ,所以11ea ,综上所述,a 的范围为1,1e.【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.17.(2022·全国·高考真题)若曲线()e x y x a 有两条过坐标原点的切线,则a 的取值范围是________________.【答案】,40, 【解析】【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围.【详解】∵()e x y x a ,∴(1)e x y x a ,设切点为 00,x y ,则 000e x y x a ,切线斜率 001e x k x a ,切线方程为: 00000e 1e x x y x a x a x x ,∵切线过原点,∴ 00000e 1e x x x a x a x ,整理得:2000x ax a ,∵切线有两条,∴240a a ,解得4a <-或0a ,∴a 的取值范围是 ,40, ,故答案为:,40, 五、解答题18.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x.(1)当0a 时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.【答案】(1)1(2)0, 【解析】【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得 211ax x f x x,按照0a 、01a 及1a 结合导数讨论函数的单调性,求得函数的极值,即可得解.(1)当0a 时, 1ln ,0f x x x x ,则 22111x f x x x x,当 0,1 x 时,()0f x ¢>, f x 单调递增;当 1,x 时,()0f x ¢<, f x 单调递减;所以 max 11f x f ;(2)11ln ,0f x ax a x x x ,则 221111ax x a f x a x x x ,当0a 时,10 ax ,所以当 0,1 x 时,()0f x ¢>, f x 单调递增;当 1,x 时,()0f x ¢<, f x 单调递减;所以 max 110f x f a ,此时函数无零点,不合题意;当01a 时,11a ,在 10,1,,a上,()0f x ¢>, f x 单调递增;在11,a上,()0f x ¢<, f x 单调递减;又 110f a ,由(1)得1ln 1x x ,即1ln 1x x ,所以ln x x x当1x 时,11()(1)ln 2((2f x ax a x ax a ax a x x则存在2312m a a,使得 0f m ,所以 f x 仅在1,a有唯一零点,符合题意;当1a 时, 2210x f x x ,所以 f x 单调递增,又 110f a ,所以 f x 有唯一零点,符合题意;当1a 时,11a ,在 10,,1,a上,()0f x ¢>, f x 单调递增;在1,1a上,()0f x ¢<, f x 单调递减;此时 110f a ,由(1)得当01x 时,1ln 1xx ,1 ln 21x,此时11()(1)ln 2(11)1f x ax a x ax ax x x 存在2114(1)n a a,使得()0f n ,所以 f x 在10,a 有一个零点,在1,a无零点,所以 f x 有唯一零点,符合题意;综上,a 的取值范围为 0, .【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.19.(2022·全国·高考真题)已知函数()e e ax x f x x .(1)当1a 时,讨论()f x 的单调性;(2)当0x 时,()1f x ,求a 的取值范围;(3)设n Nln(1)n .【答案】(1) f x 的减区间为 ,0 ,增区间为 0, .(2)12a (3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得 f x 的单调性.(2)设 e e 1ax x h x x ,求出 h x ,先讨论12a 时题设中的不等式不成立,再就102a 结合放缩法讨论 h x 符号,最后就0a 结合放缩法讨论 h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt 对任意的1t 恒成立,从而可得 ln 1ln n n *n N 恒成立,结合裂项相消法可证题设中的不等式.(1)当1a 时, 1e x f x x ,则 e x f x x ,当0x 时,()0f x ¢<,当0x 时,()0f x ¢>,故 f x 的减区间为 ,0 ,增区间为 0, .(2)设 e e 1ax x h x x ,则 00h ,又 1e e ax x h x ax ,设 1e e ax x g x ax ,则 22e e ax x g x a a x ,若12a ,则 0210g a ,因为 g x 为连续不间断函数,故存在 00,x ,使得 00,x x ,总有()0g x ¢>,故 g x 在 00,x 为增函数,故 00g x g ,故 h x 在 00,x 为增函数,故 01h x h ,与题设矛盾.若102a ,则 ln 11e e e e ax ax ax x x h x ax ,下证:对任意0x ,总有 ln 1x x 成立,证明:设 ln 1S x x x ,故 11011x S x x x,故 S x 在 0, 上为减函数,故 00S x S 即 ln 1x x 成立.由上述不等式有 ln 12e e e e e e 0ax ax x ax ax x ax x ,故 0h x 总成立,即 h x 在 0, 上为减函数,所以 01h x h .当0a 时,有 e e e 1100ax x ax h x ax ,所以 h x 在 0, 上为减函数,所以 01h x h .综上,12a.(3)取12a ,则0x ,总有12e e 10x x x 成立,令12e x t ,则21,e ,2ln x t t x t ,故22ln 1t t t 即12ln t t t 对任意的1t 恒成立.所以对任意的*n N ,有整理得到:ln 1ln n nln 2ln1ln 3ln 2ln 1ln n nln 1n ,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.20.(2022·全国·高考真题)已知函数()x f x e ax 和()ln g x ax x 有相同的最小值.(1)求a ;(2)证明:存在直线y b ,其与两条曲线()y f x 和()y g x 共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)1a (2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b 时,e x x b 的解的个数、ln x x b 的解的个数均为2,构建新函数()e ln 2x h x x x ,利用导数可得该函数只有一个零点且可得 ,f x g x 的大小关系,根据存在直线y b 与曲线 y f x 、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax 的定义域为R ,而()e x f x a ,若0a ,则()0f x ,此时()f x 无最小值,故0a .()ln g x ax x 的定义域为 0, ,而11()ax g x a x x.当ln x a 时,()0f x ,故()f x 在 ,ln a 上为减函数,当ln x a 时,()0f x ,故()f x 在 ln ,a 上为增函数,故 min ()ln ln f x f a a a a .当10x a时,()0g x ,故()g x 在10,a 上为减函数,当1x a 时,()0g x ,故()g x 在1,a上为增函数,故min 11()1ln g x g a a.因为()e x f x ax 和()ln g x ax x 有相同的最小值,故11ln ln a a a a ,整理得到1ln 1a a a,其中0a ,设 1ln ,01a g a a a a ,则222211011a g a a a a a ,故 g a 为 0, 上的减函数,而()10g =,故 0g a 的唯一解为1a ,故1ln 1a a a的解为1a .综上,1a .(2)由(1)可得e ()x x f x 和()ln g x x x 的最小值为11ln11ln 11 .当1b 时,考虑e x x b 的解的个数、ln x x b 的解的个数.设 e x S x x b , e 1x S x ,当0x 时, 0S x ,当0x 时, 0S x ,故 S x 在 ,0 上为减函数,在 0, 上为增函数,所以 min 010S x S b ,而 e 0b S b , e 2b S b b ,设 e 2b u b b ,其中1b ,则 e 20b u b ,故 u b 在 1, 上为增函数,故 1e 20u b u ,故 0S b ,故 e x S x x b 有两个不同的零点,即e x x b 的解的个数为2.设 ln T x x x b , 1x T x x,当01x 时,()0T x ¢<,当1x 时, 0T x ,故 T x 在()0,1上为减函数,在 1, 上为增函数,所以 min 110T x T b ,而 e e 0b b T , e e 20b b T b ,ln T x x x b 有两个不同的零点即ln x x b 的解的个数为2.当1b ,由(1)讨论可得ln x x b 、e x x b 仅有一个零点,当1b 时,由(1)讨论可得ln x x b 、e x x b 均无零点,故若存在直线y b 与曲线 y f x 、()y g x =有三个不同的交点,则1b .设()e ln 2x h x x x ,其中0x ,故1()e 2x h x x,设 e 1x s x x ,0x ,则 e 10x s x ,故 s x 在 0, 上为增函数,故 00s x s 即e 1x x ,所以1()1210h x x x,所以()h x 在 0, 上为增函数,而(1)e 20h ,31e 333122()e 3e 30e e eh ,故 h x 在 0, 上有且只有一个零点0x ,0311e x 且:当00x x 时, 0h x 即e ln x x x x 即 f x g x ,当0x x 时, 0h x 即e ln x x x x 即 f x g x ,因此若存在直线y b 与曲线 y f x 、()y g x =有三个不同的交点,故 001b f x g x ,此时e x x b 有两个不同的零点1010,(0)x x x x ,此时ln x x b 有两个不同的零点0404,(01)x x x x ,故11e x x b ,00e x x b ,44ln 0x x b ,00ln 0x x b 所以44ln x b x 即44e x b x 即 44e 0x b x b b ,故4x b 为方程e x x b 的解,同理0x b 也为方程e x x b 的解又11e x x b 可化为11e x x b 即 11ln 0x x b 即 11ln 0x b x b b ,故1x b 为方程ln x x b 的解,同理0x b 也为方程ln x x b 的解,所以 1004,,x x x b x b ,而1b ,故0410x x b x x b 即1402x x x .【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.21.(2022·全国·高考真题(理))已知函数 ln 1e x f x x ax (1)当1a 时,求曲线 y f x 在点 0,0f 处的切线方程;(2)若 f x 在区间 1,0,0, 各恰有一个零点,求a 的取值范围.【答案】(1)2y x(2)(,1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,) 两部分研究(1)()f x 的定义域为(1,)当1a 时,()ln(1),(0)0e x x f x x f ,所以切点为(0,0)11(),(0)21e x x f x f x ,所以切线斜率为2所以曲线()y f x 在点(0,(0))f 处的切线方程为2y x(2)()ln(1)e x ax f x x2e 11(1)()1e (1)e x x xa x a x f x x x 设 2()e 1x g x a x 1 若0a ,当 2(1,0),()e 10x x g x a x ,即()0f x 所以()f x 在(1,0) 上单调递增,()(0)0f x f 故()f x 在(1,0) 上没有零点,不合题意2 若10a ,当,()0x ,则()e 20x g x ax 所以()g x 在(0,) 上单调递增所以()(0)10g x g a ,即()0f x 所以()f x 在(0,) 上单调递增,()(0)0f x f 故()f x 在(0,) 上没有零点,不合题意3 若1a (1)当,()0x ,则()e 20x g x ax ,所以()g x 在(0,) 上单调递增(0)10,(1)e 0g a g 所以存在(0,1)m ,使得()0g m ,即()0 f m 当(0,),()0,()x m f x f x 单调递减当(,),()0,()x m f x f x 单调递增所以当(0,),()(0)0x m f x f 当,()x f x所以()f x 在(,)m 上有唯一零点又(0,)m 没有零点,即()f x 在(0,) 上有唯一零点(2)当2(1,0),()e 1x x g x a x 设()()e 2x h x g x ax()e 20x h x a 所以()g x 在(1,0) 单调递增1(1)20,(0)10eg a g 所以存在(1,0)n ,使得()0g n 当(1,),()0,()x n g x g x 单调递减当(,0),()0,()x n g x g x 单调递增,()(0)10g x g a 又1(1)0eg 所以存在(1,)t n ,使得()0g t ,即()0f t 当(1,),()x t f x 单调递增,当(,0),()x t f x 单调递减有1,()x f x而(0)0f ,所以当(,0),()0x t f x 所以()f x 在(1,)t 上有唯一零点,(,0)t 上无零点即()f x 在(1,0) 上有唯一零点所以1a ,符合题意所以若()f x 在区间(1,0),(0,) 各恰有一个零点,求a 的取值范围为(,1)【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.22.(2022·全国·高考真题(理))已知函数 ln x f x x a xx e .(1)若 0f x ,求a 的取值范围;(2)证明:若 f x 有两个零点12,x x ,则环121x x .【答案】(1)(,1]e (2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x,再利用导数即可得证.(1)()f x 的定义域为(0,) ,2111()e 1x f x x x x1111e 1e 11x x x x x x x x 令()0f x ,得1x 当(0,1),()0,()x f x f x 单调递减当(1,),()0,()x f x f x 单调递增()(1)e 1f x f a ,若()0f x ,则e 10a ,即1a e 所以a 的取值范围为(,1]e (2)由题知, f x 一个零点小于1,一个零点大于1不妨设121x x <<要证121x x ,即证121x x 因为121,(0,1)x x ,即证 121f x f x 因为 12f x f x ,即证 221f x f x 即证1e 1ln e ln 0,(1,)x x x x x x x x x即证1e 11e 2ln 02x x x x x x x下面证明1x 时,1e 11e 0,ln 02x x x x x x x 设11(),e e xx g x x xx ,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x111e 1e 1e e x x x x x x x x x设 22e 1111,e e 0xx x x x x x xx x x 所以 1e x ,而1e ex 所以1e e 0xx x,所以()0g x 所以()g x 在(1,) 单调递增即()(1)0g x g ,所以1e e 0x x x x令11()ln ,12h x x x x x2222211121(1)()10222x x x h x x x x x 所以()h x 在(1,) 单调递减即()(1)0h x h ,所以11ln 02x x x;综上,1e 11e 2ln 02x x x x x x x,所以121x x .【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式11()ln 2h x x x x 这个函数经常出现,需要掌握。

2022年新高考全国Ⅱ卷数学真题及参考答案

2022年新高考全国Ⅱ卷数学真题及参考答案

一、选择题1. 已知函数f(x) = x^2 2x + 1,求f(x)的极值。

答案:f(x)的极值为0。

2. 若等差数列{an}的前n项和为Sn,且Sn = 2n^2 3n,求公差d。

答案:d = 4。

3. 设圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆C的半径。

答案:半径为2。

4. 若随机变量X服从正态分布N(0, 1),求P(X < 0)。

答案:P(X < 0) = 0.5。

5. 已知等比数列{bn}的前n项和为Tn,且Tn = 2^n 1,求公比q。

答案:q = 2。

二、填空题1. 已知函数g(x) = x^3 3x,求g(x)的导数。

答案:g'(x) = 3x^2 3。

2. 若等差数列{cn}的前n项和为Sn,且Sn = 3n^2 + 2n,求首项c1。

答案:c1 = 5。

3. 已知圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆心坐标。

答案:圆心坐标为(1, 2)。

4. 若随机变量Y服从二项分布B(n, p),且P(Y = 2) = 3P(Y = 1),求n和p。

答案:n = 3,p = 1/2。

5. 已知等比数列{dn}的前n项和为Tn,且Tn = 2^n 1,求首项d1。

答案:d1 = 1。

三、解答题1. 已知函数h(x) = (x 1)^2,求h(x)的单调区间。

答案:h(x)的单调递增区间为(∞, 1),单调递减区间为(1, +∞)。

2. 若等差数列{en}的前n项和为Sn,且Sn = 3n^2 2n,求公差d。

答案:d = 6。

3. 已知圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆C与x轴的交点坐标。

答案:交点坐标为(1, 0)。

4. 若随机变量Z服从泊松分布P(λ),且P(Z = 1) = P(Z = 2),求λ。

答案:λ = 2。

5. 已知等比数列{fn}的前n项和为Tn,且Tn = 2^n 1,求公比q。

答案:q = 2。

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f <D .(20)10000f <2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.4.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .535.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a .考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x x y x -=+D .||sin 4e x x xy +=2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .25.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1-B .0C .12D .16.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .538.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x x x a f x -=⋅-是偶函数,则=a .10.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称参考答案 考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <【答案】B【答案分析】代入得到(1)1,(2)2==f f ,再利用函数性质和不等式的性质,逐渐递推即可判断. 【答案详解】因为当3x <时()f x x =,所以(1)1,(2)2==f f , 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2==f f ,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = .【答案分析】利用分段函数的形式可求()3f .【答案详解】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭ .【答案】1【答案分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答. 【答案详解】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:14.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.5.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a . 【答案】2【答案分析】由题意结合函数的答案解析式得到关于a 的方程,解方程可得a 的值.【答案详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 【答案】()(],00,1-∞⋃【答案分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞【答案】B【答案分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠. 所以函数定义域为()()0,11,+∞ . 故选:B考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞【答案】B【答案分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-. 故选:B.2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =- B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【答案分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可. 【答案详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减,所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减, 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫=== ⎪⎝⎭⎝⎭⎝⎭,则( ) A .b c a >> B .b a c >> C .c b a >> D .c a b >>【答案】A【答案分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【答案详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,4112⎛-= ⎝⎭,而22491670-=+=>,41102⎛-=> ⎝⎭,即1122->-由二次函数性质知g g <,4112⎛-= ⎝⎭,而22481682)0-=+-=-=-<,112<-,所以(2g g >,综上,(2g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>. 故选:A.4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【答案分析】利用指数型复合函数单调性,判断列式计算作答.【答案详解】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞. 故选:D5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 【答案】D【答案分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意, 故选:D.6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数【答案】C【答案分析】利用函数单调性定义即可得到答案. 【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <. 所以函数()f x 一定是增函数. 故选:C7.(2020∙全国∙高考真题)设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【答案分析】根据函数的答案解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数,再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x -==在()0,+?上单调递减,在(),0-?上单调递减,所以函数()331f x x x =-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点评】本题主要考查利用函数的答案解析式研究函数的性质,属于基础题.考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x xy +=【答案】B【答案分析】根据偶函数的判定方法一一判断即可.【答案详解】对A ,设()22e 1x xf x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R , 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误; 对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141e ϕ---=, 则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误. 故选:B.2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【答案分析】根据奇函数的性质可求参数a .【答案详解】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =, 故答案为:0.3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【答案分析】利用偶函数的性质得到ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【答案详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++, 所以()()()()221cos s 1co f x x x x x f x -=-++++-==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.4.(2023∙全国乙卷∙高考真题)已知e ()e 1xaxx f x =-是偶函数,则=a ( ) A .2- B .1- C .1 D .2【答案】D【答案分析】根据偶函数的定义运算求解.【答案详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---, 又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=, 则()1x a x =-,即11a =-,解得2a =. 故选:D.5.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1- B .0C .12D .1【答案】B【答案分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可.【答案详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =, 当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln 21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-, 故此时()f x 为偶函数. 故选:B.6.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 【答案】 12-; ln 2.【答案分析】根据奇函数的定义即可求出. 【答案详解】[方法一]:奇函数定义域的对称性 若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠- 1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参 111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+--- 1()1ax a f x lnb x++-=++函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=-22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【答案分析】根据幂函数的性质可得所求的()f x .【答案详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x ¢>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a .【答案】1【答案分析】利用偶函数的定义可求参数a 的值.【答案详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:110.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【答案分析】分别求出选项的函数答案解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点评】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【答案分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点评】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D【答案分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点评】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【答案分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出. 【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=, 所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=, 由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【答案分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D【答案分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数答案解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点评】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【答案分析】A 选项,先答案分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行答案分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【答案详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增, (0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减, ,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=, 即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【名师点评】结论名师点评:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【答案分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]: 因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数, 所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称, 又()()g x f x '=,且函数()f x 可导, 所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭, 所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=, 所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D【答案分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【答案详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ . 故选:D【名师点评】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x ,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【答案】D【答案分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.【答案详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x x π≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x x ππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点评】本题考查函数定义域与最值、奇偶性、对称性,考查基本答案分析判断能力,属中档题.。

2022年高考全国I卷数学高考真题(解析版)

2022年高考全国I卷数学高考真题(解析版)

2022年高考全国I 卷数学高考真题一、单选题1.若集合{4},{31}M x N x x =<=≥∣,则M N ⋂=( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭A .2-B .1-C .1D .23.在ABC V 中,点D 在边AB 上,2BD DA =.记CA m CD n ==r r ,,则CB =( )A .32m n-r r B .23m n-+r rC .32m n +r rD .23m n+r r 【答案】B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =u u u r u u u r,即()2CD CB CA CD -=-u u u r u u u r u u u r u u u r ,所以CB u u u r =3232CD CA n m -=-u u u r u u u r r u r 23m n =-+r r .故选:B .4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m . 2.65≈)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯故选:C .5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【分析】由古典概型概率公式结合组合、列举法即可得解6.记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .37.设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b<<8.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且3l≤≤)A.8118,4⎡⎤⎢⎥⎣⎦B.2781,44⎡⎤⎢⎥⎣⎦C.2764,43⎡⎤⎢⎥⎣⎦D.[18,27]【答案】C【分析】设正四棱锥的高为h,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为36π,所以球的半径3R=,二、多选题9.已知正方体1111ABCD A B C D -,则( )A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒连接AC ,因为A B ⊥平面BB C C ,10.已知函数3()1f x x x =-+,则( )A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线11.已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( )A .C 的准线为1y =-B .直线AB 与C 相切C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距12.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪C .(1)(4)f f -=D .(1)(2)g g -=化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.三、填空题13.81()y x y x ⎛⎫-+ ⎪的展开式中26x y 的系数为________________(用数字作答).14.写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程________________.由图像可知,共有三条直线符合条件,显然又由方程22(3)(4)16x y -+-=和221x y +=即为过两圆公共切点的切线方程,又易知两圆圆心所在直线OC 的方程为4x -当切线为l 时,因为143OO k =,所以34l k =-,设方程为O 到l 的距离||19116t d ==+,解得54t =,所以当切线为m 时,设直线方程为0kx y p ++=,其中由题意22113441p k k p k ⎧=⎪+⎪⎨++⎪=⎪+⎩,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,y =当切线为n 时,易知切线方程为=1x -,故答案为:3544y x =-+或7252424y x =-或=x -15.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.【答案】()(),40,-∞-+∞U 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围.【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++,切线方程为:()()()00000e 1e x xy x a x a x x -+=++-,∵切线过原点,∴()()()00000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a <-或0a >,∴a 的取值范围是()(),40,-∞-+∞U ,故答案为:()(),40,-∞-+∞U 16.已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.四、解答题17.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++<L .【答案】(1)()12n n n a +=18.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.19.如图,直三棱柱111ABC A B C -的体积为4,1A BC V 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD =u u u r ,()()0,2,0,2,0,0BA BC ==u u u r u u u r,设平面ABD 的一个法向量(),,m x y z =u r ,则m BD m BA ⎧⋅⎨⋅⎩u u v u u v20.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(|)(|)P B AP B A与(|)(|)P B AP B A的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:(|)(|)(|)(|)P A B P A BRP A B P A B=⋅;(ⅱ)利用该调查数据,给出(|),(|)P A B P A B的估计值,并利用(ⅰ)的结果给出R的估计值.附22()()()()()n ad bcKa b c d a c b d-=++++,()2P K k≥0.0500.0100.001k 3.841 6.63510.82821.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.22.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.)(当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的根1010,(0)x x x x <<,此时ln x x b -=有两个不同的根0404,(01)x x x x <<<,故11e x x b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44e x b x -=即()44e 0x b x b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e x x b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.[方法二]:由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f xg x ==①1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x =共有0个交点,不符合题意;②1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1;③1b >时,首先,证明y b =与曲线()y f x =有2个交点,即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-,所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.。

2022年普通高等学校招生全国统一考试模拟测试(新高考)数学试题+答案解析(附后)

2022年普通高等学校招生全国统一考试模拟测试(新高考)数学试题+答案解析(附后)

2022年普通高等学校招生全国统一考试模拟测试(新高考)数学试题1. 已知集合M,N是全集U的两个非空子集,且,则( )A. B. C. D.2. 若,则实数x,y满足( )A. B. C. D.3. 若某圆台的上底面半径为2,下底面半径为4,高为3,则该圆台的体积为( )A. B. C. D.4. 已知,则( )A. B. C. D. 65. 在1859年的时候,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字x的素数个数可以表示为的结论.若根据欧拉得出的结论,估计以内的素数的个数为素数即质数,,计算结果取整数( )A. 2172B. 4343C. 869D. 86866. 若的展开式中常数项为,则实数( )A. B. C. D. 27. 已知、分别为椭圆的左、右焦点,P是椭圆C上的一点,直线l:,且,垂足为Q点.若四边形为平行四边形,则椭圆C的离心率的取值范围是( )A. B. C. D.8. 已知函数,直线是曲线的一条切线,则的取值范围是( )A. B.C. D.9. 为了庆祝中国共产党成立100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史的了解,某单位组织开展党史知识竞赛活动,将本单位全体党员党史知识竞赛的成绩均位于之内整理,得到如图所示的频率分布直方图.根据此频率分布直方图,下列结论正确的是( )A. 本次成绩不低于80分的人数的占比为B. 本次成绩低于70分的人数的占比为C. 估计本次成绩的平均分不高于85分D. 本次成绩位于的人数是其他人数的3倍10. 如图所示,四棱锥的底面为正方形,底面ABCD,,则下列选项中两异面直线所成夹角大于的是( )A. BC与SDB. AB与SCC. SB与ADD. AC与SB11. 已知函数,若函数的部分图象如图所示,函数,则下列结论不正确的是( )A. 函数的图象关于直线对称B. 函数的图象关于点对称C. 将函数的图象向左平移个单位长度可得到函数的图象D. 函数在区间上的单调递减区间为12. 阿基米德公元前287年-公元前212年是古希腊伟大的物理学家、数学家、天文学家,不仅在物理学方面贡献巨大,还享有“数学之神”的称号.抛物线上任意两点A、B处的切线交于点P,称为“阿基米德三角形”.已知抛物线C:的焦点为F,过A、B两点的直线的方程为,关于“阿基米德三角形”,下列结论正确的是( )A. B.C. 点P的坐标为D.13. 在正项等比数列中,若,则_____.14. 写出一个同时满足下列条件①②的向量_____.①;②向量与的夹角15. 已知在正四面体中,,记以PA为直径的球为球O,则平面ABC截球O所得截面的面积为__________.16. 若对任意恒成立,则实数a的取值范围为_____.17. 如图,在梯形ABCD中,,点E在边CD上,,,求BE,CE;若,求18. 《中共中央国务院关于实现巩固拓展脱贫攻坚成果同乡村振兴有效衔接的意见》明确提出,支持脱贫地区乡村特色产业发展壮大,加快脱贫地区农产品和食品仓储保鲜,冷链物流设施建设,支持农产品流通企业、电商、批发市场与区域特色产业精准对接.当前,脱贫地区相关设施建设情况如何?怎样实现精准对接?未来如何进一步补齐发展短板?针对上述问题,假定有A、B、C三个解决方案,通过调查发现有的受调查者赞成方案A,有的受调查者赞成方案B,有的受调查者赞成方案C,现有甲、乙、丙三人独立参加投票以频率作为概率求甲、乙两人投票方案不同的概率;若某人选择方案A或方案B,则对应方案可获得2票,选择方案C,则方案C获得1票,设X是甲、乙、丙三人投票后三个方案获得票数之和,求X的分布列和数学期望.19. 已知数列满足求数列的通项公式;对任意的,令,求数列的前n项和20. 在如图所示的多面体AFDCBE中,平面BCE,,,,,在线段BC上是否存在一点G,使得平面AFC?如果存在,请指出G点位置并证明;如果不存在,请说明理由.当三棱锥的体积为8时,求二面角的余弦值.21. 已知双曲线C:的渐近线方程为,过双曲线C的右焦点的直线与双曲线C分别交于左、右两支上的A、B两点.求双曲线C的方程.过原点O作直线,使得,且与双曲线C分别交于左、右两支上的点M、是否存在定值,使得?若存在,请求出的值;若不存在,请说明理由.22. 已知函数讨论函数的单调性;若存在,满足,且,,求实数a的取值范围.答案和解析1.【答案】A【解析】【分析】本题考查了全集、补集和子集的定义与应用问题,是基础题.根据全集、补集和子集的定义,即可得出M、N之间的关系,从而作出正确的判断.【解答】解:M,N是全集U的非空子集,且,所以,故选2.【答案】B【解析】【分析】本题考查复数相等的充要条件,要求考生会进行复数的平方运算以及理解两个复数相等的充要条件,属于基础题.利用复数相等的概念即可求解.【解答】解:因为,所以,则,即实数x,y满足故选:3.【答案】C【解析】【分析】本题考查圆台的体积,考查直观想象与数学运算的数学素养,属于基础题.根据圆台的体积公式计算即可.【解答】解:由题意,得圆台的体积为4.【答案】B【解析】【分析】本题考查了同角三角函数的基本关系,二倍角公式,属于较易题.先化简,再分子分母同时除以,转化为正切计算即可.【解答】解:由,则,故选5.【答案】D【解析】【分析】本题主要考查获取信息、运用所学知识解决实际问题的能力,体现了数学运算的学科素养,突出了基础性、应用性的考查,要求考生运用所学对数的运算公式解答相关问题,属于基础题.由对数的运算得,再结合题意可得【解答】解:由题意可知:,由对数的性质可得:,即故选6.【答案】A【解析】【分析】本题考查二项展开式的特定项与特定项的系数,关键是利用展开式的通项公式,属于基础题.的展开式的通项为,令,得,故,解得a值.【解答】解:的展开式的通项为,令,得故,即,解得7.【答案】B【解析】【分析】本题考查椭圆的标准方程及简单几何性质,属于基础题.设,由四边形为平行四边形,得到,最后根据椭圆的范围,即可求出离心率的范围.【解答】解:设,四边形为平行四边形,,,即,,即得,解得故离心率的范围为8.【答案】B【解析】【分析】本题考查导数的几何意义和利用导数求最值,属于中档题.设切点为,利用导数的几何意义求出切线方程,得,构造,利用导数即可求解.【解答】解:设切点为,,曲线在切点处的切线的斜率为,切线方程为,整理得,所以令,则,当时,,单调递减,当时,,单调递增,故,则的取值范围9.【答案】ABC【解析】【分析】本题考查频率分布直方图,考查获取信息解决实际问题,考查数据分析,属中档题.根据频率分布直方图解得a,逐项分析即可.【解答】解:本次成绩不低于80分的人数占比为,故A正确;因为,所以,即本次成绩低于70分的人数的占比为,故B正确;因为有的党员的成绩位于之间,这部分党员的平均成绩为85分,另有的党员的成绩位于之间,这部分党员的平均成绩为95分,剩余党员的平均成绩小于75分,所以估计本次成绩的平均分不高于85分,故C正确;成绩位于的频率为,因为,故D错误.10.【答案】ACD【解析】【分析】本题主要考查了异面直线的夹角,通过平移的方法求异面直线的夹角及利用判定定理证明异面直线垂直的应用.根据已知及线面垂直的判定,异面直线所成角的计算即可求得答案.【解答】解:对于A,因为底面ABCD,平面ABCD,所以,则BC与SD所成角的大小为,故A正确,对于B,因为底面ABCD是正方形,所以,则AB与SC所成的角为,故B错误,对于C,因为,所以SB与AD所成的角为,由题知,所以,故C正确,对于D,因为底面ABCD,平面ABCD,所以,因为ABCD是正方形,所以因为,平面SBD,平面SBD,所以平面SBD,所以,则AC与SB所成角的大小为,故D正确.11.【答案】ABD【解析】【分析】本题考查三角函数的图象与性质,要求考生了解函数图象的变换,了解函数中各参数对图象的影响,根据正弦函数与余弦函数的单调性与对称性逐一判断即可.【解答】解:根据函数的图象可知,当时,满足,则,即,因为,所以,对于A项,当时,,故函数的图象不关于直线对称,A项错误;对于B项,当时,,故函数的图象不关于点对称,B项错误;对于C项,因为,将其图象向左平移个单位长度可得函数的图象,故C项正确;对于D项,因为,所以,所以当,即时,单调递减,D项错误.12.【答案】ABD【解析】【分析】本题考查直线与抛物线的位置关系,要求考生了解抛物线的定义,几何图形和标准方程,知道它的简单几何性质.联立抛物线与直线方程利用根与系数的关系可求得的值可判断A;求得直线PA和PB的斜率可得到直线PA和PB的方程可判断B;联立两直线方程可得到点P的坐标可判断C;由点P 和点F坐标可得到直线PF的斜率,由点A和点B坐标可得到直线AB的斜率,可判断【解答】解:设,,联立,可得,解得或,不妨设,,则,,故,,,A项正确;又因为,所以,故直线PA的斜率为,直线PA的方程为,即,同理可得直线PB的方程为,,所以,B项正确;联立可得,故点P的坐标为,C项错误;易知点F的坐标为,,所以,D项正确.13.【答案】2【解析】【分析】本题考查等比数列性质的应用,注意对数运算法则的灵活运用,属于基础题.由等比数列的性质可得,由对数的运算可得要求的式子,代入计算对数的值即可.【解答】解:由题意可得故答案为14.【答案】【解析】【分析】本题考查向量的夹角,向量的坐标运算,属于基础题.设,得到,令,求解即可.【解答】解:设,得到,令,联立,解得,或,取答案不唯一15.【答案】【解析】【分析】本题考查平面与球的截面问题,要求考生了解正四面体与球的特征,会根据空间中的垂直关系求出截面圆的直径.根据题目条件得到截面为圆,并得到直径AE的大小即可求解.【解答】解:如图,取BC的中点D,连接AD,过点P作平面ABC于点E,由正四面体的特征可知,点E为AD上靠近点D的三等分点.因为PA为球O的直径,平面ABC,,所以平面ABC截球O所得截面的直径为因为,所以,故平面ABC截以PA为直径的球所得截面面积为16.【答案】【解析】【分析】本题考查根据不等式恒成立求参数范围,利用导数研究函数最值,数形结合的思想解决问题,属于较难题.将不等不等式进行转化为,利用导数法可证,再进行放缩,,可得答案.【解答】解:由可得,因为,所以令,则,当时,,当时,,所以在上单调递减,在上单调递增,,即当且仅当时取等号,故,当且仅当时取等号.在同一坐标标系中画出与的图象,如图所示,可知两函数在之间有一个交点,故存在,使得成立,故,故,即实数a的取值范围为故答案为17.【答案】解:在中,由正弦定理可得,,,由余弦定理可得,解得,,,又因为,,在中,由余弦定理可得,所以,因为,又因为,所以【解析】本题考查正弦定理和余弦定理.属于中档题.在中,由正弦定理可解得BE,再根据余弦定理解得CE;根据可得,在中,用余弦定理解得EA,再根据余弦定理可解得,根据,得出的结果.18.【答案】解:因为甲、乙两人投票方案相同的概率为所以甲、乙两人投票方案不相同的概率为的所有可能取值为3,4,5,6,因为,,所以X的分布列如下:X3456P所以【解析】本题以脱贫攻坚与乡村振兴为情境.要求考生运用所学独立事件的概率与离散型随机变量及其分布等必备知识解答相关问题.主要考查获取信息.运用所学知识解决实际问题的能力,体现了数学运算与数据分析的学科素养,突出基础性、应用性的考查要求.先计算出甲乙投票方案相同的概率,即可求出不相同的概率;得到X所有可能的取值,算出概率后列出分布列,即可求出数学期望.19.【答案】解:当时,当时,可得,所以,,当时,也符合,故;由知,当n为偶数时,当n为奇数时,所以【解析】本题考查数列的通项与分组求和,要求考生掌握求常见数列的通项的方法,能根据数列特征选取恰当的方法求和,属于常考题.分和两种情况求解即可;分类讨论n为偶数与奇数,分组求和即可.20.【答案】解:存在,且取线段AB的中点H,BC的中点为G,连接EH、HG、,,四边形AHEF是平行四边形,又平面AFC,平面AFC,平面、G分别为AB、BC的中点,是的中位线,,平面AFC,平面AFC,平面又,HG、平面EHG,平面平面平面EHG,平面AFC;设,由,可得,以E为坐标原点,EB、EC、EF所在直线分别为x、y、z轴,建立如图所示的空间直角坐标系.由题可知,,,,,,设平面AFC的法向量为,则令,得,,所以平面AFC的一个法向量为,设平面AFD的法向量为,则令,得,所以平面AFD的一个法向量为,由图可知二面角为锐角,故二面角的余弦值为【解析】本题考查线面平行的证明,考查利用空间向量求二面角的方法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.取线段AB的中点H,BC的中点为G,连接EH、HG、EG,由平面AFC,平面AFC,可得平面平面AFC,又平面EHG,则平面AFC;建立空间直角坐标系,利用法向量所成角的余弦值,即可得.21.【答案】解:由题意得,解得,所以双曲线C的方程为存在定值,使得,与同向,,,易知的斜率不为0,设:,由消去x整理得:,设,,由交双曲线C左右两支于A、B两点,有,即,则,,由于,可设:,由消去x整理得:,设,,,由此,,故存在定值,使得【解析】考查双曲线的标准方程及圆锥曲线中的探索性问题,属于较难题利用双曲线性质列出关于a和b的方程组,解该方程组,直接写出双曲线的方程;若存在定值,使得,则,设出的方程,分别与双曲线联立,用设而不求法表示出和,求出22.【答案】解:函数的定义域为,当时,,在上单调递减;当时,令,得,令,得,所以函数在上单调递减,在上单调递增,综上所述:当时,在上单调递减;当时,函数在上单调递减,在上单调递增.,又,则令,即方程在上有解.令,,则,,则,当时,,在上单调递减,又,则在上恒成立,不合题意;当时,,令,可知该方程有两个正根,因为方程两根之积为1且,所以当时,当时,则时,,而令,则,令,,则在上单调递减,,则在上单调递减,,即,故存在,使得,故满足题意.综上所述,实数a的取值范围是【解析】本题考查利用导数研究函数的单调性,导数中存在性问题以及参数的取值范围问题,分类讨论思想,考查逻辑推理能力,属于较难题.求导,通过分类讨论,解关于导函数的不等式即可求得单调区间;根据题意,化简变形已知,构造新函数,利用导数求解即可.。

专题06三角函数及解三角形-2022年高考真题和模拟题数学分类汇编(解析版)

专题06三角函数及解三角形-2022年高考真题和模拟题数学分类汇编(解析版)

专题06 三角函数及解三角形1.【2022年全国甲卷】将函数f(x)=sin ωx >0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A .16B .14C .13D .12【答案】C 【解析】【分析】先由平移求出曲线C 的解析式,再结合对称性得ωπ2+π3=π2+kπ,k ∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为y =sin ωx =sin (ωx +ωπ2+π3),又C 关于y 轴对称,则ωπ2+π3=π2+kπ,k ∈Z ,解得ω=13+2k,k ∈Z ,又ω>0,故当k =0时,ω的最小值为13.故选:C.2.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在AB 上,CD ⊥AB .“会圆术”给出AB 的弧长的近似值s 的计算公式:s =AB +CD 2OA .当OA =2,∠AOB =60°时,s =( )A .11−332B .11−432C .9−332D .9−432【答案】B 【解析】连接OC,分别求出AB,OC,CD,再根据题中公式即可得出答案.【详解】解:如图,连接OC,因为C是AB的中点,所以OC⊥AB,又CD⊥AB,所以O,C,D三点共线,即OD=OA=OB=2,又∠AOB=60°,所以AB=OA=OB=2,则OC=3,故CD=2−3,所以s=AB+CD2OA =2+(2−3)22=11−432.故选:B.3.【2022年全国甲卷】设函数f(x)=sinωx+(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A B C D【答案】C【解析】【分析】由x的取值范围得到ωx+π3的取值范围,再结合正弦函数的性质得到不等式组,解得即可.解:依题意可得ω>0,因为x ∈(0,π),所以ωx +π3∈要使函数在区间(0,π)恰有三个极值点、两个零点,又y =sin x ,x ∈,3π的图象如下所示:则5π2<ωπ+π3≤3π,解得136<ω≤83,即ω∈故选:C .4.【2022年全国乙卷】函数f (x )=cos x +(x +1)sin x +1在区间[0,2π]的最小值、最大值分别为( )A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+2【答案】D 【解析】【分析】利用导数求得f (x )的单调区间,从而判断出f (x )在区间[0,2π]上的最小值和最大值.【详解】f ′(x )=−sin x +sin x +(x +1)cos x =(x +1)cos x ,所以f (x )在区间0,π上f ′(x )>0,即f (x )单调递增;f ′(x )<0,即f (x )单调递减,又f (0)=f (2π)=2,=π2+2,=+1+1=−3π2,所以f (x )在区间[0,2π]上的最小值为−3π2,最大值为π2+2.故选:D5.【2022年新高考1卷】记函数f(x)=sin (ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f(π2)=( )A .1B .32C .52D .3【答案】A 【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2,所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin(52x +π4)+2,所以f(π2)=sin(54π+π4)+2=1.故选:A6.【2022年新高考2卷】若sin (α+β)+cos (α+β)=22cos αβ,则( )A .tan (α−β)=1B .tan (α+β)=1C .tan (α−β)=−1D .tan (α+β)=−1【答案】C 【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:sin αcos β+cos αsin β+cos αcos β−sin αsin β=2(cos α−sin α)sin β,即:sin αcos β−cos αsin β+cos αcos β+sin αsin β=0,即:sin(α−β)+cos(α−β)=0,所以tan(α−β)=−1,故选:C7.【2022年北京】已知函数f(x)=cos 2x−sin 2x ,则( )A .f(x)在−π2B .f(x)在−π4C .f(x)在0,D .f(x)【答案】C 【解析】【分析】化简得出f (x )=cos 2x ,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为f (x )=cos 2x−sin 2x =cos 2x .对于A 选项,当−π2<x <−π6时,−π<2x <−π3,则f (x )在−π2A 错;对于B 选项,当−π4<x <π12时,−π2<2x <π6,则f (x )在−π4B 错;对于C 选项,当0<x <π3时,0<2x <2π3,则f (x )在0,C 对;对于D 选项,当π4<x <7π12时,π2<2x <7π6,则f (x )D 错.故选:C.8.【2022年浙江】设x ∈R ,则“sin x =1”是“cos x =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为sin 2x +cos 2x =1可得:当sin x =1时,cos x =0,充分性成立;当cos x =0时,sin x =±1,必要性不成立;所以当x ∈R ,sin x =1是cos x =0的充分不必要条件.故选:A.9.【2022年浙江】为了得到函数y =2sin 3x 的图象,只要把函数y =2sin 3x 有的点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度【答案】D 【解析】【分析】根据三角函数图象的变换法则即可求出.【详解】因为y =2sin 3x =2sin 3x−y =2sin 3x +移π15个单位长度即可得到函数y =2sin 3x 的图象.故选:D.10.【2022年新高考2卷】(多选)已知函数f(x)=sin (2x +φ)(0<φ<π)的图像关于点,0中心对称,则( )A .f(x)在区间0,B .f(x)在区间−π12C .直线x =7π6是曲线y =f(x)的对称轴D .直线y =32−x 是曲线y =f(x)的切线【答案】AD 【解析】【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:=φ=0,所以4π3+φ=kπ,k ∈Z ,即φ=−4π3+kπ,k ∈Z ,又0<φ<π,所以k =2时,φ=2π3,故f(x)=sin 2x对A ,当x ∈2x +2π3∈y =sin u 图象知y =f(x)在0,单调递减;对B ,当x ∈−π122x +2π3∈y =sin u 图象知y =f(x)只有1个极值点,由2x +2π3=3π2,解得x =5π12,即x =5π12为函数的唯一极值点;对C ,当x =7π6时,2x +2π3=3π,f(7π6)=0,直线x =7π6不是对称轴;对D ,由y′=2cos 2x =−1得:cos 2x =−12,解得2x +2π3=2π3+2kπ或2x +2π3=4π3+2kπ,k ∈Z ,从而得:x =kπ或x =π3+kπ,k ∈Z ,所以函数y =f(x)在点0,k =y′|x =0=2cos 2π3=−1,切线方程为:y−32=−(x−0)即y =32−x .故选:AD .11.【2022年全国甲卷】已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.【答案】3−1##−1+3【解析】【分析】设CD =2BD =2m >0,利用余弦定理表示出AC 2AB 2后,结合基本不等式即可得解.【详解】设CD =2BD =2m >0,则在△ABD 中,AB 2=BD 2+AD 2−2BD ⋅AD cos ∠ADB =m 2+4+2m ,在△ACD 中,AC 2=CD 2+AD 2−2CD ⋅AD cos ∠ADC =4m 2+4−4m ,所以AC 2AB 2=4m 2+4−4mm 2+4+2m=4(m 2+4+2m)−12(1+m)m 2+4+2m=4−12(m +1)+3m +1≥4−122(m +1)⋅3m +1=4−23,当且仅当m +1=3m +1即m =3−1时,等号成立,所以当ACAB 取最小值时,m =3−1.故答案为:3−1.12.【2022年全国乙卷】记函数f(x)=cos (ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f(T)=32,x =π9为f(x)的零点,则ω的最小值为____________.【答案】3【解析】【分析】首先表示出T ,根据f (T )=32求出φ,再根据x =π9为函数的零点,即可求出ω的取值,从而得解;【详解】解: 因为f (x )=cos(ωx +φ),(ω>0,0<φ<π)所以最小正周期T =2πω,因为f (T )=cos ω⋅2πω+φ=cos(2π+φ)=cos φ=32,又0<φ<π,所以φ=π6,即f (x )=cos ωx +又x =π9为f (x )的零点,所以π9ω+π6=π2+kπ,k ∈Z ,解得ω=3+9k,k ∈Z ,因为ω>0,所以当k =0时ωmin =3;故答案为:313.【2022年北京】若函数f(x)=A sin x−3cos x 的一个零点为π3,则A =________;f(π12)=________.【答案】 1 −2【解析】【分析】先代入零点,求得A 的值,再将函数化简为f(x)=2sin (x−π3),代入自变量x =π12,计算即可.【详解】∵f(π3)=32A−32=0,∴A=1∴f(x)=sin x−3cos x=2sin(x−π3)f(π12)=2sin(π12−π3)=−2sinπ4=−2故答案为:1,−214.【2022年浙江】我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=2,b=3,c=2,则该三角形的面积S=___________.【答案】234.【解析】【分析】根据题中所给的公式代值解出.【详解】因为S S==234.故答案为:234.15.【2022年浙江】若3sinα−sinβ=10,α+β=π2,则sinα=__________,cos2β=_______ __.【答案】310104 5【解析】【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β.【详解】α+β=π2,∴sinβ=cosα,即3sinα−cosα=10,α−1010cosα=10,令sinθ=1010,cosθ=31010,则10sin(α−θ)=10,∴α−θ=π2+2kπ,k∈Z,即α=θ+π2+2kπ,∴sin α=sin θ+π2+2kπ=cos θ=31010,则cos 2β=2cos 2β−1=2sin 2α−1=45.故答案为:31010;45.16.【2022年全国乙卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知sin C sin(A−B )=sin B sin(C−A ).(1)若A =2B ,求C ;(2)证明:2a 2=b 2+c 2【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得,sin C =sin(C−A ),再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得sin C (sin A cos B−cos A sin B )=sin B (sin C cos A−cos C sin A ),再根据正弦定理,余弦定理化简即可证出.(1)由A =2B ,sin C sin(A−B )=sin B sin(C−A )可得,sin C sin B =sin B sin(C−A ),而0<B <π2,所以sin B ∈(0,1),即有sin C =sin(C−A )>0,而0<C <π,0<C−A <π,显然C ≠C−A ,所以,C +C−A =π,而A =2B ,A +B +C =π,所以C =5π8.(2)由sin C sin(A−B )=sin B sin(C−A )可得,sin C (sin A cos B−cos A sin B )=sin B (sin C cos A−cos C sin A ),再由正弦定理可得,ac cos B−bc cos A =bc cos A−ab cos C ,然后根据余弦定理可知,12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2),化简得:2a 2=b 2+c 2,故原等式成立.17.【2022年全国乙卷】记△ABC 的内角A,B,C 的对边分别为a,b,c ,已知sin C sin (A−B)=sin B sin (C−A).(1)证明:2a 2=b 2+c 2;(2)若a=5,cos A=2531,求△ABC的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sin C sin(A−B)=sin B sin(C−A),所以sin C sin A cos B−sin C sin B cos A=sin B sin C cos A−sin B sin A cos C,所以ac⋅a2+c2−b22ac −2bc⋅b2+c2−a22bc=−ab⋅a2+b2−c22ab,即a2+c2−b22−(b2+c2−a2)=−a2+b2−c22,所以2a2=b2+c2;(2)解:因为a=5,cos A=2531,由(1)得b2+c2=50,由余弦定理可得a2=b2+c2−2bc cos A,则50−5031bc=25,所以bc=312,故(b+c)2=b2+c2+2bc=50+31=81,所以b+c=9,所以△ABC的周长为a+b+c=14.18.【2022年新高考1卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A1+sin A=sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【答案】(1)π6;(2)42−5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos A 1+sin A =sin 2B1+cos 2B 化成cos(A +B )=sin B ,再结合0<B <π2,即可求出;(2)由(1)知,C =π2+B ,A =π2−2B ,再利用正弦定理以及二倍角公式将a 2+b 2c 2化成4cos 2B +2cos 2B −5,然后利用基本不等式即可解出.(1)因为cos A1+sin A =sin 2B1+cos 2B =2sin B cos B 2cos 2B=sin Bcos B ,即sin B =cos A cos B−sin A sin B =cos(A +B )=−cosC =12,而0<B <π2,所以B =π6;(2)由(1)知,sin B =−cos C >0,所以π2<C <π,0<B <π2,而sin B =−cos C =sin 所以C =π2+B ,即有A =π2−2B .所以a2+b 2c 2=sin2A+sin 2B sin 2C=cos22B+1−cos 2B cos 2B=(2cos2B−1)2+1−cos 2B cos 2B=4cos 2B +2cos 2B −5≥28−5=42−5.当且仅当cos 2B =22时取等号,所以a 2+b 2c 2的最小值为42−5.19.【2022年新高考2卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=32,sin B =13.(1)求△ABC 的面积;(2)若sin A sin C =23,求b .【答案】(1)28(2)12【解析】【分析】(1)先表示出S 1,S 2,S 3,再由S 1−S 2+S 3=32求得a 2+c 2−b 2=2,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得b2sin 2B=acsin A sin C ,即可求解.(1)由题意得S 1=12⋅a 2⋅32=34a 2,S 2=34b 2,S 3=34c 2,则S 1−S 2+S 3=34a 2−34b 2+34c 2=32,即a 2+c 2−b 2=2,由余弦定理得cos B =a2+c 2−b 22ac,整理得ac cos B =1,则cos B >0,又sin B =13,则cos B 223,ac =1cos B =324,则S △ABC =12ac sin B =28;(2)由正弦定理得:bsin B=a sin A=c sin C ,则b 2sin 2B=asin A⋅c sin C=ac sin A sin C=32423=94,则b sin B =32,b =32sinB =12.20.【2022年北京】在△ABC 中,sin 2C =3sin C .(1)求∠C ;(2)若b =6,且△ABC 的面积为63,求△ABC 的周长.【答案】(1)π6(2)6+63【解析】【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得△ABC 的周长.(1)解:因为C ∈(0,π),则sin C >0,由已知可得3sin C =2sin C cos C ,可得cos C =32,因此,C =π6.(2)解:由三角形的面积公式可得S △ABC =12ab sin C =32a =63,解得a =43.由余弦定理可得c 2=a 2+b 2−2ab cos C =48+36−2×43×6×32=12,∴c =23,所以,△ABC 的周长为a +b +c =63+6.21.【2022年浙江】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.【答案】(1)55;(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论cos C =a 2+b 2−c 22ab以及4a =5c 可解出a ,即可由三角形面积公式S =12ab sin C 求出面积.(1)由于cos C =35, 0<C <π,则sin C =45.因为4a =5c ,由正弦定理知4sin A =5sin C ,则sin A =54sin C =55.(2)因为4a =5c ,由余弦定理,得cos C =a2+b 2−c 22ab=a 2+121−165a 222a=11−a 252a=35,即a 2+6a−55=0,解得a =5,而sin C =45,b =11,所以△ABC 的面积S =12ab sin C =12×5×11×45=22.1.(2022·宁夏·银川一中模拟预测(文))已知点12P ⎛- ⎝在角θ的终边上,且[)0,2πθ∈,则角θ的大小为( ).A .π3B .2π3C .5π3D .4π3【答案】B 【解析】【分析】根据给定条件,确定角θ的范围,再利用三角函数定义求解作答.【详解】依题意,点12P ⎛- ⎝在第二象限,又[)0,2πθ∈,则ππ2θ<<,而tan θ=,所以2π3θ=.故选:B2.(2022·安徽省舒城中学三模(理))将函数π()2sin(0)3f x x ωω=->的图象向左平移3ωπ个单位,得到函数()y g x =的图象,若()y g x =在π[0,4上为增函数,则ω最大值为( )A .2B .3C .4D .52【答案】A 【解析】【分析】根据平移法则求出函数()g x 的解析式,进而求出()g x 的含有数0的单调区间,再借助集合的包含关系即可解出.【详解】依题意,()2sin[()]2sin 33g x x x ππωωω=+-=,由ππ22x ω-≤≤,0>ω得:ππ22x ωω-≤≤,于是得()y g x =的一个单调递增区间是ππ,22[]ωω-,因()y g x =在π[0,4上为增函数,因此,ππ[π[0,]2]24,ωω-⊆,即有ππ24ω≥,解得02ω<≤,即ω最大值为2.故选:A.3.(2022·甘肃·武威第六中学模拟预测(理))已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( )A .6π=ϕB .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【答案】D 【解析】【分析】由已知得()2sin 23f ππϕ⎛⎫-=-+= ⎪⎝⎭,由2πϕ<可求得ϕ,可判断A 选项,由此有()12sin 36x f x π⎛⎫=- ⎪⎝⎭;对于B ,由,2x ππ⎡⎤∈--⎢⎥⎣⎦得12363x πππ-≤-≤-,由正弦函数的单调性可判断;对于C ,由[],x ππ∈-得12366x πππ-≤-≤,由此得()f x 在区间[],ππ-上的最大值为2sin16π=;对于D ,()11+2sin +336f x x πθθ⎛⎫=- ⎪⎝⎭,由()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈.【详解】解:因为函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,所以()2sin 23f ππϕ⎛⎫-=-+=± ⎪⎝⎭,所以+,32k k Z ππϕπ-+=∈,又2πϕ<,所以6πϕ=-,故A 不正确;所以()12sin 36x f x π⎛⎫=- ⎪⎝⎭,对于B ,当,2x ππ⎡⎤∈--⎢⎥⎣⎦时,12363x πππ-≤-≤-,所以()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递增,故B 不正确;对于C ,当[],x ππ∈-时,12366x πππ-≤-≤,()f x 在区间[],ππ-上的最大值为2sin 16π=,故C 不正确;对于D ,若()f x θ+为偶函数,则()()111+2sin +2sin +36336f x x x ππθθθ⎡⎤⎛⎫=-=- ⎪⎢⎥⎣⎦⎝⎭,所以()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈,故D 正确,故选:D.4.(2022·全国·模拟预测)已知α,()0,πβ∈,πtan 3α⎛⎫+= ⎪⎝⎭πcos 6β⎛⎫+= ⎪⎝⎭()cos 2αβ-=( )A.B.CD【答案】D 【解析】【分析】根据待求式的结构,πππ22362αβαβ⎛⎫⎛⎫-=+-+- ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】解:因为πππππcos(2)cos 2sin 236236αβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+-+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=ππsin 2(cos()36αβ++-ππcos 2()sin(36αβ++.222πππ2tan 2sin()cos()πππ333sin 22sin()cos()πππ333sin ()cos ()tan 1333ααααααααα⎛⎫+++ ⎪⎡⎤⎛⎫⎝⎭+=++=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦+++++ ⎪⎝⎭22222222π1tan cos ()sin ()π1333cos 2cos (sin (π3333cos ()sin ()tan 1333ππαααππαααππααα⎛⎫-++-+ ⎪⎡⎤⎛⎫⎝⎭+=+-+=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦+++++ ⎪⎝⎭;πcos 6β⎛⎫+= ⎪⎝⎭,ππ0,62β⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以πsin 6β⎛⎫+= ⎪⎝⎭故cos(2)αβ-=故选:D.5.(2022·全国·模拟预测(文))已知函数()()()sin 0f x x ωϕω=+>的一个对称中心为,03π⎛-⎫⎪⎝⎭,()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调,则ω的最小正整数值为( )A .1B .2C .3D .4【答案】B【解析】【分析】根据题意可得()sin()033f ππωϕ-=-+=,所以13k πϕωπ=+,1k Z ∈,由()f x 在区间5,6ππ⎛⎫ ⎪⎝⎭上不单调可得()()cos 0f x x ωωϕ'=+=在区间5,6ππ⎛⎫ ⎪⎝⎭上有解,所以22()2x k k Z πωϕπ+=+∈,在区间5,6ππ⎛⎫ ⎪⎝⎭上有解,最终可得23k x ππωπ+=+,k Z ∈,取值即可得解.【详解】由函数()()()sin 0f x x ωϕω=+>的一个对称中心为,03π⎛-⎫⎪⎝⎭,可得()sin()033f ππωϕ-=-+=,所以13k πωϕπ-+=,1k Z ∈,13k πϕωπ=+,1k Z ∈,()()cos f x x ωωϕ'=+,由()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调,所以()()cos 0f x x ωωϕ'=+=在区间5,6ππ⎛⎫⎪⎝⎭上有解,所以22()2x k k Z πωϕπ+=+∈,在区间5,6ππ⎛⎫⎪⎝⎭上有解,所以122()32x k k k Z ππωωππ++=+∈,所以23k x ππωπ+=+,21k k k Z =-∈,又5,6x ππ⎛⎫∈⎪⎝⎭,所以74(,363x πππ+∈,所以36362(,)873k k k x ππωπ+++=∈+,当2k =时,1515(,)87ω∈,此时ω的最小正整数为2.故选:B6.(2022·河南省杞县高中模拟预测(理))已知π02θ<<,若πsin 24θ⎛⎫-= ⎪⎝⎭,则sin cos θθ+=( )A B C D 【答案】B 【解析】【分析】根据题中所给的角的范围以及三角函数值,可以确定πcos 24θ⎛⎫-= ⎪⎝⎭和角正弦求得3sin 25θ=,从而求得()28sin cos 1sin 25θθθ+=+=,根据角的范围确定符号,开方即可得结果.【详解】因为π02θ<<,所以ππ3π2444θ-<-<,又πsin 24θ⎛⎫-= ⎪⎝⎭,所以ππ2044θ-<-<,所以πcos 24θ⎛⎫-= ⎪⎝⎭所以ππππππ3sin 2sin 2sin 2cos cos 2sin 4444445θθθθ⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()28sin cos 1sin 25θθθ+=+=,又sin cos 0θθ+>,sin cos θθ+=.故选:B .7.(2022·全国·模拟预测(理))函数()f x 的图象按以下次序变换:①横坐标变为原来的12;②向左平移23π个单位长度;③向上平移一个单位长度;④纵坐标变为原来的2倍,得到sin y x =的图象,则()f x 的解析式为( )A .()112sin 1223f x x π⎛⎫=-- ⎪⎝⎭B .()11sin 1223f x x π⎛⎫=-- ⎪⎝⎭C .()12sin 2123f x x π⎛⎫=-- ⎪⎝⎭D .()1sin 2123f x x π⎛⎫=-- ⎪⎝⎭【答案】A 【解析】【分析】根据三角函数图象变换的性质逆推求解即可【详解】由题意,④纵坐标变为原来的2倍,得到sin y x =的图象,故④变换前为1sin 2y x =;③向上平移一个单位长度,故③变换前为1sin 12y x =-;②向左平移23π个单位长度,故②变换前为1si 123n 2y x π⎛⎫=-- ⎪⎝⎭;①横坐标变为原来的12,故①变换前为211si 3n 122y x π⎛⎫=-- ⎪⎝⎭,故()f x 的解析式为()112sin 1223f x x π⎛⎫=-- ⎪⎝⎭故选:A8.(2022·黑龙江·哈九中三模(文))已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【答案】C 【解析】【分析】根据函数图象求得()12sin 23f x x π⎛⎫=+ ⎪⎝⎭,再根据图象变换可得()g x 的解析式,结合()()129g x g x =,1x ,[]20,4x π∈,求得21,x x 的值,可得答案.【详解】设()f x 的最小正周期为T ,则由图可知372433T ππ⎛⎫=-- ⎪⎝⎭,得4T π=,则212T πω==,所以()1sin 2f x A x ϕ⎛⎫=+ ⎪⎝⎭,又由题图可知()f x 图象的一个对称中心为点2,03π⎛⎫-⎪⎝⎭,故1223k πϕπ⎛⎫⨯-+= ⎪⎝⎭,Z k ∈,故3k πϕπ=+,Z k ∈,因为0ϕπ<<,所以3πϕ=,所以()1sin 23f x A x π⎛⎫=+ ⎪⎝⎭.又因为1323f π⎛⎫= ⎪⎝⎭,故131135sin sin sin 2323322f A A A A πππππ⎛⎫⎛⎫=⨯+==== ⎪ ⎪⎝⎭⎝⎭,所以()12sin 23f x x π⎛⎫=+ ⎪⎝⎭;将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()2sin 213g x x π⎛⎫=++ ⎪⎝⎭的图象;因为()()129g x g x =,所以12,x x 同时令()g x 取得最大值3,由()2sin 2133g x x π⎛⎫=++= ⎪⎝⎭,可得()11212k x π+=,Z k ∈,又[]12,0,4x x π∈,要求21x x -的最大值,故令0k =,得112x π=;令3k =,得23712x π=,所以21x x -的最大值为3731212πππ-=,故选:C.9.(2022·全国·模拟预测)为了得到函数4sin 23y x π⎛⎫=+⎪⎝⎭的图象,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移712π个单位长度B .向左平移76π个单位长度C .向右平移712π个单位长度D .向右平移76π个单位长度【答案】A 【解析】【分析】根据图像平移的规律,算出答案即可.【详解】由题意,由于函数477sin(2sin(2sin 2(366126y x x x πππππ⎡⎤=+=++=++⎢⎥⎣⎦,观察发现可由函数sin 26y x π⎛⎫=+ ⎪⎝⎭向左平移712π个单位长度,得到函数4sin 23y x π⎛⎫=+⎪⎝⎭的图象,故选:A.10.(2022·贵州·贵阳一中模拟预测(文))如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos 2g x x x =-的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度C .向左平移2π个单位长度D .向右平移2π个单位长度【答案】A 【解析】【分析】先由图像求得()2sin 32f x x π⎛⎫=+ ⎪⎝⎭,再由辅助角公式化简()g x ,最后由三角函数的平移变换即可求解.【详解】由题图知:712,1234T T ππππω-=∴==,又()()0,2,sin 2f x A x ωωϕ>∴=∴=+,20,sin 0,0332f A πππϕϕ⎛⎫⎛⎫=∴+=<< ⎪⎪⎝⎭⎝⎭,解得(),sin 233f x A x ππϕ⎛⎫=∴=+ ⎪⎝⎭,又()()()0sin2,2sin 2,cos233f A A f x x g x x x ππ⎛⎫=∴=∴=∴=+=-= ⎪⎝⎭2sin 26x π⎛⎫- ⎪⎝⎭,将()g x 向左平移4π得()2sin 22sin 22sin 246263x x x f x πππππ⎡⎤⎛⎫⎛⎫⎛⎫+-=+-=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:A.11.(2022·青海西宁·二模(文))在①6a =;②8a =;③12a =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求cos A 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且2224a b c S +-=,c =________?【答案】答案不唯一,具体见解析【解析】【分析】根据题干条件及余弦定理、面积公式,可求得角C 的值,若选①6a =,根据正弦定理,可求得sin A 的值,根据大边对大角原则,可得角A 只有一解,根据同角三角函数关系,可求得cos A 的值;若选②8a =,根据正弦定理,可求得sin A 的值,根据大边对大角原则,可得角A 有两解,根据同角三角函数关系,可求得cos A 的值;若选③12a =,根据正弦定理,可求得sin A 的值,因为sin 1A >,则三角形无解.【详解】由题意可知在ABC 中,因为2224a b c S +-=,且in 12s S ab C =,所以222sin 2a b c C ab+-=,由余弦定理可知222cos 2a b c C ab +-=,所以cos sin C C =因为(0,)C π∈,所以4C π=;若选①6a =,由正弦定理可得sin sin a cA C=,解得3sin sin 5a A C c ===,在ABC 中,因为c a >,所以C A >,又因为4C π=,则角A 只有一解,且0,4A π⎛⎫∈ ⎪⎝⎭,所以4cos 5A ===.若选②8a =,由正弦定理可得sin sin a c A C=,解得4sin sin 5a A C c ===, 在ABC 中,因为c a <,所以C A <,又因为4C π=,则角A 有两解,所以3cos 5A ===±.若选③12a =,由正弦定理可得sin sin a c A C=,解得6sin sin 5aA C c ===,因为sin 1A >,所以ABC 无解,即三角形不存在.12.(2022·河南·开封市东信学校模拟预测(理))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sinsin 2B Cb a B +=.(1)求角A 的大小;(2)若D 为BC 边中点,且2AD =,求a 的最小值.【答案】(1)π3【解析】【分析】(1)利用三角恒等变形及正弦定理即可求解;(2)利用余弦定理及基本不等式即可求解.(1)∵sinsin 2B C b a B +=,∴πsinsin 2A b a B -=,即cos sin 2Ab a B =.由正弦定理得cos sin sin 2sin AB A B ⋅=⋅.∵sin 0B ≠,∴cos sin 2sin cos 222A A A A ==.∵cos02A ≠,∴1sin 22A =,又∵π022A <<, ∴π26A =,∴π3A =;(2)∵D 为BC 边中点,∴2AD AB AC =+u u u r u u u r u u u r,即224()AD AB AC =+ ,∵2AD =,∴22162cos c b bc A =++,∴2216b c bc +=-,∴22216bc b c bc ≤+=-,即163≤bc , 当且仅当b c ==,∵222222cos 162a b c bc A b c bc bc =+-=+-=-,∴2161616233a ≥-⨯=,即a故a 13.(2022·山东聊城·三模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos()6b Cc B π=-.(1)求角B ;(2)若b =4,求ABC 周长的最大值.【答案】(1)3B π=;(2)12.【解析】【分析】(1)利用差角的余弦公式,结合正弦定理,化简计算作答.(2)利用余弦定理,结合均值不等式求出a +c 的最大值(1)因为sin cos(6b C c B π=-,则1sin sin )2b Cc B B =+,在ABC 中,由正弦定理得,1sin sin sin sin )2B C C B B =+,而(0,π)C ∈,即sin 0C >,整理得sin B B =,即tan B =()0,πB ∈,解得π3B =,所以π3B =.(2)在ABC 中,由余弦定理2222cos b a c ac B =+-得:2216a c ac =+-,即()2163a c ac +-=,而2(2a c ac +≤,于是得()264a c +≤,当且仅当a =c =4时取“=”,因此,当a =c =4时,a +c 取最大值8,从而a +b +c 取最大值12,所以ABC 周长的最大值为12.14.(2022·河南·平顶山市第一高级中学模拟预测(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22(cos 2b a b c a B -=-.(1)求角A 的大小;(2)若8c =,ABC 的面积为BC 边上的高.【答案】(1)3A π=【解析】【分析】(1)由余弦定理化简可得答案;(2)由三角形的面积公式可得b 值,由余弦定理可得a 值,结合面积公式可得高.(1)22cos 2b a b c a B ⎛⎫-=- ⎪⎝⎭ ,即222()2cos a b ca B bc -=-.222222()a b c a b bc ∴-=+--,222b c a bc ∴+-=,2221cos =22b c a A bc +-∴=.又(0,)A π∈,3A π∴=.(2)11sin 8sin 223S bc A b π==⨯⨯== 2b ∴=.故由余弦定理可知a ==而1122S ah h ==⨯=解得h =BC .15.(2022·四川省泸县第二中学模拟预测(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c cos A A +=b =①:2a =,222sin sin sin B A C >+;条件②:a b <,21cos cos sin 2a A C c A a =+.这两个条件中选择一个作为已知,求:(1)tan 2A 的值;(2)c 和面积S 的值.【答案】(1)条件选择见解析,tan 2A =(2)条件选择见解析,2c =,S =【解析】【分析】(1)若选①,由已知条件可得πsin 6A ⎛⎫+= ⎪⎝⎭π6A =或π2,由于a b <,则可得π6A =,进而可求出tan 2A ,若选②,由已知条件可得πsin 6A ⎛⎫+= ⎪⎝⎭,得π6A =或π2,由于a b <,则可得π6A =,进而可求出tan 2A ,(2)若选①,由正弦定理得sin B =222sin sin sin B A C >+得222b a c >+,再由余弦定理得cos 0B <,则2π3B =,求得π6C =,然后利用三角形面积公式可求得结果,若选②,由正弦定理结合三角函数恒等变换公式可得1cos 2B =-,从而可得2π3B =,则π6C =,然后利用三角形面积公式可求得结果,(1)若选①:2a =,222sin sin sin B A C >+,在ABC cos A A +=πsin 6A ⎛⎫+= ⎪⎝⎭,而ππ7π,666A ⎛⎫+∈ ⎪⎝⎭,故ππ63A +=或2π3,则π6A =或π2,∵2a b =<=π6A =,∴πtan 2tan3A ==;若选②:a b <,21cos cos sin 2a A C c A a=+在ABC cos A A +=πsin 6A ⎛⎫+= ⎪⎝⎭,而ππ7π,666A ⎛⎫+∈ ⎪⎝⎭,故ππ63A +=或2π3,则π6A =或π2,由a b <,得:π6A =,∴πtan 2tan 3A ==;(2)若选①:2a =,222sin sin sin B A C >+,由正弦定理得:sin sin a b A B =,2πsin 6=,则sin B =,由222222sin sin sin B A C b a c >+⇒>+知:222cos 02a c b B ac+-=<,故2π3B =,则π6C =,∴2c a ==,11πsin 2sin 226S ab C ==⨯⨯=若选②:a b <,21cos cos sin 2a A C c A a=+由正弦定理得:21sin cos cos sin sin sin 2A A C C A A =+,∵sin 0A ≠∴1cos cos sin sin 2A C A C -=,即()1cos 2A C +=,1cos 2B =-,∵0πB <<,故2π3B =,则π6C =,∴a c=∴由余弦定理得2222cos b a c ac B =+-,22211222c c c ⎛⎫=+-⋅- ⎪⎝⎭,得2c =,。

2022年全国高考数学真题分类汇编:三角函数(附答案解析)

2022年全国高考数学真题分类汇编:三角函数(附答案解析)

2022年全国高考数学真题分类汇编:三角函数
一.选择题(共8小题)
1.为了得到函数y=2sin3x的图象,只要把函数y=2sin(3x +)图象上所有的点()A .向左平移个单位长度
B
.向右平移个单位长度
C
.向左平移个单位长度
D .向右平移个单位长度
2.已知函数f(x)=cos2x﹣sin2x,则()
A.f(x
)在(﹣,﹣)上单调递减
B.f(x
)在(﹣,)上单调递增
C.f(x)在(0,)上单调递减
D.f(x )在(,)上单调递增
3.已知a =,b=cos,c=4sin,则()
A.c>b>a B.b>a>c C.a>b>c D.a>c>b
4.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如
图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D
在上,CD⊥AB.“会
圆术”给出的弧长的近似值s的计算公式:s=AB +.当OA=2,∠AOB=60°时,s=(

A .
B .
C .
D .
第1页(共31页)。

历年(2020-2023)全国高考数学真题分类(函数)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(函数)汇编【2023年真题】1.(2023·新课标I 卷 第4题) 设函数()()2x x a f x -=在区间(0,1)单调递减,则a 的取值范围是( ) A. (,2]-∞-B. [2,0)-C. (0,2]D. [2,)+∞2.(2023·新课标II 卷 第4题)若21()()ln 21x f x x a x -=++为偶函数,则a =( ) A. 1-B. 0C.12D. 13.(2023·新课标I 卷 第10题)(多选) 噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级020lgp pL p =⨯,其中常数00(0)p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级: 声源 与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则( ) A. 12p p …B. 2310p p >C. 30100p p =D. 12100p p …4. (2023·新课标I 卷 第11题)(多选)已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点【2022年真题】5.(2022·新高考I 卷 第12题)(多选)已知函数()f x 及其导函数()f x '的定义域为R ,记()().g x f x ='若3(2)2f x -,(2)g x +均为偶函数,则( )A. (0)0f =B. 1()02g -=C. (1)(4)f f -=D. (1)(2)g g -=6.(2022·新高考II 卷 第8题)若函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,(1)1f =,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【2021年真题】7.(2021·新高考I 卷 第13题)已知函数3()(22)x x f x x a -=⋅-是偶函数,则a =__________. 8.(2021·新高考II 卷 第7题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A. c b a << B. b a c << C. a c b << D. a b c <<9.(2021·新高考II 卷 第8题)设函数()f x 的定义域为R ,且(2)f x +为偶函数,(21)f x +为奇函数,则 ( )A. 102f ⎛⎫-= ⎪⎝⎭B. (1)0f -=C. (2)0f =D. (4)0f =10.(2021·新高考II 卷 第14题)写出一个同时具有下列性质①②③的函数()f x :_________. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【2020年真题】11.(2020·新高考I 卷 第6题)基本再生数0R 与世代间隔T 是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()rt I t e =描述累计感染病例数()I t 随时间(t 单位:天)的变化规律,指数增长率 r 与0R ,T 近似满足01.R rT =+有学者基于已有数据估计出0 3.28R =, 6.T =据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 20.69)≈( ) A. 1.2天B. 1.8天C. 2.5天D. 3.5天12.(2020·新高考I 卷、II 卷 第8题)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -…的x 的取值范围是( ) A. [1,1][3,)-⋃+∞ B. [3,1][0,1]--⋃ C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃13.(2020·新高考II 卷 第7题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A. (2,)+∞ B. [2,)+∞ C. (5,)+∞ D. [5,)+∞14.(2020·新高考I 卷 第12题)(多选)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2, ,n ,且()0(1,2,,)i P X i p i n ==>= ,11ni i p ==∑,定义X 的信息熵21()logni i i H X p p ==-∑( )A. 若1n =,则()0H x =B. 若2n =,则()H x 随着1p 的增大而增大C. 若i p =1n(1,2,i =,)n ,则()H x 随着n 的增大而增大 D. 若2n m =,随机变量Y 的所有可能取值为1,2, ,m ,且()P Y j ==j p +21j m p +-(1,2,j = ,)m ,则()H X ()H Y参考答案1.(2023·新课标I 卷 第4题)解:结合复合函数单调性的性质,易得12a …,所以a 的取值范围是[2,);+∞故选.D 2.(2023·新课标II 卷 第4题)解:()f x 为偶函数,(1)(1)f f =-,1(1)ln(1)ln 33a a ∴+=-+,0a ∴=,故选.B 3.(2023·新课标I 卷 第10题)(多选) 解:1211200220lg20lg 20lg 0p p p L L p p p -=⨯-⨯=⨯> ,121pp ∴>,12p p ∴>,所以A 正确; 223320lg 10p L L p -=⨯ …,231lg 2p p ∴…,1223p e p ∴…,所以B 错误;33020lg40p L p =⨯= ,30100pp ∴=,所以C 正确; 112220lg 905040p L L p -=⨯-= …,12lg 2p p ∴…,12100pp ∴…,所以D 正确. 故选ACD4. (2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确;选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+,而常函数没有极值点,故D 错误. 故选:.ABC5.(2022·新高考I 卷 第12题)(多选)解:由3(2)2f x -为偶函数可知()f x 关于直线32x =对称,由(2)g x +为偶函数可知()g x 关于直线2x =对称,结合()()g x f x =',根据()g x 关于直线2x =对称可知()f x 关于点(2,)t 对称, 根据()f x 关于直线32x =对称可知:()g x 关于点3(,0)2对称,综上,函数()f x 与()g x 均是周期为2的周期函数,所以有(0)(2)f f t ==,所以A 不正确;(1)(1)f f -=,(4)(2)f f =,(1)(2)f f =,故(1)(4)f f -=,所以C 正确.13()()022g g -==,(1)(1)g g -=,所以B 正确;又(1)(2)0g g +=,所以(1)(2)0g g -+=,所以D 不正确. 6.(2022·新高考II 卷 第8题)解:令1y =得(1)(1)()(1)()(1)()(1)f x f x f x f f x f x f x f x ++-=⋅=⇒+=-- 故(2)(1)()f x f x f x +=+-,(3)(2)(1)f x f x f x +=+-+, 消去(2)f x +和(1)f x +得到(3)()f x f x +=-,故()f x 周期为6; 令1x =,0y =得(1)(1)(1)(0)(0)2f f f f f +=⋅⇒=,(2)(1)(0)121f f f =-=-=-, (3)(2)(1)112f f f =-=--=-, (4)(3)(2)2(1)1f f f =-=---=-, (5)(4)(3)1(2)1f f f =-=---=, (6)(5)(4)1(1)2f f f =-=--=,故221()3[(1)(2)(6)](19)(20)(21)(22)k f k f f f f f f f ==+++++++∑(1)(2)(3)(4)1(1)(2)(1)3f f f f =+++=+-+-+-=-即7.(2021·新高考I 卷 第13题)解: 函数3()(22)x x f x x a -=⋅-是偶函数;33()(22)=()()(22)x x x x f x x a f x x a --∴=⋅--=-⋅-, 化简可得3(2222)0x x x x x a a --⋅-+⋅-=, 解得1a =,故答案为1.8.(2021·新高考II 卷 第7题)解:5881log 2log log log 32a b =<==<=, 即.a c b << 故选.C9.(2021·新高考II 卷 第8题)解:因为函数为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数为奇函数,则()()1221f x f x -=-+,所以()()11f x f x -=-+, 所以,(3)(1)f x f x +=-+,即(4)(2)()f x f x f x +=-+=, 故函数是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选.B10.(2021·新高考II 卷 第14题)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②, ()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③.故答案为:2()(f x x =答案不唯一,()()2*nf x x n N =∈均满足)11.(2020·新高考I 卷 第6题)解:将0 3.28R =,6T =代入01R rT =+, 得01 3.2810.386R r T--===,(2)f x +(21)f x +()f x ()0f x '>由()0.38tI t e=得()()ln 0.38I t t =,当增加1倍时,,所需时间为故选.B12.(2020·新高考I 卷、II 卷 第8题)解:根据题意,不等式(1)0xf x -…可化为()010x f x ≥⎧⎨-≥⎩ 或()010x f x ≤⎧⎨-≤⎩, 由奇函数性质得(2)-(2)0f f -==,()f x 在(0,)+∞上单调递减,所以或,解得13x 剟或10.x -剟 满足(1)0xf x -…的x 的取值范围是[1,0][1,3].x ∈-⋃ 故选.D13.(2020·新高考II 卷 第7题) 解:由2450x x -->,得1x <-或 5.x > 令245t x x =--,外层函数lg y t =是其定义域内的增函数,∴要使函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则需内层函数245t x x =--在(,)a +∞上单调递增且恒大于0,则(,)(5,)a +∞⊆+∞,即 5.a …a ∴的取值范围是[5,).+∞故选:.D14.(2020·新高考I 卷 第12题)(多选)解:A 选项中,由题意知11p =,此时2()1log 10H X =-⨯=,故A 正确; B 选项中,由题意知121p p +=,且1(0,1)p ∈,121222121121()log log log (1)log (1)H X p p p p p p p p =--=----,设22()log (1)log (1)f x x x x x =----,(0,1)x ∈ ,则222111()log log (1)log (1)ln 2ln 2f x x x x '=--+-+=-,当1(,1)2x ∈时,()0f x '<,当1(0,)2x ∈时,()0f x '>,故当11(0,2p ∈ 时,()H X 随着1p 的增大而增大,当11(,1)2p ∈ 时,()H X 随着1p 的增大而减小,故B 错误;C 选项中,由题意知2211()(log H X n log n n n=⨯-=,故()H X 随着n 的增大而增大,故C 正确;D 选项中,由题意知j21j2j 21j j 1()()log ()mm m H Y p pp p +-+-==-++∑,2j 2j j 2j 21j 221j j 1j 1()log (log log )mmm m H X p p p p p p +-+-===-=-+∑∑,j 21jj 21j2j 21j 2j 221jj 1j 1()()log ()(log log )m m mmp p pp m m H X H Y p p p p +-+-++-+-==-=+-+∑∑j 21j j 21jj 21jj 21jj 21j j 21j j 21j 22j 1j 1j 21j j 21j()()()=log log m m m m p p pp mmm m m pp pp m m p p p p p p p p p p +-+-+-+-++-+-+-==+-+-+++=∑∑j 21j21j j 2j 1j21j=log (1)(1)0,m mpp m m p p p p +-+-=+-++>∑故D 错误. 故答案为: .AC。

2022年全国高考数学真题及模拟题汇编:三角函数(附答案解析)

2022年全国高考数学真题及模拟题汇编:三角函数(附答案解析)

2022年全国高考数学真题及模拟题汇编:三角函数一.选择题(共10小题)1.已知tan()1αβ+=-,1tan()2αβ-=,则sin 2sin 2αβ的值为( )A .13B .13-C .3D .3-2.已知tan 2θ=,则sin()cos()2(cos sin()πθπθθπθ+--=-- ) A .2B .2-C .0D .233.若tan 24tan()04πθθ++=,则sin 2θ的值为( )A .35B .45 C .35-D .45-4.计算:sin11002sin100(cos160︒-︒=︒)A .1BC .2 D.5.cos30cos105sin30sin75(︒︒-︒︒= )A.B. CD6.已知1sin()sin()25ππαα++-=,且(0,)απ∈,则tan()(4πα+= )A .17-B .17C .7D .7-7.已知1tan()62πα+=,则2sin(2)(3πα-= )A .45B .45-C .34 D .34-8.已知4tan 3α=-,则sin 2(α= )A .45-B .45C .2425D .2425-9.已知tan 121tan αα-=+,则sin(2)6πα+的值为( )A. B. CD.10.已知函数()sin(2)6f x x π=+,若将()f x 的图象向右平移6π个单位后,再把所得曲线上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()g x 的图象,则( )A .()sin(4)6g x x π=-B .()sin 4g x x =C .()sin g x x =D .()sin()6g x x π=-二.多选题(共1小题)11.已知函数()sin()f x A x ωϕ=+(其中0A >,0ω>,||)ϕπ<的部分图象如图所示,则下列结论正确的是( )A .函数()f x 的图象关于点(,0)12π-对称B .函数()f x 的图象关于2x π=直线对称C .函数()f x 在区间[,]36ππ-上单调递增D .1y =与图象23()()1212y f x xππ=-的所有交点的横坐标之和为83π 三.填空题(共7小题)12.若5sin()6πα-=,则2cos(2)3πα+= .13.已知2παπ<<,若tan 2sin2αα=,则tan α= .14.若4sin()65πα-=-,则cos()3πα+= .15.若tan 1α=,则sin cos αα= .16.已知sin cos 3cos 3sin αβαβ-=-,且sin()1αβ+≠,则sin()αβ-= . 17.已知α为第四象限角,且5cos α=222)4cos sin πααα-=- . 18.已知函数()sin()(0)3f x x πωω=+>,若()f x 的图像在[0,2]3π上与x 轴恰有两个交点,则ω的取值范围是 . 四.解答题(共4小题)19.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,并且223sin sin 312A BC +=+.(1)求角C 的大小;(2)若a =2c =,求b .20.ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,2sin a B =.(1)若ABC ∆,2c =,求a 的值; (2)若21()()2b a b ac -+=,求tan C 的值.21.某同学用“五点法”作函数()sin()(0f x A x A ωϕ=+>,0ω>,||)2πϕ<在某一个周期内的图象时,列表并填入了部分数据,如表:(Ⅰ)根据上表数据,直接写出函数()f x 的解析式; (Ⅱ)求()f x 在区间2[3π-,0]上的最大值和最小值. 22.已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><,且()f x 图像的相邻两条对称轴之间的距离为2π,再从条件①、条件②、条件③中选择两个作为一组已知条件. (Ⅰ)确定()f x 的解析式;(Ⅱ)若()()2cos(2)6g x f x x π=++,求函数()g x 的单调减区间.条件①:()f x 的最小值为2-; 条件②:()f x 图像的一个对称中心为5(,0)12π; 条件③:()f x 的图像经过点5(,1)6π-.2022年全国高考数学真题及模拟题汇编:三角函数参考答案与试题解析一.选择题(共10小题)1.已知tan()1αβ+=-,1tan()2αβ-=,则sin 2sin 2αβ的值为( )A .13B .13-C .3D .3-【考点】两角和与差的三角函数 【分析】sin 2sin[()()]sin()cos()sin()cos()tan()tan()sin 2sin[()()]sin()cos()sin()cos()tan()tan()ααβαβαβαβαβαβαβαββαβαβαβαβαβαβαβαβ++-+-+-+++-===+--+---++--,代入即可求解.【解答】解:因为tan()1αβ+=-,1tan()2αβ-=, 则11sin 2sin[()()]sin()cos()sin()cos()tan()tan()121sin 2sin[()()]sin()cos()sin()cos()tan()tan()312ααβαβαβαβαβαβαβαββαβαβαβαβαβαβαβαβ-+++-+-+-+++-=====+--+---++----.故选:A .【点评】本题主要考查了同角基本关系,和差角公式在求解三角函数值中的应用,属于基础题.2.已知tan 2θ=,则sin()cos()2(cos sin()πθπθθπθ+--=-- ) A .2B .2-C .0D .23【考点】运用诱导公式化简求值;三角函数的恒等变换及化简求值【分析】由已知利用诱导公式,同角三角函数基本关系式化简所求即可求解. 【解答】解:因为tan 2θ=,所以sin()cos()cos cos 2222cos sin()cos sin 1tan 12πθπθθθθπθθθθ+--+====------.故选:B .【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数求值中的应用,考查了转化思想,属于基础题.3.若tan 24tan()04πθθ++=,则sin 2θ的值为( )A .35B .45 C .35-D .45-【考点】二倍角的三角函数【分析】由题意利用二倍角公式、两角和的正切公式,先求出tan θ的值,再利用二倍角公式、同角三角函数的基本关系式,计算求得sin 2θ的值.【解答】解:tan 24tan()04πθθ++=,∴22tan 1tan 41tan 1tan θθθθ+=-⨯--, ∴tan 2(1tan )1tan θθθ=-⨯++,22tan 5tan 20θθ∴++=,求得tan 2θ=- 或1tan 2θ=-,当tan 2θ=-时,2222sin cos 2tan 4sin 2sin cos tan 15θθθθθθθ===-++; 当1tan 2θ=-时,22tan 4sin 2tan 15θθθ==-+, 故选:D .【点评】本题主要考查二倍角公式、两角和的正切公式,同角三角函数的基本关系式,属于中档题. 4.计算:sin11002sin100(cos160︒-︒=︒)A .1B C .2 D .【考点】二倍角的三角函数;运用诱导公式化简求值【分析】由已知结合诱导公式,两角差的余弦公式进行化简,由此即可求解. 【解答】解:sin11002sin100sin(108020)2sin(9010)2cos10sin 202cos(3020)sin 20cos160cos(18020)cos 20cos 20︒-︒︒+︒-︒+︒︒-︒︒-︒-︒===︒︒-︒︒︒.故选:B .【点评】本题主要考查了诱导公式,两角差的余弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.5.cos30cos105sin30sin75(︒︒-︒︒= )A .B .2C .2D【考点】两角和与差的三角函数【分析】利用公式sin()sin cos cos sin αβαβαβ+=+,结合诱导公式,可得答案. 【解答】解:cos30cos105sin30sin75︒︒-︒︒ cos30sin15sin30cos15=-︒︒-︒︒sin(1530)sin 45=-︒+︒=-︒2=, 故选:B .【点评】本题考查的知识点是两角和与差的正弦公式,诱导公式,属于基础题.6.已知1sin()sin()25ππαα++-=,且(0,)απ∈,则tan()(4πα+= )A .17-B .17C .7D .7-【考点】两角和与差的三角函数【分析】先利用诱导公式化简条件,再结合同角三角函数基本关系,推出3tan 4α=,然后由两角和的正切公式,得解.【解答】解:因为1sin()sin()25ππαα++-=,所以1sin cos 5αα-+=, 又22sin cos 1αα+=,且(0,)απ∈,所以3sin 5α=,4cos 5α=, 所以sin 3tan cos 4ααα==, 所以31tan 14tan()7341tan 14πααα+++===--. 故选:C .【点评】本题考查三角函数的求值,熟练掌握两角和的正切公式,同角三角函数基本关系,诱导公式是解题的关键,考查逻辑推理能力和运算能力,属于基础题.7.已知1tan()62πα+=,则2sin(2)(3πα-= )A .45B .45-C .34 D .34-【考点】二倍角的三角函数;两角和与差的三角函数 【分析】直接利用诱导公式的应用求出三角函数的值.【解答】解:由于1tan()62πα+=,所以22tan()2146sin(2)cos(2)sin(2)sin(2)13626351tan ()164παπππππααααπα+-=-=+-=+===+++. 故选:A .【点评】本题考查的知识要点:三角函数的值,主要考查学生的运算能力和数学思维能力,属于基础题.8.已知4tan 3α=-,则sin 2(α= )A .45-B .45C .2425D .2425-【考点】二倍角的三角函数【分析】结合二倍角公式与“同除余弦可化切”的思想,即可得解.【解答】解:222242()2sin cos 2tan 243sin 22sin cos 4125()13sin cos tan ααααααααα⨯-=====-++-+. 故选:D .【点评】本题考查二倍角公式,同角三角函数的基本关系,理解同除余弦可化切的思想是解题的关键,考查逻辑推理能力和运算能力,属于基础题. 9.已知tan 121tan αα-=+,则sin(2)6πα+的值为( )A. B. CD.【考点】二倍角的三角函数;两角和与差的三角函数【分析】直接利用三角函数的关系式的变换和三角函数的值的应用求出结果. 【解答】解:由于tan 121tan αα-=+,整理得tan 3α=-,所以22tan 63sin 21tan 105ααα==-=-+;221tan 84cos21tan 105ααα-==-=-+;所以341sin(2)()()6552πα+=-+-⨯=. 故选:A .【点评】本题考查的知识要点:三角函数的关系式,三角函数的值,主要考查学生的运算能力和数学思维能力,属于基础题.10.已知函数()sin(2)6f x x π=+,若将()f x 的图象向右平移6π个单位后,再把所得曲线上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()g x 的图象,则( ) A .()sin(4)6g x x π=-B .()sin 4g x x =C .()sin g x x =D .()sin()6g x x π=-【考点】函数sin()y A x ωϕ=+的图象变换【分析】利用函数sin()y A x ωϕ=+的图象变换规律解决即可. 【解答】解:()sin(2)6f x x π=+,∴将()f x 的图象向右平移6π个单位后, 得()sin[2()]sin(2)6666f x x x ππππ-=-+=-,再把所得曲线上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()g x 的图象, 则()sin()6g x x π=-,故选:D .【点评】本题考查了函数sin()y A x ωϕ=+的图象变换,熟练掌握其图象变化规律是解决问题的关键,考查逻辑思维能力与运算求解能力,属于中档题. 二.多选题(共1小题)11.已知函数()sin()f x A x ωϕ=+(其中0A >,0ω>,||)ϕπ<的部分图象如图所示,则下列结论正确的是( )A .函数()f x 的图象关于点(,0)12π-对称B .函数()f x 的图象关于2x π=直线对称C .函数()f x 在区间[,]36ππ-上单调递增D .1y =与图象23()()1212y f x xππ=-的所有交点的横坐标之和为83π【考点】由sin()y A x ωϕ=+的部分图象确定其解析式【分析】由顶点坐标求出A ,由周期求出ω,由五点作图求出ϕ,正弦函数的图象和性质,可得函数的解析式.再利用正弦函数的图象和性质,得出结论.【解答】解:根据函数()sin()f x A x ωϕ=+(其中0A >,0ω>,||)ϕπ<的部分图象, 可得2A =,12254312πππω⨯=-,2ω∴=. 结合五点法作图,可得5212πϕπ⨯+=,6πϕ∴=,故()2sin(2)6f x x π=+.令12x π=-,求得()0f x =,可得函数()f x 的图象关于点(,0)12π-对称,故A 正确;令2x π=,求得()1f x =-,不是最值,故函数()f x 的图象关不于2x π=直线对称,故B 错误;在区间[,]36ππ-上,2[62x ππ+∈-,]2π,函数()f x 单调递增,故C 正确;当[12x π∈-,23]12π,2[06x π+∈,4]π, 直线1y =与图象23()()1212y f x xππ=-的4个交点关于直线3262x ππ+=对称. 设这4个交点的横坐标分别为a 、b 、c 、d ,a b c d <<<,则3(2)(2)2662a d πππ+++=⨯,3(2)(2)2662b c πππ+++=⨯,故所有交点的横坐标之和为83a b c d π+++=,故D 正确, 故选:ACD .【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求函数的解析式,由顶点坐标求出A ,由周期求出ω,由五点作图求出ϕ,正弦函数的图象和性质,属于中档题. 三.填空题(共7小题)12.若sin()6πα-=,则2cos(2)3πα+= 35- .【考点】二倍角的三角函数;两角和与差的三角函数【分析】直接利用三角函数的诱导公式的应用求出三角函数的值.【解答】解:由于sin()cos()cos()6263ππππααα-=-+=+=所以2213cos(2)2cos ()1213355ππαα+=+-=⨯-=-.故答案为:35-.【点评】本题考查的知识要点:三角函数的值,三角函数的诱导公式,主要考查学生的运算能力和数学思维能力,属于基础题.13.已知2παπ<<,若tan 2sin 2αα=,则tan α【考点】二倍角的三角函数【分析】根据同角三角函数基本关系式以及二倍角公式,即可得到结论. 【解答】解:2παπ<<,∴22παπ<<,又tan 2sin 2αα=⇒sin 2sin sin 2sin cos cos 22αααααα=⇒=⋅, 即2sin cos2sincos 222αααα⋅=⋅, 2coscos 2cos 122ααα∴==-,解得:1cos 22α=-,(cos 12α=舍)sin2α∴=,∴tan 2sin2αα=.【点评】本题主要考查函数值的计算,熟练掌握同角三角函数基本关系式以及二倍角公式是解决本题的关键.14.若4sin()65πα-=-,则cos()3πα+= 45.【考点】两角和与差的三角函数 【分析】把所求式子中的角度变为()362πππαα+=-+,利用两角和的余弦函数公式及特殊角的三角函数值化简后,将已知的等式值代入即可求出值. 【解答】解:4sin()65πα-=-,∴4cos()cos[()]sin()36265ππππααα+=-+=--=. 故答案为:45. 【点评】此题考查了两角和与差的余弦函数公式,灵活变换所求式子的角度,熟练掌握公式是解本题的关键,属于基础题.15.若tan 1α=,则sin cos αα=12. 【考点】同角三角函数间的基本关系【分析】根据已知条件,结合弦化切公式,即可求解. 【解答】解:tan 1α=, 222sin cos tan 11sin cos 1112sin cos tan αααααααα∴====+++. 故答案为:12. 【点评】本题主要考查弦化切公式,属于基础题.16.已知sin cos 3cos 3sin αβαβ-=-,且sin()1αβ+≠,则sin()αβ-= 45- .【考点】两角和与差的三角函数 【分析】令cosθ=,sin θ=,根据两角和差的正余弦公式化简已知等式可得sin()cos()αθβθ-=+,再利用诱导公式化成同名函数,推出22k παθβθπ-=+++或()()22k παθβθππ-+++=+,k Z ∈,然后分类讨论,即可得解.【解答】解:因为sin cos 3cos 3sin αβαβ-=-, 所以sin 3cos 3sin cos ααββ-=-+,即))ααββ,ααββ=,cosθ=sin θ=,则sin cos cos sin cos cos sin sin αθαθβθβθ-=-,即sin()cos()sin()2παθβθβθ-=+=++,所以22k παθβθπ-=+++或()()22k παθβθππ-+++=+,k Z ∈, 所以222k παβθπ-=++或22k παβπ+=+,k Z ∈,若222k παβθπ-=++,k Z ∈,则224sin()sin(22)cos22cos 12125k παβθπθθ-=++==-=⨯-=-,若22k παβπ+=+,k Z ∈,则sin()sin(2)12k παβπ+=+=,与sin()1αβ+≠相矛盾,不满足条件,综上,4sin()5αβ-=-.故答案为:45-.【点评】本题考查三角函数的求值,熟练掌握两角和差的正余弦公式是解题的关键,考查逻辑推理能力和运算能力,属于中档题.17.已知α为第四象限角,且cos α=22)4cos sin πααα--【考点】二倍角的三角函数【分析】利用同角三角函数关系式及三角恒等变换公式直接计算即可. 【解答】解:因为α为第四象限角,且cos α= 所以sin α==, 又22cos sin (cos sin )(cos sin )αααααα-=-+, )sin cos 4πααα-=-,所以22)14cos sin sin cos πααααα-=-=-+.【点评】本题主要考查了三角函数恒等变换的应用,考查了计算能力和转化思想,属于基础题.18.已知函数()sin()(0)3f x x πωω=+>,若()f x 的图像在[0,2]3π上与x 轴恰有两个交点,则ω的取值范围是 5[2,4) .【考点】正弦函数的图象【分析】由题意利用正弦函数的图象和性质,求得ω的取值范围.【解答】解:若函数()sin()(0)3f x x πωω=+>的图像在[0,2]3π上与x 轴恰有两个交点,[33x ππω+∈,2]3πωπ+, 2233πωπππ+∴<,求得542ω<, 可得ω的取值范围为5[2,4),故答案为:5[2,4).【点评】本题主要考查正弦函数的图象和性质,属于中档题. 四.解答题(共4小题)19.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,并且2sin 12A BC +=+.(1)求角C 的大小;(2)若a =2c =,求b . 【考点】正弦定理;余弦定理【分析】(1)由已知式子和三角函数公式化简可得1cos()62C π+=,结合C 的范围可得答案;(2)由余弦定理可得2222cos c a b ab C =+-,代入数据即可解得.【解答】解:(1)223sin (sin 1)02A B C +-=,2(sin 1)02CC ∴-=.即1cos (sin 1)02C C +-=sin 1C C -=,1cos()62C π+=. C 为ABC ∆的内角,0C π∴<<,∴7666C πππ<+<.从而63C ππ+=,6C π∴=.(2)23a =2c =,∴由余弦定理得2222cos c a b ab C =+-, 代入数据化简可得2680b b -+=,解得2b =或4b =.【点评】本题考查解三角形,设计正余弦定理得应用即三角函数公式,属中档题.20.ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,2sin a B =.(1)若ABC ∆,2c =,求a 的值; (2)若21()()2b a b ac -+=,求tan C 的值.【考点】正弦定理;余弦定理【分析】由2sin a B =可得60A =︒或120︒,(1)由面积可求b ,再由余弦定理可求得a ;(2)由21()()2b a b a c -+=,可得32b c =,进而可求tan C 的值.【解答】解:2sin a B ,∴2sin sin sin A B B A ⇒,60A =︒或120︒,(1)12sin 2ABC S b A ∆=⨯,3b ⇒=,22223223cos60a =+-⨯⨯︒,a ⇒=, (2)21()()2b a b a c -+=,22222132cos 2cos 22a b c b c bc A b A c ⇒=-=+-⇒=,3cos 04c A b ⇒=>,60A ∴=︒,∴32b c =,3sin sin(120)sin 2B C C =︒-=,sin C C ⇒=,tan C =【点评】本题考查解三角形,以及正余弦定理的应用和三角恒等变换,属中档题. 21.某同学用“五点法”作函数()sin()(0f x A x A ωϕ=+>,0ω>,||)2πϕ<在某一个周期内的图象时,列表并填入了部分数据,如表:(Ⅰ)根据上表数据,直接写出函数()f x 的解析式; (Ⅱ)求()f x 在区间2[3π-,0]上的最大值和最小值. 【考点】由sin()y A x ωϕ=+的部分图象确定其解析式;五点法作函数sin()y A x ωϕ=+的图象【分析】(Ⅰ)直接利用五点法的应用求出函数的关系式;(Ⅱ)利用(Ⅰ)的结论,进一步利用函数的定义域求出函数的值域,进一步求出最大值和最小值.【解答】解:(Ⅰ)根据五点法的表格,所以()2sin(2)3f x x π=+.(Ⅱ)由于203x π-,所以233x πππ-+,当512x π=-时,函数()f x 的最小值为2-;当0x =【点评】本题考查的知识要点:五点法,正弦型函数的性质的应用,主要考查学生的运算能力和数学思维能力,属于基础题.22.已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><,且()f x 图像的相邻两条对称轴之间的距离为2π,再从条件①、条件②、条件③中选择两个作为一组已知条件. (Ⅰ)确定()f x 的解析式;(Ⅱ)若()()2cos(2)6g x f x x π=++,求函数()g x 的单调减区间.条件①:()f x 的最小值为2-; 条件②:()f x 图像的一个对称中心为5(,0)12π; 条件③:()f x 的图像经过点5(,1)6π-. 【考点】由sin()y A x ωϕ=+的部分图象确定其解析式【分析】(Ⅰ)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A ,根据函数()f x 的图象过点5(6π,1)-,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5(6π,1)-,可求A 的值,即可得解函数解析式.(Ⅱ)先求()g x 的最简式,再根据正弦型函数的减区间的求法求解. 【解答】解:(Ⅰ)由于函数()f x 图像上两相邻对称轴之间的距离为2π, 所以函数()f x 的最小正周期22T ππ=⨯=,所以22Tπω==, 此时()sin(2)f x A x ϕ=+; 选条件①②,因为()f x 的最小值为A -, 所以2A =,因为函数()f x 的一个对称中心为5(,0)12π, 所以52()12k k Z πϕπ⨯+=∈, 解得5?,()6k k Z πϕπ=∈, 因为||2πϕ<,所以6πϕ=,6选条件①③,因为()f x 的最小值为A -, 所以2A =,因为函数()f x 的图像过5(,?1)6π, 则5()?16f π=, 即52sin()?13πϕ+=,51sin()?32πϕ+=, 因为||2πϕ<,所以7513636πππϕ<+<, 所以511,366πππϕϕ+==, 所以()2sin(2)6f x x π=+;选择条件②③,因为函数()f x 的一个对称中心为5(,0)12π, 所以52()12k k Z πϕπ⨯+=∈, 解得5?,()6k k Z πϕπ=∈, 因为||2πϕ<,所以6πϕ=,此时()sin(2)6f x A x π=+,因为函数()f x 的图像过5(,?1)6π, 则5()?16f π=, 即5sin()?13A πϕ+=, 所以11sin16A π=-, 所以2A =,6综上,不论选哪两个条件,()2sin(2)6f x x π=+;(Ⅱ)由(Ⅰ)知,()2sin(2)6f x x π=+,所以5()()2cos(2)2sin(2)2cos(2))66612g x f x x x x x ππππ=++=+++=+,由532222122k x k πππππ+++,k Z ∈, 得132424k xk ππππ++,k Z ∈, 所以()g x 的单调递减区间为[24k ππ+,13]24k ππ+,k Z ∈. 【点评】本题考查了三角函数的图像与性质,属于基础题.。

2022年全国高考数学真题及模拟题汇编:导数(附答案解析)

2022年全国高考数学真题及模拟题汇编:导数(附答案解析)

2022年全国高考数学真题及模拟题汇编:导数一.选择题(共5小题) 1.曲线()lnxf x x=在点(1,f (1))处的切线与两坐标轴围成的三角形的面积为( ) A .14B .12C .1D .22.函数2()lnxf x x=的单调减区间是( ) A .2[e ,)+∞B .[,)e +∞C .(0,2]eD .(0,]e3.函数()2f x xlnx =-在1x =处的切线方程为( ) A .20x y +=B .240x y --=C .30x y --=D .10x y ++=4.偶函数()f x '为()f x 的导函数,()f x '的图象如图所示,则函数()f x 的图象可能为()A .B .C .D .5.已知定义在R 上的可导函数()f x ,对x R ∀∈,都有2()()x f x e f x -=,当0x >时,()()0f x f x '+<,若211(21)(1)a a e f a e f a -+-+,则实数a 的取值范围是( )A .[0,2]B .(-∞,1][2-,)+∞C .(-∞,0][2,)+∞D .[1-,2]二.多选题(共2小题)6.已知函数()f x 的导函数为()f x ',若()()2()f x xf x f x x <'<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .f π(1)()f π< B .f π(1)()f π> C .(2)1(1)42f f <+ D .(2)1(1)42f f +< 7.对于函数3211()32f x x x cx d =+++,c ,d R ∈,下列说法正确的是( )A .存在c ,d 使得函数()f x 的图像关于原点对称B .()f x 是单调函数的充要条件是14cC .若1x ,2x 为函数()f x 的两个极值点,则441218x x +>D .若2c d ==-,则过点(3,0)P 作曲线()y f x =的切线有且仅有2条 三.填空题(共6小题)8.已知2()(4)(0f x lnx ax b x a =++->,0)b >在1x =处取得极值,则21a b+的最小值为 .9.函数()f x xlnx x =-在1[,2]2上的最大值为 .10.函数()cos 1x f x e x =⋅+在0x =的切线方程为 . 11.已知函数()f x f +'(1)22x e ex x =+,则()f x '= . 12.直线3y kx =-与曲线4y x x =+相切,则k = .13.若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是 . 四.解答题(共10小题)14.已知函数()(1)f x x lnx ax =--,a R ∈.(1)设函数()()(()g x f x f x =''为()f x 的导函数),求()g x 的零点个数; (2)若()f x 的最大值是0,求实数a 的值.15.已知函数32()32f x x ax bx =-+在点1x =处有极小值1-. (1)求a 、b 的值;(2)求()f x 在[0,2]上的值域. 16.已知函数2()x f x xe x ax =--.(1)当12a =时,求()f x 的单调区间; (2)当0x 时,()0f x ,求实数a 的取值范围. 17.已知函数32()3f x x ax a =-+,0a >.(1)求证:()y f x =在(1,f (1))处和(1-,(1))f -处的切线不平行; (2)讨论()f x 的零点个数.18.已知函数2()((0,1))f x x xlna a =+∈,(0,1)x ∈.(1)当a e =时,求()()x g x e f x =在(0,(0))g 处的切线方程. (2)讨论函数()f x 的单调性;(3)若()x f x ae lnx >对(0,1)x ∀∈恒成立,求实数a 的取值范围. 19.已知函数212()log (1)f x ax x =-+.(1)若2a =-,求函数()f x 的单调区间; (2)若函数()f x 的定义域为R ,求实数a 范围; (3)若函数()f x 的值域为R ,求实数a 范围;(4)若函数()f x 在区间(1,1)-上是增函数,求实数a 的取值范围. 20.已知函数2()()f x xlnx ax x a R =-+∈. (1)当0a =时,求()f x 的单调区间;(2)若()f x 有两个零点1x ,2x ,且122x x >,证明:1228x x e>. 21.已知函数21()2()2f x x ax lnx a R =-+∈. (1)当53a =时,求函数()f x 的单调区间;(2)设函数21()()22g x f x x =-+,若()g x 有两个不同的零点1x ,2x ,求证:122x x e +>.22.已知函数2()(1)(1)f x x lnx x m x =--+-,m R ∈. (1)讨论()f x 极值点的个数.(2)若()f x 有两个极值点1x ,2x ,且12x x <,证明:12()()24f x f x m +>-. 23.设函数()()x f x x ae a R =-∈. (Ⅰ)求函数()f x 的极值:(Ⅱ)若()+∞时恒成立,求a的取值范围.f x ax在[0x∈,)2022年全国高考数学真题及模拟题汇编:导数参考答案与试题解析一.选择题(共5小题) 1.曲线()lnxf x x=在点(1,f (1))处的切线与两坐标轴围成的三角形的面积为( ) A .14B .12C .1D .2【考点】利用导数研究曲线上某点切线方程【分析】先利用导数求出切线方程,然后求出切线的横、纵截距,利用面积公式即可求出面积.【解答】解:由题意知f (1)0=,21()lnxf x x -'=, 故f '(1)1=,所以切线为1y x =-, 令0x =得1y =-;令0y =得1x =,故切线与两坐标轴围成的三角形的面积11|1|122S =⨯-⨯=.故选:B .【点评】本题考查导数的几何意义和三角形面积的计算,属于基础题. 2.函数2()lnxf x x =的单调减区间是( ) A .2[e ,)+∞B.)+∞C .(0,2]eD.【考点】利用导数研究函数的单调性 【分析】求导得312()(0)lnxf x x x -'=>,当x ∈,)+∞时,()0f x ',()f x 单调递减,从而可得答案. 【解答】解:2()(0)lnxf x x x=>, 2431212()(0)x xlnxlnx x f x x x x ⋅--∴'==>,当x ∈,)+∞时,()0f x ',()f x 单调递减,∴函数2()lnxf x x=的单调减区间是)+∞, 故选:B .【点评】本题考查了利用导数研究函数的单调性,熟练掌握导函数的符号与函数单调性的关系是关键,考查运算能力,属于中档题.3.函数()2f x xlnx =-在1x =处的切线方程为( ) A .20x y +=B .240x y --=C .30x y --=D .10x y ++=【考点】利用导数研究曲线上某点切线方程【分析】求出原函数的导函数,得到函数在1x =处的导数值,再求出f (1)的值,利用直线方程的点斜式得答案.【解答】解:由()2f x xlnx =-,得()1f x lnx '=-, f ∴'(1)11lnx =-=-,又f (1)2=-,∴函数()2f x xlnx =-在1x =处的切线方程为21(1)y x +=-⨯-,即10x y ++=. 故选:D .【点评】本题考查利用导数研究过曲线上某点处的切线方程,关键是熟记基本初等函数的导函数,是基础题.4.偶函数()f x '为()f x 的导函数,()f x '的图象如图所示,则函数()f x 的图象可能为()A .B .C .D .【考点】导数及其几何意义【分析】利用导函数的正负确定原函数的单调性,即可判断选项A ,D ,由原函数为三次函数,即可判断选选项B ,C .【解答】解:由题意可知,()f x '为偶函数,设()f x '的图象与x 轴的两个交点的横坐标分别为1x -,1x , 由图象可得,当1x x <-时,()0f x '>,则()f x 单调递增, 当11x x x -<<时,()0f x '<,则()f x 单调递减, 当1x x >时,()0f x '>,则()f x 单调递增, 故选项A 错误,选项D 错误;由()f x '的图象可知,()f x '在0x =左右的函数值是变化的,不同的,而选项C 中,()f x 的图象在0x =左右是一条直线,其切线的斜率为定值,即导数()f x '为定值,故选项C 错误,选项B 正确. 故选:B .【点评】本题考查了导函数的图象的理解与应用,导函数与原函数之间关系的应用,解题的关键是掌握导数的正负确定原函数的单调性,考查了逻辑推理能力与识图能力,属于中档题. 5.已知定义在R 上的可导函数()f x ,对x R ∀∈,都有2()()x f x e f x -=,当0x >时,()()0f x f x '+<,若211(21)(1)a a e f a e f a -+-+,则实数a 的取值范围是( )A .[0,2]B .(-∞,1][2-,)+∞C .(-∞,0][2,)+∞D .[1-,2]【考点】利用导数研究函数的单调性【分析】令()()x g x e f x =,判断()g x 的单调性和奇偶性,根据211(21)(1)a a e f a e f a -+-+,得到(21)(1)g a g a -+,再求出a 的取值范围.【解答】解:令()()x g x e f x =,则当0x >时,()[()()]0x g x e f x f x ''=+<, 所以()()x g x e f x =在区间(0,)+∞单调递减, 又2()()(())()()x x x x g x e f x e e f x e f x g x ---=-===, 所以()g x 为偶函数,且在区间(,0)-∞单调递增,又211(21)(1)a a e f a e f a -+-+,即(21)(1)g a g a -+, 所以|21||1|a a -+,即22(21)(1)a a -+,解得0a 或2a ,所以a 的取值范围为(-∞,0][2,)+∞. 故选:C .【点评】本题考查了利用导数研究函数的单调性和函数的奇偶性,考查了转化思想,属中档题.二.多选题(共2小题)6.已知函数()f x 的导函数为()f x ',若()()2()f x xf x f x x <'<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .f π(1)()f π< B .f π(1)()f π> C .(2)1(1)42f f <+ D .(2)1(1)42f f +< 【考点】利用导数研究函数的最值 【分析】设2()()f x x g x x -=,()()f x h x x=,(0,)x ∈+∞,求出函数的导数,根据函数的单调性判断即可. 【解答】解:设2()()f x x g x x -=,()()f x h x x=,(0,)x ∈+∞, 则243[()1]2[()]()2()()f x x x f x x xf x f x x g x x x '---'-+'==,2()()()xf x f x h x x '-'=, 因为()()2()f x xf x f x x '<<-对(0,)x ∈+∞恒成立, 所以()0g x '<,()0h x '>,所以()g x 在(0,)+∞上单调递减,()h x 在(0,)+∞上单调递增, 则g (1)g >(2),h (1)()h π<, 即22(1)1(2)212f f -->,(1)()1f f ππ<, 即(2)142f f +<(1),f π(1)()f π<, 故选:AD .【点评】本题考查导数与不等式的综合应用,考查构造函数的方法的灵活应用与推理论证能力.7.对于函数3211()32f x x x cx d =+++,c ,d R ∈,下列说法正确的是( )A .存在c ,d 使得函数()f x 的图像关于原点对称B .()f x 是单调函数的充要条件是14cC .若1x ,2x 为函数()f x 的两个极值点,则441218x x +>D .若2c d ==-,则过点(3,0)P 作曲线()y f x =的切线有且仅有2条【考点】利用导数研究曲线上某点切线方程;命题的真假判断与应用;利用导数研究函数的极值【分析】利用奇函数的定义即可判断选项A ,求出()f x ',利用导数的正负与函数单调性的关系,求解即可判断选项B ,利用极值的定义以及指数的性质、韦达定理求解,即可判断选项C ,求出函数的极值点,作出函数的大致图,即可判断选项D . 【解答】解:若存在c ,d 使得函数()f x 的图象关于原点对称, 则函数()f x 为奇函数,因为函数3211()32f x x x cx d =+++,c ,d R ∈,则3211()32f x x x cx d -=-+-+,因为2()()2f x f x x d +-=+对于任意的x ,不满足()()0f x f x -+=, 所以函数()f x 不是奇函数, 故选项A 错误;因为函数3211()32f x x x cx d =+++,c ,d R ∈,则2()f x x x c '=++,要使得()f x 是单调函数, 必满足△140c =-,解得14c , 故选项B 正确;若函数有两个极值点,必满足△0>,即14c <, 此时12121x x x x c +=-⎧⎨=⎩,所以222121212()212x x x x x x c +=+-=-,则4422222222121212()2(12)22412(1)1x x x x x x c c c c c +=+-=--=-+=--,因为14c <, 所以22112(1)12(1)148c -->--=,所以441218x x +>, 故选项C 正确;若2c d ==-,则3211()2232f x x x x =+--,所以2()2f x x x '=+-,令()0f x '=,解得2x =-或1x =,当2x <-时,()0f x '>,则()f x 单调递增, 当21x -<<时,()0f x '<,则()f x 单调递减, 当1x >时,()0f x '>,则()f x 单调递增,所以当2x =-时,()f x 取得极大值,当1x =时,()f x 取得极小值, 作出函数的大致图象如图所示,其中两条虚线代表两条相切的切线, 故选项D 正确. 故选:BCD .【点评】本题以命题的真假判断为载体,考查了导数的综合应用,主要考查了利用导数研究函数的单调性、极值的理解与应用,利用导数研究曲线的切线问题,函数图象的理解与应用,奇函数定义的理解与应用,考查了逻辑推理能力与化简运算能力,属于中档题. 三.填空题(共6小题)8.已知2()(4)(0f x lnx ax b x a =++->,0)b >在1x =处取得极值,则21a b+的最小值为 3 .【考点】利用导数研究函数的极值【分析】根据在1x =处取得极值,求出23a b +=,由基本不等式“1“的应用代入求最小值. 【解答】解:1()24f x ax b x'=++-,因为()f x 在1x =处取得极值,所以f '(1)0=, 即1240a b ++-=,所以23a b +=. 所以211211221()(2)(41)(523333b a a b a b a b a b +=++=++++=, 当且仅当1a b ==时取等号.把1a =,1b =代入()f x 检验得,1x =是()f x 的极值点, 故21a b+的最小值为3. 故答案为:3.【点评】本题主要考查利用导数研究极值的方法,基本不等式求最值的方法等知识,属于中等题.9.函数()f x xlnx x =-在1[,2]2上的最大值为 222ln - .【考点】利用导数研究函数的最值【分析】求导分析,可求得(){max f x max f =(2),1()}2f ,作差f (2)1()2f -,可得答案.【解答】解:()f x xlnx x =-,()11f x lnx lnx ∴'=+-=,当1[2x ∈,1)时,()0f x '<,()f x 单调递减,当(1x ∈,2]时,()g x 单调递增,∴当1x =时,()f x 取得最小值,(){max f x max f =(2),1()}2f ,又f (2)111153()222()20222222f ln ln ln ln ln -=---=-=>=>,所以()222max f x ln =-, 故答案为:222ln -.【点评】本题考查利用导数研究函数的最值,考查运算求解能力,属于中档题.10.函数()cos 1x f x e x =⋅+在0x =的切线方程为 20x y -+= . 【考点】利用导数研究曲线上某点切线方程【分析】求出原函数的导函数,得到函数在0x =处的导数值,再求出(0)f ,利用直线方程的点斜式得答案.【解答】解:由()cos 1x f x e x =⋅+,得()cos sin x x f x e x e x '=⋅-⋅, 则(0)1f '=,又(0)2f =,∴函数()cos 1x f x e x =⋅+在0x =的切线方程为21(0)y x -=⨯-,即20x y -+=. 故答案为:20x y -+=.【点评】本题考查利用导数研究过曲线上某点处的切线方程,关键是熟记基本初等函数的导函数,是基础题.11.已知函数()f x f +'(1)22x e ex x =+,则()f x '= 222x ex e -+ . 【考点】导数的运算【分析】根据导数的公式即可得到结论. 【解答】解:()f x f +'(1)22x e ex x =+,()f x f ∴'+'(1)22x e ex =+, f ∴'(1)f +'(1)22e e =+, f ∴'(1)2=,()222x f x ex e ∴'=-+, 故答案为:222x ex e -+.【点评】本题主要考查导数的基本运算,比较基础.12.直线3y kx =-与曲线4y x x =+相切,则k = 3-或5 . 【考点】利用导数研究曲线上某点切线方程【分析】求出原函数的导函数,设出切点坐标,由题意可得切点横坐标与k 的方程组,求解得答案.【解答】解:由4y x x =+,得314y x '=+,设切点为4000(,)x x x +,则30400143k x kx x x ⎧=+⎪⎨-=+⎪⎩,解得013x k =-⎧⎨=-⎩或015x k =⎧⎨=⎩. 3k ∴=-或5.故答案为:3-或5.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查运算求解能力,是中档题. 13.若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是 (2-,1]2- .【考点】利用导数研究函数的最值【分析】对()f x 求导得2()33f x x '=-,求得其最大值点,再根据()f x 在区间(2,23)a a -+上有最大值,求出a 的取值范围.【解答】解:因为函数3()31f x x x =--,所以2()33f x x '=-, 当1x <-时,()0f x '>,()f x 单调递增, 当11x -<<时,()0f x '<,()f x 单调递减, 当1x >时,()0f x '>,()f x 单调递增, 所以当1x =-时,()f x 取得最大值,又(1)f f -=(2)2=,且()f x 在区间(2,23)a a -+上有最大值, 所以21232a a -<-<+,解得122a -<-,所以实数a 的取值范围是(2-,1]2-.故答案为:(2-,1]2-.【点评】本题考查导数的综合应用,考查了转化思想,属于中档题. 四.解答题(共10小题)14.已知函数()(1)f x x lnx ax =--,a R ∈.(1)设函数()()(()g x f x f x =''为()f x 的导函数),求()g x 的零点个数; (2)若()f x 的最大值是0,求实数a 的值. 【考点】利用导数研究函数的最值【分析】(1)由题意得()2g x lnx ax =-,令()0g x =,得2lnx a x =,设(),0lnxh x x x=>,求导可知函数()h x 的单调递增区间是(0,)e ,单调递减区间是(,)e +∞,作出函数()h x 的大致图象,数形结合即可求出()g x 的零点个数. (2)由(1)可知当12a e 和0a 时,函数()f x 无最大值,当102a e<<时,存在1(1,)x e ∈,2(,)x e ∈+∞,使得12()()2h x h x a==,由单调性可知222222222()()(1)(1)02max lnx f x f x x lnx ax x lnx x x ==--=-⋅-=,从而求出a 的值. 【解答】解:(1)由题意得()()2g x f x lnx ax ='=-, 令()0g x =,得2lnxa x=, 设(),0lnx h x x x =>,则21()lnxh x x-'=, 当x e >时,()0h x '<;当0x e <<时,()0h x '>,∴函数()h x 的单调递增区间是(0,)e ,单调递减区间是(,)e +∞, ∴1()()max h x h e e==, 作出函数()h x 的大致图象如图所示, 数形结合可知, 当20a 或12a e =,即0a 或12a e=时,函数()g x 有1个零点; 当12a e >,即12a e>时,函数()g x 没有零点; 当102a e <<,即102a e<<时,函数()g x 有2个零点.(2)由1可知()(()2)f x x h x a '=-, ①当12ae时,()0f x '恒成立,()f x 在(0,)+∞上单调递减,无最大值, ②当0a 时,存在唯一的0(0x ∈,1],使得0()2h x a =, 当0x x >时,()0f x '>,当00x x <<时,()0f x '<,()f x ∴在0(0,)x 上单调递减,0(x ,)+∞上单调递增,无最大值,③当102a e<<时,存在1(1,)x e ∈,2(,)x e ∈+∞,使得12()()2h x h x a ==, 易得()f x 在1(0,)x ,2(x ,)+∞上单调递减,在1(x ,2)x 上单调递增,又当(0,1)x ∈时,()(1)0f x x lnx ax =--<,∴222222222()()(1)(1)02max lnx f x f x x lnx ax x lnx x x ==--=-⋅-=, 解得:22x e =,∴22212lnx a x e ==.【点评】本题主要考查了利用导数研究函数的单调性和最值,考查了方程的根与函数零点的关系,同时考查了数形结合的数学思想,属于中档题. 15.已知函数32()32f x x ax bx =-+在点1x =处有极小值1-. (1)求a 、b 的值;(2)求()f x 在[0,2]上的值域.【考点】利用导数研究函数的最值;利用导数研究函数的极值【分析】(1)依题意,得f (1)1=-,f '(1)0=,联立方程组,即可解得a 、b 的值; (2)可求得()(1)(31)f x x x '=-+,[0x ∈,2],分别解不等式()0f x '>和()0f x '<,可得函数()f x 的单调增区间与单调递减区间,从而可求得()f x 在[0,2]上的值域. 【解答】解:(1)函数32()32f x x ax bx =-+在点1x =处有极小值1-,2()362f x x ax b ∴'=-+,f '(1)3620a b =-+=,① 且f (1)1321a b =-+=-,② 联立①②得:13a =,12b =-;(2)由(1)得32()f x x x x =--,2()321(1)(31)f x x x x x ∴'=--=-+,[0x ∈,2], 由2()3210f x x x '=-->得12x <; 由2()3210f x x x '=--<得01x <,∴函数()f x 在区间[0,1)上单调递减,在区间(1,2]上单调递增;又(0)0f =,f (1)1=-,f (2)8422=--=, ()f x ∴在[0,2]上的值域为[1-,2].【点评】本题考查利用导数求函数的极值与最值,考查导数的几何意义,考查方程思想与转化化归思想的应用,考查运算求解能力,属于中档题. 16.已知函数2()x f x xe x ax =--. (1)当12a =时,求()f x 的单调区间; (2)当0x 时,()0f x ,求实数a 的取值范围.【考点】利用导数研究函数的最值;利用导数研究函数的单调性【分析】(1)对()f x 求导,利用导数与单调性的关系即可求解()f x 的单调区间; (2)()(1)x f x x e ax =--,令()1x g x e ax =--,求出()x g x e a '=-,对a 分类讨论,即可求解满足题意的a 的取值范围. 【解答】解:(1)当12a =时,21()(1)2x f x x e x =--,则()1(1)(1)x x x f x e xe x e x '=-+-=-+. 令()0f x '=,则1x =-或0,当(x ∈-∞,1)(0-⋃,)+∞时,()0f x '>;当(1,0)x ∈-时,()0f x '<; ()f x ∴的单调递增区间为(,1)-∞-,(0,)+∞,单调递减区间为(1,0)-.(2)由题设,()(1)x f x x e ax =--,令()1x g x e ax =--,则()x g x e a '=-. 若1a ,当(0,)x ∈+∞时,()0g x '>,()g x 为增函数,而(0)0g =,∴当0x 时,()0g x ,即()0f x .若1a >,当(0,)x lna ∈时,()0g x '<,()g x 为减函数,而(0)0g =,∴当(0,)x lna ∈时,()0g x <,即()0f x <,不符合题意.综上,实数a 的取值范围为(-∞,1].【点评】本题主要考查利用导数研究函数的单调性与最值,考查分类讨论思想与运算求解能力,属于中档题.17.已知函数32()3f x x ax a =-+,0a >.(1)求证:()y f x =在(1,f (1))处和(1-,(1))f -处的切线不平行; (2)讨论()f x 的零点个数.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程【分析】(1)依题意,若f '(1)(1)f ='-,则0a =,与0a >矛盾,从而证得结论成立; (2)由①知,()f x 在(,0)-∞,(2,)a +∞上单调递增,在(0,2)a 上单调递减,分102a <<,12a =时,12a >三类讨论,可得答案. 【解答】解:(1)证明:2()363(2)f x x ax x x a '=-=-,0a >,① 若()y f x =在(1,f (1))处和(1-,(1))f -处的切线平行, 则f '(1)(1)f ='-,即3636a a -=+, 解得0a =,与0a >矛盾,所以()y f x =在(1,f (1))处和(1-,(1))f -处的切线不平行; (2)(0)0f a =>,(1)120f a -=--<,0(1,0)x ∴∃∈-,使得0()0f x =;由①知,()f x 在(,0)-∞,(2,)a +∞上单调递增,在(0,2)a 上单调递减, ()f x ∴在(,0)-∞上有唯一零点0x ; 又311(2)44()()22f a a a a a a =-+=-+-,1∴︒当102a <<时,(2)0f a >,由单调性知()f x 有且仅有一个零点0x ; 2︒当12a =时,(2)0f a =,由单调性知()f x 有且仅有两个零点0x 和1; 3︒当12a >时,(2)0f a <,(3)0f a a =>, 1(0,2)x a ∴∃∈,使得1()0f x =;2(2,3)x a a ∈,2()0f x =,此时共有3个零点0x 、1x ,2x ; 综上,当102a <<时,()f x 有且仅有一个零点; 当12a =时,()f x 有且仅有两个零点; 当12a >时,()f x 有且仅有3个零点. 【点评】本题考查利用导数研究函数的极值,考查分类讨论思想、转化与化归思想的综合运用,考查逻辑推理能力与运算求解能力,属于难题. 18.已知函数2()((0,1))f x x xlna a =+∈,(0,1)x ∈.(1)当a e =时,求()()x g x e f x =在(0,(0))g 处的切线方程. (2)讨论函数()f x 的单调性;(3)若()x f x ae lnx >对(0,1)x ∀∈恒成立,求实数a 的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的最值【分析】(1)根据题意可得,当a e =时,2()()x g x e x x =+,求导得()g x ',由导数的几何意义可得()01k g ='=切,又(0)0g =,即可得出答案.(2)求导得()2f x lna x '=+,(0,1)x ∈,分两种情况:20a e -<,21e a -<<,讨论()f x '的正负,进而可得()f x 的单调区间.(3)由于2xae lnx x xlna <+,则()x x ln ae lnx ae x>对任意(0,1)x ∈恒成立,设()(0)lnxH x x e x=<<,求导分析()H x 的单调性,进而可得x x a e >对任意(0,1)x ∈恒成立,设()xxG x e =,(0,1)x ∈,只需()max a G x >,即可得出答案. 【解答】解:(1)当a e =时,22()()[]()x x x g x e f x e x xlne e x x ==+=+,22()()(21)(31)x x x g x e x x e x e x x '=+++=++, 所以()01k g ='=切, 又(0)0g =,所以()g x 在(0,(0))g 处的切线方程为01(0)y x -=-,即y x =. (2)因为2()f x x xlna =+,(0,1)x ∈, 所以()2f x lna x '=+,(0,1)x ∈, 若20a e -<,即2lna -,当(0,1)x ∈时,()0f x '<,()f x 单调递减, 若21e a -<<,即20lna -<<,012lna<-<,当02lnax <<-时,()0f x '<,函数()f x 单调递减, 当12lnax -<<时,()0f x '>,函数()f x 单调递增, 综上所述,当20a e -<时,函数()f x 在(0,1)x ∈上单调递减, 当21e a -<<时,函数()f x 在(0,)2lna x ∈-上单调递减,在(2lna-,1)上单调递增. (3)因为2x ae lnx x xlnx <+,所以()x x x lnx x lna ln ae x ae ae +<=, 即()x x ln ae lnx ae x>对任意(0,1)x ∈恒成立, 设()(0)lnxH x x e x=<<,则21()lnxH x x -'=, 当(0,)x e ∈时,()0H x '>,()H x 在(0,)e 上单调递增, 又(0,1)x ∈,(0,1)a ∈,所以(0,)x ae e ∈,由()()x H ae H x >得x ae x >对任意(0,1)x ∈恒成立,即x xa e>对任意(0,1)x ∈恒成立, 设()xxG x e =,(0,1)x ∈, 则1()0xxG x e -'=>, 所以()G x 在(0,1)上单调递增, 所以()G x G <(1)1e =,所以a 的取值范围为1[e,1).【点评】本题考查导数的综合应用,解题中需要理清思路,属于中档题. 19.已知函数212()log (1)f x ax x =-+.(1)若2a =-,求函数()f x 的单调区间; (2)若函数()f x 的定义域为R ,求实数a 范围; (3)若函数()f x 的值域为R ,求实数a 范围;(4)若函数()f x 在区间(1,1)-上是增函数,求实数a 的取值范围. 【考点】函数的定义域及其求法;利用导数研究函数的单调性【分析】(1)2a =时,212()log (21)f x x x =--+,利用符合函数的单调性可求函数的单调区间;(2)因为()f x 的定义域为R ,所以210ax x -+>对x R ∀∈恒成立,转化为含参数的一元二次不等式恒成立问题求解;(3)由函数()f x 的值域为R ,则21t ax x =-+可取所有大于0的实数,分析可知0a =和0a >时均有符合条件的a ,解不等式可得a 的取值范围;(4)由符合函数的单调性可转化为21t ax x =-+在(1,1)-上为减函数,且0t >,分三种情况求解即可.【解答】解:(1)2a =时,212()log (21)f x x x =--+,由2210x x --+>,解得1(1,)2x ∈-,故函数定义域为1(1,)2x ∈-,令221t x x =--+,则12log y t =,因为()t x 在1(1,)4--单调递增,在1(4-,1)2单调递减,而12log y t =在0t >时单调递减,由复合函数的单调性可知,()f x 在1(1,)4--单调递减,在11(,)42-单调递增,故()f x 的单调递增区间为11(,)42-,单调递减区间为1(1,)4--;(2)因为()f x 的定义域为R , 所以210ax x -+>对x R ∀∈恒成立,当0a =时,10x -+>,所以1x <-,不合题意;当0a <时,21y ax x =-+开口向下,必有0y <的部分,不合题意; 当0a >时,由△0<得,140a -<,解得14a >, 综上,a 的取值范围是1(4,)+∞;(3)若函数()f x 的值域为R , 21t ax x =-+可取所有大于0的实数,当0a =时,1t x =-+,符合题意;当00a >⎧⎨⎩时,即0140a a >⎧⎨-⎩,104a <时符合题意,综上,a 的取值范围是[0,1]4;(4)令221t x x =--+,则12log y t =,因为12log y t =在0t >时单调递减,由复合函数的单调性可知,要满足若函数()f x 在区间(1,1)-上是增函数, 则21t ax x =-+在(1,1)-上为减函数,且0t >, ①当0a >时,需112(1)110a t a -⎧-⎪⎨⎪=-+⎩,解得102a <;②当0a =时,1t x =-+,只需t (1)110=-+即可,即00,成立,故0a =符合题意; ③当0a <时,需112(1)110a t a -⎧--⎪⎨⎪=-+⎩即1120a a ⎧-⎪⎨⎪⎩,结合0a <可知此情况无解;综上,实数a 的取值范围是[0,1]2.【点评】本题考查了符合函数的单调性,以及利用符合函数单调性求解参数范围的问题,属于中档题.20.已知函数2()()f x xlnx ax x a R =-+∈. (1)当0a =时,求()f x 的单调区间;(2)若()f x 有两个零点1x ,2x ,且122x x >,证明:1228x x e >. 【考点】利用导数研究函数的最值;利用导数研究函数的单调性【分析】(1)当0a =时,求得()2f x lnx '=+,即可求得()f x 的单调区间; (2)依题意,得12112211lnx lnx a x x x x =+=+,结合式子的特点构造函数,求导,利用函数的导数与函数单调性的关系即可证明结论成立.【解答】解:(1)当0a =时,()(0)f x xlnx x x =+>, ()2f x lnx '∴=+,令()0f x '>,得21x e >,令()0f x '<,得210x e<<, ()f x ∴的单调增区间是21(,)e +∞,单调减区间是21(0,)e ; (2)证明:若()f x 有两个零点1x ,2x ,则22111122220,0x lnx ax x x lnx ax x -+=-+=, ∴12112211lnx lnx a x x x x =+=+. 由122x x >,令211()2x tx t =<,则111111()11lnx ln tx x x tx tx +=+, ∴111lnt lnx t =--,∴211()11tlntlnx ln tx lnt lnx t ==+=--, ∴1212(1)()112111lnt tlnt t lntln x x lnx lnx t t t +=+=-+-=----. 令(1)()2(2)1t lnth t t t +=->-,则212()(1)lnt t t h t t -+-'=-,令1()2(2)t lnt t t tϕ=-+->,则22221(1)()10t t t t t ϕ-'=-++=>,()t ϕ∴在(2,)+∞上单调递增,∴3()(2)2202t ln ϕϕ>=->, ∴2()()0(1)t h t t ϕ'=>-,则()h t 在(2,)+∞上单调递增,∴28()(2)322h t h ln ln e >=-=,即1228()ln x x ln e>, ∴1228x x e >. 【点评】本题主要考查了利用导数研究函数的单调性与最值,考查分离参数法与构造函数法的综合运用,考查转化与化归思想及逻辑推理能力、综合运算能力、抽象思维能力,属于难题.21.已知函数21()2()2f x x ax lnx a R =-+∈. (1)当53a =时,求函数()f x 的单调区间;(2)设函数21()()22g x f x x =-+,若()g x 有两个不同的零点1x ,2x ,求证:122x x e +>.【考点】利用导数研究函数的最值;利用导数研究函数的单调性 【分析】(1)由题意,代入53a =,对函数求导,再求单调区间即可,(2)由题意,()g x 有两个零点,可利用分离参数法,将两个根转化为关于t 的函数,再证明结论即可.【解答】解:(1)当53a =时,2110(),023f x x x lnx x =-+>,21103103(31)(3)()333x x x x f x x x x x-+--'∴=+-==⋅由()0f x '>,得()f x 的单调增区间为1(0,),(3,)3+∞;由()0f x '<,得()f x 的单调减区间为1(,3)3.证明:(2)由题意.得()220g x lnx ax =-+=有两个根122,2lnx x x a x+⇔=有两个根1x ,2x . 令221()(0),()lnx lnx m x x m x x x+--'=>=. 由11()0,()0m x x m x x e e''>⇒<<⇒>.()m x ∴在1(0,)e上单调递增,在1(,)e +∞上单调递减.()g x 有两个不同的零点1x ,2.x 不妨设12x x <.∴1210x x e<<< 要证明:122x x e+>,需证:2e>. 需证:1221x x e>.(※) 又1221121221122242lnx lnx lnx lnx lnx lnx a x x x x x x ++-++====-+. ∴22221111122211()(1)()41x x x x x lnln x x x ln x x x x x x +++==--. 今211x t x =>,且(1)()1t lnth t t +--, 得212()(1)t lnt t h t t --'=-. 令1()2r t t lnt t=--,得2221221()10t t r t t t t -+'=+-=>.()r t ∴在(1,)+∞上单调递增,()r t r >(1)0=,即()0h t '>.()h t ∴在(1,)+∞上单调递增,()h t h >(1)2,∴12121221()42()2ln x x ln x x x x e +>⇒>-⇒>, ∴(※)式成立.【点评】本题考查导数的综合应用,考查学生的综合能力,属于难题. 22.已知函数2()(1)(1)f x x lnx x m x =--+-,m R ∈. (1)讨论()f x 极值点的个数.(2)若()f x 有两个极值点1x ,2x ,且12x x <,证明:12()()24f x f x m +>-. 【考点】利用导数研究函数的极值;利用导数研究函数的最值【分析】(1)先求导,根据导数和函数的单调性的关系即可判断函数的极值点;(2)构造函数()()(2)h x f x f x =+-,利用导数和函数单调性和最值的关系,可得要证12()()24f x f x m +>-,即可证明122x x +,再根据导数和极值的关系去证明2121122lnx lnx x x x x ->-+,再利用换元法,再构造导数,利用导数和函数的最值的关系即可证明. 【解答】解:(1)2()(1)(1)f x x lnx x m x =--+-,函数()f x 的定义域为(0,)+∞, 1()2f x lnx x m x∴'=--+, 令1()2g x lnx x m x=--+, 222222112121(21)(1)()2x x x x x x g x x x x x x -++--+-∴'=+-==-=-, 当()0g x '=时,解得1x =,当01x <<时,()0g x '>,函数()g x 得到递增, 当1x >时,()0g x '<,函数()g x 得到递减, ()max g x g ∴=(1)3m =-,①当3m 时,()()0f x g x '=恒成立,∴函数()f x 在(0,)+∞上单调递减, ∴函数()f x 无极值点,②当3m >时,1103m <<,g (1)0>,112()0g ln m m m =-<,1()0g m lnm m lnm m m =--<-<,∴存在11(x m∈,1),2(1,)x ∈+∞,则12()()0g x g x ==,即12()()0f x f x '='=,故()f x 有2个极值点,综上所述当3m 时,无极值点,当3m >时,有2个极值点. (2)证明:22()()(2)(1)(1)(1)(2)(2)(1)(2)h x f x f x x lnx x m x x ln x x m x =+-=--+-+----+--,01x <<,则11()(2)442h x lnx ln x x x x'=----++-, 则11()(2)442x lnx ln x x x xϕ=----++-, 2211111111()4(2)(1)(2)(1)2(2)22x x x x x x x x xϕ∴'=+-++=+--+-----,01x <<,∴11102x x>>>-, ∴112202x x +>+>-,221122222(1)1x x x x x +==>--+--+, ∴111102x x->->-, ()0x ϕ∴'>,()x ϕ∴在(0,1)上单调递增,则()x ϕϕ<(1)0=,即()0h x '<, ()h x ∴在(0,1)上单调递减,则()h x h >(1)24m =-, 101x <<,111()()(2)24h x f x f x m ∴=+->-,要证12()()24f x f x m +>-, 只需证21()(2)f x f x -, 121x ->,21x >,112x x ->,()f x ∴在1(x ,2)x 上是增函数,∴只需要证112x x -,即证122x x +, 由111120lnx x m x --+=,222120lnx x m x --+=, 两式相减可得212121122()0x x lnx lnx x x x x ----+=, 即212112120lnx lnx x x x x -+-=-,12x x +>,∴2121214()x x x x >+, 下面证明2121122lnx lnx x x x x ->-+, 即证2212112(1)1x x x ln x x x ->+,令211x t x =>, 即证2201t lnt t -->+, 令22()01t p t lnt t -=->+,0t >, 则22214(1)()0(1)(1)t p t t t t t -'=-=>++,()p t ∴在(1,)+∞上单调递增, ()p t p ∴>(1)0=,∴2121122lnx lnx x x x x ->-+, 又21221121212124022()lnx lnx x x x x x x x x -=+->+--++,212121212()()2(2)(1)0x x x x x x x x ∴+-+-=+-++>, 122x x ∴+>,问题得以证明.【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,分类讨论思想,是难题.23.设函数()()x f x x ae a R =-∈. (Ⅰ)求函数()f x 的极值:(Ⅱ)若()f x ax 在[0x ∈,)+∞时恒成立,求a 的取值范围. 【考点】利用导数研究函数的极值;利用导数研究函数的最值【分析】(Ⅰ)求出()f x ',分两种情况讨论a 的范围,在定义域内,分别令()0f x '>求得x 的范围,可得函数()f x 增区间,()0f x '<求得x 的范围,可得函数()f x 的减区间;根据单调性即可求得()f x 的极值⋅(Ⅱ)参变分离,将问题转化为用导数求函数的最值问题⋅ 【解答】解:(Ⅰ)由题可知()1x f x ae '=-,①当0a ,()0f x ',()f x 在R 上单调递增,()f x ∴没有极值; ②当0a >,()0f x '=时,1x ln a=.当1(,)x ln a ∈-∞时,()0f x '>,()f x 单调递增;当1(,)x ln a ∈+∞时,()0f x '<,()f x 单调递减;()f x ∴在1x ln a =时取得极大值11ln a-,没有极小值⋅综上所述,当0a 时,()f x 无极值;当0a >时,()f x 有极大值11ln a-,无极小值;(Ⅱ)()f x ax x ax a ⇒+()x x e x a x e ⇒+ [0x ∈,)+∞,∴xxax e +, 令(),0xxg x x x e =+,则原问题()max a g x ⇔,[0x ∈,)+∞,22(1)(1)()()()x x x x x x e x e e x g x x e x e +-+-'==++,101x x ->⇒<, [0x ∴∈,1),()0g x '>,()g x 单调递增;(1,)x ∈+∞,()0g x '<,()g x 单调递减;∴1()(1)1max g x g e ==+,∴11a e⋅+ a ∴的取值范围为1[1e+,)+∞.【点评】本题主要考查利用导数研究函数的极值,利用导数研究不等式恒成立问题等知识,属于中等题.。

2022年普通高等学校招生全国统一考试新高考数学全真模拟测试(一)( 含答案)

2022年普通高等学校招生全国统一考试新高考数学全真模拟测试(一)( 含答案)

2022年普通高等学校招生全国统一考试新高考数学全真模拟测试(一)( 含答案)2022年普通高等学校招生全国统一考试全真模拟测试(一)-数学本试卷共4页,22小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。

如需改动,先划掉原来的答案,然后再写上新答案。

不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A = \{x \in R | 2\pi \leq x < 4\pi\}则 $A$ 中元素个数为()A。

2B。

3C。

4D。

52.设复数 $z$ 满足 $|z-1-2i|=1$,则 $z$ 的实部为()A。

1B。

-1C。

2D。

-23.已知随机变量 $X$ 的概率密度函数为f(x) = \begin{cases}kx^2.& 0 \leq x \leq 2 \\0.& \text{其他}end{cases}则 $P\{X>1\}$ 的值为()A。

$\frac{1}{3}$B。

$\frac{4}{9}$C。

$\frac{7}{9}$D。

$\frac{8}{9}$4.若一圆弧的长等于其所在圆的内接正三角形的边长,那么其圆心角的弧度数是()A。

$\frac{\pi}{3}$B。

$\frac{\pi}{2}$C。

$\frac{2\pi}{3}$D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年全国高考数学真题及模拟题汇编:函数一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >> 4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞5.已知3log 2a =,0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c << 6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >>7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .二.多选题(共3小题) 8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= .12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 .13.已知212x =,21log 3y =,则x y +的值为 . 14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= .15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= . 四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.21.计算下列各式.(1)1206310.064()(2021)3π--+-+;(2)2731329log 5log 42log 5log -++. 22.计算:(100.539()()54--++ (2)22log 62222523lg lg -+--2022年全国高考数学真题及模拟题汇编:函数参考答案与试题解析一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]【考点】函数的定义域及其求法【分析】由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组求解.【解答】解:要使原函数有意义,则030x x >⎧⎨-⎩,解得03x <. ∴函数()3f x lgx x =+-的定义域为(0,3].故选:B .【点评】本题考查函数的定义域及其求法,是基础题.2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .【考点】函数的图象与图象的变换【分析】根据题意分析可得()f x 为偶函数,通过0x =函数的值,排除函数的图象即可.【解答】解:根据题意有||2||2()2()2()x x f x x x f x --=--=-=,所以函数是偶函数,又函数||22x y x =-,当0x =时,1y =,排除C ,故选:A .【点评】本题考查函数的图象分析,注意分析函数的奇偶性,属于基础题.3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【考点】函数单调性的性质与判断【分析】首先求出函数()f x 的单调性,再判断0.2log 3,30.2,0.23的大小关系,从而得出a ,b ,c 的大小关系. 【解答】解:因为函数()3f x x x =-所以30x -,可得3x ,即()f x 的定义域为(-∞,3], 所以()3f x x x =-(-∞,3]单调递增,因为0.20331>=,3000.20.21<<=,0.2log 30<,所以30.20.2log 30.23<<,所以30.20.2(log 3)(0.2)(3)f f f <<,所以c b a <<.故选:A .【点评】本题主要考查函数单调性的性质与判断,考查函数值大小的比较,考查逻辑推理能力,属于基础题.4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞ 【考点】复合函数的单调性【分析】令25t x ax =-+,12log y t =,分析内层函数与外层函数的单调性以及对数真数在所给区间恒为正数,可得出关于a 的不等式组,进而求得实数a 的取值范围.【解答】解:令25t x ax =-+,易知12log y t =在其定义域上单调递减,要使()f x 在(4,)+∞上单调递减,则25t x ax =-+在(4,)+∞单调递增,且250t x ax =-+>,即2424450a a ⎧⎪⎨⎪-+⎩, 所以8214a a ⎧⎪⎨⎪⎩,即214a 因此实数a 的取值范围是(-∞,21]4. 故选:D. 【点评】本题考查复合函数的单调性,考查学生的运算能力,属于中档题.5.已知3log a =0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c <<【考点】对数值大小的比较【分析】直接利用对数的运算性质化简得答案.【解答】解:33log log 0.5a =<=,0.101b e e =>=,0.50.5ln c e ==,a cb ∴<<.故选:A .【点评】本题考查对数值的大小比较,考查对数的运算性质,是基础题.6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >> 【考点】对数值大小的比较【分析】利用对数函数的单调性得到a b >,a c >,再利用对数的运算法则,换底公式,基本不等式得到b c >,求解即可.【解答】解:1232a e =>,33log 5log 3b =<332=, 6443log 8log 81log 22c =<=+=, a b ∴>,a c >,25858583363535lg lg lg lg lg lg lg b c lg lg lg lg lg lg -⋅∴-=->-=⋅ 222222(83)2425555444353535lg lg lg lg lg lg lg lg lg lg lg lg lg +--->=>⋅⋅⋅ 2255035lg lg lg lg -==⋅, b c ∴>,a b c ∴>>,故选:A .【点评】本题考查了对数的运算法则,换底公式,对数函数的单调性,基本不等式的应用,考查了计算能力,属于中档题.7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .【考点】对数函数的图象与性质;指数函数的图象与性质【分析】由指数函数与对数函数的性质依次判断即可. 【解答】解:1()x y a=与log a y x =分别过(0,1),(1,0)点, 又1a >, ∴1()x y a=与log a y x =分别为定义域内的减函数,增函数, 故选:D .【点评】本题考查了指数函数与对数函数的性质应用,属于基础题.二.多选题(共3小题)8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+【考点】函数的值域;函数奇偶性的性质与判断【分析】根据题意,依次分析选项是否正确,综合可得答案.【解答】解:根据题意,依次分析选项:对于A ,3()f x x =是奇函数,且值域为R ,符合题意;对于B ,1()f x x x =+,当0x >时,1()2f x x x=+,当0x <时,()2f x -,即()f x 的值域为(-∞,2][2-,)+∞,不符合题意;对于C ,1()f x x x=-,是奇函数,且在(0,)+∞上单调递增,当0x +→时,()f x →-∞,x →+∞时,()f x →+∞,其值域为R ,符合题意;对于D ,()22x x f x -=+,是奇函数,且()2f x (当且仅当0x =时取“= “),其值域不为R ,不符合题意;故选:AC .【点评】本题考查函数奇偶性的判断以及值域的计算,考查逻辑推理能力与运算求解能力,属于中档题.9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =【考点】函数的值域【分析】利用函数的性质求出值域即可判断.【解答】解:对于:1A x R -∈,120x y -∴=>,故A 正确,对于:0B x ≠,20x ∴>,210y x ∴=>,故B 正确, 对于:10C x +>,(1)(y ln x ∴=+∈-∞,)+∞,故C 错误,对于:D x R ∈,||[0y x ∴=∈,)+∞,故D 错误.故选:AB .【点评】本题主要考查函数值域的求解和判断,结合函数的性质求出函数的值域是解决本题的关键,是基础题.10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =【考点】奇偶性与单调性的综合【分析】由常见函数的奇偶性和单调性可得结论.【解答】解:()f x x =为奇函数,且在(,)-∞+∞上是单调递增,故A 符合题意;()||f x x x =满足()()f x f x -=-,()f x 为奇函数,且在[0,)+∞递增,在(-∞,0]也递增,则()f x 在(,)-∞+∞上是单调递增,故B 符合题意;()22x x f x -=-的定义域为R ,满足()()f x f x -=-,()f x 为奇函数,且2x y =和2x y -=-在R 上递增,则()f x 在R 上递增,故C 符合题意;2()f x x =为偶函数,故D 不符题意.故选:ABC .【点评】本题考查函数的奇偶性和单调性的判断,考查运算能力和推理能力,属于基础题.三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= 5 .【考点】函数的值【分析】令213x -=得2x =,再代入即可.【解答】解:令213x -=得,2x =或2x =-(舍去),故f (3)2(21)f =-22235=-+=,故答案为:5.【点评】本题考查了复合函数函数值的求法,属于基础题.12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 (1,2)-- .【考点】对数函数的图象与性质【分析】令21x +=,解得1x =-,当1x =-时,022y =-=-,即可求解.【解答】解:令21x +=,解得1x =-,当1x =-时,022y =-=-,故函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点(1,2)--.故答案为:(1,2)--.【点评】本题主要考查对数函数的性质,考查定点问题,属于基础题.13.已知212x =,21log 3y =,则x y +的值为 2 . 【考点】对数的运算性质【分析】先把指数式化为对数式,再利用对数的运算性质求解.【解答】解:212x =,2log 12x ∴=,222112log 423x y log log ∴+=+==, 故答案为:2.【点评】本题主要考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= 2 .【考点】幂函数的概念、解析式、定义域、值域;指数函数的单调性与特殊点【分析】求出(2,4)P ,由幂函数()a y f x x ==过(2,4)P ,求出a ,得到()f x 的解析式,再计算3log f (3)即可.【解答】解:函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,则(2,4)P ,∴幂函数()a y f x x ==过(2,4)P ,24a ∴=,解得2a =,2()f x x ∴=,3log f ∴(3)3log 92==.故答案为:2.【点评】本题考查函数值的求法,考查函数的性质等基础知识,考查运算求解能力,是基础题.15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= 12- . 【考点】幂函数的概念、解析式、定义域、值域【分析】设出幂函数的解析式,代入点的坐标,求出函数的解析式,求出(2)f -的值即可.【解答】解:设幂函数的解析式为()f x x α=, 则1()44α=,解得:1α=-, 故1()f x x =,故1(2)2f -=-, 故答案为:12-. 【点评】本题考查了求幂函数的定义,考查函数求值问题,是基础题.四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.【考点】函数奇偶性的性质与判断【分析】(1)根据奇函数的性质进行转化求解即可.(2)将不等式进行转化,利用函数奇偶性和单调性的性质进行转化求解即可.【解答】解:(1)函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+. (0)0f ∴=,当0x >,则0x -<,则2()2()f x x x f x -=--=-,即2()2(0)f x x x x =+<,综上2()2(0)f x x x x =+.(2)由(2)(2)23f m f m m +--.得(2)2(2)2(2)2f m m f m m f m m +--+-=-+-. 设()()g x f x x =+,则不等式等价为(2)(2)g m g m -,作出函数()f x 的图象如图:则()f x 在R 上是增函数,则()()g x f x x =+也是增函数, 则由(2)(2)g m g m -,得22m m -,得23m, 即实数m 的取值范围是(-∞,2]3.【点评】本题主要考查函数解析式的求解,根据函数奇偶性和单调性的定义将不等式进行转化是解决本题的关键,是中档题.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.【考点】函数的值域【分析】(1)由已知41()2212121x x x x f x =-=-+--,,利用基本不等式可求函数()f x 的值域;(2)由对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,可得函数函数()f x 在[1,2]上的值域包含于函数()g x 在[1,2]上的值域,由此可求正实数a 的取值范围.【解答】解:(1)24(2)111()2221212121x x x x x x f x -+=-=-=-+---,0x >,210x ->, 则11()212(21)22121x x x x f x =-+-⋅=--,,当且仅当1x =时取“=”, 所以()[2f x ∈,)+∞,即函数()f x 的值域为[2,)+∞;(2)设21x t =-,[1x ∈,2],[1t ∴∈,3], 函数1y t t=+在[1,3]上单调递增, 则函数()f x 在[1,2]上单调递增,()[2f x ∴∈,10]3, 设[1x ∈,2]时,函数()g x 的值域为A ,由题意知[2,10]3A ⊆, 又因为函数()g x 图象的对称轴为02a x =>, 当12a ,即02a <时,函数()g x 在[1,2]上递增,则(1)210(2)3g g ⎧⎪⎨⎪⎩,解得506a <, 当122a <<时,即24a <<时,函数()g x 在[1,2]上的最大值为g (1),g (2)中的较大者,而g (1)20a =-<且g (2)521a =-<,不合题意,当22a >,即4>时,函数()g x 在[1,2]上递减,则10(1)3(2)2g g ⎧⎪⎨⎪⎩,满足条件的a 不存在. 综上,5(0,]6a ∈. 【点评】本题考查了求函数的值域及分类讨论思想,采用了换元法求值域,换元后对参数t 的范围要进行确认,这是易错点,属于中档题.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.【考点】函数恒成立问题;二次函数的性质与图象【分析】(1)利用零点的定义,结合二次方程根的个数问题,求解即可;(2)将问题转化为210mx mx --<对于x R ∀∈恒成立,分0m =和0m ≠两种情况,结合二次函数的图象与性质,列式求解即可;(3)将问题转化为4()m x x-+在[1x ∈,3]恒成立,利用基本不等式求解最值,即可得到答案.【解答】解:(1)因为函数21y mx mx =--有两个零点,所以方程210mx mx --=有两个不同的实数根,则2040m m m ≠⎧⎨=+>⎩,解得4m <-或0m >, 故实数m 的取值范围为(-∞,4)(0-⋃,)+∞;(2)命题:x R ∃∈,0y ,是假命题,则命题:x R ∀∈,0y <,是真命题,则210mx mx --<对于x R ∀∈恒成立,当0m =时,不等式为10-<恒成立,符合题意;当0m ≠时,则2040m m m <⎧⎨=+<⎩,解得40m -<<. 综上所述,实数m 的取值范围为(4-,0];(3)因为对于[1x ∈,3],2(1)3y m x ++恒成立, 即240x mx ++对于[1x ∈,3]恒成立,即4()m x x-+在[1x ∈,3]恒成立, 则4[()]max m x x-+, 因为4424x x x x+⋅=, 当且仅当4x x=,即2x =时取等号, 所以4[()]4max x x -+=-, 则4m -,所以实数m 的取值范围为[4-,)+∞.【点评】本题考查了函数零点的理解与应用,函数与方程的应用,函数与不等式的综合应用,命题真假的应用以及不等式恒成立问题,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.【考点】函数奇偶性的性质与判断【分析】(1)依题意,得2020x x +>⎧⎨->⎩,解之可得函数()f x 的定义域; (2)()f x 为奇函数;利用奇函数的定义证明即可;(3)1(1)13aa f log log a -<⇔<,通过对a 的范围的分类讨论,可求得答案. 【解答】解:(1)()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠,∴202202x x x x +>>-⎧⎧⇒⎨⎨-><⎩⎩, ∴函数()f x 的定义域为(2,2)-;(2)()f x 为奇函数. 证明:22()()022a a x x f x f x log log x x-+-+=+=+-, ()()f x f x ∴-=-,(2,2)x ∈-,()f x ∴为奇函数;(3)(1)1f -<,∴1(1)3a a f log log a -=<, ①01a <<,()f x 单调递减,∴103a <<; ②1a >,()f x 单调递增,∴13a >,1a ∴>; 综上:103a <<或1a >,即(0a ∈,1)(13⋃,)+∞. 【点评】本题考查函数奇偶性的性质与判断,考查分析推理能力与运算求解能力,属于中档题.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.【考点】奇偶性与单调性的综合【分析】(1)由奇函数在R 上有定义,可得(0)0f =,求得a 的值,再由指数函数的单调性可得()f x 的单调性;(2)由奇函数()f x 的单调性可将不等式的两边的“f ”去掉,结合二次不等式恒成立,运用判别式法,解不等式可得所求范围.【解答】解:(1)函数1()21x f x a =-+为奇函数,定义域为R , 可得(0)0f =,即102a -=,解得12a =, 则1112()12212xx xf x -=-=++,满足()()0f x f x -+=, 所以12a =成立; 由2x y =在R 上递增,可得112xy =+在R 上递减, 所以()f x 在R 上为递减函数;(2)x R ∀∈,2(1)()0f x f kx ++<,即为2(1)()()f x f kx f kx +<-=-,因为()f x 在R 上为递减函数,所以21x kx +>-,即210x kx ++>恒成立,则△0<,即240k -<,解得22k -<<,则k 的取值范围是(2,2)-.【点评】本题考查函数的奇偶性和单调性的判断和运用:解不等式,考查转化思想和运算能力、推理能力,属于基础题.21.计算下列各式.(1)1206310.064()(2021)3π--+-+; (2)2731329log 5log 42log 5log -++. 【考点】对数的运算性质;有理数指数幂及根式【分析】(1)利用有理数指数幂的运算性质求解.(2)利用对数的运算性质求解.【解答】解:(1)原式1113662332043132⨯⨯⨯=⋅-++⨯ 23220.49198917255=-++⨯=-++=. (2)原式333log 527log 9log 527211=+++-=++=.【点评】本题主要考查了有理数指数幂的运算性质和对数的运算性质,是基础题.22.计算:(100.539()()54--++(2)22log 62222523lg lg -+-- 【考点】有理数指数幂及根式;对数的运算性质【分析】利用有理指数幂及对数的运算性质依次化简即可.【解答】解:(100.539()()54--++221133e e =-+++;(2)22log 62222523lg lg -+--421100632lg =--⨯ 211=-=.【点评】本题考查了有理指数幂及对数的运算,属于基础题.。

相关文档
最新文档