分式与反比例函数的综合测试题
北京第二十中学九年级数学下册第一单元《反比例函数》检测题(答案解析)
一、选择题1.如图,ABO中,∠ABO=45°,顶点A在反比例函数y=3x(x>0)的图象上,则OB2﹣OA2的值为()A.3 B.4 C.5 D.62.如图,正比例函数y = ax的图象与反比例函数kyx的图象相交于A,B两点,其中点A的横坐标为2,则不等式ax<kx的解集为()A.x < - 2或x > 2 B.x < - 2或0 < x < 2C.-2 < x < 0或0 < x < 2 D.-2 < x < 0或 x > -23.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4 B.22C.2 D.24.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数在第一象限内的图像与△ABC 有交点,则的取值范围是A .2≤≤B .6≤≤10C .2≤≤6D .2≤≤5.如图,函数ky x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .6.如图,已知正比例函数y 1=x 与反比例函数y 2=9x的图像交于A 、C 两点,AB ⊥x 轴,垂足为B , CD ⊥x 轴,垂足为D .给出下列结论:①四边形ABCD 是平行四边形,其面积为18;②AC =32;③当-3≤x<0或x≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.其中正确的结论有( )A .①④B .①③④C .①③D .①②④7.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数1k y x=(x>0) 的图像上,顶点B 在反比例函数2k y x=(x>0)的图像上,点C 在x 轴的正半轴上.若平行四边形OABC 的面积为8,则k 2-k 1的值为( )A .4B .8C .12D .168.若函数5y x=与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( )A .15-B .15C .5-D .59.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,110.如图,在平面直角坐标系中,点A 是函数()0ky x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小11.如图,点A 、C 为反比例函数y=(0)kx x<图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为32时,k 的值为( )A .4B .6C .﹣4D .﹣612.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数ky x=(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( ) A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0二、填空题13.如图,已知正比例函数11(0)y k x k =≠与反比例函数22(0)k y k x=≠的图像交于两点M ,N ,若点N 的坐标是(1,2)--,则点M 的坐标为________14.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表). 售价x (元/双) 200 240 250 400销售量y (双)30 252415价应定为_______元.15.如图,一次函数y 1=ax+b 与反比例函数2ky x=的图像交于A(1,4)、B(4,1)两点,若使y 1>y 2,则x 的取值范围是___________.16.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为_____.17.如果反比例函数y2mx-=的图象在第一、三象限,那么m的取值范围是____.18.已知反比例函数3yx=-,当1x>时,y的取值范围是____19.如图,已知反比例函数y=kx(x>0)与正比例函数y=x(x≥0)的图象,点A(1,4),点A'(4,b)与点B'均在反比例函数的图象上,点B在直线y=x上,四边形AA'B'B是平行四边形,则B点的坐标为______.20.如图,菱形ABCD顶点A在函数y=4x(x>0)的图像上,函数y=kx(k>4,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=4,∠ADC=150°,则k=______。
分式和反比例函数易错题
第十六章分式和第十七章反比例函数试题选解1.分式14+m 表示一个整数时,字母m 可以取的整数值共有 个. 2.当x 时,分式2142x x +-的值是负数. 3.下列分式变形正确的是( ) A.y x =22yx B.n m n m +-=))(()(2n m n m n m -+-=222)(n m n m -- C.1212+--x x x =11-x D.a b =2a ab 4.在分式abb a 2-中,字母a,b 值分别扩大为原来的2倍,则分式的值( ) A.扩大为原来的2倍 B.不变 C.缩小为原来的21 D. 缩小为原来的41 5.若a=32,则1273222+---a a a a 的值等于 . 6.当a=21时,代数式12-a a -111---a a的值为 . 7.某人的上山的速度为m 千米/时,下山的速度为n 千米/时,则他上下山的平均速度为 .8.解分式方程x x 1--13-x x +1=0,如果设xx 1-= y,将原方程化为关于y 的整式方程为 . 9.若分式方程a x a x =-+1有增根,则a 的值为 ;若该方程无解,则a 的值为 . 10.当x = 时,2x-3与345+x 互为倒数. 11.分式m x x +-212,若不论x 取何值分式总有意义,则m 的取值范围是 12.a b b a a 222⋅÷ = ; n m n m mn 2923=-⨯ ;b a b a ab ab a +=--+)(2222 13.若分式方程313+=-+x x x a 的解是负数,则a 的取值范围是 . 14.已知211=-y x ,则yxy x y xy x ---+2252的值为 . 15已知21)2)(1(32++-=+--x B x A x x x ,则A= ,B= . 16.当a = 时,分式122++a a a 的值为0;若分式21+x ,12-x x 的和等于2,则x = . 17.若(m-n )x=m 2-n 2的解是x=m+n 则m 与n 的关系是 .18.已知x,y 满足x 2+y 2=4x+6y-13,求224331⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-y x xy x y 的值为 . 19.若ba c c abc b a k +=+=+=,则k= . 20.已知2=a ,分式b a 22+= ;计算=-⋅-⋅-678)1()()(b a . 26.计算:(1)12-+x x ·61222--+-x x x x -9622-+x x (2)解分式方程 221+--x x =x -21(3))(11n m x n n x m m ≠+=+ (4))225(423---÷--x x x x27.A 、B 。
(常考题)北师大版初中数学九年级数学上册第六单元《反比例函数》测试卷(有答案解析)(4)
一、选择题1.关于反比例函数y =4x,下列说法不正确的是( ) A .图象关于原点成中心对称 B .当x >0时,y 随x 的增大而减小C .图象与坐标轴无交点D .图象位于第二、四象限 【答案】D【分析】根据反比例函数图象的性质判断即可.【详解】解:根据反比例函数的性质可知,图象关于原点成中心对称,图象与坐标轴无交点,所以A 、C 不符合题意;因为比例系数是4,大于0,所以当x >0时,y 随x 的增大而减小,故B 不符合题意; 因为比例系数是4,大于0,所以图象位于第一、三象限,故D 错误,符合题意; 故选:D .【点睛】本题考查了反比例函数图象的性质,解题关键是掌握反比例函数图象的性质并熟练运用.2.一辆汽车匀速通过某段公路,所需时间(h )与行驶速度v (km/h )满足函数关系t =点(0)k >,其图象为如图所示的一段双曲线,端点为(40,1)A 和(,0.5)B m ,若行驶速度不得超过60 km/h ,则汽车通过该路段最少需要( )A .23分钟 B .40分钟 C .60分钟 D .2003分钟 【答案】B【分析】 把点A (40,1)代入t =k v ,求得k 的值,再把点B 代入求出的解析式中,求得m 的值,然后把v =60代入t =40v,求出t 的值即可. 【详解】解:由题意得,函数的解析式为t=kv函数经过点(40,1),把(40,1)代入t=kv,得k=40,则解析式为t=40v,再把(m,0.5)代入t=40v,得m=80;把v=60代入t=40v,得t=23,23小时=40分钟,则汽车通过该路段最少需要40分钟;故选:B.【点睛】此题考查了反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,注意要把小时化成分钟.3.反比例函数y=kx的图像如图所示,下列说法正确的是()A.k>0B.y 随x的增大而增大C.若矩形 OABC的面积为2,则2k=-D.若图像上点B的坐标是(-2,1),则当x<-2时,y的取值范围是y<1【答案】C【分析】根据反比例函数的性质以及系数k的几何意义进行判断.【详解】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D 选项错误.故选C【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.4.若反比例函数1y k x +=(k 是常数)的图象在第一、三象限,则k 的取值范围是( ) A .0k <B .0k >C .1k <-D .1k >- 【答案】D【分析】先根据反比例函数的性质得出k+1>0,再解不等式即可得出结果.【详解】解:∵反比例函数1y k x+=(k 为常数)的图象在第一、三象限, ∴k+1>0,解得k>-1.故选:D .【点睛】本题考查了反比例函数的图象和性质:当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.5.如图,四边形AOBC 和四边形CDEF 都是正方形,边OA 在y 轴上,边OB 在x 轴上,点F 在边AC 上,反比例函数y =10x在第一象限的图象经过点E ,则正方形AOBC 和正方形CDEF 的面积之差为( )A .12B .10C .6D .4【答案】B【分析】 设正方形AOBC 的边长为a ,正方形CDEF 的边长为b ,则E (a ﹣b ,a +b ),代入反比例函数解析式即可求解.【详解】解:设正方形AOBC 的边长为a ,正方形CDEF 的边长为b ,则E (a ﹣b ,a +b ),∴(a +b )•(a ﹣b )=10,整理为a 2﹣b 2=10,∵S 正方形AOBC =a 2,S 正方形CDEF =b 2,∴S 正方形AOBC ﹣S 正方形CDEF =10,故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 是常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .6.反比例函数4y x =-,下列说法不正确的是( ) A .图象经过点()1,4-B .当0x <时,y 随x 的增大而减小C .图象关于直线y x =对称D .图象位于第二、四象限【答案】B【分析】根据反比例函数的性质判断即可.【详解】解:A. 图象经过点()1,4-,正确,不符合题意;B. 当0x <时,y 随x 的增大而增大,原描述错误,符合题意;C. 图象关于直线y x =对称,正确,不符合题意;D. 图象位于第二、四象限,正确,不符合题意;故选:B .【点睛】本题考查了反比例函数的性质,解题关键是熟记反比例函数的性质,灵活应用这些性质解题.7.若点()()()123,1,,2,,3A x B x C x --在反比例函数21k y x+=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .231x x x <<C .312x x x <<D .213x x x <<【答案】B【分析】不论k 取何值,2k +1恒为正数,图像分布在一、三象限,根据反比例函数图像性质求解即可.【详解】∵不论k 取何值,2k +1恒为正数,∴反比例函数21k y x+=的图象分布在第一、第三象限, ∵点()()()123,1,,2,,3A x B x C x --在反比例函数21k y x+=的图象上, ∴1x >0,∴230x x <<,∴231x x x <<,故选B.【点睛】本题考查了反比例函数图像的性质,解答时,熟记性质是解题的关键.8.已知反比例函数k y x =经过点()2,3-,则该函数图像必经过点( ) A .()2,3B .()1,6-C .()2,3--D .31,2⎛⎫- ⎪⎝⎭ 【答案】B【分析】由已知可以确定函数解析式为6k=-,将选项依次代入验证即可. 【详解】解:∵反比例函数k y x =图象经过点(2,−3), ∴2(3)6k =⨯-=-,A 、∵2×3=6≠-6,∴此点不在函数图象上,故本选项错误;B 、∵(-1)×6=-6,∴此点在函数图象上,故本选项正确;C 、∵(-2)×(-3)=6≠-6,∴此点不在函数图象上,故本选项错误;D 、∵331()622⨯-=-≠-,∴此点不在函数图象上,故本选项错误. 故选:B【点睛】本题考查反比函数图象及性质;掌握待定系数法求函数解析式,点与函数解析式的特点是解题的关键.9.下列命题中,错误的是( )A .顺次连接矩形四边的中点所得到的四边形是菱形B .反比例函数的图象是轴对称图形C .线段AB 的长度是2,点C 是线段AB 的黄金分割点且AC BC <,则1AC =D .对于任意的实数b ,方程230x bx --=有两个不相等的实数根【答案】C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A.顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;B.反比例函数的图象是轴对称图形,故此命题正确;C. 线段AB 的长度是2,点C 是线段AB 的黄金分割点且AC BC <,则21BC ==,则 D.对于任意的实数b ,方程230x bx --=有两个不相等的实数根,因为△=b²-4ac=b²+12>0,故此命题正确.故选C .【点睛】本题考查了命题和定理以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉掌握性质定理.10.下列关于函数310y x =-的说法错误的是( ) A .它是反比例函数B .它的图象关于原点中心对称C .它的图象经过点10,13⎛⎫-⎪⎝⎭ D .当0x <时,y 随x 的增大而增大 【答案】C【分析】根据题目中的函数解析式可以判断各个选项是否正确,从而可以解答本题.【详解】解:∵函数310y x=-, ∴该函数是反比例函数,故选项A 正确,它的图象在第二、四象限,且关于原点对称,故选项B 正确,当x=103时,y=-9100,故选项C 错误, 当x <0时,y 随x 的增大而增大,故选项D 正确,故选:C .【点睛】本题考查反比例函数的性质、反比例函数的定义,解答本题的关键是明确题意,利用反比例函数的性质解答.11.已知点()()121,,2,A y B y -在双曲线a y x=-上,则12,y y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .无法判断【答案】D【分析】 根据反比例函数的性质和图像上点的坐标特征即可判断.【详解】∵当-a <0时,双曲线在二,四象限,则点A 在第二象限,y 1>0,点B 在第四象限,y 2<0,∴y 1>y 2,∵∵当-a >0时,双曲线在一,三象限,则点A 在第三象限,y 1<0,点B 在第一象限,y 2>0,∴y 1<y 2,综上所述,无法判断12,y y 的大小关系.故选D .【点睛】本题主要考查反比例函数的图像和性质,熟练掌握反比例函数的比例系数的意义,是解题的关键.12.如图,四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数12y x=的图象经过点C ,若CD =4,则菱形OABC 的面积为( )A .15B .20C .29D .24【答案】B【分析】 根据反比例函数系数k 的几何意义得到S △COD =12×12=6,得到OD =3,根据勾股定理得到OC 22CD OD +5,根据菱形的性质得到OC =OA =5,则可求解菱形OABC 的面积.【详解】解:∵函数12y x =的图象经过点C ,CD ⊥x 轴, ∴S △COD =12×12=6. ∵CD =4,∴OD =3.∴由勾股定理得OC =22CD OD +=5.∵四边形OABC 是菱形,∴OC =OA =5.∴S 菱形OABC =OA•CD =5×4=20.故选:B .【点睛】本题考查了反比例函数系数k 的几何意义的应用,掌握反比例函数的比例系数的几何意义及菱形的性质是解题的关键.二、填空题13.从3-,1-,0,1,2这五个数中任意取出一个数记作k ,则既能使函数k y x =的图象经过第一、三象限,又能使关于x 的一元二次方程210x kx -+=有实数根的概率为__________.14.在平面直角坐标系xOy 中,点A ,B 在反比例函数()20=>y x x的图象上,且点A 与点B 关于直线y x =对称,C 为AB 的中点,若4AB =,则线段OC 的长为______.15.如图,反比例函数(0)k y k x=≠在第二象限内的图象上有一点P ,过点P 作PA y ⊥轴于点A ,点B 是x 轴上任一点,若3ABP S =,则k 的值是_______.16.当m __时,函数y =1m x-的图象在第二、四象限内. 17.如图,一次函数22y x =+与x 轴、y 轴分别交于A B 、两点,以AB 为一边在第二象限作正方形ABCD ,反比例函数()0k y k x=≠经过点D .将正方形沿x 轴正方向平移a 个单位后,点C 恰好落在反比例函数上,则a 的值是_______.18.分别以矩形OABC 的边OA ,OC 所在的直线为x 轴,y 轴建立平面直角坐标系,点B 的坐标是(4,2),将矩形OABC 折叠使点B 落在G(3,0)上,折痕为EF ,若反比例函数k y x=的图象恰好经过点E ,则k 的值为_______.19.已知反比例函数6y x=,在其位于第三像限内的图像上有一点M ,从M 点向y 轴引垂线与y 轴交于点N ,连接M 与坐标原点O ,则ΔMNO 面积是_____. 20.如图,在平面直角坐标系中,直线y =ax +b 交坐标轴于A 、B 点,点C(-4, 2 )在线段AB 上,以BC 为一边向直线AB 斜下方作正方形BCDE .且正方形边长为5,若双曲线y =k x经过点E ,则k 的值为_______.三、解答题21.如图,直线y x b =+与双曲线()0k y k x=≠交于A 、B 两点,且点A 的坐标为()2,3.(1)求双曲线与直线的解析式;(2)求点B 的坐标;(3)若k x b x+>,直接写出x 的取值范围.22.如图,直线y x =和双曲线()0k y k x=≠交于A ,B 两点,AE x ⊥轴,垂足为E ,射线AC AD ⊥,AC 交y 轴于点C ,AD 交x 轴于点D ,且四边形ACOD 的面积为1. (1)求双曲线k y x=的解析式. (2)求A ,B 两点的坐标.23.如图,反比例函数()0k y k x=≠的图象与正比例函数2y x =的图象相交于()1,,A a B 两点. (1)求反比例函数的解析式;(2)求不等式2k x x >的解集.24.已知反比例函数1k yx-=的图象经过点(2,4)A-,点(,6)B m-(1)求k及m的值.(2)点()11,M x y,()22,N x y均在反比例函数1kyx-=的图象上,若12x x<,比较1y,2y的大小关系.25.已知点1(x,1)y和2(x,2)y在反比例函数1yx=图象上.(1)如果12x x>,那么1y与2y有怎样的大小关系?(2)当1>0x,2x>,且122x x-=时,求2112y yy y-的值;26.如图,一次函数1y kx b=+的图象与反比例函数2myx=的图象交于点()()3,2,,6A B n--两点.(1)求一次函数与反比例函数的解析式;(2)求AOB的面积;【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.【分析】确定使函数的图象经过第一三象限的k的值然后确定使方程有实数根的k值找到同时满足两个条件的k的值即可【详解】解:这5个数中能使函数y=的图象经过第一第三象限的有12这2个数∵关于x的一元二次方解析:1 5【分析】确定使函数的图象经过第一、三象限的k的值,然后确定使方程有实数根的k值,找到同时满足两个条件的k的值即可.【详解】解:这5个数中能使函数y=kx的图象经过第一、第三象限的有1,2这2个数,∵关于x的一元二次方程x2﹣kx+1=0有实数根,∴k2﹣4≥0,解得k≤﹣2或k≥2,能满足这一条件的数是:﹣3、2这2个数,∴能同时满足这两个条件的只有2这个数,∴此概率为15,故答案为:15. 【点睛】 本题考查了反比例函数图象与系数的关系,及一元二次方程根的判别式的知识,根据反比例函数性质与方程的根的判别式得出k 的值是解答此题的关键.14.【分析】设A (t )利用关于直线y=x 对称的点的坐标特征得到B (t )再根据两点间的距离公式得到(t-)2+(-t )2=42则t-=2或t-=-2解分式方程得到t 的值确定出点AB 坐标接着利用线段中点坐标解析:【分析】设A (t ,2t ),利用关于直线y=x 对称的点的坐标特征得到B (2t,t ),再根据两点间的距离公式得到(t-2t )2+(2t -t )2=42,则t-2t t-2t t 的值,确定出点A ,B 坐标,接着利用线段中点坐标公式写出C 点坐标,然后利用两点间的距离公式求出OC 的长.【详解】解:设A (t ,2t), ∵点A 与点B 关于直线y=x 对称,∴B (2t,t ), ∵AB=4, ∴(t-2t )2+(2t -t )2=42,即t-2t 或t-2t ,解方程t-2t ,得-2(由于点A 在第一象限,所以舍去)或+2,经检验,+2,符合题意,∴A (+2+2),B ,+2),∵C 为AB 的中点,∴C (2,2),∴.解方程t-2t -2(由于点A 在第一象限,所以舍去)或+2,经检验,+2,符合题意,∴B (+2),A ,+2),∵C 为AB 的中点,∴C (2,2),∴.故答案为【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k≠0)图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k ;双曲线是关于原点对称的,两个分支上的点也是关于原点对称.也考查了两点关于直线y=x 对称的坐标特征.15.-6【分析】根据题意设点P 为(xy )则PA=结合即可求出k 的值【详解】解:∵点P 在反比例函数的图像上设点P 为(xy )则∵轴点P 在第二象限则∴∴∵∴∴;故答案为:【点睛】本题考查了反比例函数的性质反比 解析:-6【分析】根据题意,设点P 为(x ,y ),则PA=x ,OA y =,结合132ABP SPA OA =•=,即可求出k 的值.【详解】解:∵点P 在反比例函数(0)k y k x=≠的图像上, 设点P 为(x ,y ),则=k xy ,∵PA y ⊥轴,点P 在第二象限,则0,0x y <>, ∴PA x x ==-,OA y =, ∴11()322ABP S PA OA x y =•=•-•=, ∵=k xy , ∴132k -=, ∴6k =-;故答案为:6-.【点睛】本题考查了反比例函数的性质,反比例函数的几何意义,解题的关键是熟练掌握反比例函数的性质进行解题.16.<1【分析】根据反比例函数的性质结合反比例函数图象所在象限求出m 的取值范围【详解】解:∵函数y =的图象在第二四象限内∴m ﹣1<0∴m <1故当m <1时函数y =的图象在第二四象限内故答案为:<1【点睛】解析:<1【分析】根据反比例函数的性质,结合反比例函数图象所在象限,求出m的取值范围.【详解】解:∵函数y=1mx-的图象在第二、四象限内,∴m﹣1<0,∴m<1,故当m<1时,函数y=1mx-的图象在第二、四象限内,故答案为:<1.【点睛】本题主要考查了反比例函数的性质,象限内点的坐标特征,关键是根据反比例函数图象的位置确定m的取值范围.17.1【分析】过点C作CE⊥y轴于点E交双曲线于点G过点D作DF⊥x轴于点F如图先求出点AB的坐标然后利用正方形的性质余角的性质可证△OAB≌△FDA≌△EBC进而可利用全等三角形的性质求出点DC的坐标解析:1【分析】过点C作CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,如图,先求出点A、B的坐标,然后利用正方形的性质、余角的性质可证△OAB≌△FDA≌△EBC,进而可利用全等三角形的性质求出点D、C的坐标,进一步即可求出反比例函数的解析式,于是可得点G坐标,再根据平移的性质即可求出答案.【详解】解:过点C作CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,如图,在y=2x+2中,令x=0,解得:y=2,即B的坐标是(0,2),令y=0,解得:x=﹣1,即A的坐标是(﹣1,0).则OB=2,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,∵∠OBA =∠DAF ,∠BOA =∠AFD ,AB =AD ,∴△OAB ≌△FDA (AAS ),同理可证:△OAB ≌△EBC ,∴AF =OB =EC =2,DF =OA =BE =1,∴D 的坐标是(﹣3,1),C 的坐标是(﹣2,3).将点D 代入k y x=得:k =﹣3, 则函数的解析式是:y =﹣3x. ∴G 的坐标是(﹣1,3), ∴当点C 与G 重合时,正方形沿x 轴正方向平移了1个单位,即a =1.故答案为1.【点睛】本题考查了正方形的性质、平移的性质、全等三角形的判定和性质以及反比例函数图象上点的坐标特征,求出点C 、D 的坐标是解题的关键.18.3【分析】设CE 的长为a 利用折叠的性质得到EG=BE=4-aED=3-a 在Rt △EGD 中利用勾股定理可求得a 的值得到点E 的坐标即可求解【详解】过G 作GD ⊥BC 于D 则点D(32)设CE 的长为a 根据折叠解析:3【分析】设CE 的长为a ,利用折叠的性质得到EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,利用勾股定理可求得a 的值,得到点E 的坐标,即可求解.【详解】过G 作GD ⊥BC 于D ,则点D(3,2),设CE 的长为a ,根据折叠的性质知:EG=BE=4-a ,ED=3-a ,在Rt △EGD 中,222EG ED DG =+,∴()()2224a 3a 2-=-+, 解得:32a =, ∴点E 的坐标为(32,2),∵反比例函数k y x =的图象恰好经过点E , ∴3232k xy ==⨯=, 故答案为:3.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理的应用,反比例函数图象上点的特征,作出辅助线构造直角三角形是解题的关键.19.3【分析】根据反比例函数系数k 的几何意义得到:△MNO 的面积为|k|即可得出答案【详解】∵反比例函数的解析式为∴k=6∵点M 在反比例函数图象上MN ⊥y 轴于N ∴S △MNO=|k|=3故答案为:3【点睛解析:3【分析】根据反比例函数系数k 的几何意义得到:△MNO 的面积为12|k|,即可得出答案. 【详解】∵反比例函数的解析式为6y x =, ∴k=6,∵点M 在反比例函数6y x =图象上,MN ⊥y 轴于N , ∴S △MNO =12|k|=3, 故答案为:3【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.20.3【分析】作CF ⊥y 轴于FEG ⊥y 轴于G 根据勾股定理求得BF 证得△BCF ≌△EBG (AAS )从而求得E 的坐标然后代入y=即可求得k 的值【详解】解:作CF ⊥y 轴于FEG ⊥y 轴于G 如图∵C(-42)∴C解析:3【分析】作CF ⊥y 轴于F ,EG ⊥y 轴于G ,根据勾股定理求得BF ,证得△BCF ≌△EBG (AAS ),从而求得E 的坐标,然后代入y=k x,即可求得k 的值. 【详解】解:作CF ⊥y 轴于F ,EG ⊥y 轴于G ,如图.∵C(-4, 2 )∴CF=4,OF=2.∵正方形BCDE 的边长为5,∴BC=BE=5,∴2222543BC CF -=-=∵∠BFC=90°,∴∠BCF+∠CBF=90°,∵∠CBE=90°∴∠EBG+∠CBF=90°,∴∠BCF=∠EBG ,在△BCF 与△EBG 中90BCF EBG BFC EGB BC EB ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△BCF ≌△EBG (AAS ),∴BF=EG=3,CF=BG=4,∴FG=BG-BF=4-3=1∴OG=OF-FG=2-1=1∴E (3,1)∴双曲线y=k x经过点E , ∴k=3×1=3.故答案为:3.【点睛】 本题考查一次函数与反比例函数的交点,正方形的性质,勾股定理,全等三角形的判定与性质,待定系数法求反比例函数的解析式,解题关键是求得E 的坐标.三、解答题21.(1)6y x=,1y x =+;(2)(-3,-2);(3)30x -<<或2x >; 【分析】(1)把A 的坐标代入一次函数与反比例函数的解析式即可求出解析式;(2)把一次函数与反比例函数的解析式联立得出方程组,求出方程组的解即可; (3)根据A 、B 的坐标结合图象即可得出答案.【详解】解:(1)∵点A (2,3)在双曲线k y x =上,也在直线y x b =+上, ∴326k =⨯=,321b =-=;∴双曲线的解析式为6y x=, 直线的解析式为1y x =+;(2)∵点B 是直线1y x =+和双曲线6y x=的交点, ∴点B 的坐标是方程组16y x y x =+⎧⎪⎨=⎪⎩的一个解; ∴1123x y =⎧⎨=⎩,2232x y =-⎧⎨=-⎩; ∴点B 的坐标为(-3,-2);(3)由图象可知,若k x b x+>,则x 的范围是:-3<x <0或x >2. .【点睛】本题考查了一次函数与反比例函数的解析式,用待定系数法求出一次函数的解析式,函数与不等式等知识点的应用,主要考查学生的计算能力和观察图形的能力,用了数形结合思想.22.1)双曲线的解析式为1y x=;(2)A(1,1),B(-1,-1). 【分析】(1)过A 作AF ⊥y 轴于F ,利用角平分线性质可得AE=AF ,可证△CAF ≌△DAE (ASA ),可证S △CAF =S △DAE ,可求S 正方形OFAE =S 四边形CADO =1即可;(2)联立方程组1y x yx =⎧⎪⎨=⎪⎩,解方程组即可. 【详解】解:(1)过A 作AF ⊥y 轴于F ,∵直线y x =是一三象限的角平分线,AE x ⊥轴,AF ⊥y 轴,∴AE=AF ,∵AC AD ⊥,∴∠CAD=90°,∴∠CAF+∠FAD=90°,∠FAD+∠DAE=90°,∴∠CAF=∠DAE ,∵∠CFA=∠DEA=90°∴△CAF ≌△DAE (ASA ),∴S △CAF =S △DAE ,∴S 正方形OFAE =S 四边形OFAD +S △DAE = S 四边形OFAD +S △CAF =S 四边形CADO =1,∴k=1,双曲线的解析式为1y x=; (2)∵直线y x =和双曲线1y x =交于A ,B 两点, ∴联立方程组1y x y x =⎧⎪⎨=⎪⎩, 消去y 得2=1x ,解得=1x ±,∴y=x=±1,A(1,1),B(-1,-1).【点睛】本题考查反比例函数解析式,三角形全等,面积和差计算,解方程组,掌握反比例函数解析式,三角形全等,面积和差计算,解方程组,引辅助线构造三角形全等是解题关键.23.(1)2y x=;(2)01x <<或1x <- 【分析】 (1)先利用正比例函数解析式确定A (1,2),再根据A 点坐标即可得到反比例函数解析式;(2)结合两个函数,先求出点B 的坐标,然后结合图像,即可得到答案.【详解】解:()1把()1,A a 代入2y x =,解得:2,a =则()1,2A把()1,2A 代入k y x=, 得:122,k =⨯= ∴反比例函数解析式为2y x =; ()2解方程组22y xy x =⎧⎪⎨=⎪⎩, 得:12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩, B ∴点坐标为(1,2)--, 观察图象可知,不等式2k x x>的解集为:01x <<或1x <-. 【点睛】本题考查了反比例函数和正比例函数的性质,解题的关键是掌握待定系数法求函数的解析式.24.(1)9k =,43m =;(2)当0<x 1<x 2或x 1<x 2<0时,y 1<y 2;当x 1<0<x 2时,y 2<y 1.【分析】(1)把点A 的坐标代入函数解析式,利用待定系数法确定函数关系式;根据反比例函数图象上的点(x ,y )的横纵坐标的积是定值k ,把B 点代入函数求解即可;(2)分类讨论:当0<x 1<x 2或x 1<x 2<0,则y 1<y 2;当x 1<0<x 2,则y 2<y 1.【详解】解:(1)依题意得:1﹣k =2×(﹣4)=﹣8,所以k =9;∵点B (m ,﹣6)在这个反比例函数的图象上,∴﹣6m =﹣8,∴m =43; (2)∵点M (x 1,y 1)、N (x 2,y 2)都在反比例函数y =﹣8x 的图象上, ∴函数在每个象限内,y 随x 的增大而增大,当0<x 1<x 2或x 1<x 2<0时,y 1<y 2;当x 1<0<x 2时,y 2<y 1.【点睛】本题考查了反比例函数的图象与性质、其中涉及反比例函数解析式的求法、反比例函数图象的增减性、分类讨论思想等知识,是重要考点,难度较易,掌握相关知识是解题关键. 25.(1)当12,x x 同号(120x x ⋅>)时,12y y <;当12,x x 异号(120x x ⋅<)时,12y y >;(2)2【分析】(1)分当12,x x 同号和当12,x x 异号分别判断即可;(2)把点1(x ,1)y 和2(x ,2)y 代入解析式,化简求值即可;【详解】解:(1)分类讨论①当12,x x 同号(120x x ⋅>)时, 即210x x <<或210x x <<, 由反比例函数1y x=的图象性质知,12y y <; ②当12,x x 异号(120x x ⋅<)时, 即120x x >>, 由反比例函数1y x =的图象性质知,12y y >; (2)点1(x ,1)y 和2(x ,2)y 是反比例函数1y x =图象上的两点, 111y x ∴=,221y x =, ∴2112121211y y x x y y y y -=-=-, 122x x -=, ∴21122y y y y -=; 【点睛】本题主要考查了反比例函数的图像和性质,准确计算是解题的关键.26.(1)124y x =--,26y x=-;(2)8 【分析】(1)将点A 坐标代入反比例函数求出m 的值,从而得到点A 的坐标以及反比例函数解析式,再将点B 坐标代入反比例函数求出n 的值,从而得到点B 的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB 与y 轴相交于点C ,根据一次函数解析式求出点C 的坐标,从而得到点OC 的长度,再根据S △AOB =S △AOC +S △BOC 列式计算即可得解.【详解】解:()1把()32A -,代入2m y x =得326m =-⨯=-, ∴反比例函数解析式为26y x=-, 把()6B n -,代入26y x=-得66n -=-, ∴解得1n =, B ∴点坐标为()16-,, 把()()3216A B --,,,代入1y kx b =+得326k b k b -+=⎧⎨+=-⎩, 解方程组得24k b =-⎧⎨=-⎩, ∴一次函数解析式为24y x =--;()2当0x =时,244y x =--=-,则AB 与y 轴的交点坐标为C ()04-,, ABO AOC BOC 11S =S +S =43+4122∆∆∴⨯⨯⨯⨯()143182=⨯⨯+=.【点睛】本题考查反比例函数与一次函数解析式问题.掌握反比例函数与一次函数解析式的求法,会利用分割法求两函数的交点与原点构成三角形的面积是解题关键.。
专题11 函数性质综合大题-2023学年高一数学培优练(人教A版2019第一册)(原卷版)
专题11函数性质综合大题目录【题型一】“分式型”1:分离常数反比例函数 (1)【题型二】“分式型”2:转化为“对勾” (2)【题型三】“分式型”3:转化为“双曲” (3)【题型四】“分式型”4:分母二次、分子一次型 (4)【题型五】“分式型”5:分子、分母二次型 (5)【题型六】“分式型”6:判别式法 (5)【题型七】“分式型”7:中心对称求和型 (6)【题型八】“分式型”8:保值函数 (6)【题型九】分式型结构不良型 (7)【题型十】含绝对值型 (8)培优第一阶——基础过关练 (8)培优第二阶——能力提升练 (9)培优第三阶——培优拔尖练 (10)【题型一】“分式型”1:分离常数反比例函数【典例分析】已知函数32kx y x +=+(常数k ∈Z ).(1)若1k =,在平面直角坐标系中画出该函数的图像;(2)若该函数在区间[3,)+∞上是严格减函数,且在[3,)+∞上存在自变量,使得函数值为正,求整数k 的值.已知函数25()1x f x x +=+,()23g x x ax =+-.(1)若()0,x ∃∈+∞,使得()6g x x <-,求实数a 的取值范围;(2)若集合{|(),[0,2]}A y y f x x ==∈,对于x A ∀∈都有()0g x ≤,求实数a 的取值范围.【题型二】“分式型”2:转化为“对勾”【典例分析】已知函数()2x 4xx a f x -+=,()g x x b =-,2()2h x x bx =+(1)当2a =时,求函数()()y f x g x =+的单调递增与单调递减区间(直接写出结果);(2)当[]3,4a ∈时,函数()f x 在区间[]1,m 上的最大值为()f m ,试求实数m 的取值范围;(3)若不等式()()()()1212h x h x g x g x -<-对任意1x ,[]20,2x ∈(12x x <)恒成立,求实数b 的取值范围.已知函数t y x x =+有如下性质:若常数0t >,则该函数在(上单调递减,在)+∞上单调递增.(1)已知()2412321--=+x x f x x ,[]0,1x ∈,利用上述性质,求函数()f x 的单调区间和值域;(2)对于(1)中的函数()f x 和函数()2g x x a =--,[]0,1x ∈,若对任意[]10,1x ∈,总存在[]20,1x ∈,使得()()21g x f x =成立,求实数a 的值.【题型三】“分式型”3:转化为“双曲”【典例分析】已知函数()21mx f x x n -=+是奇函数,且()322f =.(1)求实数,m n 的值;(2)用函数单调性的定义证明:()f x 在()0,∞+上单调递增;(3)当0x >时,解关于x 的不等式:()()223f x f x >+.【变式训练】已知函数()110m x f x x+-=满足()23f =.(1)求()f x 的解析式,并判断其奇偶性;(2)若对任意[)5,x ∈+∞,不等式()30f x a ->恒成立,求实数a 的取值范围.【题型四】“分式型”4:分母二次、分子一次型【典例分析】已知函数()21ax b f x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求函数()f x 的解析式;(2)判断函数()f x 在()1,1-上的单调性,并用定义证明;(3)解不等式:11022f t f t ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝+⎭+-≤..已知函数2()1x m f x nx -=+是定义在[1,1]-上的奇函数,且1(1)2f =.(1)求m ,n 的值;(2)判断()f x 在[1,1]-上的单调性,并用定义证明;(3)设()52g x kx k =+-,若对任意的1[1,1]x ∈-,总存在2[0,1]x ∈,使得12()()f x g x ≤成立,求实数k 的取值范围.【题型五】“分式型”5:分子、分母二次型【典例分析】.已知22(4)2()1ax a x f x x +-⋅-=+.(1)若=4a 时,求()f x 的值域;(2)函数()25()1()2g x x f x =++,若函数()h x =[0,)+∞,求a 的取值范围.求函数2245()44x x f x x x ++=++的单调区间,并比较()f π-与2f ⎛⎫- ⎪ ⎪⎝⎭的大小.【题型六】“分式型”6:判别式法【典例分析】已知函数2221()1x x f x x x --=++.(1)解不等式:()1f x >;(2)求函数()f x 的值域.【变式训练】.已知函数()221x f x x-=.(1)求函数()y f x =的值域;(2)若不等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,求实数k 的最大值;【题型七】“分式型”7:中心对称求和型【典例分析】已知函数()221x f x x =+.(1)求()122f f ⎛⎫+ ⎪⎝⎭,()133f f ⎛⎫+ ⎪⎝⎭的值;(2)求证:()1f x f x ⎛⎫+ ⎪⎝⎭的定值;(3)求()()()()()11112123202120222320212022f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.【变式训练】已知函数3()1x f x x +=+.(1)求1(2)+2f f ⎛⎫ ⎪⎝⎭的值;(2)求证:1()f a f a ⎛⎫+ ⎪⎝⎭是定值;(3)求11112(1)+(2)+()+(3)+++(2021)++(2022)+2320212022f f f f f f f f f ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.【题型八】“分式型”8:保值函数【典例分析】若函数()f x 在定义域的某个区间[],m n (m n <)上的值域恰为[],km kn (0k >),则称函数()f x 为[],m n 上的k 倍域函数,[],m n 称函数()f x 的一个k 倍域区间.已知函数()2h x x ax b =++,且关于x 的不等式()0h x <的解集为()2,2-.(1)求实数a ,b 的值;(2)若()()45x g x h x =+([]0,1x ∈),是否存在k (k +∈N ),使得函数()g x 为定义域内的某个区间[],m n 上的k 倍域函数?若存在,请求出k 的值;若不存在,请说明理由.对于定义域为I 的函数()f x ,如果存在区间[,]m n I ⊆,使得()f x 在区间[,]m n 上是单调函数.且函数(),[,]y f x x m n =∈的值域是[,]m n ,则称区间[,]m n 是函数()f x 的一个“优美区间”(1)判断函数2()y x x R =∈和函数43(0)y x x=->是否存在“优美区间”?(直接写出结论,不要求证明)(2)如果[,]m n 是函数22()1()(0)a a x f x a a x+-=≠的一个“优美区间”,求n m -的最大值;(3)如果函数2()g x x a =+在R 上存在“优美区间”,求实数a 的取值范围.【题型九】分式型结构不良型【典例分析】已知______,且函数()22x b g x x a +=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中,选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题.(1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围.【变式训练】已知函数2()2x b g x x a+=+,(1,1)x ∈-,从下面三个条件中任选一个条件,求出a ,b 的值,并解答后面的问题.(注:若选择多于一个,则按照第一个选择进行计分)①已知函数3()f x b x a =+-,满足(2)(2)0f x f x -++=;②已知函数()(0,1)a f x x b a a =+>≠在[1]2,上的值域为[14],;③已知函数2()4f x x ax =-+,若(1)f x +在定义域[1,1]b b -+上为偶函数.(1)判断()g x 在(1,1)-上的单调性;(2)解不等式(1)(2)0g t g t -+<.【题型十】含绝对值型【典例分析】已知函数()234x bf x ax +=+是定义在()2,2-上的偶函数,且()315f =.(1)求,a b 的值;(2)判断函数()f x 在区间()0,2上的单调性,并证明;(3)解不等式()()2122f m f m +>-.已知函数1()a x f x x-=(1)写出函数()f x 的单调区间;(2)若()2f x x <在(1,)+∞恒成立,求实数a 的取值范围;(3)若函数()y f x =在[,]m n 上值域是[,]()m n m n ≠,求实数a 的取值范围.分阶培优练培优第一阶——基础过关练1.已知函数()21xf x x =+(1)判断()f x 的奇偶性;(2)若当()1,2x ∈时,()f x m >恒成立,求实数m 的取值范围.2.已知函数()2x b f x x a +=+,函数()f x 为R 上的奇函数,且()112f =.(1)求()f x 的解析式:(2)判断()f x 在区间()1,1-上的单调性,并用定义给予证明:(3)若()f x 的定义域为()1,1-时,求关于x 的不等式()()2120f x f x -+<的解集.3.已知()21x f x x =+.(1)若函数()y h x =是偶函数,且当0x ≥时,()()h x f x =,当0x <时,求()h x 的表达式;(2)证明:函数()y f x =在区间1,2⎛⎫-+∞ ⎪⎝⎭上是严格增函数.4.已知函数2212()1x f x x -=+.(1)判断()f x 的奇偶性,并证明;(2)证明:()f x 在区间(0,)+∞上单调递减.5.已知定义在R 上的函数()412x x f x x -=+.(1)求证:()f x 是奇函数;(2)求证:()f x 在R 上单调递增;(3)求不等式()()22340f x f x -+-<的解集.培优第二阶——能力提升练1.已知函数()21ax b f x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭.(1)求函数()f x 的解析式;(2)判断函数()f x 在()1,1-上的单调性.(3)解关于t 的不等式:11022f t f t ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝+⎭+-≤.2.已知函数()2142x a f x a x +-=-(x R ∈且2x a ≠).(1)当()f x 的定义域为12,2a ⎡⎫++∞⎪⎢⎣⎭时,求函数()f x 的值域;(2)设函数()()()22g x x a x f x =+-,求()g x 的最小值.3.已知函数2()1x f x x =+.(1)用定义证明函数()f x 在区间(1,)+∞上单调递增;(2)对任意[2,4]x ∈都有()f x m ≤成立,求实数m 的取值范围.4.已知函数21()([1,1])1x b f x x x +-=∈-+是奇函数,2()(2)1g x x a x =+-+是偶函数.(1)求a b +.(2)判断函数()f x 在[1,1]-上的单调性并说明理由,再求函数()f x 在[1,1]-上的最值.(3)若函数()f x 满足不等式(1)(2)0f t f t -+<,求出t 的范围.培优第三阶——培优拔尖练1.已知函数21()ax f x x b +=+是奇函数,且()12f =.(1)求()f x 的解析式;(2)判断函数()f x 的单调性,并证明你的结论;(3)若1x ,2(1,)x ∈+∞,且12x x ≠.求证12121([()()]22x x f f x f x +<+.2.已知函数()21x f x ax b+=+是其定义域内的奇函数,且()12f =,(1)求()f x 的表达式;(2)设()()(0)x F x x f x =>,求()()()()1111232021232021F F F F F F F ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.3.已知定义在R 上的函数()()41R 2x x f x x a a =++∈为偶函数.(1)求a 的值;(2)判断()f x 在R 上的单调性(不用证明);(3)已知函数()22g x x x m =--,[]1,4x ∈-,若对1x ∀∈R ,总有[]21,4x ∃∈-,使得()()12f x g x ≤成立,试求实数m 的取值范围.4.设()21f x x ax =--+,()22ax x a g x x ++=.(1)若()f x 在区间[]1,2上是单调函数,求a 的取值范围;(2)若存在[]11,2x ∈,使得对任意的21,12x ⎡⎤∈⎢⎥⎣⎦,都有()()12f x g x ≥成立,求实数a 的取值范围.。
初三数学反比例函数试题
初三数学反比例函数试题1.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点重合,在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数中,k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大【答案】C.【解析】设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值.∴a+b为定值.设(定值),则∵矩形对角线的交点与原点O重合, ∴k=AB•AD=ab=.∴k是a的二次函数,它的图象开口向下,当时,有最大值.∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.【考点】1.单动点问题;2.曲线上点的坐标与方程的关系;3.矩形的性质;4.二次函数的性质.2.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N. (1)求过O,B,E三点的二次函数关系式;(2)求直线DE的解析式和点M的坐标;(3)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上.【答案】(1)过O,B,E三点的二次函数关系式为:y=﹣x2+x;(2)直线DE的解析式为:y=﹣x+3;M(2,2);(3)点N在函数y=的图象上.【解析】(1)首先把O(0,0),B(4,2),E(6,0)代入y=ax2+bx+c,得方程,解此方程即可;(2)首先设直线DE的解析式为:y=kx+b,然后将点D,E的坐标代入即可求得直线DE的解析式,又由点M在AB边上,B(4,2),而四边形OABC是矩形,可得点M的纵坐标为2,求得点M的坐标;(3)由反比例函数y=(x>0)的图象经过点M,可求该反比例函数的解析式,又由点N在BC边上,B(4,2),可得点N的横坐标为4.然后由点N在直线y=﹣x+3上,求得点N的坐标,即可判断.试题解析:(1)设过O,B,E三点的二次函数关系式为:y=ax2+bx+c;把O(0,0),B(4,2),E(6,0)代入y=ax2+bx+c,得,解得:,∴过O,B,E三点的二次函数关系式为:y=﹣x2+x;(2)设直线DE的解析式为:y=kx+b,∵点D,E的坐标为(0,3)、(6,0),∴,解得,∴直线DE的解析式为:y=﹣x+3;∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2.又∵点M在直线y=﹣x+3上,∴2=﹣x+3.∴x=2.∴M(2,2);(3)∵y=(x>0)经过点M(2,2),∴m=4.∴该反比例函数的解析式为:y=,又∵点N在BC边上,B(4,2),∴点N的横坐标为4.∵点N在直线y=﹣x+3上,∴y=1.∴N(4,1).∵当x=4时,y==1,∴点N在函数y=的图象上.【考点】反比例函数综合题.3.下列各点在双曲线y=上的是()A.(3,-4)B.(4,-3)C.(-2,6)D.(-2,-6)【答案】D.【解析】双曲线y=,∴12=xy,A、3×(-4)≠12,故本选项错误;B、4×(-3)≠12,故本选项错误;C、(-2)×6≠12,故本选项错误;D、(-2)×(-6)=12,故本选项正确;故选D.【考点】反比例函数图象上点的坐标特征.4.如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数(x>0)的图象经过顶点B,则k的值为.【答案】32.【解析】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数 (x>0)的图象上,∴.【考点】1.菱形的性质;2.勾股定理;3.曲线上点的坐标与方程的关系.5.双曲线y=的图象经过第二、四象限,则k的取值范围是________.【答案】k<【解析】因反比例函数的图象经过第二、四象限,所以2k-1<0,即k<.故答案是k<.6.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()【答案】C.【解析】根据题意有:xy=6;故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应>0,其图象在第一象限,即可得出答案.解答:解:∵xy=6,∴y=(x>0,y>0).故选C.考点: 反比例函数的应用.7.如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.【答案】(1)一次函数解析式为:y1=x+2,B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.【解析】(1)利用待定系数法把 A(1,3)代入一次函数y1=x+m与反比例函数中,可解出m、k的值,进而可得解析式,求B点坐标,就是把两函数解析式联立,求出x、y的值;(2)根据函数图象可以直接写出答案.试题解析:(1)∵一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点 A(1,3),∴3=1+m,k=1×3,∴m=2,k=3,∴一次函数解析式为:y1=x+2,反比例函数解析式为:y2=,由,解得:x1=﹣3,x2=1,当x1=﹣3时,y1=﹣1,x 2=1时,y1=3,∴两个函数的交点坐标是:A(1,3)和B(﹣3,﹣1)∴B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.考点:反比例函数解析式,一次函数解析式,反比例函数的性质.8.已知反比例函数y=的图象经过点(2,﹣2),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【答案】D.【解析】当k大于0时,反比例函数的图象在第一、三象限,当k小于0时,反比例函数的图象在第二、四象限,将点(2,-2)代入,求得k=-4,所以反比例函数的图象在第二、四象限.故选D.【考点】反比例函数的图象.9.小兰画了一个函数的图象如图,那么关于x的分式方程的解是()A.x=1B.x="2" C.x="3" D.x="4"【答案】A.【解析】关于x的分式方程的解就是函数中,纵坐标y=2时的横坐标x的值.根据图象可以得到:当y=2时,x=1.故选A.【考点】反比例函数的图象.10.已知正比例函数与反比例函数的图象的一个交点坐标为(-1,2),则另一个交点的坐标为.【答案】(1,-2)【解析】根据正比例函数与反比例函数的交点关于原点对称进行解答即可:∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称。
人教版九年级下数学第二十六章反比例函数单元检测卷含答案
第二十六章检测卷(120分钟150分)一、选择题(本大题共1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y 轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.:16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?第二十六章检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.解:∵y=x2m-1是反比例函数,∴2m-1=-1,解得m=0.16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?解:∵由题意得xy=1200,∴y=,∴y是x的反比例函数.四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.解:(1)设反比例函数解析式为y=,把A点坐标(2,-3)代入得k=2×(-3)=-6,所以反比例函数的解析式为y=-.(2)把P点坐标代入y=-,得3×=-6,解得a=-4,把Q点坐标(-5,b)代入y=-,得-5b=-6,解得b=,所以a+=-4+=-4+1=-3.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.解:(1)∵反比例函数y=的图象经过点C(3,m),∴m=4.作CD⊥x轴于点D,由勾股定理,得OC==5,∴菱形OABC的周长为20.(2)作BE⊥x轴于点E,∵BC=OA=5,OD=3,∴OE=8.又∵BC∥OA,∴BE=CD=4,∴B(8,4).五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.解:如图,过D点作GH⊥x轴,过A点作AG⊥GH,过B点作BM⊥HC于点M.设D点坐标为,∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-=-x-1-,x=-2,∴D点坐标为(-2,-3),CH=DG=BM=1-=4,-∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-,∴E点坐标为--,∴EH=2-,∴CE=CH-HE=4-,∴S△CEB=CE·BM=×4=7.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.解:(1)将B点坐标代入函数解析式,得=2,解得k=6,∴反比例函数的解析式为y=.(2)∵B(3,2),点B与点C关于原点O对称,∴C点坐标(-3,-2).∵BA⊥x轴于点A,CD⊥x轴于点D,∴A点坐标(3,0),D点坐标(-3,0).∴S△ACD=AD·CD=×[3-(-3)]×|-2|=6.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(-4,-3),∴k=-4×(-3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),点C(6m,y2),∴y1=,y2=,∵y1-y2=4,∴=4,∴m=1.(2)设BD与x轴交于点E.∵点B,点C,∴D点坐标为,BD=.∵三角形PBD的面积是8,∴BD·PE=8,∴·PE=8,∴PE=4m,∵E点坐标为(2m,0),点P在x轴上,∴点P的坐标为(-2m,0)或(6m,0).七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)函数解析式为y=.表格中数从左至右:300,50.(2)2104-(30+40+48+50+60+80+96+100)=1600.当x=150时,y==80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)1600-80×15=400(千克).400÷2=200(千克).即如果正好用2天售完,那么每天需要售出200千克.当y=200时,x==60.答:新确定的价格最高不超过60元/千克才能完成销售任务.八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?解:(1)∵--=1+-,∴a=-4.(2)---------=-3--,∴当m-1=3或-3或1或-1时,分式的值为整数,解得m=4或m=-2或m=2或m=0.(3)y=------=3+-,∴将y=的图象向右移动2个单位长度得到y=-的图象,再向上移动3个单位长度得到y-3=-,即y=--.。
分式与反比例函数测试题
分式与反比例函数测试题一、选择题1、下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个 A 、2 B 、3 C 、4 D 、5 2、下列函数解析式中,y 是x 的反比例函数的是( )21111.,.,.,.1.21A yB yC yD y xxx x =-===--3、若分式2242x x x ---的值为零则x 的值是( )A.2或-2B.2C.-2D.4 4、下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++D 、()222y x y x +- 5、下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a ba b D 、()()y x a b y b a x =-- 6、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
A 、221v v +千米 B 、2121v v v v +千米 C 、21212v v v v +千米 D 无法确定7、若函数()3y 2m m x-=+是反比例函数,则m 的值是( )A .-2B .2C .±2D .任意值8、若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y=-1x 的图象上的点,并且x 1<0<x 2<x 3,则下列各式中正确的是 ( )A .y 1<y 2<y 3B .y 3<y 2<y 1C . y 2<y 3<y 1D .y 1<y 3<y 29、函数y=1x 与y=x 的图像在平面直角坐标系上交点的个数是( )A .1个B .3个C .2个D .0个10、某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为 ( )A .x +48720-548720=B .x +=+48720548720C .572048720=-xD .-48720x +48720=5 二、填空题11、当2x ≠时,分式b x ax +-有意义,则b=______________;12、函数y=2(3)12x x -+--中,自变量x 的取值范围是___________. 13、计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________.14、用科学记数法表示:12.5克=________吨. 15、已知反比例函数2k y x -=,其图象在第一、第三象限内,则k 的取值范围是———— 16、反比例函数22)12(-+=kx k y 在每个象限内y 随x 的增大而增大,则k=三、计算题 1、化简(1)35(2)482y y y y -÷+--- (2)2244)2)(1(22-÷⎥⎦⎤⎢⎣⎡--+--+a a a a a a a a a2、解下列分式方程:(1)132+=x x (2)13132=-+--x x x3、先化简,再求值168422+--x x xx ,其中x =5.(2)试求所得函数图象的函数解析式。
初三数学反比例函数试题
初三数学反比例函数试题1.如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).【答案】(1)反比例函数的解析式为;(2)说明见解析;(3)a的范围为.【解析】(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入即可得到m=2,从而可确定反比例函数的解析式;(2)把x=3代入y=kx+3-3k(k≠0)得到y=3,即可说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,由于一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由得到,于是得到a的取值范围.(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(3,1),C(3,3),∴BC⊥x轴,AD=BC=2,而A点坐标为(1,0),∴点D的坐标为(1,2).∵反比例函数的函数图象经过点D(1,2),∴,∴m=2,∴反比例函数的解析式为;(2)当x=3时,y=kx+3-3k=3k+3-3k=3,∴一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,则a的范围为.【考点】反比例函数综合题.2.反比例函数y=过点(2,3),则k=_____________________;反比例函数y=过点(-2,3),则k=_________________.【答案】6 -5【解析】点在函数图象上,则点的坐标满足函数关系式,把点的坐标值代入解析式求k的值.3= ,k=6;=3,k-1=-6,k=-5.3.反比例函数的图象在象限.【答案】一、三.【解析】利用反比例函数的性质,由k>0得出函数图象位于一、三象限.故答案是一、三.【考点】反比例函数的性质.4.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限内交于点,与轴交于点,与轴交于点,。
浙教版八年级下册第6章《反比例函数》综合测试卷(含答案解析)
浙教版八年级下册第6章《反比例函数》综合测试卷考试时间:100分钟满分:120分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列四个函数中,是反比例函数的是()A.y=B.y=C.y=3x﹣2D.y=x22.(3分)反比例函数y=,当x>0时,y随x的增大而减小,那么m的取值范围是()A.m<3B.m>3C.m<﹣3D.m>﹣33.(3分)已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小4.(3分)已知点A与点B关于原点对称,A的坐标是(2,﹣3),那么经过点B的反比例函数的解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣5.(3分)如图,点A在双曲线y=上,B在y轴上,且AO=AB,若△ABO的面积为6,则k的值为()A.6B.﹣6C.12D.﹣126.(3分)如图,P是双曲线上一点,且图中△POA的面积为5,则此反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=7.(3分)函数y=(k≠0)的图象如图所示,那么函数y=kx﹣k的图象大致是()A.B.C.D.8.(3分)若点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1 9.(3分)若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b ﹣≤﹣2的解集为()A.0<x≤2或x≤﹣4B.﹣4≤x<0或x≥2C.≤x<0或x D.x或010.(3分)如图,反比例函数y1=和正比例函数y2=k2x的图象交于A(﹣2,﹣3)、B (2,3)两点,若>k2x,则x的取值范围是()A.x<﹣2或0<x<2B.﹣2<x<0或x>2C.﹣2<x<0D.﹣2<x<2二.填空题(共8小题,满分32分,每小题4分)11.(4分)如图,在平面直角坐标系中,直线y=﹣2x+2与x轴,y轴分别相交于点A,B,四边形ABCD是正方形,双曲线y=在第一象限经过点D,则双曲线解析式是.12.(4分)若函数y=(3﹣k)x是反比例函数,那么k的值是.13.(4分)反比例函数y=在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是.14.(4分)某产品的进价为50元,该产品的日销量y(件)是日销价x(元)的反比例函数,且当售价为每件100元时,每日可售出40件,为获得日利润为1500元,售价应定为.15.(4分)一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请根据图中的已知条件,写出当ρ=1.1kg/m3时,二氧化碳的体积V=m3.16.(4分)已知点A(3,a)、B(﹣1,b)在函数y=﹣的图象上,那么a b(填“>”或“=”或“<”)17.(4分)已知正比例函数y=kx与反比例函数的一个交点是(2,3),则另一个交点是(,).18.(4分)如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x 轴平行,点P(2a,a)是反比例函数y=的图象与正方形的一个交点,则图中阴影部分的面积是.三.解答题(共7小题,满分58分)19.(6分)若矩形的长为x,宽为y,面积保持不变,下表给出了x与y的一些值求矩形面积.(1)请你根据表格信息写出y与x之间的函数关系式;(2)根据函数关系式完成上表.20.(6分)已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.21.(8分)已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A,那么该用电器的可变电阻至少是多少?22.(8分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、三象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.24.(10分)如图,双曲线与直线y2=k2x+b相交于A(1,m+2),B(4,m﹣1),点P是x轴上一动点.(1)当y1>y2时,直接写出x的取值范围;(2)求双曲线与直线y2=k2x+b的解析式;(3)当△P AB是等腰三角形时,求点P的坐标.25.(10分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线交反比例函数图象于点B.(1)求反比例函数和直线AC的解析式;(2)求△ABC的面积;(3)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D点的坐标.参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列四个函数中,是反比例函数的是()A.y=B.y=C.y=3x﹣2D.y=x2【分析】根据反比例函数的定义解答.【解答】解:A、y=是正比例函数,故本选项错误;B、y=符合反比例函数的定义,故本选项正确;C、y=3x﹣2是一次函数,故本选项错误;D、y=x2是二次函数,故本选项正确.故选:B.2.(3分)反比例函数y=,当x>0时,y随x的增大而减小,那么m的取值范围是()A.m<3B.m>3C.m<﹣3D.m>﹣3【分析】根据反比例函数y=,当x>0时,y随x增大而减小,可得出m﹣3>0,解之即可得出m的取值范围.【解答】解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣3>0,解得:m>3.故选:B.3.(3分)已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则0<y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D错误;故选:D.4.(3分)已知点A与点B关于原点对称,A的坐标是(2,﹣3),那么经过点B的反比例函数的解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】先根据中心对称的点的横坐标互为相反数,纵坐标互为相反数,求得B为(﹣2,3),然后把(﹣2,3)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:点A(2,﹣3),∴点A关于原点对称的点B的坐标(﹣2,3),∵反比例函数y=经过B点,∴k=﹣2×3=﹣6,∴反比例函数的解析式是y=﹣.故选:C.5.(3分)如图,点A在双曲线y=上,B在y轴上,且AO=AB,若△ABO的面积为6,则k的值为()A.6B.﹣6C.12D.﹣12【分析】过点A作AD⊥y轴于点D,结合等腰三角形的性质得到△ADO的面积为3,所以根据反比例函数系数k的几何意义求得k的值.【解答】解:如图,过点A作AD⊥y轴于点D,∵AB=AO,△ABO的面积为6,∴S△ADO=|k|=3,又反比例函数的图象位于第一、三象限,k>0,则k=6.故选:A.6.(3分)如图,P是双曲线上一点,且图中△POA的面积为5,则此反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=【分析】根据已知三角形POA面积求出k的值,即可确定出反比例解析式.【解答】解:∵P是双曲线上一点,且图中△POA的面积为5,∴k=﹣10,则反比例函数的解析式为y=﹣,故选:B.7.(3分)函数y=(k≠0)的图象如图所示,那么函数y=kx﹣k的图象大致是()A.B.C.D.【分析】首先由反比例函数y=的图象位于第二、四象限,得出k<0,则﹣k>0,所以一次函数y=kx﹣k图象经过一二四象限.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k<0,﹣k>0.∵k<0,∴函数y=kx﹣k的图象过二、四象限.又∵﹣k>0,∴函数y=kx﹣k的图象与y轴相交于正半轴,∴一次函数y=kx﹣k的图象过一、二、四象限.故选:B.8.(3分)若点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1【分析】先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数y=中k>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣2<0,∴点C(﹣2,y3)位于第三象限,∴y3<0,∵0<1<2,∴点A(1,y1),B(2,y2)位于第一象限,∴y1>y2>0.∴y1>y2>y3.故选:D.9.(3分)若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b ﹣≤﹣2的解集为()A.0<x≤2或x≤﹣4B.﹣4≤x<0或x≥2C.≤x<0或x D.x或0【分析】根据图形找出点的坐标,利用待定系数法求出一次函数和反比例函数解析式,将一次函数图象向上移2个单位长度找出新的一次函数解析式,联立新一次函数解析式和反比例函数解析式成方程组,通过解方程组求出交点坐标,结合函数图象即可得出不等式的解集.【解答】解:将(﹣2,0)、(0,﹣2)代入y=kx+b,,解得:,∴一次函数解析式为y=﹣x﹣2.当x=2时,y=﹣x﹣2=﹣4,∴一次函数图象与反比例函数图象的一个交点坐标为(2,﹣4),∴k=2×(﹣4)=﹣8,∴反比例函数解析式为y=﹣.将一次函数图象向上移2个单位长度得出的新的函数解析式为y=﹣x.联立新一次函数及反比例函数解析式成方程组,,解得:,.观察函数图象可知:当﹣2<x<0或x>2时,新一次函数图象在反比例函数图象下方,∴不等式﹣x≤﹣的解集为﹣2≤x<0或x≥2.故选:C.10.(3分)如图,反比例函数y1=和正比例函数y2=k2x的图象交于A(﹣2,﹣3)、B (2,3)两点,若>k2x,则x的取值范围是()A.x<﹣2或0<x<2B.﹣2<x<0或x>2C.﹣2<x<0D.﹣2<x<2【分析】根据一次函数与反比例函数的图象及交点A(﹣2,﹣3)、B(2,3)的坐标,可直观得出答案.【解答】解:根据图象,当>k2x,即反比例函数的值大于正比例函数值时自变量的取值范围为0<x<2或x<﹣2,故选:A.二.填空题(共8小题,满分32分,每小题4分)11.(4分)如图,在平面直角坐标系中,直线y=﹣2x+2与x轴,y轴分别相交于点A,B,四边形ABCD是正方形,双曲线y=在第一象限经过点D,则双曲线解析式是y=.【分析】过D作DE⊥x轴于E,先得到A点坐标为(1,0),B点坐标为(0,2),即OA=1,OB=2,根据正方形的性质得AB=AD,∠BAD=90°,利用等角的余角相等得到∠OBA=∠DAE,根据全等三角形的判定易得Rt△ABO≌Rt△DAE,则DE=OA=1,AE=OB=2,OE=OA+AE=1+2=3,于是可确定D点坐标为(3,1),然后利用待定系数法即可确定反比例函数的解析式.【解答】解:过D作DE⊥x轴于E,如图,令x=0,则y=2;令y=0,则﹣2x+2=0,解得x=1,∴A点坐标为(1,0),B点坐标为(0,2),∴OA=1,OB=2,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴∠OAB+∠DAE=90°而∠OBA+∠OAB=90°,∴∠OBA=∠DAE,而∠AOB=∠AED=90°,∴Rt△ABO≌Rt△DAE,∴DE=OA=1,AE=OB=2,∴OE=OA+AE=1+2=3,∴D点坐标为(3,1),把D(3,1)代入y=得,k=3×1=3.∴双曲线解析式为y=.故答案为y=.12.(4分)若函数y=(3﹣k)x是反比例函数,那么k的值是0.【分析】直接利用反比例函数的定义分析得出答案.【解答】解:∵函数y=(3﹣k)x是反比例函数,∴k2﹣3k﹣1=﹣1,3﹣k≠0,解得:k1=0,k2=3,(不合题意舍去)那么k的值是:0.故答案为:0.13.(4分)反比例函数y=在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是2.【分析】利用反比例函数k的几何意义得到|k|=1,然后利用反比例函数的性质确定k的值.【解答】解:∵△MOP的面积为1,∴|k|=1,而k>0,∴k=2,故答案为2.14.(4分)某产品的进价为50元,该产品的日销量y(件)是日销价x(元)的反比例函数,且当售价为每件100元时,每日可售出40件,为获得日利润为1500元,售价应定为80元.【分析】由y与x成反比例函数关系,可设出函数式为y=(k≠0),然后根据当售价为每件100元时,每日可售出40件求出k的值,再设为获得日利润1500元,售价应定为x元,根据每天可售出y件,每件的利润是(x﹣50)元,总利润为1500元,根据利润=售价﹣进价可列方程求解.【解答】解:设y与x的函数解析式为y=(k≠0).由题意得40=,解得k=4000,所以y=.设为获得日利润1500元,售价应定为x元,根据题意得y(x﹣50)=1500,即(x﹣50)=1500,解得x=80.经检验:x=80是原分式方程的解.答:为获得日利润1500元,售价应定为80元.故答案为80元.15.(4分)一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请根据图中的已知条件,写出当ρ=1.1kg/m3时,二氧化碳的体积V=9m3.【分析】利用待定系数法求出函数的解析式,再把ρ=1.1kg/m3代入即可求解.【解答】解:∵ρ=,∴m=ρV,而点(5,1.98)图象上,则代入得m=5×1.98=9.9(kg).所以当ρ=1.1kg/m3时,二氧化碳的体积V=9.9÷1.1=9m3.故答案为:9.16.(4分)已知点A(3,a)、B(﹣1,b)在函数y=﹣的图象上,那么a<b(填“>”或“=”或“<”)【分析】把点A(3,a)、B(﹣1,b)分别代入函数y=﹣中,即可得到结论.【解答】解:把点A(3,a)、B(﹣1,b)分别代入函数y=﹣中得,a=﹣1,b=3,∵﹣1<3,∴a<b,故答案为:<.17.(4分)已知正比例函数y=kx与反比例函数的一个交点是(2,3),则另一个交点是(﹣2,﹣3).【分析】此题可直接将坐标代入函数解析式,再联立解方程即可求出另一个交点.【解答】解:正比例函数y=kx①与反比例函数②的一个交点是(2,3),∴将(2,3)代入①得k=,代入②得k=6,即正比例函数y=x③,反比例函数y =④,∴x=,解之得x=±2,把x=﹣2代入③得y=﹣3.∴另一个交点是(﹣2,﹣3).故答案为:﹣2;﹣3.18.(4分)如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(2a,a)是反比例函数y=的图象与正方形的一个交点,则图中阴影部分的面积是4.【分析】先利用反比例函数解析式y=确定P点坐标为(2,1),由于正方形的中心在原点O,则正方形的面积为16,然后根据反比例函数图象关于原点中心对称得到阴影部分的面积为正方形面积的.【解答】解:把P(2a,a)代入y=得2a•a=2,解得a=1或﹣1,∵点P在第一象限,∴a=1,∴P点坐标为(2,1),∴正方形的面积=4×4=16,∴图中阴影部分的面积=S正方形=4.故答案为4.三.解答题(共7小题,满分58分)19.(6分)若矩形的长为x,宽为y,面积保持不变,下表给出了x与y的一些值求矩形面积.(1)请你根据表格信息写出y与x之间的函数关系式;(2)根据函数关系式完成上表.【分析】(1)矩形的宽=矩形面积÷矩形的长,设出关系式,由于(1,4)满足,故可求得k的值;(2)根据(1)中所求的式子作答.【解答】解:(1)设y=,由于(1,4)在此函数解析式上,那么k=1×4=4,∴;(2)4÷=4×=6,=2,4÷2=2,=,=.20.(6分)已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.【分析】(1)长方体的体积等于=长×宽×高,把相关数值代入即可求解;(2)把x=2代入(1)的函数解析式可得y的值.【解答】解:(1)由题意得,10xy=100,∴y=(x>0);(2)当x=2cm时,y==5(cm).21.(8分)已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A,那么该用电器的可变电阻至少是多少?【分析】(1)反比例函数经过点(10,4),代入反比例函数式,即可求得函数解析式.(2)I≤8时,根据反比例函数的单调递减性质,求电阻R的范围.【解答】解(1)设反比例函数表达式为I=(k≠0)将点(10,4)代入得4=∴k=40∴反比例函数的表达式为(2)由题可知,当I=8时,R=5,且I随着R的增大而减小,∴当I≤8时,R≥5∴该用电器的可变电阻至少是5Ω.22.(8分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;(2)根据(1)中的函数解析式可以求得点C,从而可以求得四边形MBOC是平行四边形,根据面积公式即可求得.【解答】解:(1)∵BM=OM=2,∴点B的坐标为(﹣2,﹣2),∵反比例函数y=(k≠0)的图象经过点B,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,解得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交于点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),∴OC=MB=2,∵BM⊥x轴,∴MB∥OC,∴四边形MBOC是平行四边形,∴四边形MBOC的面积是:OM•OC=4.23.(10分)如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、三象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.【解答】解:(1)把A(3,5)代入y2=(m≠0),可得m=3×5=15,∴反比例函数的解析式为y2=;把点B(a,﹣3)代入y2=,可得a=﹣5,∴B(﹣5,﹣3).把A(3,5),B(﹣5,﹣3)代入y1=kx+b,可得,解得,∴一次函数的解析式为y1=x+2;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,∴一次函数与y轴的交点为P(0,2),此时,PB﹣PC=BC最大,P即为所求,令y=0,则x=﹣2,∴C(﹣2,0),∴BC==3.(3)当y1>y2时,﹣5<x<0或x>3.24.(10分)如图,双曲线与直线y2=k2x+b相交于A(1,m+2),B(4,m﹣1),点P是x轴上一动点.(1)当y1>y2时,直接写出x的取值范围;(2)求双曲线与直线y2=k2x+b的解析式;(3)当△P AB是等腰三角形时,求点P的坐标.【分析】(1)根据图形和点A,B坐标即可得出结论;(2)根据点A,B在反比例函数图象上,求出m,k1,再代入直线解析式中,即可得出结论;(3)设出P坐标,利用等腰三角形的性质分三种情况,建立方程求解即可得出结论.【解答】解:(1)∵点A(1,m+2),B(4,m﹣1)是反比例函数和直线的交点坐标,∴0<x<1或x>4;(2)∵A(1,m+2),B(4,m﹣1)是反比例函数y1=上,∴,解得∴A(1,4),B(4,1)∵点A,B在直线y2=k2x+b上,∴,解得∴双曲线的解析式为,直线的解析式为y=﹣x+5;(3)设点P(a,0),则P A2=(a﹣1)2+42,AB2=18,PB2=(a﹣4)2+12①当P A=PB时,(a﹣1)2+42=(a﹣4)2+12解得a=0,∴P1(0,0),②当P A=AB时,(a﹣1)2+42=18,解得,,∴,,③当PB=AB时,(a﹣4)2+12=18,解得,,∴,,综上述,P1(0,0),,,,.25.(10分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线交反比例函数图象于点B.(1)求反比例函数和直线AC的解析式;(2)求△ABC的面积;(3)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D点的坐标.【分析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将A,C坐标代入直线解析式解答即可;(2)把x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标,进而利用三角形面积公式解答即可;(3)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D 的坐标即可.【解答】解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.把A(3,4),C(6,0)代入y=mx+n中,可得:,解得:,所以直线AC的解析式为:y=﹣x+8;(2)∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得y==2.则B(6,2).所以△ABC的面积=;(3)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y A﹣y D=y B﹣y C即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y D′﹣y A=y B﹣y C即y D﹣4=2﹣0,故y D′=6.所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC∥BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D″﹣x B=x C﹣x A即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B=y C﹣y A即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).。
山东省济南市2023中考数学模拟(二模)试题按题型难易度分层分类汇编(13套)-03解答题(提升题)
山东省济南市2023年各地区中考数学模拟(二模)试题按题型难易度分层分类汇编(13套)-03解答题(提升题)②一.分式方程的应用(共1小题)1.(2023•市中区二模)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成,已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装18间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天400元,乙公司安装费每天200元,现需安装教室60间,若想尽快完成安装工作且安装总费用不超过7000元,则最多安排甲公司工作多少天?二.一元一次不等式的应用(共1小题)2.(2023•天桥区二模)“4G改变生活,5G改变社会”,不一样的5G手机给人们带来了全新的体验,某营业厅现有A,B两种型号的5G手机出售,售出1部A型、1部B型手机共获利600元,售出3部A型、2部B型手机共获利1400元.(1)求A,B两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A,B两种型号手机共20部,其中B型手机的数量不超过A型手机数量的,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.三.一元一次不等式组的整数解(共1小题)3.(2023•天桥区二模)解不等式,并写出它的所有整数解.四.反比例函数综合题(共3小题)4.(2023•历下区二模)如图,矩形ABCD的边BC在平面直角坐标系中的x轴上,矩形对角线交于点M(2,2),过点M的反比例函数与矩形的边AD交于点E (1,a),AE=3,直线EM交x射于点F.(1)求反比例函数的表达式和点B的坐标;(2)若点P为x轴上一点,当PM+PD最小时,求出点P的坐标;(3)若点Q为平面内任意一点,若以点B,E,F,Q为顶点的四边形是平行四边形,请直接写出点Q的坐标.5.(2023•长清区二模)如图,一次函数y=x+8的图象与反比例函数的图象交于A(a,6),B两点.(1)求此反比例函数的表达式及点B的坐标;(2)在y轴上存在点P,使得AP+BP的值最小,求AP+BP的最小值.(3)M为反比例函数图象上一点,N为x轴上一点,是否存在点M、N,使△MBN是以MN为底的等腰直角三角形?若存在,请求出M点坐标;若不存在,请说明理由.6.(2023•济南二模)矩形OACB中,OB=4,OA=3,分别以OB、OA为x轴、y轴,建立如图1所示的平面直角坐标系,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,试探究:随着点F的运动,∠EFC的正切值是否发生变化?若不变,求出这个值;若变化,请说明理由;(3)如图2,将△CEF沿EF折叠,点C恰好落在OB边上的点G处,求此时点F的坐标.五.二次函数综合题(共1小题)7.(2023•济南二模)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C,当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当点E、F重合时,P、Q 两点同时停止运动,设运动时间为t秒(t>0),问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形,若能,请求出t的值;若不能,请说明理由.六.切线的性质(共3小题)8.(2023•天桥区二模)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)若AD=8,,求线段BE的长.9.(2023•商河县二模)如图,在△ABC中,AC=BC,以BC为直径作⊙O,交AC于点M,作CD⊥AC交AB延长线于点D,E为CD上一点,BE为⊙O的切线.(1)求证:BE=DE;(2)若AM=4,tan A=2,求BE的长.10.(2023•济南二模)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.七.解直角三角形的应用(共1小题)11.(2023•长清区二模)为给人们的生活带来方便,共享单车的租赁在我市正方兴未艾.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB =75°.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)(1)求AD的长;(2)求点E到AB的距离(结果保留整数).八.解直角三角形的应用-仰角俯角问题(共2小题)12.(2023•历城区二模)如图,有甲乙两座建筑物,从甲建筑物顶部A点处测得乙建筑物顶部D点的俯角α为45°,底部C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为8m,求甲建筑物的高度AB.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数)13.(2023•天桥区二模)如图,某建筑物AD楼顶立有高为6米的广告牌DE,小雪准备利用所学的三角函数知识估测此建筑物的高度.她从地面点B处沿坡度为i=3:4的斜坡BC 步行15米到达点C处,测得广告牌底部点D的仰角为45°,广告牌顶部点E的仰角为53°.(小雪的身高忽略不计,坡面的铅直高度与水平宽度的比称为坡度,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)求点C距离水平地面的高度;(2)求建筑物AD的高度.九.解直角三角形的应用-方向角问题(共1小题)14.(2023•济南二模)如图,某旅游景区为方便游客,修建了一条东西走向的栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西45°方向,在D处测得栈道另一端B位于北偏东32°方向.已知AC=60m,CD=46m,求栈道AB的长(结果保留整数).参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,≈1.414.一十.频数(率)分布直方图(共1小题)15.(2023•平阴县二模)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:75≤x<80,B组:80≤x<85,C 组:85≤x<90,D组:90≤x<95,E组:95≤x<100,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)频数分布直方图中m= ,所抽取学生成绩的中位数落在 组;(2)补全学生成绩频数分布直方图;(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?一十一.列表法与树状图法(共1小题)16.(2023•济南二模)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名生按要求都上交了一份征文,学校为了解选择各种征文主题的生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了 名学生的征文,并把条形统计图补充完整;(2)求扇形统计图中“爱国”所对应扇形的圆心角度数;(3)本次抽取的3份以“诚信”为主题的征文分别是甲、乙、丙的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求甲和乙征文同时被选中的概率.山东省济南市2023年各地区中考数学模拟(二模)试题按题型难易度分层分类汇编(13套)-03解答题(提升题)②参考答案与试题解析一.分式方程的应用(共1小题)1.(2023•市中区二模)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成,已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装18间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天400元,乙公司安装费每天200元,现需安装教室60间,若想尽快完成安装工作且安装总费用不超过7000元,则最多安排甲公司工作多少天?【答案】(1)甲公司每天安装3间教室,乙公司每天安装2间教室;(2)10天.【解答】解:(1)设乙公司每天安装x间教室,则甲公司每天安装1.5x间教室,根据题意得:,解得:x=2,经检验,x=2是所列方程的解,且符合题意,则1.5x=1.5×2=3,答:甲公司每天安装3间教室,乙公司每天安装2间教室;(2)设安排甲公司工作y天,则乙公司工作天,根据题意得:400y+×200≤7000,解得:y≤10,答:最多安排甲公司工作10天.二.一元一次不等式的应用(共1小题)2.(2023•天桥区二模)“4G改变生活,5G改变社会”,不一样的5G手机给人们带来了全新的体验,某营业厅现有A,B两种型号的5G手机出售,售出1部A型、1部B型手机共获利600元,售出3部A型、2部B型手机共获利1400元.(1)求A,B两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A,B两种型号手机共20部,其中B型手机的数量不超过A型手机数量的,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.【答案】(1)A种型号手机每部利润是200元,B种型号手机每部利润是400元;(2)营业厅购进A种型号的手机12部,B种型号的手机8部时获得最大利润,最大利润是5600元.【解答】解:(1)设A种型号手机每部利润是a元,B种型号手机每部利润是b元,由题意得:,解得.答:A种型号手机每部利润是200元,B种型号手机每部利润是400元;(2)设购进A种型号的手机x部,则购进B种型号的手机(20﹣x)部,获得的利润为w 元,w=200x+400(20﹣x)=﹣200x+8000,∵B型手机的数量不超过A型手机数量的,∴20﹣x≤x,解得x≥12,∵w=﹣200x+8000,k=﹣200,∴w随x的增大而减小,∴当x=12时,w取得最大值,此时w=﹣2400+8000=5600,20﹣x=20﹣12=8.答:营业厅购进A种型号的手机12部,B种型号的手机8部时获得最大利润,最大利润是5600元.三.一元一次不等式组的整数解(共1小题)3.(2023•天桥区二模)解不等式,并写出它的所有整数解.【答案】2<x≤5,3,4,5.【解答】解:,解不等式①,得x≤5,解不等式②,得x>2,所以不等式组的解集是2<x≤5,所以不等式组的整数解是3,4,5.四.反比例函数综合题(共3小题)4.(2023•历下区二模)如图,矩形ABCD的边BC在平面直角坐标系中的x轴上,矩形对角线交于点M(2,2),过点M的反比例函数与矩形的边AD交于点E (1,a),AE=3,直线EM交x射于点F.(1)求反比例函数的表达式和点B的坐标;(2)若点P为x轴上一点,当PM+PD最小时,求出点P的坐标;(3)若点Q为平面内任意一点,若以点B,E,F,Q为顶点的四边形是平行四边形,请直接写出点Q的坐标.【答案】(1)y=,点B(﹣2,0);(2)点P(,0);(3)点Q的坐标为:(﹣4,4)或(0,﹣4)或(6,4).【解答】解:(1)将点M的坐标代入反比例函数表达式得:k=2×2=4,则反比例函数表达式为:y=,将点E的坐标代入上式得:a==4,即点E(1,4),∵AE=3,则点A(﹣2,4),则点B(﹣2,0);(2)作点M关于x轴的对称点N(2,﹣2),连接DN交x轴于点P,则点P为所求点,由矩形的性质知,点M是BD的中点,由中点坐标公式得,点D(6,4),由点D、N的坐标得,直线DN的表达式为:y=x﹣5,令y=x﹣5=0,则x=,则点P(,0);(3)由点E、M的坐标得,直线EM的表达式为:y=﹣2x+6,当y=﹣2x+6=0时,则x=3,即点F(3,0),设点Q(x,y),当BE是对角线时,由中点坐标公式得:,解得:,即点Q的坐标为:(﹣4,4);当BF或BQ是对角线时,由中点坐标公式得:,解得:,则点Q的坐标为:(0,﹣4)或(6,4);综上,点Q的坐标为:(﹣4,4)或(0,﹣4)或(6,4).5.(2023•长清区二模)如图,一次函数y=x+8的图象与反比例函数的图象交于A(a,6),B两点.(1)求此反比例函数的表达式及点B的坐标;(2)在y轴上存在点P,使得AP+BP的值最小,求AP+BP的最小值.(3)M为反比例函数图象上一点,N为x轴上一点,是否存在点M、N,使△MBN是以MN为底的等腰直角三角形?若存在,请求出M点坐标;若不存在,请说明理由.【答案】(1)y=﹣,B(﹣6,2);(2)4;(3)存在,M(﹣4,3)或.【解答】解:(1)将A(a,6)代入y=x+8得:6=a+8,解得:a=﹣2,所以,A(﹣2,6),将A(﹣2,6)代入得:k=xy=﹣12,即反比例函数的表达式为:y=﹣,联立,解得:,所以,B(﹣6,2);(2)作点A关于y轴的对称点A'(2,6),连接A'B交y轴于点P,此时AP+BP的周长最小,则AP+BP的最小值=;(3)存在,理由:设,N(n,0)当点M在点B的右侧时,如图:过点B作BF⊥x轴于点F,交过点M和x轴的平行线于点H,∵△MBN是以MN为底的等腰直角三角形,则∠MBN=90°,MB=NB,∴∠FBN+∠HBM=90°,∠HBM+∠HMB=90°,∴∠FBN=∠HMB,∵∠MHB=∠BFN=90°,MB=NB,∴△MHB≌△BFN(AAS),∴HM=BF,HB=FN,即a﹣(﹣6)=2﹣0且﹣﹣2=n﹣(﹣6),解得:a=﹣4,n=﹣5,即点M(﹣4,3);当M在B点左侧时,同理可得,∴M(﹣4,3)或.6.(2023•济南二模)矩形OACB中,OB=4,OA=3,分别以OB、OA为x轴、y轴,建立如图1所示的平面直角坐标系,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,试探究:随着点F的运动,∠EFC的正切值是否发生变化?若不变,求出这个值;若变化,请说明理由;(3)如图2,将△CEF沿EF折叠,点C恰好落在OB边上的点G处,求此时点F的坐标.【答案】(1)E(2,3);(2)tan∠EFC=;(3)F(4,).【解答】解:(1)∵OB=4,OA=3,∴点A、B、C的坐标分别为:(0,3)、(4,0)、(4,3),点F运动到边BC的中点时,点F(4,),将点F的坐标代入y=并解得:k=6,故反比例函数的表达式为:y=,当y=3时,x==2,故E(2,3),故答案为:(2,3);(2)∵F点的横坐标为4,点F在反比例函数上,∴F(4,),∴CF=BC﹣BF=3﹣=,∵E的纵坐标为3,∴E(,3),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC==;(3)如图,由(2)知,CF=,CE=,=,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=∵BC=OA=3,∴CF=3﹣BF,∵折叠,∴GF=CF=3﹣BF,由勾股定理得GF2=GB2+BF2,∴BF=,∴F(4,).五.二次函数综合题(共1小题)7.(2023•济南二模)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0).(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C,当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当点E、F重合时,P、Q 两点同时停止运动,设运动时间为t秒(t>0),问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形,若能,请求出t的值;若不能,请说明理由.【答案】(1)y=﹣x2+x;(2)m=4;(3)以A、E、F、Q四点为顶点构成的四边形能是平行四边形,t=4或6.【解答】解:(1)由题意得,c=0,将点(8,0)的坐标代入y=﹣x2+bx得:0=﹣82+8b,解得:b=,则二次函数的表达式为:y=﹣x2+x①;(2)设点A的坐标为:(x,﹣x2+x),则点B(8﹣x,﹣x2+x),∵矩形ABCD为正方形,则AB=CD,即8﹣x﹣x=﹣x2+x,解得:x=2(不合题意的值已舍去),当x=2时,m=y=﹣x2+x=4;(3)以A、E、F、Q四点为顶点构成的四边形能是平行四边形,理由:当m=2时,点A的坐标为:(2,4)、点C(6,0),由点A、C得,直线AC的表达式为:y=﹣x+6②,联立①②并解得:x=9,即当x=9时,P、Q停止运动.∵以A、E、F、Q四点为顶点构成的四边形,则EF=AQ,由点A的坐标知,x=2+t,当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,设点E(2+t,﹣t2+t+4),则点F(2+t,﹣t+4),则EF=﹣t2+t+4+t﹣4=﹣t2+t,当0<t≤4时,∵AQ=t,则t=﹣t2+t,解得:t=0(舍去)或4;当4<t≤7时,则AQ=8﹣t,则8﹣t=﹣t2+t,解得:t=4(舍去)或6;综上,t=4或6.六.切线的性质(共3小题)8.(2023•天桥区二模)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)若AD=8,,求线段BE的长.【答案】(1)证明见解析部分;(2)5.【解答】(1)证明:如图,∵CD为⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠1=∠3,∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平分∠DAB;(2)解:连接AE,如图,∵AB是⊙O的直径,∴∠ACB=90°,∠AEB=90°,∵CE平分∠ACB,∴∠ACE=∠BCE=45°,∴∠BAE=∠ABE=45°,∴△AEB为等腰直角三角形,∴BE=AB,∵∠D=∠ACB=90°,∠DAC=∠CAB,∴△ADC∽△ACB,∴=,∴=,∴AB=10,∴BE=×10=5.9.(2023•商河县二模)如图,在△ABC中,AC=BC,以BC为直径作⊙O,交AC于点M,作CD⊥AC交AB延长线于点D,E为CD上一点,BE为⊙O的切线.(1)求证:BE=DE;(2)若AM=4,tan A=2,求BE的长.【答案】(1)证明见解析部分;(2).【解答】(1)证明:∵BE为⊙O的切线,∴OB⊥BE,∴∠ABC+∠EBD=90°,∵CD⊥AC,∴∠ACD=90°,∴∠A+∠D=90°,∵AC=BC,∴∠A=∠ABC,∴∠EBD=∠D,∴BE=DE;(2)解:连接BM,∵BC为⊙O的直径,∴BM⊥AC,∵AM=4,tan A==2,∴BM=2AM=8,∵AC=BC,∴CM=BC﹣AM=BC﹣4,∵BC2=BM2+CM2,∴BC2=82+(BC﹣4)2,∴BC=10,∴AC=BC=10,∵BM⊥AC,AC⊥CD,∴BM∥CD,∴∠MBC=∠BCE,∵∠BMC=∠CBM=90°,∴△BMC∽△CBE,∴,∴=,∴BE=,∴DE=BE=,故DE的长为.10.(2023•济南二模)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【答案】见试题解答内容【解答】解:(1)证明:连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.七.解直角三角形的应用(共1小题)11.(2023•长清区二模)为给人们的生活带来方便,共享单车的租赁在我市正方兴未艾.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB =75°.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)(1)求AD的长;(2)求点E到AB的距离(结果保留整数).【答案】(1)18cm;(2)66cm.【解答】解:(1)在Rt△ADF中,由勾股定理得;(2)过点E作EM⊥AB,垂足为M.AE=AD+CD+EC=18+35+15=68(cm),在Rt△AEM中,∵sin∠EAM=,∴EM=sin∠EAM•AE=sin75°×68≈0.97×68=65.96≈66(cm).答:点E到AB的距离为66cm.八.解直角三角形的应用-仰角俯角问题(共2小题)12.(2023•历城区二模)如图,有甲乙两座建筑物,从甲建筑物顶部A点处测得乙建筑物顶部D点的俯角α为45°,底部C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为8m,求甲建筑物的高度AB.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数)【答案】甲建筑物的高度AB约为21m.【解答】解:延长CD交AE于点F,由题意得:AB=CF,CF⊥AE,设AF=xm,在Rt△AFD中,∠FAD=45°,∴FD=AF•tan45°=x(m),在Rt△AFC中,∠FAC=58°,∴CF=AF•tan58°≈1.6x(m),∵CF﹣DF=CD,∴1.6x﹣x=8,解得:x=,∴AB=CF=1.6x≈21(m),∴甲建筑物的高度AB约为21m.13.(2023•天桥区二模)如图,某建筑物AD楼顶立有高为6米的广告牌DE,小雪准备利用所学的三角函数知识估测此建筑物的高度.她从地面点B处沿坡度为i=3:4的斜坡BC 步行15米到达点C处,测得广告牌底部点D的仰角为45°,广告牌顶部点E的仰角为53°.(小雪的身高忽略不计,坡面的铅直高度与水平宽度的比称为坡度,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)(1)求点C距离水平地面的高度;(2)求建筑物AD的高度.【答案】(1)点C距离水平地面的高度为9米;(2)建筑物AD的高度约为29米.【解答】解:(1)过点C作CF⊥AB,垂足为F,由题意得:BC=15米,∵斜坡BC的坡度为i=3:4,∴=,∴设CF=3x米,则BF=4x米,在Rt△CFB中,BC===5x(米),∴5x=15,∴x=3,∴CF=3x=9(米),∴点C距离水平地面的高度为9米;(2)过点C作CG⊥AE,垂足为G,由题意得:AG=CF=9米,设CG=x米,在Rt△CDG中,∠DCG=45°,∴DG=CG•tan45°=x(米),在Rt△ECG中,∠ECG=53°,∴EG=CG•tan53°≈1.3x(米),∵EG﹣DG=ED,∴1.3x﹣x=6,解得:x=20,∴DG=20米,∴AD=AG+DG=9+20=29(米),∴建筑物AD的高度约为29米.九.解直角三角形的应用-方向角问题(共1小题)14.(2023•济南二模)如图,某旅游景区为方便游客,修建了一条东西走向的栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西45°方向,在D处测得栈道另一端B位于北偏东32°方向.已知AC=60m,CD=46m,求栈道AB的长(结果保留整数).参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,≈1.414.【答案】栈道AB的长度约为115m.【解答】解:如图,过C作CH⊥AB于点H,过点D作DG⊥AB于点G,∵AB∥CD,∴CH∥DG.∴四边形CHGD是矩形.∴CH=DG,HG=CD.在Rt△ACH中,∠ACH=45°,AC=60m,∴CH=AC•cos45°=60×=(m),AH=AC•sin45°=60×=(m).在Rt△BDG中,∠DBG=32°,DG=CH=m,∴BG=DG•tan32°=×tan32°.∴AB=AH+HG+BG≈+46+×0.62≈115(m).答:栈道AB的长度约为115m.一十.频数(率)分布直方图(共1小题)15.(2023•平阴县二模)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:75≤x<80,B组:80≤x<85,C 组:85≤x<90,D组:90≤x<95,E组:95≤x<100,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)频数分布直方图中m= 60 ,所抽取学生成绩的中位数落在 D 组;(2)补全学生成绩频数分布直方图;(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?【答案】(1)60,D;(2)见解答;(3)1680人.【解答】解:(1)本次调查一共随机抽取的学生总人数为:96÷24%=400(名),∴B组的人数为:m=400×15%=60(名),∴m=60,∵所抽取学生成绩的中位数是第200个和第201个成绩的平均数,20+96+60=176,∴所抽取学生成绩的中位数落在D组,故答案为:60,D;(2)E组的人数为:400﹣20﹣60﹣96﹣144=80(人),补全学生成绩频数分布直方图如下:(3)3000×=16800(人),答:估计该校成绩优秀的学生有1680人.一十一.列表法与树状图法(共1小题)16.(2023•济南二模)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名生按要求都上交了一份征文,学校为了解选择各种征文主题的生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了 50 名学生的征文,并把条形统计图补充完整;(2)求扇形统计图中“爱国”所对应扇形的圆心角度数;(3)本次抽取的3份以“诚信”为主题的征文分别是甲、乙、丙的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求甲和乙征文同时被选中的概率.【答案】(1)50,统计图见解答;(2)144°;(3).【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图和扇形统计图如图所示,故答案为:50;(2)“爱国”占,40%×360°=144°;(3)树状图如图所示:共有6种等可能的结果,小义和小玉同学的征文同时被选中的有2种情形,甲和乙同学的征文同时被选中的概率=.。
黑龙江省牡丹江市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
黑龙江省牡丹江市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.分式方程的应用(共1小题)1.(2023•牡丹江)某商场欲购进A和B两种家电,已知B种家电的进价比A种家电的进价每件多100元,经计算,用1万元购进A种家电的件数与用1.2万元购进B种家电的件数相同.请解答下列问题:(1)这两种家电每件的进价分别是多少元?(2)若该商场欲购进两种家电共100件,总金额不超过53500元,且A种家电不超过67件,则该商场有哪几种购买方案?(3)在(2)的条件下,若A和B两种家电的售价分别是每件600元和750元,该商场从这100件中拿出两种家电共10件奖励优秀员工,其余家电全部售出后仍获利5050元,请直接写出这10件家电中B种家电的件数.二.一次函数的应用(共3小题)2.(2023•牡丹江)在一条高速公路上依次有A,B,C三地,甲车从A地出发匀速驶向C 地,到达C地休息1h后调头(调头时间忽略不计)按原路原速驶向B地,甲车从A地出发1.5h后,乙车从C地出发匀速驶向A地,两车同时到达目的地.两车距A地路程ykm 与甲车行驶时间xh之间的函数关系如图所示.请结合图象信息,解答下列问题:(1)甲车行驶的速度是 km/h,乙车行驶的速度是 km/h;(2)求图中线段MN所表示的y与x之间的函数解析式,并直接写出自变量x的取值范围;(3)乙车出发多少小时,两车距各自出发地路程的差是160km?请直接写出答案.3.(2022•牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C 地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为 米/分钟,乙的速度为 米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.4.(2021•牡丹江)某商场计划购进一批篮球和足球,其中篮球的单价比足球多30元.已知用360元购进的足球和用480元购进的篮球数量相等.(1)问篮球和足球的单价各是多少元?(2)若篮球的售价为150元,足球的售价为110元,商场计划用不超过10350元购进两种球共100个,其中篮球不少于40个,问商场共有几种进货方案?哪种方案商场获利最大?(3)希望小学为庆祝中国共产党成立100周年,举行百人球操表演,准备购买商场购进的这100个篮球和足球,商场知晓后决定从中拿出30个球赠送给这所希望小学,这样,希望小学相当于七折购买这批球.请直接写出商场赠送的30个球中篮球和足球的个数.三.一次函数综合题(共1小题)5.(2023•牡丹江)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2﹣6x+8=0的两个根(OB>OC.请解答下列问题:(1)求点B的坐标;(2)若OD:OC=2:1,直线y=﹣x+b分别交x轴、y轴、AD于点E,F,M,且M是AD的中点,直线EF交DC延长线于点N,求tan∠MND的值;(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使△NPQ是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由.四.反比例函数综合题(共1小题)6.(2021•牡丹江)如图,直线AB与x轴交于点A,与y轴交于点B.OB是一元二次方程x2﹣x﹣30=0的一个根,且tan∠OAB=,点D为AB的中点,E为x轴正半轴上一点,BE=2,直线OD与BE相交于点F.(1)求点A及点D的坐标;(2)反比例函数y=经过点F关于y轴的对称点F′,求k的值;(3)点G和点H在直线AB上,平面内存在点P,使以E,G,H,P为顶点的四边形是边长为6的菱形,符合条件的菱形有几个?请直接写出满足条件的两个点P的坐标.五.抛物线与x轴的交点(共1小题)7.(2023•牡丹江)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y 轴交于点C.(1)求抛物线对应的函数解析式,并直接写出顶点P的坐标;(2)求△BCP的面积.注:注抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(,).六.正方形的性质(共1小题)8.(2021•牡丹江)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,过点F作FG⊥BC于点G,连接AC.易证:AC =(EC+FG).(提示:取AB的中点M,连接EM)(1)当点E是BC边上任意一点时,如图2;当点E在BC延长线上时,如图3.请直接写出AC,EC,FG的数量关系,并对图2进行证明;(2)已知正方形ABCD的面积是27,连接AF,当△ABE中有一个内角为30°时,则AF 的长为 .七.四边形综合题(共2小题)9.(2023•牡丹江)▱ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.(1)当点E在线段BC上,∠ABC=45°时,如图①,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图②;当点E在线段CB延长线上,∠ABC=135°时,如图③,请猜想并直接写出线段AE,EC,BF的数量关系;(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE= .10.(2022•牡丹江)如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD∥BC,BD平分∠ABC,交AO于点E,交AC于点F,∠CAO=∠DBC.若OB,OC的长分别是一元二次方程x2﹣5x+6=0的两个根,且OB>OC.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数y=(k≠0)图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.八.作图—基本作图(共1小题)11.(2022•牡丹江)在菱形ABCD中,对角线AC和BD的长分别是6和8,以AD为直角边向菱形外作等腰直角三角形ADE,连接CE.请用尺规或三角板作出图形,并直接写出线段CE的长.九.作图—复杂作图(共1小题)12.(2023•牡丹江)在△ABC中,∠C=90°,∠B=60°,BC=2,D为AB的中点,以CD 为直角边作含30°角的Rt△CDE,∠DCE=90°,且点E与点A在CD的同侧,请用尺规或三角板作出符合条件的图形,并直接写出线段AE的长.一十.条形统计图(共1小题)13.(2022•牡丹江)为推进“冰雪进校园”活动,我市某初级中学开展:A.速度滑冰,B.冰尜,C.雪地足球,D.冰壶,E.冰球等五种冰雪体育活动,并在全校范围内随机抽取了若干名学生,对他们最喜爱的冰雪体育活动的人数进行统计(要求:每名被抽查的学生必选且只能选择一种),绘制了如图所示的条形统计图和扇形统计图.请解答下列问题:(1)这次被抽查的学生有多少人?(2)请补全条形统计图,并写出扇形统计图中B类活动扇形圆心角的度数是 ;(3)若该校共有1500人,请你估计全校最喜爱雪地足球的学生有多少人?黑龙江省牡丹江市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.分式方程的应用(共1小题)1.(2023•牡丹江)某商场欲购进A和B两种家电,已知B种家电的进价比A种家电的进价每件多100元,经计算,用1万元购进A种家电的件数与用1.2万元购进B种家电的件数相同.请解答下列问题:(1)这两种家电每件的进价分别是多少元?(2)若该商场欲购进两种家电共100件,总金额不超过53500元,且A种家电不超过67件,则该商场有哪几种购买方案?(3)在(2)的条件下,若A和B两种家电的售价分别是每件600元和750元,该商场从这100件中拿出两种家电共10件奖励优秀员工,其余家电全部售出后仍获利5050元,请直接写出这10件家电中B种家电的件数.【答案】(1)A种家电每件的进价为500元,B种家电每件的进价为600元;(2)该商场共有3种购买方案,方案1:购进A种家电65件,B种家电35件;方案2:购进A种家电66件,B种家电34件;方案3:购进A种家电67件,B种家电33件;(3)这10件家电中包含4件B种家电.【解答】解:(1)设A种家电每件进价为x元,则B种家电每件进价为(x+100)元,根据题意得:,解得:x=500,经检验,x=500是所列方程的解,且符合题意,∴x+100=500+100=600.答:A种家电每件的进价为500元,B种家电每件的进价为600元;(2)设购进A种家电a件,则购进B种家电(100﹣a)件,根据题意得:,解得:65≤a≤67,又∵a为正整数,∴a可以为65,66,67,∴该商场共有3种购买方案,方案1:购进A种家电65件,B种家电35件;方案2:购进A种家电66件,B种家电34件;方案3:购进A种家电67件,B种家电33件;(3)设这10件家电中包含m件B种家电,则包含(10﹣m)件A种家电,当a=65时,600×[65﹣(10﹣m)]+750(35﹣m)﹣500×65﹣600×35=5050,解得:m=,∵m为正整数,∴m=不符合题意,舍去;当a=66时,600×[66﹣(10﹣m)]+750(34﹣m)﹣500×66﹣600×34=5050,解得:m=,∵m为正整数,∴m=不符合题意,舍去;当a=67时,600×[67﹣(10﹣m)]+750(33﹣m)﹣500×67﹣600×33=5050,解得:m=4.答:这10件家电中包含4件B种家电.二.一次函数的应用(共3小题)2.(2023•牡丹江)在一条高速公路上依次有A,B,C三地,甲车从A地出发匀速驶向C 地,到达C地休息1h后调头(调头时间忽略不计)按原路原速驶向B地,甲车从A地出发1.5h后,乙车从C地出发匀速驶向A地,两车同时到达目的地.两车距A地路程ykm 与甲车行驶时间xh之间的函数关系如图所示.请结合图象信息,解答下列问题:(1)甲车行驶的速度是 120 km/h,乙车行驶的速度是 80 km/h;(2)求图中线段MN所表示的y与x之间的函数解析式,并直接写出自变量x的取值范围;(3)乙车出发多少小时,两车距各自出发地路程的差是160km?请直接写出答案.【答案】(1)120,80;(2)y=﹣80x+480(1.5≤x≤6);(3)乙车出发2.5h或4.1h,两车距各自出发地路程的差是160km.【解答】解:(1)由图可得D(3,360),即甲出发3时后与A地相距360km,∴甲车行驶速度为=120(km/h),由题意可得,乙车出发1.5h行驶120km,∴乙车行驶速度为=80(km/h),故答案为:120,80;(2)设线段MN所在直线的解析式为y=kx+b(k≠0),将(1.5,360),(3,240)代入y=kx+b,得,解得,∴线段MN所在直线的解析式为y=﹣80x+480(1.5≤x≤6);(3)由题意可得,当y=0时,x=6,∴N(6,0),∵两车同时到达目的地,∴乙到达目的地时,甲距离A地的距离为360﹣120×(6﹣3﹣1)=120(km),∴F(6,120),E(4,360),设乙车出发t时,两车距各自出发地路程的差是160km,当0<t≤1.5时,此时甲在到达C地前,则|80t﹣120×(t+1.5)|=160,解得t为负数,不合题意;当1.5<t≤2.5时,此时甲在C地休息,则|80t﹣360|=160,解得t1=2.5,t2=6.5(不合题意,舍去);当2.5<t≤4.5时,此时甲在C地休息,则|80t﹣[2×360﹣120×(t+1.5﹣1)]|=160,解得t1=2.5(不合题意,舍去),t2=4.1;综上,乙车出发2.5h或4.1h,两车距各自出发地路程的差是160km.3.(2022•牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C 地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为 300 米/分钟,乙的速度为 800 米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.【答案】(1)300;800;(2)直线FG的解析式为Ly=800x﹣2400(3≤x≤6).(3)出发分钟或分钟或6分钟后,甲乙两人之间的路程相距600米.【解答】解:(1)根据题意可知D(1,800),E(2,800),∴乙的速度为:800÷1=800(米/分钟),∴乙从B地到C地用时:2400÷800=3(分钟),∴G(6,2400).∴H(8,2400).∴甲的速度为2400÷8=300(米/分钟),故答案为:300;800;(2)设直线FG的解析式为:y=kx+b(k≠0),且由图象可知F(3,0),由(1)知G(6,2400).∴,解得,.∴直线FG的解析式为:y=800x﹣2400(3≤x≤6).(3)由题意可知,AB相距800米,BC相距2400米.∵O(0,0),H(8,2400),∴直线OH的解析式为:y=300x,∵D(1,800),∴直线OD的解析式为:y=800x,当0≤x≤1时,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,即甲乙朝相反方向走,∴令800x+300x=600,解得x=.∵当2≤x≤3时,甲从B继续往C地走,乙从A地往B地走,∴300x+800﹣800(x﹣2)=600解得x=(不合题意,舍去)∵当x>3时,甲从B继续往C地走,乙从B地往C地走,∴300x+800﹣800(x﹣2)=600或800(x﹣2)﹣(300x+800)=600,解得x=或x=6.综上,出发分钟或分钟或6分钟后,甲乙两人之间的路程相距600米.4.(2021•牡丹江)某商场计划购进一批篮球和足球,其中篮球的单价比足球多30元.已知用360元购进的足球和用480元购进的篮球数量相等.(1)问篮球和足球的单价各是多少元?(2)若篮球的售价为150元,足球的售价为110元,商场计划用不超过10350元购进两种球共100个,其中篮球不少于40个,问商场共有几种进货方案?哪种方案商场获利最大?(3)希望小学为庆祝中国共产党成立100周年,举行百人球操表演,准备购买商场购进的这100个篮球和足球,商场知晓后决定从中拿出30个球赠送给这所希望小学,这样,希望小学相当于七折购买这批球.请直接写出商场赠送的30个球中篮球和足球的个数.【答案】(1)足球单价为90元,则篮球单价为120元;(2)商场共有6种货方案,购买篮球45个,购买足球55个,商场获利最大;(3)商场赠送的30个球中篮球12个和足球18个.【解答】解:(1)设足球单价为x元,则篮球单价为(x+30)元,由题意得:,解得:x=90,经检验:x=90是原分式方程的解,则x+30=120,答:足球单价为90元,则篮球单价为120元;(2)设购买篮球n个,则购买足球(100﹣n)个,由题意得:120n+90(100﹣n)≤10350,解得:n≤45,∵篮球不少于40个,∴40≤n≤45,∴有6种方案:设商场获利w元,由题意得:w=(150﹣120)n+(110﹣90)(100﹣n)=10n+2000,∵10>0,∴w随n的增大而增大,∴n=45时,w有最大值,100﹣45=55(个),答:商场共有6种进货方案,购买篮球45个,购买足球55个,商场获利最大;(3)设商场赠送的30个球中篮球m个,足球(30﹣m)个,①购买篮球45个,购买足球55个时,由题意得:110×[55﹣(30﹣m)]+150×(45﹣m)=(150×45+110×55)×0.7,解得:m=(不是整数,不合题意),②购买篮球44个,购买足球56个时,由题意得:110×[56﹣(30﹣m)]+150×(44﹣m)=(150×44+110×56)×0.7,解得:m=(不是整数,不合题意),③购买篮球43个,购买足球57个时,由题意得:110×[57﹣(30﹣m)]+150×(43﹣m)=(150×43+110×57)×0.7,解得:m=(不是整数,不合题意),④购买篮球42个,购买足球58个时,由题意得:110×[58﹣(30﹣m)]+150×(42﹣m)=(150×42+110×58)×0.7,解得:m=(不是整数,不合题意),⑤购买篮球41个,购买足球59个时,由题意得:110×[59﹣(30﹣m)]+150×(41﹣m)=(150×41+110×59)×0.7,解得:m=(不是整数,不合题意),⑥购买篮球40个,购买足球60个时,由题意得:110×[60﹣(30﹣m)]+150×(40﹣m)=(150×40+110×60)×0.7,解得:m=12,30﹣12=18(个),答:商场赠送的30个球中篮球12个和足球18个.三.一次函数综合题(共1小题)5.(2023•牡丹江)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2﹣6x+8=0的两个根(OB>OC.请解答下列问题:(1)求点B的坐标;(2)若OD:OC=2:1,直线y=﹣x+b分别交x轴、y轴、AD于点E,F,M,且M 是AD的中点,直线EF交DC延长线于点N,求tan∠MND的值;(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使△NPQ是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由.【答案】(1)B(﹣4,0);(2)tan∠MND=;(3)存在点Q,使△NPQ是腰长为5的等腰三角形,共有8个,Q1(﹣4,5),Q2(,);Q3(4,﹣3),Q4(,);Q5(,).【解答】解:(1)由x2﹣6x+8=0,得x1=4,x2=2,∵OB>0C,∴OB=4,0C=2,∴B(﹣4,0);(2)∵OD:OC=2:1,OC=2,∴OD=4,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∵M是AD中点,∴MD=3,∴M(﹣3,4),将M(﹣3,4)代入y=﹣x+b,得:3+b=4,解得:b=1,在y=﹣x+b中,令x=0得y=1,令y=0得x=1,∴E(1,0),F(0,1),∴∠FEO=45°,过点C作CH⊥EN于H,过点N作NK⊥BC于K,∵∠DOC=∠NKC=90°,∠DCO=∠NCK,∴△DOC∽△NKC,∴DO:OC=NK:CK=2:1,∴NK=EK=2CK,∵CE=OC﹣OE=2﹣1=1,∴CK=1,NK=2,∴N(3,﹣2),∴EN=2,EH===CH,∴NH=EN﹣EH=,∴tan∠MND===;(3)存在点Q,使△NPQ是腰长为5的等腰三角形,理由如下:由(2)知,N(3,﹣2),设P(0,m),Q(t,﹣t+1),∴PN2=9+(m+2)2,QN2=2(t﹣3)2,PQ2=t2+(m+t﹣1)2,当PN=5时,9+(m+2)2=25,解得m=2或m=﹣6;当QN=5时,2(t﹣3)2,解得t=;①如图:△P'NQ1,△PNQ2,△P'NQ2是腰长为5的等腰三角形,结合图形可得Q1(﹣4,5),Q2(,);②如图:△P'NQ3,△P'NQ4,△PNQ4是边长为5的等腰三角形,结合图形可得Q3(4,﹣3),Q4(,);③如图:综上所述,腰长为5的等腰三角形NPQ共有8个,Q1(﹣4,5),Q2(,四.反比例函数综合题(共1小题)6.(2021•牡丹江)如图,直线AB与x轴交于点A,与y轴交于点B.OB是一元二次方程x2BE=2,直线OD与BE相交于点F.(1)求点A及点D的坐标;(2)反比例函数y=经过点F关于y轴的对称点F′,求k的值;(3)点G和点H在直线AB上,平面内存在点P,使以E,G,H,P为顶点的四边形是边长为6的菱形,符合条件的菱形有几个?请直接写出满足条件的两个点P的坐标.【答案】见试题解答内容【解答】解:(1)∵x2﹣x﹣30=0,∴x1=﹣5,x2=6,∴OB=6,∵tan∠OAB=,∴,∴OA=8,∴A(8,0),B(0,6),∵点D为AB的中点,∴D(4,3);(2)在Rt△OBE中,由勾股定理得:OE=,∴E(2,0),∴直线BE的函数解析式为:y=﹣3x+6,∵D(4,3),∴直线OD的函数解析式为:y=,当﹣3x+6=时,x=,此时y=,∴F(),∴点F关于y轴的对称点F′为(﹣),∵反比例函数y=经过点F',∴k=﹣=﹣;(3)如图1中,由AE=6,当H与A重合,GH是菱形的对角线时,∵以E,G,H,P为顶点的四边形是边长为6的菱形,∴BE=6,∵A(8,0),B(0,6),∴直线AB的函数解析式为:y=﹣,设G(m,﹣),∵EG=EH=6,∴(m﹣2)2+(﹣)2=62,∴m=或8(舍弃),∴G(,),∵BP∥AE,BP=AE=6,∴P(,).如图2中,当H与A重合,GH是菱形的边时,有两种情形,∵AG=AE=6,∴(8﹣m)2+(﹣m+6)2=62,解得m=或,∴G(,),G′(,﹣),∵PG∥AE,PG=AE=6,∴P(﹣,),P′(,﹣).如图3中,当GH为菱形的边,H与B不重合时,四边形EGHP是菱形,此时P(,﹣)或四边形EGH′P′是菱形,此时P′(﹣,),综上所述,符合条件的菱形有5个,点P的坐标为(,)或(﹣,)或(,﹣).五.抛物线与x轴的交点(共1小题)7.(2023•牡丹江)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y 轴交于点C.(1)求抛物线对应的函数解析式,并直接写出顶点P的坐标;(2)求△BCP的面积.注:注抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(,).【答案】(1)抛物线的解析式为y=x2﹣3x﹣4,点P(,﹣);(2).【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0),∴,解得,∴抛物线的解析式为y=x2﹣3x﹣4,∴P(,﹣);(2)连接OP,∵A(﹣1,0),B(4,0),C(0,﹣4),P(,﹣);∴S△OPC==3,S△BOP==,S△BOC==8,∴S△BPC=S△OPC+S△BOP﹣S△BOC=3+﹣8=.六.正方形的性质(共1小题)8.(2021•牡丹江)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,过点F作FG⊥BC于点G,连接AC.易证:AC =(EC+FG).(提示:取AB的中点M,连接EM)(1)当点E是BC边上任意一点时,如图2;当点E在BC延长线上时,如图3.请直接写出AC,EC,FG的数量关系,并对图2进行证明;(2)已知正方形ABCD的面积是27,连接AF,当△ABE中有一个内角为30°时,则AF 的长为 6或6 .【答案】见试题解答内容【解答】解:(1)如图2中,结论:AC=(FG+EC).理由:在AB上截取BM=BE,连接EM,∵四边形ABCD是正方形,∴∠B=∠BCD=90°,AB=BC,∴∠DCG=90°,∠EAM+∠AEB=90°,∵BM=BE,∴AB﹣BM=BC﹣BE,∠BME=∠BEM=45°,∴AM=EC,∠AME=135°,∵CF平分∠DCG,∴∠FCG=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEF=90°,∴∠FEC+∠AEB=90°,∴∠EAM=∠FEC,∴在△AEM和△EFC中,,∴△AEM≌△EFC(ASA),∴EM=CF,∵EM=BE,CF=FG,∴BE=FG,∵AC=BC=(BE+EC),∴AC=(FG+EC).如图3中,结论:AC=(FG﹣EC).(2)如图1中,当∠BAE=30°时,∵正方形的面积为27,∴AB=3,∠B=90°,∴BE=AB•tan30°=3×=3,∴AE=2BE=6,∵△AEM≌△EFC∴AE=EF=6,∴AF=6,如图3中,当∠AEB=30°时,同法可得AE=EF=2AB=6,∴AF=AE=6,综上所述,AF的长为6或6.七.四边形综合题(共2小题)9.(2023•牡丹江)▱ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.(1)当点E在线段BC上,∠ABC=45°时,如图①,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图②;当点E在线段CB延长线上,∠ABC=135°时,如图③,请猜想并直接写出线段AE,EC,BF的数量关系;(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE= 1或7 .【答案】(1)证明见解答;(2)图②,AE﹣EC=BF;图③,EC﹣AE=BF;(3)1或7.【解答】(1)证明:如图①,∵AE⊥BC于点E,∴∠AEB=90°,∵∠ABC=45°,∴∠BAE=∠ABC=45°,∴BE=AE,∵将ED绕点E逆时针旋转90°,得到EF,∴∠DEF=90°,EF=ED,∴∠BEF=∠AED=90°﹣∠AEF,∵BE=AE,∠BEF=∠AED,EF=ED,∴△BEF≌△AED(SAS),∴BF=AD,∵四边形ABCD是平行四边形,∴BC=AD,∴AE+EC=BE+EC=BC=AD,∴AE+EC=BF.(2)解:图②,AE﹣EC=BF;图③,EC﹣AE=BF,理由:如图②,AE⊥BC交BC的延长线于点E,∴∠AEB=90°,∵∠ABC=45°,∴∠BAE=∠ABC=45°,∴BE=AE,∵将ED绕点E逆时针旋转90°,得到EF,∴∠DEF=90°,EF=ED,∴∠BEF=∠AED=90°﹣∠AEF,∵BE=AE,∠BEF=∠AED,EF=ED,∴△BEF≌△AED(SAS),∴BF=AD,∵BC=AD,∴AE﹣EC=BE+EC=BC=AD,∴AE﹣EC=BF;如图③,AE⊥BC交CB的延长线于点E,∴∠AEB=90°,∵∠ABC=135°,∴∠ABE=180°﹣∠ABC=45°,∴∠BAE=∠ABE=45°,∴BE=AE,∵将ED绕点E逆时针旋转90°,得到EF,∴∠DEF=90°,EF=ED,∴∠BEF=∠AED=90°﹣∠BED,∵BE=AE,∠BEF=∠AED,EF=ED,∴△BEF≌△AED(SAS),∴BF=AD,∴BC=AD,∴EC﹣AE=EC﹣BE=BC=AD,∴EC﹣AE=BF.(3)解:如图①,∵AD∥BC,∴∠DAE=∠AEB=90°,∵AE=BE=3,DE=5,∴AD===4,∴BC=AD=4,∴CE=BC﹣BE=4﹣3=1;如图②,∵AD∥BC,∴∠DAE=∠AEB=90°,∵AE=BE=3,DE=5,∴AD===4,∴BF=AD=4,∵AE﹣EC=BF,∴EC=AE﹣BF=3﹣4=﹣1,即CE=﹣1,不符合题意,舍去;如图③,∵AD∥BC,∴∠DAE=180°﹣∠AEB=90°,∵AE=BE=3,DE=5,∴AD===4,∴BC=AD=4,∴CE=BE+BC+3+4=7,综上所述,CE=1或CE=7,故答案为:1或7.10.(2022•牡丹江)如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD∥BC,BD平分∠ABC,交AO于点E,交AC于点F,∠CAO=∠DBC.若OB,OC的长分别是一元二次方程x2﹣5x+6=0的两个根,且OB>OC.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数y=(k≠0)图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.【答案】(1)B(﹣3,0),C(2,0);(2)y=;(3)存在,N4(3,﹣12),N5(,﹣),N6(,﹣),理由见解答过程.【解答】解:(1)由x2﹣5x+6=0,解得x1=2,x2=3,∵OB,OC的长分别是方程的两个根,且OB>OC,∴OB=3,OC=2.∴B(﹣3,0),C(2,0);(2)∵AO⊥BC,∴∠AOB=90°,∵∠CAO=∠DBC,∠CAO+∠AFB=∠DBC+∠AOB,∴∠AFB=∠AOB=90°.∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠AFB=90°,∴∠BAC=∠BCA,∴AB=BC=5,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠ADB,∴AB=AD=5,∵在Rt△ABO中,AO===4,∴D(5,4),∴反比例函数解析式为:y=;(3)存在,N4(3,﹣12),N5(,﹣),N6(,﹣),理由:过点D作DG⊥x轴于点G,∵B(﹣3,0),D(5,4),∴BG=8,DG=4,BD==4,∵使以B,D,M,N为顶点的四边形是边长比为2:3的矩形,①当BD是矩形一边,且是短边时,即图中矩形BDM1N1和矩形BDM4N4,由BD:N1B=2:3,得N1B=6,过点N1作N1H⊥x轴于点H,由一线三等角易得△BDG∽△N1BH,∴根据相似三角形三边对应成比例得:BH=6,N1H=12,∴OH=OB+BH=3+6=9,∴N1(﹣9,12),同理得点N4(3,﹣12),当BD是矩形一边,且是长边时,即图中矩形BDM2N2和矩形BDM3N3,方法同上,得点N2(﹣,),N3(﹣,﹣);②当BD是对角线时,如下图:以BD为半径作圆,矩形BN5DM5,BN6DM6即为符合题意矩形,当BN5:N5D=2:3时,过点N5作KL∥x轴,过点B作BK⊥KL于点K,过点D作DL ⊥KL于点L,由一线三等角易得△BKN5∽△DLN5,∴===,∴BK=N5L,KN5=LD,设N5L=x,LD=y,∴BK=x,KN5=y,∵N5L+KN5=8,DL﹣BK=4,∴,解得:,∴KN5=y==,N5的横坐标=﹣3=,同理得N5的纵坐标=﹣;再同理得:当BN5:N5D=3:2时,N6(,﹣).综上所述:在第四象限内点N的坐标为N4(3,﹣12),N5(,﹣),N6(,﹣).八.作图—基本作图(共1小题)11.(2022•牡丹江)在菱形ABCD中,对角线AC和BD的长分别是6和8,以AD为直角边向菱形外作等腰直角三角形ADE,连接CE.请用尺规或三角板作出图形,并直接写出线段CE的长.【答案】EC=或EC=7.【解答】解:利用三角板可作图1,图2;(1)如图1,过点E作AC的垂线,交CA的延长线于点F,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=3,OB=OD=BD=4,∴AB==5=BC=CD=AD,∵△ADE是等腰直角三角形,∴∠DAE=90°,AE=AD,∴∠OAD+∠FAE=180°﹣90°=90°,又∵∠FAE+∠FEA=90°,∴∠OAD=∠FEA,在△AOD和△EFA中,,∴△AOD≌△EFA(AAS),∴AF=DO=4,EF=AO=3,在Rt△CEF中,CF=4+6=10,EF=3,∴EC==;(2)如图2,过点E作BD的垂线,交BD的延长线于点F,过点C作EF的垂线交EF 的延长线于点G,∵四边形ABCD是菱形,∴AC⊥BD,即∠COD=90°,∵EF⊥BD,∴∠OFG=90°,又∵CG⊥EG,∴∠G=90°,∴四边形OCGF是矩形,由(1)的方法可证,△AOD≌△DFE(AAS),∴DF=AO=3,EF=DO=4,∴OF=OD+DF=4+3=7=CG,在Rt△ECG中,CG=7,EG=EF+FG=4+3=7,∴EC===7;综上所述,EC=或EC=7.九.作图—复杂作图(共1小题)12.(2023•牡丹江)在△ABC中,∠C=90°,∠B=60°,BC=2,D为AB的中点,以CD 为直角边作含30°角的Rt△CDE,∠DCE=90°,且点E与点A在CD的同侧,请用尺规或三角板作出符合条件的图形,并直接写出线段AE的长.【答案】2或.【解答】解:如图1:Rt△CDE即为所求;∵∠C =90°,∠B =60°,BC =2,∴AC =2,∵△ACE 是等边三角形,∴AE =AC =2.如图2:∵∠C =90°,∠B =60°,BC =2,∴AB =4,∵D 为AB 的中点,∴BD =AD =AB =2,∵∠DCE =90°.∠EDC =30°,∴DE =CD ÷cos30°=,∴AE ==.一十.条形统计图(共1小题)13.(2022•牡丹江)为推进“冰雪进校园”活动,我市某初级中学开展:A .速度滑冰,B .冰尜,C .雪地足球,D .冰壶,E .冰球等五种冰雪体育活动,并在全校范围内随机抽取了若干名学生,对他们最喜爱的冰雪体育活动的人数进行统计(要求:每名被抽查的学生必选且只能选择一种),绘制了如图所示的条形统计图和扇形统计图.请解答下列问题:(1)这次被抽查的学生有多少人?(2)请补全条形统计图,并写出扇形统计图中B类活动扇形圆心角的度数是 120° ;(3)若该校共有1500人,请你估计全校最喜爱雪地足球的学生有多少人?【答案】(1)60人;(2)120°;(3)200人.【解答】解:(1)12÷20%=60(人),答:这次被抽查的学生有60人;(2)补全的条形统计图如图,B类活动扇形圆心角的度数=×360°=120°,故答案为:120°;(3)1500×=200(人).答:全校最喜爱雪地足球的学生约有200人.。
山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)
山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.分式方程的应用(共2小题)1.(2023•济南)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?2.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?二.反比例函数综合题(共2小题)3.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.4.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.三.二次函数图象与系数的关系(共1小题)5.(2023•济南)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.四.二次函数综合题(共2小题)6.(2022•钢城区)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.7.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.五.菱形的性质(共2小题)8.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.9.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE =∠CBF.求证:DE=DF.六.四边形综合题(共1小题)10.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.七.切线的性质(共2小题)11.(2023•济南)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.12.(2022•钢城区)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.八.几何变换综合题(共1小题)13.(2022•钢城区)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为 ;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.九.相似形综合题(共1小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.一十.解直角三角形的应用-坡度坡角问题(共1小题)15.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC 落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.分式方程的应用(共2小题)1.(2023•济南)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?【答案】(1)A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.【解答】解:(1)设A型编程机器人模型单价是x元,B型编程机器人模型单价是(x﹣200)元.根据题意:,解这个方程,得:x=500,经检验,x=500是原方程的根,∴x﹣200=300,答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)设购买A型编程机器人模型m台,购买B型编程机器人模型(40﹣m)台,购买A型和B型编程机器人模型共花费w元,由题意得:40﹣m≤3m,解得:m≥10,w=500×0.8•m+300×0.8﹣(40﹣m),即:w=160m+9600,∵160>0∴w随m的减小而减小.当m=10时,w取得最小值11200,∴40﹣m=30答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.2.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)甲种粽子的单价为8元,乙种粽子的单价为4元.(2)最多购进87个甲种粽子.【解答】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,依题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,则2x=8,答:甲种粽子的单价为8元,乙种粽子的单价为4元.(2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,依题意得:8m+4(200﹣m)≤1150,解得:m≤87.5,答:最多购进87个甲种粽子.二.反比例函数综合题(共2小题)3.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)k=6,B(2,3);(2)2;(3)点P的坐标为(,0)或(0,).【解答】解:(1)将点A的坐标为(m,﹣3)代入直线y=x中,得﹣3=m,解得:m=﹣2,∴A(﹣2,﹣3),∴k=﹣2×(﹣3)=6,∴反比例函数解析式为y=,由,得或,∴点B的坐标为(2,3);(2)如图1,作BE⊥x轴于点E,CF⊥x轴于点F,∴BE∥CF,∴△DCF∽△DBE,∴=,∵BC=2CD,BE=3,∴=,∴=,∴CF=1,∴C(6,1),作点B关于y轴的对称点B′,连接B′C交y轴于点G,则B′C即为BG+GC的最小值,∵B′(﹣2,3),C(6,1),∴B′C==2,∴BG+GC=B′C=2;(3)存在.理由如下:①当点P在x轴上时,如图2,设点P1的坐标为(a,0),过点B作BE⊥x轴于点E,∵∠OEB=∠OBP1=90°,∠BOE=∠P1OB,∴△OBE∽△OP1B,∴=,∵B(2,3),∴OB==,∴=,∴a=,∴点P1的坐标为(,0);②当点P在y轴上时,过点B作BN⊥y轴于点N,如图2,设点P2的坐标为(0,b),∵∠ONB=∠P2BO=90°,∠BON=∠P2OB,∴△BON∽△P2OB,∴=,即=,∴b=,∴点P2的坐标为(0,);综上所述,点P的坐标为(,0)或(0,).4.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.【答案】(1)a=4,k=12;(2)①8;②P(3,4)或(6,2).【解答】解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CF⊥x轴于F,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),由y Q′﹣y B=y P′﹣y A得,0﹣1=y P′﹣3,∴y P′=2,当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).三.二次函数图象与系数的关系(共1小题)5.(2023•济南)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.【答案】(1),F(4,0);(2)(﹣4,﹣6);(3)或.【解答】解:(1)∵抛物线y=ax2﹣2ax+c过点C(2,3),E(﹣2,0),得,解得,∴抛物线表达式为,当y=0 时,,解得x1=﹣2 (舍去),x2=4,∴F(4,0);(2)设直线CE的表达式为y=kx+b,∵直线过点C(2,3),E(﹣2,0),得,解得,∴直线CE的表达式为,设点,则点Q向左平移2个单位,向上平移3个单位得到点,将代入,解得t1=﹣4,t2=4 (舍去),∴Q点坐标为(﹣4,﹣6);(3)将E(﹣2,0)代入y=ax2﹣2ax+c得c=﹣8a,∴y=ax2﹣2ax﹣8a=a(x﹣1)2﹣9a,∴顶点坐标为(1,﹣9a),①当抛物线顶点在正方形内部时,与正方形有两个交点,∴0<﹣9a<3,解得,②当抛物线与直线BC交点在点C上方,且与直线AD交点在点D下方时,与正方形有两个交点,,解得综上所述,a的取值范围为或.四.二次函数综合题(共2小题)6.(2022•钢城区)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.【答案】(1)k=,t=3,y=﹣x2+x﹣6;(2)(10,﹣);(3).【解答】解:(1)将B(8,0)代入y=ax2+x﹣6,∴64a+22﹣6=0,∴a=﹣,∴y=﹣x2+x﹣6,当y=0时,﹣t2+t﹣6=0,解得t=3或t=8(舍),∴t=3,∵B(8,0)在直线y=kx﹣6上,∴8k﹣6=0,解得k=;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P(m,﹣m2+m﹣6),∴PM=m2﹣m+6,AM=m﹣3,在Rt△COA和Rt△AMP中,∵∠OAC+∠PAM=90°,∠APM+∠PAM=90°,∴∠OAC=∠APM,∴△COA∽△AMP,∴=,即OA•MA=CO•PM,3(m﹣3)=6(m2﹣m+6),解得m=3(舍)或m=10,∴P(10,﹣);(3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,∴PN=﹣m2+m﹣6﹣(m﹣6)=﹣m2+2m,∵PN⊥x轴,∴PN∥OC,∴∠PNQ=∠OCB,∴Rt△PQN∽Rt△BOC,∴==,∵OB=8,OC=6,BC=10,∴QN=PN,PQ=PN,由△CNE∽△CBO,∴CN=EN=m,∴CQ+PQ=CN+NQ+PQ=CN+PN,∴CQ+PQ=m﹣m2+2m=﹣m2+m=﹣(m﹣)2+,当m=时,CQ+PQ的最大值是.7.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.【答案】(1)y=﹣x2+2x+3;顶点C(1,4);(2)P();(3)﹣1<m≤.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx+3得:,解得:.∴抛物线的表达式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点C(1,4).(2)设AC交y轴于点F,连接DF,过点C作CE⊥x轴于点E,如图,∵A(﹣1,0),C(1,4),∴OA=1,OE=1,CE=4.∴OA=OE,AC==2.∵FO⊥AB,CE⊥AB,∴FO∥CE,∴OF=CE=2,F为AC的中点.∵△DAC是以AC为底的等腰三角形,∴DF⊥AC.∵FO⊥AD,∴△AFO∽△FDO.∴.∴.∴OD=4.∴D(4,0).设直线CD的解析式为y=kx+m,∴,解得:.∴直线CD的解析式为y=﹣.∴,解得:,.∴P().(3)过点P作PH⊥AB于点H,如图,则OH=,PH=,∵OD=4,∴HD=OD﹣OH=,∴PD==.∴PC=CD﹣PD=5﹣=.由(2)知:AC=2.设AF=x,AE=y,则CE=2﹣y.∵DA=DC,∴∠DAC=∠C.∵∠CAB+∠AEF+∠AFE=180°,∠AEF+∠PEF+∠CEP=180°,又∵∠PEF=∠CAB,∴∠CEP=∠AFE.∴△CEP∽△AFE.∴.∴.∴x=﹣+y=﹣+.∴当y=时,x即AF有最大值.∵OA=1,∴OF的最大值为﹣1=.∵点F在线段AD上,∴点F的横坐标m的取值范围为﹣1<m≤.解法二:∵DC=DA,∴∠DAC=∠DCA,∴∠FAE=∠PEF=∠PCE,∴△CEP∽△AFE,∴=,∵C(1,4),A(﹣1,0),∴直线AC的解析式为y=2x+2,设E(n,2n+2),则AE==(n+1),CE==(1﹣n),CP==.∴=,∴45n2+20m﹣25=0,∵Δ>0,∴02﹣4×45×(20m﹣25)≥0,∴m≤,∴F的横坐标m的取值范围为﹣1<m≤.五.菱形的性质(共2小题)8.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.【答案】证明过程见解答.【解答】证明:∵四边形ABCD是菱形,∴DA=DC,∴∠DAC=∠DCA,∵∠ADF=∠CDE,∴∠ADF﹣∠EDF=∠CDE﹣∠EDF,∴∠ADE=∠CDF,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴AE=CF.9.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE =∠CBF.求证:DE=DF.【答案】证明见解析.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,AB=BC,∠A=∠C,又∵∠ABE=∠CBF,∴△ABE≌△CBF(ASA),∴AE=CF,∴AD﹣AE=CD﹣CF,∴DE=DF.六.四边形综合题(共1小题)10.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.【答案】见试题解答内容【解答】解:(1)如图1,当α=180°时,点E在线段BC上,∵BD=BC,∴DE=BD=BC,∴BD=DE=EC,∵△CEF是等腰直角三角形,∴∠CFE=∠BAC=90°,∵∠ECF=∠BCA=45°,∴△ABC∽△FEC,∴==,∴==,∵BC=AC,∴==,∴=,即==,∴=•=×=;(2)①=仍然成立.理由如下:如图2,∵△CEF是等腰直角三角形,∴∠ECF=45°,=,∵在△ABC中,∠BAC=90°,AB=AC,∴∠BCA=45°,=,∴∠ECF=∠BCA,=,∴∠ACF+∠ACE=∠BCE+∠ACE,∴∠ACF=∠BCE,∵=,∴△CAF∽△CBE,∴==,∴=仍然成立.②四边形AECF是平行四边形.理由如下:如图3,过点D作DG⊥BF于点G,由旋转得:DE=BD=BC,∵∠BGD=∠BFC=90°,∠DBG=∠CBF,∴△BDG∽△BCF,∴===,∵BD=DE,DG⊥BE,∴BG=EG,∴BG=EG=EF,∵EF=CF,∴CF=BG=BF,由①知,AF=BE=BG=CF=CE,∵△CAF∽△CBE,∴∠CAF=∠CBE,∠ACF=∠BCE,∵∠CEF=∠CBE+∠BCE=45°,∠BCE+∠ACE=∠ACB=45°,∴∠CBE=∠ACE,∴∠CAF=∠ACE,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.七.切线的性质(共2小题)11.(2023•济南)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.【答案】(1)证明见解析;(2)6.【解答】解:(1)∵PC与⊙O相切于点C,∴OC⊥PC,∴∠OCB+∠BCP=90°,∵OB=OC,∴∠OCB=∠OBC,∵∠ABC=2∠BCP,∴∠OCB=2∠BCP,∴3∠BCP=90°,∴∠BCP=30°,∴∠OCB=60°.(2)连接DE,∵CD是直径,∴∠DEC=90°,∵点E是的中点,∴,∴∠DCE=∠FDE=∠ECB=∠DCB=30°,∵∠E=90°,EF=3,∠FDE=30°,∴DE=FE=3,∵∠E=90°,∠DCE=30°,∴,∴⊙O的直径的长为.12.(2022•钢城区)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.【答案】(1)证明过程见解答;(2)线段BF的长为3.【解答】(1)证明:连接OC,∵CD与⊙O相切于点C,∴∠OCD=90°,∵∠D=30°,∴∠COD=90°﹣∠D=60°,∴∠A=∠COD=30°,∴∠A=∠D=30°,∴CA=CD;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠A=30°,AB=12,∴BC=AB=6,∵CE平分∠ACB,∴∠BCE=∠ACB=45°,∵BF⊥CE,∴∠BFC=90°,∴BF=BC•sin45°=6×=3,∴线段BF的长为3.八.几何变换综合题(共1小题)13.(2022•钢城区)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为 AE=BE﹣CE ;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.【答案】(1)BD=CE;(2)AE=BE﹣CE;(3)45°.【解答】解:(1)BD=CE,理由如下:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵AE是由AD绕点A逆时针旋转60°得到的,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)①由(1)得:∠DAE=60°,AD=AE,BD=CE,∴△ADE是等边三角形,∴DE=AE,∴AE=DE=BE﹣BD=BE﹣CE,故答案为:AE=BE﹣CE;②如图,∠BAD=45°,理由如下:连接AF,作AG⊥DE于G,∴∠AGD=90°,∵F是BC的中点,△ABC是等边三角形,△ADE是等边三角形,∴AF⊥BC,∠ABF=∠ADG=60°,∴∠AFB=∠AGD,∴△ABF∽△ADG,∴,∠BAF=∠DAG,∴∠BAF+∠DAF=∠DAG+∠DAF,∴∠BAD=∠FAG,∴△ABD∽△AFG,∴∠ADB=∠AGF=90°,由(1)得:BD=CE,∵CE=DE=AD,∴AD=BD,∴∠BAD=45°.九.相似形综合题(共1小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.【答案】(1)∠BDC=60°,;(2);(3)4.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.一十.解直角三角形的应用-坡度坡角问题(共1小题)15.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)【答案】(1)车后盖最高点B′到地面的距离为2.15m;(2)没有危险,详见解析.【解答】解:(1)如图,作B′E⊥AD,垂足为点E,在Rt△AB′E中,∵∠B′AD=27°,AB′=AB=1,∴sin27°=,∴B′E=AB′sin27°≈1×0.454=0.454,∵平行线间的距离处处相等,∴B′E+AO=0.454+1.7=2.154≈2.15,答:车后盖最高点B′到地面的距离为2.15m.(2)没有危险,理由如下:过C′作C′F⊥B′E,垂足为点F,∵∠B′AD=27°,∠B′EA=90°,∴∠AB′E=63°,∵∠AB′C′=∠ABC=123°,∴∠C′B′F=∠AB′C′﹣∠AB′E=60°,在Rt△B′FC′中,B′C′=BC=0.6,∴B′F=B′C′•cos60°=0.3.∵平行线间的距离处处相等,∴C′到地面的距离为2.15﹣0.3=1.85.∵1.85>1.8,∴没有危险.。
中考数学《反比例函数》专项练习题(附带答案)
中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。
(人教版)重庆市九年级数学下册第一单元《反比例函数》测试题(答案解析)
一、选择题1.已知:点A(1,y 1)、B (2,y 2)、C(-3,y 3)都在反比例函数k y x =图象上(k>0),则y 1、y 2、y 3的关系是( )A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 2<y 1 2.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =8x上,过点C 作CE ∥x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .3.5D .53.已知反比例函数2y -x=,点A (a-b ,2),B (a-c ,3)在这个函数图象上,下列对于a ,b ,c 的大小判断正确的是( )A .a <b <cB .a <c <bC .c <b <aD .b <c <a4.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-5.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA ⊥x 轴,点C 在函数y=k x (x >0)的图象上,若AB=2,则k 的值为( )A .4B .22C .2D .26.如图,反比例函数k y x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .127.对于反比例函数21k y x+=,下列说法错误的是( ) A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值8.已知(5,-1)是双曲线(0)k y k x=≠上的一点,则下列各点中不在该图象上的是( ) A .1(,15)3- B .(5,1) C .(1,5)- D .1(10,)2- 9.下列函数是y 关于x 的反比例函数的是( ) A .y =11x + B .y =21x C .y =﹣12x D .y =﹣2x10.已知反比例函数y=21k x +的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 11.若函数5y x =与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( ) A .15- B .15C .5-D .5 12.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)-B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.二、填空题13.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y =4x(x >0)的图象上,则y 1+y 2+…+y 100的值为_____.14.如图,反比例函数6y x=在第一象限的图象上有两点,,A B 它们的横坐标分别为1,3,则OAB ∆的面积为___.15.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表).售价x (元/双) 200 240 250 400销售量y (双) 30 25 24 15 已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为_______元.16.如图,点M 是反比例函数k y x=(0k >)的图像上一点,MP x ⊥轴,垂足为点P ,如果MOP △的面积为7,那么k 的值是___________.17.反比例函数16y x =与2k y x=()0k <的图像如图所示,点P 是x 正半轴上一点,过点P 作x 轴的垂线,分别交反比例函数16y x =与2k y x =()0k <的图像于点A ,B ,若4AB PB =,则k 的值为_______.18.如图,点A 在反比例函数k y x=(x>0)图象上,AB ⊥x 轴于点B ,点C 在x 轴负半轴上,且BO=2CO ,若△ABC 的面积为18,则k 的值为_______.19.如图,在平面直角坐标系中,菱形OABC 的面积为20,点B 在y 轴上,点C 在反比函数k y x=的图像上,则k 的值为________.20.已知y =y 1+y 2,y 1与x 成正比例、y 2与x 成反比例,且当x =1时,y =4,当x =2时,y =5,则当x =4时,y 的值是_______.三、解答题21.如图,一次函数()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,5tan 3DCO ∠=,过点A 作AE x ⊥轴于点E ,若点C 是OE 的中点,且点A 的横坐标为-6.(1)求该反比例函数和一次函数的解析式;(2)连接ED ,求ADE 的面积.22.如图,为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA=5米,进口//O AB D ,且AB=2米,出口C 点距水面的距离CD 为1米,B 、C 之间的水平距离DE 的长度为多少米?23.如图,已知点A (1,-2)在反比例函数y =k x 的图象上,直线y =-x +1与反比例函数y =k x的图象的交点为点B 、D .(1)求反比例函数和直线AB 的表达式;(2)求S △AOB ;(3)动点P (x ,0)在x 轴上运动,若△OAP 是等腰三角形时,直接写出点P 的坐标. 24.在平面直角坐标系xOy 中,直线l :1y x =-与双曲线k y x =相交于点(2,)A m . (1)求点A 坐标及反比例函数的表达式; (2)若直线l 与x 轴交于点B ,点P 在反比例函数的图象上,当OPB △的面积为1时,求点P 的坐标.25.如图,一次函数1522y x =-+的图象与反比例函数()0k y k x=>的图象交于,A B 两点,过点A 作x 轴的垂线,垂足为M ,AOM ∆面积为1.(1)求反比例函数的解析式.(2)求出A 、B 两点坐标,并直接写出不等式1522k x x <-+的解集. (3)在x 轴上找一点P ,并求出PA PB -取最大值时点P 的坐标.26.已知反比例函数kyx=(x>0)的图象与一次函数142y x=-+的图象交于点(6,n).求k和n的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∵反比例函数kyx=(k>0),∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小,∵-3<0,∴点C(-3,y3)位于第三象限,∴y3<0;∵2>1>0,∴A(1,y2)、B(2,y3)在第一象限,∵2>1,∴0<y2<y1,∴y3<y2<y1.故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.B解析:B【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN =DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.3.B解析:B【分析】利用反比例函数图象上点的坐标特征得到2(a-b)=-2,3(a-c)=-2,则a-b=-1<0,a-c=-2 3<0,再消去a得到-b+c=-13<0,然后比较a、b、c的大小关系.【详解】∵点A(a-b,2),B(a-c,3)在函数2y-x的图象上,∴2(a-b )=-2,3(a-c )=-2,∴a-b=-1<0,a-c=-23<0, ∴a <b ,a <c , ∵-b+c=-13<0, ∴c <b ,∴a <c <b .故选B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 4.C解析:C【详解】∵A (﹣3,4),∴,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 5.A解析:A【解析】【分析】作BD ⊥AC 于D ,如图,先利用等腰直角三角形的性质得到,,再利用AC ⊥x 轴得到C ,),然后根据反比例函数图象上点的坐标特征计算k 的值.【详解】作BD ⊥AC 于D ,如图,∵△ABC 为等腰直角三角形,∴,∴,∵AC ⊥x 轴,∴C,把C ,)代入y=k x得=4,故选A .【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k 是解题的关键. 6.B解析:B【分析】根据平移和平行四边形的性质将点D 也用a 、b 表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a 、b ,再由点坐标求出k 的值.【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的,∵(),C a b ,∴()3,4D a b +-,∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-,∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =, ∴()1.57.5 1.59k =⨯-=.故选:B .【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.7.B解析:B【分析】先判断出k 2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A 、∵k 2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=-1<0,∴y 1<0,∵x 2=1>0,x 3=2>0,∴y 2>y 3,∴y 1<y 3<y 2故本选项正确;D 、∵P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,∴△OPQ 的面积=12(k 2+1)是定值,故本选项正确.故选B .【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键. 8.B解析:B【详解】解:因为点(5,-1)是双曲线(0)k y k x =≠上的一点, 将(5,-1)代入(0)k y k x=≠得k=-5; 四个选项中只有B 不符合要求:k=5×1≠-5.故选B .【点睛】本题考查反比例函数图象上点的坐标特征.9.C解析:C【分析】直接利用反比例函数的定义分别判断得出答案.【详解】解:A 、y =11x +是y 与x+1成反比例,故此选项不合题意; B 、y =21x,是y 与x 2成反比例,不符合反比例函数的定义,故此选项不合题意; C 、y =﹣12x ,符合反比例函数的定义,故此选项符合题意; D 、y =﹣2x 是正比例函数,故此选项不合题意. 故选:C .本题考查了反比例函数的定义,正确把握定义是解题的关键.10.A解析:A【分析】先判断出k 2+1是正数,再根据反比例函数图象的性质,比例系数k >0时,函数图象位于第一三象限,在每一个象限内y 随x 的增大而减小判断出y 1、y 2、y 3的大小关系,然后即可选取答案.【详解】解:∵k 2≥0,∴k 2+1≥1,是正数,∴反比例函数y =21k x+的图象位于第一三象限,且在每一个象限内y 随x 的增大而减小,∵(2,y 1),(3,y 2),(﹣1,y 3)都在反比例函数图象上,∴0<y 2<y 1,y 3<0,∴y 1>y 2>y 3.故选:A .【点睛】本题考查了反比例函数图象的性质,对于反比例函数y =k x(k ≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内,本题先判断出比例系数k 2+1是正数是解题的关键.11.B解析:B【分析】先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b -得到b a ab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1, 所以11a b -=b a ab -=15. 故选:B.本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.12.D解析:D【分析】根据反比例函数的性质判断即可.【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误.故选:D .【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键.二、填空题13.20【分析】根据点C1的坐标确定y1可求反比例函数关系式由点C1是等腰直角三角形的斜边中点可以得到OA1的长然后再设未知数表示点C2的坐标确定y2代入反比例函数的关系式建立方程解出未知数表示点C3的解析:20【分析】根据点C 1的坐标,确定y 1,可求反比例函数关系式,由点C 1是等腰直角三角形的斜边中点,可以得到OA 1的长,然后再设未知数,表示点C 2的坐标,确定y 2,代入反比例函数的关系式,建立方程解出未知数,表示点C 3的坐标,确定y 3,……然后再求和.【详解】解:过C 1、C 2、C 3…分别作x 轴的垂线,垂足分别为D 1、D 2、D 3…则∠OD 1C 1=∠OD 2C 2=∠OD 3C 3=90°,∵三角形OA 1B 1是等腰直角三角形,∴∠A 1OB 1=45°,∴∠OC 1D 1=45°,∴OD 1=C 1D 1,其斜边的中点C 1在反比例函数y =4x, ∴C (2,2),即y 1=2,∴OD 1=D 1A 1=2,∴OA1=2OD1=4,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=4x得:a(4+a)=4,解得:a=22﹣2,即:y2=22﹣2,同理:y3=23﹣22,y4=24﹣23,……y100=2100﹣299∴y1+y2+…+y100=2+22﹣2+23﹣22……2100﹣299=20,故答案为:20.【点睛】本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.14.8【分析】根据题意结合反比例函数图象上点的坐标性质S△AEO=S△ACO =S△OBD=3得出S四边形AODB的值是解题关键【详解】解:如图所示:过点A作AE⊥x轴于点E过点B作BD⊥x轴于点D∵反比解析:8【分析】根据题意结合反比例函数图象上点的坐标性质S△AEO=S△ACO=S△OBD=3,得出S四边形AODB的值是解题关键.【详解】解:如图所示:过点A作AE⊥x轴于点E,过点B作BD⊥x轴于点D,∵反比例函数6y x=在第一象限的图象上有两点A ,B ,它们的横坐标分别是1,3, ∴x =1时,y =6;x =3时,y =2,故S △AEO =S △OBD =S △ACO=3, S 四边形AEDB =12×(2+6)×2=8, 故△AOB 的面积是:S 四边形AEDB + S 四边形AECO -S △ACO -S △OBD =8.故答案为:8.【点睛】此题主要考查了反比例函数图象上点的坐标性质,得出四边形AODB 的面积是解题关键. 15.300【分析】先利用待定系数法求出再根据利润(售价进价)销量建立方程然后解方程即可得【详解】由题意设将代入得:解得则设要使该款运动鞋每天的销售利润达到元其售价应定为元则整理得:解得经检验是所列方程的 解析:300【分析】 先利用待定系数法求出6000y x =,再根据“利润=(售价-进价)⨯销量”建立方程,然后解方程即可得.【详解】 由题意,设k y x=, 将(200,30)代入得:30200k =,解得6000k =, 则6000y x=, 设要使该款运动鞋每天的销售利润达到2400元,其售价应定为a 元,则()60001802400a a-⋅=, 整理得:()51802a a -=,解得300a =,经检验,300a =是所列方程的解,故答案为:300.【点睛】本题考查了利用待定系数法求反比例函数的解析式、分式方程的应用,正确求出售价与销量之间的反比例函数关系式是解题关键.16.14【分析】根据点是反比例函数()的图像上一点可得到M 点的坐标;轴垂足为点可知P 点横坐标等于M 点横坐标;再通过的面积建立等式即可计算得到答案【详解】∵是反比例函数()的图像上一点设横坐标∴∵轴垂足为解析:14【分析】根据点M 是反比例函数k y x=(0k >)的图像上一点,可得到M 点的坐标;MP x ⊥轴,垂足为点P ,可知P 点横坐标等于M 点横坐标;再通过MOP △的面积建立等式,即可计算得到答案.【详解】 ∵M 是反比例函数k y x =(0k >)的图像上一点 设M 横坐标x a = ∴,k M a a ⎛⎫ ⎪⎝⎭∵MP x ⊥轴,垂足为点P∴P 点横坐标等于M 点横坐标∴(),0P a∴=a OP ,k MP a= 又∵MP x ⊥轴,垂足为点P∴=90MPO ∠∴MOP △为直角三角形 ∴11222k k S OP MP a a =⨯=⨯=△MOP ∵7S =△MOP ∴=72k ∴14k = 故答案为:14.【点睛】本题考察了反比例函数、直角坐标系、直角三角形的知识;求解的关键的熟练掌握反比例函数、直角三角形性质,结合直角坐标系,从而计算得到答案.17.-2【分析】设点A 横坐标为m 分别表示出ABPB 根据得到关于k 的方程解方程即可【详解】解:设点A 横坐标为m 则点A 纵坐标为∵AB ⊥x 轴∴点B 纵坐标为∴AB=PB=∵∴∴∴故答案为:-2【点睛】本题考查了解析:-2【分析】设点A 横坐标为m ,分别表示出AB 、PB ,根据4AB PB =,得到关于k 的方程,解方程即可.【详解】解:设点A 横坐标为m ,则点A 纵坐标为6m , ∵ AB ⊥x 轴,∴点B 纵坐标为k m , ∴AB =66k k m m m--= ,PB =k k m m =-, ∵4AB PB =,∴64k k m m-=- , ∴64k k -=- ,∴2k =-.故答案为:-2【点睛】本题考查了反比例函数图象上点的表示,解题的关键是根据4AB PB =列出方程,注意表示PB 时,注意式子符号问题.18.24【分析】根据BO=2CO 可得出△AOB 的面积然后根据k 的几何意义得出k 的值【详解】如下图连接AO ∵BO=2CO △ABC 的面积为18∴△AOB 的面积=18×18×=12∴k=12×2=24故答案为解析:24【分析】根据BO=2CO ,可得出△AOB 的面积,然后根据k 的几何意义,得出k 的值.【详解】如下图,连接AO∵BO=2CO ,△ABC 的面积为18∴△AOB 的面积=18×OB CB =18×23=12 ∴k=12×2=24故答案为:24.【点睛】本题考查反比例函数k 的几何意义,将△AOB 的面积与k 联系上,是解题的关键. 19.-10【分析】连接AC 交OB 于点D 根据菱形的性质可得出SOCD =×20=5再根据反比例函数系数k的几何意义即可求出k值由点C在第二象限即可确定k 的值【详解】连接AC交OB于点D如图所示∵四边形OAB解析:-10【分析】连接AC交OB于点D,根据菱形的性质可得出S OCD=14×20=5,再根据反比例函数系数k的几何意义即可求出k值,由点C在第二象限,即可确定k的值.【详解】连接AC交OB于点D,如图所示.∵四边形OABC为菱形,∴AC⊥OB,∵菱形OABC的面积为20,∴S OCD=14×20=5.∵点C在反比例函数kyx的图象上,CD⊥y轴,∴S OCD=12|k|=5,解得:k=±10.∵点C在第二象限,∴k=−10.故答案为:-10.【点睛】本题考查了反比例函数系数k的几何以及菱形的性质,根据菱形的性质找出S OCD=14×20=5是解题的关键.20.【分析】根据正比例函数与反比例函数的定义设出y与x之间的函数关系式然后利用待定系数法求出函数解析式把x=4代入进行计算即可得解【详解】∵y1与x成正比例y2与x成反比例∴设y1=kxy2=∴y=y1解析:17 2【分析】根据正比例函数与反比例函数的定义设出y 与x 之间的函数关系式,然后利用待定系数法求出函数解析式,把x=4代入进行计算即可得解.【详解】∵y 1与x 成正比例,y 2与x 成反比例,∴设y 1=kx ,y 2=b x , ∴y= y 1+y 2=kx+b x, ∵当x =1时,y =4,当x =2时,y =5, ∴4252k b b k ⎧+=+=⎪⎨⎪⎩,解得:22k b =⎧⎨=⎩, ∴y=2x+2x, ∴当x =4时,y=2×4+24=172. 故答案是:172. 【点睛】 本题主要考查正比例函数与反比例函数的定义,掌握待定系数法,是解题的关键.三、解答题21.(1)553y x =--;30y x =-;(2)ADE 的面积为15. 【分析】(1)根据题意求得OE =6,OC =3,Rt △COD 中,5tan 3DCO ∠=,OD =5,即可得到A (﹣6,5),D (0,﹣5,C (﹣3,0),运用待定系数法即可求得反比例函数与一次函数的解析式;(2)利用三角形面积公式即可求得.【详解】解:(1)由题意知:6OE =,3OC =,在Rt COD 中,5tan 3OD DCO CO ∠==, 5OD ∴=,()0,5D ∴-,()3,0C -,代入y=ax+b ,530b a b =-⎧∴⎨-+=⎩,解得535a b ⎧=-⎪⎨⎪=-⎩, ∴一次函数的解析式为553y x =--, 当6x =-时,()56553y =-⨯--=, ()6,5A ∴-,()6530k ∴=-⨯=-∴反比例函数解析式为30y x=-; (2)由题意知:3EC =,5AE =,5OD =ADE ACE DCE S S S ∴=+△△△1122EC AE EC OD =⋅+⋅ 11353522=⨯⨯+⨯⨯ =15.ADE ∴的面积为15【点睛】本题主要考查了反比例函数与一次函数的交点问题以及解直角三角形的应用,解决问题的关键是掌握待定系数法求函数解析式的方法.22.8【分析】根据矩形的性质得到BE=OA=5,AB=2,求得B (2,5),设双曲线BC 的解析式为y=k x ,代入B 点坐标,得到k=10,然后求出D 点横坐标,最后用OD-OE 即可求解.【详解】∵四边形AOEB 是矩形∴BE=OA=5,AB=2∴B(2,5)设双曲线的解析式为y=k x ,将点B 的坐标代入,5=k 2 ∴k=10∴y=10x∵CD 为1∴当y=1时,x=10∴OD=10∴DE 的长=OD-OE=10−2=8∴B 、C 之间的水平距离DE 的长度为8米.【点睛】本题考查反比例函数的应用,矩形的性质,解题突破口是设双曲线BC 的解析式为y=k x . 23.(1)y= 2x -, y=x-3;(2)S △AOB =32;(3))10P,()20P ,()320P ,,4502P ,⎛⎫ ⎪⎝⎭. 【分析】(1)运用待定系数法先求出反比例函数解析式,再求出B 的坐标,从而求出直线AB 的解析式;(2)利用反比例函数k 的几何意义进行面积转化求解即可;(3)列出各边长的表达式,根据不同情况进行分类讨论即可.【详解】(1)将()1,2A -代入k y x=,得2k =-,故反比例函数解析式为2y k =-, 联立21y x y x ⎧=-=-+⎪⎨⎪⎩,解得21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩,即:()2,1B -,()1,2D - 设直线AB 的解析式为:y mx n =+,将()1,2A -,()2,1B -代入得:221m n m n +=-+=-⎧⎨⎩,解得:13m n ==-⎧⎨⎩ , 则直线AB 的解析式为:3y x =-∴反比例函数解析式为2y k=-,直线AB 的解析式为:3y x =-; (2)作AM x ⊥轴,BN x ⊥轴,AH y ⊥轴,则AOB OAH OBN OHAM MABN S S S S S ++=+△△△矩形梯形, 根据反比例函数k 的几何意义可知:122OAH OBN OHAM k S S S ===△△矩形, ()()()1132121222AOB MABN S S MN AM BN ∴==+=⨯-⨯+=△梯形, 32AOB S ∴=△;(3)由题:5OA OP x =,()214AP x =-+①若OA OP =5x =,解得5x =,故:)150P ,()250P -; ②若OA AP =()2514x =-+2x =或0(舍去),故:()320P ,; ③若OP AP =,则()214x x =-+52x =,故:4502P ,⎛⎫ ⎪⎝⎭; 综上,所有P 的坐标为:)150P ,()250P -,()320P ,,4502P ,⎛⎫ ⎪⎝⎭. 【点睛】 本题考查了反比例函数与一次函数综合问题,以及等腰三角形的判定与性质,熟练掌握反比例函数k的几何意义,以及分类讨论的思想是解题的关键.24.(1)点(2,1)A ,反比例函数2y x =;(2)点()P 12,或(-1,-2) 【分析】(1)代入坐标点先求坐标,再求反比例函数表达式;(2)作图,根据图像求出P 点纵坐标,再代入反比例函数即可求出坐标.【详解】(1)∵A 在y=x-1上,∴当x=2时,y=1,即m=1,点(2,1)A ,再把A 的坐标代入反比例函数解得:2y x=; (2)由函数表达式可求得点(1,0)B ,∵1OPB S =△, 即12OB ||1p y =, ∴||1p y =,点()P 12,或(-1,-2); 【点睛】此题考查反比例函数与一次函数相关知识,结合图像是关键.25.(1)2y x =;(2)()1,2A ,14,2B ⎛⎫ ⎪⎝⎭,解集为14x <<或0x <;(3)()5,0 【分析】(1)根据反比例函数比例系数k 的几何意义得出12|k|=1,进而得到反比例函数的解析式;(2)解析式联立求得A 、B 的坐标,根据图象即可求得不等式1522k x x <-+的解集; (3)一次函数1522y x =-+与x 轴的交点即为P 点,此时|PA−PB|的值最大,最大值为AB 的长;根据一次函数图象上点的坐标特征即可求得点P 的坐标.【详解】(1)∵反比例函数()0k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1, ∴1|k |12=, ∵0k >, ∴2k =, 故反比例函数的解析式为:2y x=;(2)由15-222y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩, ∴()1,2A ,14,2B ⎛⎫ ⎪⎝⎭, ∴不等式1522k x x <-+的解集为14x <<或0x <; (3)一次函数1522y x =-+的图象与x 轴的交点即为P 点, 此时PA PB -的值最大,最大值为AB 的长.∵一次函数1522y x =-+, 令0y =,则15022x -+=,解得5x =, ∴P 点坐标为()5,0.【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题,解题的关键是确定|PA−PB|的值最大时,点P 的位置,灵活运用数形结合思想是解题的关键.26.k =6;n =1【分析】利用一次函数图象上点的坐标特征可求出n 值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值.【详解】当x=6时,n=-12×6+4=1, ∴点B 的坐标为(6,1).∵反比例函数y=k x 过点B (6,1), ∴k=6×1=6.【点睛】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是:利用一次(反比例)函数图象上点的坐标特征,求出n 、k 的值.。
2022年中考复习《反比例函数应用题》专项练习附答案
反比例函数应用题1、〔2021•曲靖〕某地资源总量Q 一定,该地人均资源享有量与人口数n的函数关系图象是〔〕A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:根据题意有:=;故y与x 之间的函数图象双曲线,且根据,n 的实际意义,n 应大于0;其图象在第一象限.解答:解:∵由题意,得Q=n,∴=,∵Q为一定值,∴是n的反比例函数,其图象为双曲线,又∵>0,n>0,∴图象在第一象限.应选B.点评:此题考查了反比例函数在实际生活中的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.2、〔2021•绍兴〕教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温〔℃〕与开机后用时〔min〕成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.假设在水温为30℃时,接通电源后,水温y〔℃〕和时间〔min〕的关系如图,为了在上午第一节下课时〔8:45〕能喝到不超过50℃的水,那么接通电源的时间可以是当天上午的〔〕A.7:20 B.7:30 C.7:45 D.7:50考反比例函数的应用.点:分析:第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50℃的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论.解答:解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y=k1x+b,将〔0,30〕,〔7,100〕代入y=k1x+b得k1=10,b=30∴y=10x+30〔0≤x≤7〕,令y=50,解得x=2;设反比例函数关系式为:y=,将〔7,100〕代入y=得k=700,∴y=,将y=30代入y=,解得x=;∴y=〔7≤x≤〕,令y=50,解得x=14.所以,饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤时间段内,故不可行;选项C:7:45至8:45之间有60分钟.60﹣×2=≈13.3,不在0≤x≤2及14≤x≤时间段内,故不可行;选项D:7:50至8:45之间有55分钟.55﹣×2=≈8.3,不在0≤x≤2及14≤x≤时间段内,故不可行.综上所述,四个选项中,唯有7:20符合题意.应选A.点评:此题主要考查了一次函数及反比例函数的应用题,还有时间的讨论问题.同学们在解答时要读懂题意,才不易出错.3、〔2021•玉林〕工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y 〔℃〕与时间x〔min〕成一次函数关系;锻造时,温度y〔℃〕与时间x〔min〕成反比例函数关系〔如图〕.该材料初始温度是32℃.〔1〕分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;〔2〕根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?考点:反比例函数的应用;一次函数的应用.分析:〔1〕首先根据题意,材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;〔2〕把y=480代入y=中,进一步求解可得答案.解答:解:〔1〕停止加热时,设y=〔k≠0〕,由题意得600=,解得k=4800,当y=800时,解得x=6,∴点B的坐标为〔6,800〕材料加热时,设y=ax+32〔a≠0〕,由题意得800=6a+32,解得a=128,∴材料加热时,y与x的函数关系式为y=128x+32〔0≤x≤5〕.∴停止加热进行操作时y与x的函数关系式为y=〔5<x≤20〕;〔2〕把y=480代入y=,得x=10,故从开始加热到停止操作,共经历了10分钟.答:从开始加热到停止操作,共经历了10分钟.点评:考查了反比例函数和一次函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式。
反比例函数讲义(知识点+典型例题)
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
(完整版)反比例函数综合测试题(含答案)
反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数xky=的图象上,下列各点也在该函数图象上的是( ).AA. (3,- 2)B. (- 2,- 3)C. (2,3)D. (3,2)2. 反比例函数(0)ky kx=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数xy2-=与xy2=的图象的交点个数为( ). DA. 3个B. 2个C. 1个D. 0个4. 如图1,点A是y轴正半轴上的一个定点,点B是反比例函数y = 2 x(x> 0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将( ). AA.逐渐增大B.逐渐减小C.不变D.先增大后减小5. (2009年恩施市)如图2,一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2 ≤x≤ 10,则y与x的函数图象是( ). A6. 已知点A(x1,y1),B(x2,y2)是反比例函数xky=(k > 0)的图象上的两点,若x1 < 0 < x2,则( ).AA. y1 < 0 < y2B. y2 < 0 < y1C. y1 < y2 < 0D. y2 < y1 < 07. 如图3,反比例函数3yx=的图象与一次函数y = x + 2的图象交于A,B两点,那么△AOB 的面积是( ).CA. 2B. 3C. 4D. 68. 如图4,等腰直角三角形ABC位于第一象限,AB= AC = 2,直角顶点A在直线y = x上,1212图2图4A B C Dy xOP 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 5 图7其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与△ABC 有交点,则k 的取值范围是( ). C A.1 < k < 2B.1 ≤ k ≤ 3C.1 ≤ k ≤ 4D.1≤ k < 4二、填空题(每小题4分,共24分) 9. 已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 .6y x= 10. 在对物体做功一定的情况下,力F (N)与此物体在 力的方向上移动的距离s (m)成反比例函数关系,其图 象如图5所示,点P (5,1)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是 m. 0. 511. 反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A ,B 两点,若点A 坐标为(-2,1),则点B 的坐标为 . (2,-1).12.一次函数y = x + 1与反比例函数ky x=的图象都经过点(1,m ),则使这两个函数值都小于0时x 的取值范围是___________. x < - 113. (2009年兰州市)如图6,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 反比例函数1y x=(x > 0)的图象上,则点E 的坐标是_________. (215+,215-)14. (2009年莆田市)如图7,在x 轴的正半轴上依次截取OA 1 = A 1A 2 = A 2A 3 = A 3A 4 = A 4A 5,过点A 1,A 2,A 3,A 4,A 5,分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数xky =(k ≠ 0)的图象上. (1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.F / N图5s / mO图616.(8分)已知图8中的曲线是反比例函数5myx-=(m为常数)图象的一支. 若该函数的图象与正比例函数y = 2x的图象在第一象内限的交于点A,过点A作x轴的垂线,垂足为点B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.17.(8分)如图9,点P的坐标为322⎛⎫⎪⎝⎭,,过点P作x轴的平行线交y轴于点A,交反比例函数kyx=(x > 0)于点点N,作PM ⊥AN交反比例函数kyx=(x > 0)的图象于点M,连接AM.若PN = 4,求:(1)k的值.(2)△APM的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例(如图10所示). 现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x 的解看成函数y = 2 x - 1的图象与函数y = 3 - x 的图象交点的横坐标. 如图11,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x=的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD . (1)如图12,若点A ,B 在反比例函数ky x=的图象的同一分支上,试证明: ①A E D K C F B K S S =四边形四边形;②A N B M =. (2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图13,则AN 与BM 还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题 1. A. 2. B. 3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9. 6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15. 三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0). ∵S △OAB = 4,∴12m • 2m = 4. 解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8. ∴反比例函数的解析式为8y x=.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32. ∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫ ⎪⎝⎭,代入ky x=中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =. ∴93322M P =-=. ∴12332A P MS =⨯⨯=△. 18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)ky k x=≠.根据题意,得2810k=,280k =. ∴此阶段函数关系式为80y x=(x ≥ 10).(3)当y < 1.6时,801.6x<. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6.提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x=与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x ⊥轴,A E y ⊥轴,∴四边形AE O C 为矩形. BF x ⊥轴,B D y ⊥轴,∴四边形BD O F 为矩形.A C x ⊥轴,B D y ⊥轴,∴四边形A E D K D OC K C F B K ,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O F S S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C FB K B D O F D OC K S S S =-矩形矩形矩形,∴A ED K C F B K S S =矩形矩形. ②由(1)知,AE D K CF B KS S =矩形矩形.∴A K D K B K C K =.∴AK BKCK DK=. 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AC D N 是平行四边形.∴A N C D =.同理可得B M C D =.A N B M∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形, 又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形. ∴A K D K B K C K=.∴CK DKAK BK=. K K ∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AN D C 是平行四边形.∴A N C D =.同理B M C D =.∴A N B M =【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式与反比例综合测试
班级: 姓名:
一、选择题(每小题3分,共30分) ( )1、下列各式
2
b a -,
x
x 3+,
π
y
+5,
b
a b a -+中,是分式的共有
A. 1个
B. 2个
C. 3个
D. 4个
( )2、使分式 21x
x - 有意义的x 的取值范围是
A 、 12x >
B 、 12x ≤
C 、 12x ≥
D 、 1
2x ≠
( )3、如果把分式
y
x x 232-中的x,y 都扩大3倍,那么分式的值
A 、扩大3倍
B 、不变
C 、缩小3倍
D 、扩大2倍 ( )4、已知分式
)
1)(2(1
+--x x x 的值是零,那么x 的值是
A 、2
B 、1±
C 、1
D 、1- ( )5、对分式
y x y x
x y
2243
2、、进行通分时,最简公分母是 A 、xy 2 B 、y x 24 C 、224y x D 、22xy ( )6、下列函数中,y 是x 的反比例函数的是 A 、 3
x y =
B.1
1+=
x y C.2
1y x
= D.3y x
=
( )7、反比例函数x
k y =的图象经过点(2-,3),则它还经过点
A.(3,2)
B.(1-,-6)
C.(6,1-)
D.(0,0)
( ) 8、反比例函数y =2
x
的图象位于
A .一、二象限
B .一、三象限
C .二、三象限
D .二、四象限 ( )9、函数 y=kx+1 与k y x
=在同一坐标系内的大致图象是
A B C D
( )10、函数x
a y 12
+=
图像上有三个点()()()321,32,1y y y 、,、,则函数值321y y y 、、大小关系
A 、321y y y >>
B 、123y y y >>
C 、312y y y >>
D 、231y y y >> 二、填空(每小题3分,共24分) 11、计算2422()a b a b --÷= . 12、①())0(,10 53≠=a axy
xy
a ②()
1
4
22
=
-+a a .
13、已知52纳米为0.000000052米,用科学记数法表示为 米. 14、已知a
a 1+
=6,则(a -
a
1)
2
= .
15、已知2
2
(1)m
y m x -=- 是反比例函数,则m = .
16、已知反比例函数x
k y 23-=
,当k 时,其图象的两个分支在第一、三象限内.
17、一次函数y =kx +1和反比例函数y =6x
的图象都经过点(2,m ),则一次函数的解析式是________.
18、反比例函数x
y 6=的图像上,横坐标和纵坐标都是整数的点有 。
三、解答题
19、计算(6分)1
201151)7(97)1(-⎪⎭
⎫ ⎝⎛+-⨯+---π
20、(7分)先化简1
)1
211
1(2
-÷
+-+
-+a a a a a a ,再选取一个既使原式有意义,又是你喜欢的数代
入求值.
21、解分式方程(每小题6分,共12分) ① x
x x -=
+--2312
3 ②
1
61
31
22
-=
-+
+x x x
22、(6分)已知y 与x+2成反比例,且当x=5时, y=-6,求当y=5时x 的值。
23、(7分)若5
3
2
z y x =
=
,且3x+2y -z=14,求x,y,z 的值。
24、(8分)一辆汽车开往距离出发地180千米的目的地,按原计划的速度匀速行驶1小时后开始提速, 已知提速后的速度是原计划速度的2倍,到达目的地所用时间比按原计划行驶少用30分钟.求原计划的行驶速度.
25、(8分)如图,已知一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别交于A 、B •两点,且与反比例函数y =m x
(m ≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,•若OA =OB =OD =1.求
一次函数和反比例函数的解析式.
26、(12分)如图,一次函数y =kx +b 的图象与反比例函数 y =m x
的图象交于A 、B 两点.
(1)求反比例函数和一次函数的解析式.
(2)求∆AOB 的面积.
(3)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.。