新人教版七年级数学下册《实数》考点归纳及常见考题
新人教版七年级数学下册《实数》考点归纳及常见考题
新人教版七年级数学下册《实数》考点归纳及常见考题【知识要点】1、算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”.2、如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数).3、正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根.4、平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个.联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根.(3)0的算术平方根与平方根同为0.5、如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数).6、正数有一个正的立方根;0的立方根是0;负数有一个负的立方根.7、求一个数的平方根(立方根)的运算叫开平方(开立方).8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9、一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如25==.2500,55010、平方表:(自行完成)1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1.2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同.30a≥0.4、公式:⑴2=a(a≥0=a取任何数).5、区分2=a (a ≥0),与 2a =a6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0【典型例题】1.下列语句中,正确的是( )A .一个实数的平方根有两个,它们互为相反数B .负数没有立方根C .一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个 2. 下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C .16的平方根是±4D .27的立方根是±33. 已知实数x ,y 满足2=0,则x-y 的值为多少?4.求下列各式的值(1)81±;(2)16-;(3)259;(4)2)4(-5. 已知实数x ,y 满足2=0,则x-y 等于6. 计算(1)64的立方根是 .(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±.其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个7.易混淆的三个数(自行分析它们)(1)2a (2)2)(a (3)33a综合演练 一、填空题1、(-0.7)2的平方根是2、若2a =25,b =3,则a+b=3、已知一个正数的两个平方根分别是2a ﹣2和a ﹣4,则a 的值是4、ππ-+-43= ___________ 5、若m 、n 互为相反数,则nm +-5=_________6、若 a a -=2,则a______0 7、若73-x 有意义,则x 的取值范围是 8、大于-2,小于10的整数有______个. 9、当_______x 时,3x -有意义. 10、一个正数x 的两个平方根分别是a+2和a-4,则a= ,x= .11、当_______x 时,32-x 有意义. 12、当_______x 时,x -11有意义. 二、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .81 2.下列计算正确的是( ) A .4=±2 B .2(9)81-==9 C.636=± D.992-=-3.64的平方根是( )A .±8B .±4C .±2D .±2 4.4的平方的倒数的算术平方根是( )A .4B .18C .-14D .14三、利用平方根解下列方程.1、(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0;四、解答题1、求972的平方根和算术平方根.2、计算33841627-+-+的值4、若a5、、b 、c 满足01)5(32=-+++-c b a ,求代数式a cb -的值.一、填空题:(每题3分,共30分)1、如图1,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是________________.2、如图2,AB ∥CD ,∠1=39°,∠C 和∠D 互余,则∠D=________,∠B=________.3、如图3,直线ba,与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠ 5+∠3=180°,其中能判断a∥b的是_______________(填序号).4、把命题“等角的余角相等”改写成“如果……,那么……”的形式是_________________.5、如图4,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______________.6、定点P在直线AB外,动点O在直线AB上移动,当PO最短时,∠POA=_______,这时线段PO所在的直线是AB的___________,线段PO叫做直线AB的______________.7、如图5,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1=∠2,则图中互相平行的直线是____________________.8、如图6,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是___________.9、在下列说法中:⑴△ABC在平移过程中,对应线段一定相等;⑵△ABC在平移过程中,对应线段一定平行;⑶△ABC在平移过程中,周长保持不变;⑷△ABC在平移过程中,对应边中点的连线段的长等于平移的距离;⑸△ABC在平移过程中,面积不变,其中正确的有( )A、⑴⑵⑶⑷B、⑴⑵⑶⑷⑸C、⑴⑵⑶⑸D、⑴⑶⑷⑸10、如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是( )A、18°B、126°C、18°或126°D、以上都不对11、完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD 求证:∠EGF=90°。
初一数学下册知识点《实数的定义》经典例题及解析
实数的定义一、选择题(本大题共80小题,共240.0分)1. 实数a,b 在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A. -2a+bB. 2a -bC. -bD. b【答案】 A【解析】解:由图可知:a<0,a-b<0,则|a|+=- a-(a-b)=-2 a+b.故选:A.直接利用数轴上a,b 的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.2. 实数a,b,c,d 在数轴上对应的点的位置如图所示,这四个数中最大的是()A. aB. bC. cD. d【答案】 D【解析】解:由数轴可得:a<b<c<d,故选:D.根据实数的大小比较解答即可.此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3. 关于的叙述正确的是()A. 在数轴上不存在表示的点B. = +C. =±2D. 与最接近的整数是 3【答案】 D【解析】解:A、在数轴上存在表示的点,故选项错误;B、≠+ ,故选项错误;C、=2 ,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.4. 下列各数中是有理数的是()A. πB. 0C.D. 【答案】 B【解析】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0 是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.根据有理数是有限小数或无限循环小,可得答案.本题考查了有理数,有限小数或无限循环小数是有理数.5. 已知实数a,b 在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. -a>b【答案】 D【解析】解:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项 A 错误,|a|>|b|,故选项 B 错误,ab<0,故选项 C 错误,-a>b,故选项 D 正确,故选:D.根据数轴可以判断a、b 的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.6. 关于的叙述不正确的是()A. =2B. 面积是8 的正方形的边长是C. 是有理数D. 在数轴上可以找到表示的点【答案】 C【解析】解:A、=2 ,所以此选项叙述正确;B、面积是8 的正方形的边长是,所以此选项叙述正确;C、=2 ,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选:C.=2 ,是无理数,可以在数轴上表示,还可以表示面积是8 的正方形的边长,由此作判断.本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.7. 下列实数中,属于有理数的是()A. B. C. π D.【答案】 D【解析】解:A、- 是无理数,故 A 错误;B、是无理数,故 B 错误;C、π是无理数,故 C 错误;D、是有理数,故 D 正确;故选:D.根据有理数是有限小数或无限循环小数,可得答案.本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.8. 如图,已知数轴上的点A、B、C、D 分别表示数-2、1、2、3,则表示数3- 的点P 应落在线段()A. AO 上B. OB 上C. BC 上D. CD 上【答案】 B【解析】解:∵2<<3,∴0<3- <1,故表示数3- 的点P 应落在线段OB 上.故选:B.根据估计无理数的方法得出0<3- <1,进而得出答案.此题主要考查了估算无理数的大小,得出的取值范围是解题关键.9. - 的相反数是()A. B. - C. - D. -2【答案】 A【解析】解:- 的相反数是.故选:A.根据只有符号不同的两个数叫做互为相反数解答.本题考查了实数的性质,熟记相反数的定义是解题的关键.10. 实数a,b 在数轴上的位置如图所示,则化简- +b 的结果是()A. 1B. b+1C. 2aD. 1-2 a【答案】 A【解析】解:由数轴可得:a-1<0,a-b<0,则原式=1-a+a-b+b=1.故选A.利用数轴得出a-1<0,a-b<0,进而利用二次根式的性质化简求出即可.此题主要考查了二次根式的性质与化简,得出各项的符号是解题关键.11. 下列说法错误的是()A. 正整数和正分数统称正有理数B. 两个无理数相乘的结果可能等于零C. 正整数,0,负整数统称为整数D.3.1415926 是小数,也是分数【答案】 B【解析】解:A、正整数和正分数统称为正有理数,正确;B、两个无理数相乘的结果不可能为零,错误;C、正整数,0 负整数统称为整数,正确;D、3.1415926 是小数,也是分数,正确,故选 B利用有理数,整数,无理数,以及分数的定义判断即可.此题考查了实数,涉及的知识有:有理数,无理数,整数与分数,熟练掌握各自的定义是解本题的关键. 12. 有下列说法:①任何无理数都是无限小数; ②有理数与数轴上的点一一对应; ③在 1 和 3 之间的无理数有且只有这4 个; ④ 是分数,它是有理数.⑤近似数 7.30 所表示的准确数 a 的范围是: 7.295≤a < 7.305. 其中正确的个数是()A. 1B. 2C. 3D. 4 【答案】 B【解析】 解:①任何无理数都是无限小数,故说法正确; ②实数与数轴上的点一一对应,故说法错误; ③在 1 和 3 之间的无理数有无数个,故说法错误; ④ 不是分数,它不是有理数,故说法错误. ⑤近似数 7.30 所表示的准确数 a 的范围是: 7.295≤a <7.305,故说法正确. 故选 B .①根据无理数就是无限不循环小数即可判定; ②根据有理数与数轴上的点的对应关系即可的; ③根据无理数的定义及开平方运算的法则即可判定; ④根据无理数、有理数的定义即可判定; ⑤根据近似数的精确度即可判定.此题主要考查了实数的定义及其分类.注意分数能表示成 的形式,其中 A 、B 都是整数.因而像 不是分数,而是无理数.13. 下列说法中正确的是()2A. 实数 -a 是负数B.C. |-a|一定是正数D. 实数 -a 的绝对值是 a【答案】 B 【解析】 【分析】本题考查的是实数的分类及二次根式、 绝对值的性质, 解答此题时要注意 0 既不是正数,也不是负数. 分别根据平方运算的特点, 平方根的性质和绝对值的性质进行逐一分析即可 . 【解答】 解: A 、实数 -a2是负数, a=0 时不成立,故选项错误; B 、 ,符合二次根式的意义,故选项正确,C 、|-a|不一定是正数, a=0 时不成立,故选项错误;D 、实数 -a 的绝对值不一定是 a ,a 为负数时不成立,故选项错误. 故选 B .14. 在,,0,,,227,,相邻两个 6 之间1的个数逐次加中,有理数的个数为( )A. 4B. 5C. 6D. 7 【答案】 C【解析】【分析】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.分别根据实数的分类及有理数、无理数的概念进行解答.【解答】10%,227,π,0.61611611 6⋯(相邻两个 6 之间1的个数逐在-3,,0,-3.5,﹣次加1)中,有理数为:-3,,0,-3.5,10%,227,共有 6 个.故选 C.15. 下列说法正确的是()A. 无限小数都是无理数B. 9 的立方根是 3C. 平方根等于本身的数是0D. 数轴上的每一个点都对应一个有理数【答案】 C【解析】解:A、无限不循环小数都是无理数,故 A 错误;B、9 的立方根是,故 B 错误;C、平方根等于本身的数是0,故C 正确;D、数轴上的每一个点都对应一个实数,故 D 错误;故选:C.即可.根据实数的分类、平方根和立方根的定义进行选择本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.16. 关于的叙述,错误的是()A. 是有理数B. 面积为12 的正方形边长是C. =2D. 在数轴上可以找到表示的点【答案】 A【解析】解:A、是无理数,原来的说法错误,符合题意;B、面积为12 的正方形边长是,原来的说法正确,不符合题意;C、=2 ,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判项.定选择本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.17. 下列语句中正确的是()A. 正整数和负整数统称为整数B. 有理数和无理数统称为实数C. 开方开不尽的数和π统称为无理数D. 正数、0、负数统称为有理数【答案】 B【解析】解:A、正整数和负整数,还有零统称为整数,故 A 错误;B、有理数和无理数统称为实数,故 B 正确;C、开方开不尽的数和π都是无理数,故 C 错误;D、整数、分数统称为有理数,故 D 错误;故选B.根据实数的分类进行选择即可.本题考查了实数,掌握实数的分类是解题的关键.18. 下列说法:;数轴上的点与有理数成一一对应关系;是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,正确的个数有A. 2 个B. 3 个C. 4 个D. 5 个【答案】 B【解析】【分析】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如,等,也有π这样的数.①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①,故说法错误;②数轴上的点与实数成一一对应关系,故说法错误;③-2 是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是③④⑥共 3 个.故选B.19.在实数范围内,下列判断正确的是()2>b2,则a>b A. 若|m|=|n|,则m=n B. 若a2C. 若=(),则a=bD. 若= ,则a=b【答案】 D【解析】解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.解答此题的关键是熟知以下概念:(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0.(2)如果一个数的平方等于a,那么这个数叫作 a 的平方根.20.对于-3. 7 ,下列说法不正确的是()A. 是负数B. 是分数C. 是有理数D. 是无理数【答案】 D【解析】解:-3. 7 是无限循环小数,是负数,是分数,是有理数,不是无理数故选:D.根据有理数的定义可得.本题主要考查实数,熟练掌握有理数的定义是解题的关键.21.在数-2,π,0,2.6,+3,中,属于整数的个数为()A. 4B. 3C. 2D. 1【答案】 B【解析】解:在数-2,π,0,2.6,+3,中,整数有-2,0,+3,属于整数的个数,3.故选:B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.22.下列数轴上的点 A 都表示实数a,其中,一定满足|a|>2 的是()A. ①③B. ②③C. ①④D. ②④【答案】 B【解析】【分析】本题考查了有理数比较大小,根据绝对值的大小解题是关键.根据绝对值是数轴上的点到原点的距离,图示表示的数,可得答案.【解答】解:一定满足|a |>2 的,A 在-2 的左边,或 A 在2 的右边,故选:B.第7 页,共68 页23.下列说法正确的是()①0 是绝对值最小的实数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④带根号的数是无理数A. ①②③④B. ①②③C. ①③D. ①②【答案】 D【解析】解:①0 是绝对值最小的实数,故①正确;②相反数大于本身的数是负数,故②正确;③数轴上原点两侧且到原点距离相等的数互为相反数,故③错误;④带根号的数不一定是无理数,故④错误.故选:D.依据绝对值、相反数、无理数的概念进行判断即可.本题主要考查的是实数的相关概念,熟练掌握相关知识是解题的关键.24.如图,半径为1 的圆从表示 3 的点开始沿着数轴向左滚动一周,圆上的点 A 与表示3 的点重合,滚动一周后到达点B,点 B 表示的数是()A. ﹣2πB. 3﹣2πC. ﹣3﹣2πD. ﹣3+2π【答案】 B【解析】解:由题意得:AB=2πr =2π,点 A 到原点的距离为3,则点 B 到原点的距离为2π-3,∵点B 在原点的左侧,∴点B 所表示的数为-(2π-3)=3- 2π,故选:B.线段AB=2πr =2π,点A 到原点的距离为3,则点 B 到原点的距离为2π-3,点B 在原点的左侧,因此点 B 所表示的数为-(2π-3)=3- 2π,于是得出答案.考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.25.下列说法,正确的有()个①m 是一个实数,m2的算术平方根是m;②m 是一个实数,则-m 没有平方根;③带根号的数是无理数;④无理数是无限小数.A. 0B. 1C. 2D. 3【答案】 B2 2 【解析】解:①如果m 是一个实数,m 的算术平方根是|m|,当m 是非负数时,m的算术平方根是m;所以此说法不正确;②如果m 是一个正数,则-m 没有平方根;所以此选项不正确;③带根号的数不一定是无理数,如=2,是有理数;所以此选项说法不正确;④无理数是无限不循环小数,所以无理数是无限小数,所以此选项说法正确;所以本题说法正确的有 1 个:④,故选B.第8 页,共68 页②根据平方根的定义进行判断;③带根号的数不一定是无理数,开方开不尽的数是无理数;④根据无理数的定义进行判断.此题主要考查了实数的定义、平方根及算术平方根的定义、无理数的定义.属于基础知识,熟练掌握这些基本概念是解题的关键.26.已知实数 a 在数轴上的位置如图,则化简|1-a|+ 的结果为()A. 1B. -1C. 1-2aD. 2a-1【答案】 C【解析】解:由数轴可得:-1<a<0,则|1-a|+ =1-a-a=1-2 a.故选:C.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.27.下列说法错误的是()A. 的平方根是±2B. 是无理数C. 是有理数D. 是分数【答案】 D【解析】【分析】本题主要考查了实数的有关概念及其分类,其中开不尽方才是无理数,无限不循环小数为无理数.A .根据算术平方根、平方根的定义即可判定; B.根据无理数的定义即可判定;C.根据无理数和立方根的定义即可判定;D.根据开平方和有理数、无理数和分数的定义即可判定.【解答】解:,,故 A 正确;是无理数,故 B 正确;是有理数,故 C 正确;不是分数,它是无理数,故 D 选项错误.故选 D.28.有以下说法:其中正确的说法有()(1)开方开不尽的数是无理数;(2)无理数是无限循环小数(3)无理数包括正无理数和负无理数;(4)无理数都可以用数轴上的点来表示;(5)循环小数都是有理数A. 1 个B. 2 个C. 3 个D. 4 个【答案】 D【解析】解:(1)开方开不尽的数是无理数,该说法正确;(2)无理数是无限不循环小数,原说法错误;(3)无理数包括正无理数和负无理数,该说法正确;(4)无理数都可以用数轴上的点来表示,该说法正确;(5)循环小数都是有理数,该说法正确.正确的有 4 个.故选:D.根据无理数的三种形式求解.,解答本题的关键是掌握无理数的三种形式:①开方开不尽的本题考查了无理数的知识数,②无限不循环小数,③含有π的数.29.如图,数轴上点P 表示的数可能是()A. B. C. D.【答案】 B【解析】解:由被开方数越大算术平方根越大,得<<<<<,即<2<<3<<,故选:B.根据被开方数越大算术平方根越大,可得答案.<<<<本题考查了实数与数轴,利用被开方数越大算术平方根越大得出<是解题关键.30.如图,数轴上,AB=AC,A,B 两点对应的实数分别是和-1,则点 C 所对应的实数是()A. 1+B. 2+C. 2 -1D. 2 +1【答案】 D【解析】解:AC=AB= +1,C 点坐标 A 点坐标加A C 的长,++1=2 +1,即C 点坐标为故选:D.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出A C 的长是解题关键.31.下列各数中,属于有理数的是()A.B.C. πD. 3.1313313331⋯⋯(两个“1”之间依次多一个3)【答案】 A【解析】解:A、是有理数,故此选项正确;B、是无理数,故此选项错误;C、π是无理数,故此选项错误;D、3.1313313331⋯⋯(两个“1”之间依次多一个3)是无理数,故此选项错误;故选:A.直接利用有理数以及无理数的定义分别分析得出答案.此题主要考查了实数,正确掌握相关定义是解题关键.32.下列各组数中互为相反数的是()A. -3 与B. -(-2)与-|-2|C. 5 与D. -2 与【答案】 B【解析】解:A、-3 与不符合相反数的定义,故选项错误;B、-(-2)=2,-|-2|=-2 只有符号相反,故是相反数,故选项正确.C、无意义,故选项错误;D、-2=-2 ,=-2 相等,不符合相反数的定义,故选项错误.故选:B.首先根据绝对值的定义化简,然后根据相反数的定义即可解答.此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0 的相反数是其本身.33.下列说法正确的是()A. 1 的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y 满足条件y= ,那么x和y 都是非负实数【答案】 D【解析】解:A、1 的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y 满足条件y= ,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.34.下列说法中,正确的是()①;②一定是正数;③无理数一定是无限小数;④16.8 万精确到十分位;⑤(-4) 2 的算术平方根是4.A. ①②③B. ④⑤C. ②④D. ③⑤【答案】 D【解析】解:- <- ,故①错误;当m=0 时,是0,不是正数,故②错误;无理数一定是无限小数,故③正确;16.8 万精确到千位,故④错误;(-4)2的算术平方根是4.故⑤正确;即正确的有③⑤,故选:D.根据实数的大小比较,算术平方根的定义,无理数的定义,精确度逐个判断即可.本题考查了实数的大小比较,算术平方根的定义,无理数的定义,精确度等知识点,能熟记知识点的内容是解此题的关键.35.下列说法正确的是()A. 立方根等于它本身的实数只有0 和1B. 平方根等于它本身的实数是0C. 1 的算术平方根是D. 绝对值等于它本身的实数是正数【答案】 B【解析】【分析】此题考查了立方根,平方根,算术平方根,绝对值,掌握这些概念是关键,逐项分析即可得到答案.【解答】解:A.立方根等于它本身的数是0,-1,1,故A 错误;B.平方根等于它本身的实数是0,故 B 正确;C.1 的算术平方根是1,故C 错误;D.绝对值等于它本身的实数是正数,0,故 C 错误;故选 B.36.已知实数a,b 在数轴上对应的点如图所示,则下列式子正确的是()A. -a<-bB. a+ b<0C. |a |<|b|D. a-b>0【答案】 C【解析】解:根据点a、b 在数轴上的位置可知-1<a<0,1<b<2,则-a>-b,a+ b>0,|a|<|b|,a- b<0.故选:C.根据点a、b 在数轴上的位置可判断出a、b 的取值范围,即可作出判断.本题主要考查的是数轴的认识、有理数的加法、减法、绝对值性质的应用,掌握法则是解题的关键.37.设面积为 6 的正方形的边长为a.下列关于 a 的四种说法:①a 是有理数;② a 是无理数;③ a 可以用数轴上的一个点来表示;④2<a<3.其中说法正确的有()A. 1 个B. 2 个C. 3 个D. 4 个【答案】 C【解析】解:∵面积为 3 的正方形的边长为a,∴a= ,故①a 是有理数,错误;②a 是无理数,正确;③a 可以用数轴上的一个点来表示,正确;④2<a<3,正确,则说法正确的是:②③④共 3 个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.38.实数a,b,c在数轴上的位置如图所示,则化简|b|+|c-a |-|a+ b|的结果为()A. 2a+2 b-cB. -cC. c-2aD. a-b-c【答案】 B【解析】解:从数轴上a、b、c的位置关系可知:c<a<0,b>0 且|b |>|a|,故a+ b>0,c-a<0,即有|b|+|c-a |-|a+ b|=b-(c- a)-(a+ b)=b-c+a-a-b=- c.故选:B.首先从数轴上a、b、c 的位置关系可知:c<a<0,b>0 且|b|>|a |,接着可得a+ b>0,c-a<0,然后即可化简|b|+| c-a|-|a+ b|.此题主要考查了利用数轴比较两个的大小和化简绝对值.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.39.我们知道有一些整数的算术平方根是有理数,如,,,⋯已知n=1,2,3,⋯,99,100,易知中共有10 个有理数,那么中的有理数的个数是()A. 20B. 14C. 13D. 7【答案】 D【解析】解:∵是有理数,∴2n 是完全平方数,∵n=1,2,3,⋯,99,100,∴2n=2,4,6,⋯,198,200,∴在2,4,6,⋯,198,200 的这组数据中,完全平方数有2,8,18,36,64,100,144,196,∴中的有理数的个数是7,故选:D.在2,4,6,⋯,198,200 的这组数据中,找出完全平方数即可..本题考查了实数,完全平方数,正确的找出完全平方数是解题的关键40.将四个数- ,,,表示在数轴上,被如图所示的墨迹覆盖的数是()A. -B.C.D.【答案】 D【解析】解:,,,,因为盖住的数大于 2 小于3,故选:D.盖住的数大于 2 小于3,估计,,的值可确定答案..本题考查无理数值的大小估计.确定无理数在哪两个整数之间是解答的关键41.正方形ABCD 在数轴上的位置如图所示,点D、A 对点顺针时应的数分别为0 和1,若正方形ABCD 绕顶方向在数轴上连续翻转,翻转 1 次后,点B 所对应的数为2;按此规律继续翻转下去,则数轴上数2019 所对应的点是()A. 点AB. 点BC. 点CD. 点D【答案】 C【解析】解:当正方形在转动第一周的过程中, 1 所对应的点是A,2 所对应的点是B,3 所对应的点是C,4 所对应的点是D,∴四次一循环,∵2019 ÷4=504⋯3,∴2019 所对应的点是C.故选:C.由题意可知转一周后,A、B、C、D 分别对应的点为1、2、3、4,可知其四次一循环,由次可确定出2019 所对应的点.律是解题的关键.本题主要考查实数与数轴以及正方形的性质,确定出点的变化规42.下列格式中,化简结果与的倒数相同是()A. B. C. D.【答案】 A【解析】解:的倒数是.A、原式= ,故本选项正确.B、原式= ,故本选项错误.C、原式=- ,故本选项错误.D、原式= ,故本选项错误.故选:A.解答.的倒数是,根据实数的性质、绝对值的计算方法法则即可解题.算计考查了实数的性质,倒数的定义以及绝对值,属于基础题,熟记43.实数a.b 在数轴上的位置如图所示,下列各式中不成立的是()A. -a>bB. a+6<0C. a-b<a+bD. |a |+|b |<|a+b|【答案】 D【解析】解:选项 A 正确:找出表示数 a 的点关于原点的对称点-a,与 b 相比较可得出-a>b.选项 B 正确:a+ b<0;选项 C 正确:a-b<a+b;选项 D 正确的是|a|+|b |>|a+ b|,故这个选项不成立.故选:D.根据一对相反数在数轴上的位置特点,先找出与点 a 相对应的-a,然后与 b 相比较,即可排除选项求解..本题考查了实数与数轴的关系用字母表示数,具有抽象性.互由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者相补充,相辅相成.验,就因为是选择题,也可以采用特值法,如:取a=-2,b=1,代入四个选项,逐一检可以得出正确答案.这样做具体且直观.44.关于下列说法中不正确的是()A. 是无理数B. 的平方是 2C. 2 的平方根是D. 面积为 2 的正方形的边长可表示为【答案】 C【解析】解:A、是无理数,正确,故本选项不符合题意;B、的平方是2,正确,故本选项不符合题意;C、2 的平方根是,错误,故本选项符合题意;D、面积为 2 的正方形的边长为,正确,故本选项不符合题意;故选:C.根据无理数、实数的乘方、平方根的定义、算术平方根的定义逐个判断即可.本题考查了实数及分类、无理数、实数的乘方、平方根的定义、算术平方根的定义,能熟记知识点的内容是解此题的关键,注意:实数包括无理数和有理数,无理数是指无限不循环小数.45.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数【答案】 A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0 和负有理数,不正确,故本选项不符合题意;C、0 不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0 相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.46.①倒数等于本身的数为1;②若a、b 互为相反数,那么a、b 的商必定等于﹣1;③对于任意实数x,|x|+x 一定是非负数;④一个数前面带有“﹣”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为0 和1;⑧平方等于自身的数为0 和1;其中正确的个数是()A. 0 个B. 1 个C. 2 个D. 3 个【答案】 C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键.直接利用倒数以及绝对值和相反数的性质分别分析得出答案。
人教版初中七年级数学下册第六单元《实数》知识点总结(含答案解析)(1)
一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥D .③④⑤ 2.下列各式计算正确的是( )A .31-=-1B .38= ±2C .4= ±2D .±9=3 3.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A .0个B .1个C .2个D .3个4.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间5.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .106.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 137.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3±8.30.31,3π,27-912-38 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1 B .2C .3D .4 9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - 10.已知:m 、n 为两个连续的整数,且5m n <,以下判断正确的是( ) A 545 B .3m =C 50.236D .9m n += 11.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a>-> C .1a a a >>- D .1a a a ->> 12.下列各数中是无理数的是( ) A .227 B .1.2012001 C .2π D 8113.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5 14.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1 B .-5或5 C .11或7 D .-11或﹣7 15.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π3二、填空题16.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、2等,而常用“……”或者“≈”212的小数部分,你同意小刚的表示方法吗? 2的整数部分是1,将这个数减去其整数部分,差就是小数部分. 459<<,即253<<, 5252也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(113______,小数部分是_______;(2)107+也是夹在两个整数之间的,可以表示为107a b <+<,则a b +=_____; (3)若404x y -=+,其中x 是整数,且01y <<.求:x y -的相反数. 17.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0) 正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.18.对于实数x ,规定[x ]表示不大于x 的最大整数,如[4]=4,[3]=1,如[﹣2.5]=﹣3,现对82进行如下操作:82−−−→第一次[82]=9−−−→第二次[9]=3−−−→第三次[3]=1,这样对82只需进行3次操作后变为1,类似地,按照以上操作,只需进行3次操作后变为2的所有正整数中,最大的正整数是__.19.已知a 、b 满足2|3|0a b -++=,则(a +b )2021的值为________.20.已知57+的整数部分为a ,57-的小数部分为b ,则2ab b +=_________. 21.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______. 22.计算:(1)3243333225⎛⎫+-- ⎪⎝⎭; (2)381|13|6463+----.23.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.24.观察下面一列数:-1,2,-3,4,-5,6,-7……,将这列数排成下图形式.按照此规律排下去,那么第_________行从坐标数第_________个数是-2019.25.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.26.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______.三、解答题27.计算:(1()23-.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦. 28.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.29.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 30.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根.。
七年级下册人教版数学第六章实数知识要点及经典题型
七年级下册人教版数学第六章实数知识要点及经典题型
实数知识要点:
1. 整数与有理数的关系:整数包含了有理数的全部内容,即整数是有理数的一种特殊形式。
2. 无理数:不能表示为两个整数的比的数,无理数是一类不是有理数的实数。
3. 实数的分类:实数可以分为有理数和无理数两种。
4. 实数的四则运算法则:实数的加减、乘除运算满足相应的运算法则。
5. 整式的运算:根据四则运算法则,对整式进行加减乘除运算。
6. 实数的比较:对于任意两个实数a和b,有以下三种情况:
a>b,a=b,a<b。
7. 绝对值的定义:实数a的绝对值表示为|a|,定义为a的值和
0的距离,即|a|=a(a≥0),|a|=-a(a<0)。
经典题型:
例1:计算下列各式的值:a) -3+5; b) 4-(-7); c) -2×3.
解答:
a) -3+5 = 5-3 = 2
b) 4-(-7) = 4+7 = 11
c) -2×3 = -6
例2:比较大小:a) -5和-3;b) -3和4-7.
解答:
a) -5<-3
b) -3<4-7,即-3<-3,两个数比较大小结果相同。
例3:计算下列各式的绝对值:a) |5|; b) |-7|; c) |-3+4|.
解答:
a) |5| = 5
b) |-7| = 7
c) |-3+4| = |1| = 1。
部编人教版七年级数学下册第六章实数(知识点归纳+达标检测)
第六章实数(知识点归纳+达标检测)6.1.1平方根【我会学】自学教材40页,回答问题:1. 一般地,如果一个___ 数x的平方等于a,即2x=a,那么这个______叫做a的_________.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:______的算术平方根是0. 记作0=2.由以上定义可知如果2x=a,那么x就叫a的算术平方根吗?判断下列语句是否正确?①5是25的算术平方根()②-6是36的算术平方根()③0.01是0.1的算术平方根()④-5是-25的算术平方根()3.3的算术平方根可表示为,4的算术平方根可表示为,你还能表示出那些数的算术平方根?写在下面,和同座交流一下4.试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.(巩固学生自学的成果,加深学生对算术平方根的定义的理解,加强对表示方法的训练)【我们来交流】思考:-4有算术算术平方根吗?为什么?总结:1.正数有的算术平方根0的算术平方根是负数【检测】1.求下列各数的算术平方根:(1)100;(2) ;(3) 0.0001 ;⑷ 0;2.课本p41练习和习题6.1第1、2题3.配套练习册。
【小结与反思】1.算术平方根的定义、表示方法和性质。
2.求一个非负数的算术平方根。
3.a 的双重非负性.6.1.2平方根【我会学】1、算术平方根的意义及表示方法。
2、说出下列各数的算术平方根。
100 0049.0 25 42 25【我们来交流】某同学用一张正方形纸片折小船,但他手头上没有现成的正方形纸片,于是他撕下一张作业本上的纸,按照如图,沿AE 对折使点B 落在点F 的位置上,•再把多余部分FECD 剪下,如果他事先量得矩形ABCD 的面积为90cm 2,又测量剪下的多余的矩形纸片的面积为F E D CB A40cm2.•请根据上述条件算出剪出的正方形纸片的边长是多少厘米.(到底它为多少呢?它是一个小数吗?你有什么办法确定这个值呢?由这一系列问题进入这节课要讨论的问题.)【活动1】怎样用两个面积为1的正方形拼成一个面积为2的大正方形动手画一画,若确实不会,则学生间进行交流。
七年级下册实数知识点概括及常见题目
七年级下册实数知识点概括及常见题目
一、知识点概括
1.实数的概念
实数是包括有理数和无理数的数的集合,它们可以表示在数轴
上的位置。
实数具有加法、减法、乘法和除法等运算规则。
2.有理数
有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、正分数和负分数。
有理数之间可以进行加减乘除运算,还可以
比较大小。
3.无理数
无理数是不能表示为两个整数之比的数,它们的十进制表示是
无限不循环的小数。
无理数包括根号2、根号3等。
4.实数的分布
实数可以在数轴上表示出来,正数在右侧,负数在左侧。
实数
之间可以进行大小比较。
二、常见题目
以下是七年级下册实数部分常见的题目类型:
1.判断题:给出一个数,判断它是有理数还是无理数。
2.计算运算结果:计算两个实数的和、差、积、商。
3.比较大小:给出两个实数,判断它们的大小关系。
4.补全数轴:给出数轴上的几个点,补全数轴上其它的实数点。
5.排序实数:给出几个实数,按大小顺序排列它们。
6.选择题:根据题目描述选择符合条件的实数。
以上是七年级下册实数知识点的概括及常见题目类型。
通过熟
练掌握这些知识点和题目类型,可以提高对实数的理解和应用能力。
人教版七年级数学下册实数知识点总结
第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
人教版七年级数学下册实数知识点归纳及常见考题。[2]
人教版七年级数学下册实数知识点归纳及常见考题。
(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级数学下册实数知识点归纳及常见考题。
(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级数学下册实数知识点归纳及常见考题。
(word版可编辑修改)的全部内容。
实数【知识要点】1。
算术平方根:正数a的正的平方根叫做a的算术平方根,记作“错误!".2. 如果x2=a,则x叫做a的平方根,记作“±错误!"(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根.4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根.(3)0的算术平方根与平方根同为0.5。
如果x3=a,则x叫做a的立方根,记作“错误!"(a称为被开方数)。
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根.7. 求一个数的平方根(立方根)的运算叫开平方(开立方).8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0。
9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如=.25=50,5250010。
平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
人教版初中七年级数学下册第六单元《实数》知识点复习(含答案解析)
一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . A 解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….4.下列实数220.010*******;; (相邻两个1之依次多一个0);2,其中无理数有( )A .2个B .3个C .4个D .5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B .【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.在0.010010001,3.14,π,1.51,27中无理数的个数是( ). A .5个B .4个C .3D .2个D解析:D【分析】 根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;【详解】在0.010010001,3.14,π,1.51,27中无理数有π共2个, 故选D .【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;6 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=.7.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.下列等式成立的是( )A .±1B =±2C 6D 3A 解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确; ⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.二、填空题11.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-画图见解析【分析】先把各数化简在数轴上表示出各数再根据在数轴上右边的数总比左边的数大把这些数按从大到小的顺序用>连接起来【详解】解:在数轴上表示为:按从大到小的顺序用>连接为:【点睛】本题主要考查了解析:画图见解析,()239201272>-->>-->->- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.12.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …}, 无理数集合{ …}.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,13.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.14.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3 解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.15.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.169【分析】根据一个正数的两个平方根互为相反数求出a 的值就可以算出这个正数【详解】解:解得∴这个正数是故答案是:169【点睛】本题考查平方根解题的关键是掌握平方根的性质解析:169【分析】根据一个正数的两个平方根互为相反数,求出a 的值,就可以算出这个正数.【详解】解:()27340a a -+-+=,解得3a =-,()23713⨯--=-,∴这个正数是()213169-=. 故答案是:169.【点睛】本题考查平方根,解题的关键是掌握平方根的性质.17.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:ab = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.18.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
(完整word版)初一数学七下实数所有知识点总结和常考题型练习题,文档
实数知识点一、实数的倒数、相反数和绝对值1、相反数只有符号不同样的两个数叫做互为相反数〔零的相反数是零〕,从数轴上看,互为相反数的两个数所对应的点关于原点对称,若是 a 与 b 互为相反数,那么有 a+b=0, a=— b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a| ≥0。
零的绝对值时它自己,也可看作它的相反数,假设 |a|=a ,那么 a≥ 0;假设 |a|=-a ,那么 a≤ 0。
正数大于零,负数小于零,正数大于所有负数,两个负数,绝对值大的反而小。
3、倒数若是 a 与 b 互为倒数,那么有ab=1,反之亦成立。
倒数等于自己的数是 1 和 -1 。
零没有倒数。
二、平方根、算数平方根和立方根1、平方根若是一个数的平方等于a,那么这个数就叫做 a 的平方根〔或二次方跟〕。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ a 〞。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ a 〞。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a 〔 a0〕a0a 2a;注意 a 的双重非负性:- a〔a <0〕a03、立方根若是一个数的立方等于a,那么这个数就叫做 a 的立方根〔或 a 的三次方根〕。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:3a 3 a,这说明三次根号内的负号可以移到根号外面。
三、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做 a 10n的形式,其中1a10 ,n是整数,这种记数法叫做科学记数法。
四、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴〔画数轴时,要注意上述规定的三要素缺一不可以〕。
2、实数大小比较的几种常用方法(1〕数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
新人教版七年级下《第6章实数》知识清单含例题+期末专题复习试卷(含答案)
【经典例题1】1、下列说法错误的是( )A.5是25的算术平方根B.1是1的一个平方根C.(-4)2的平方根是-4D.0的平方根与算术平方根都是02、下列各式中,正确的是( )A. B. C. D.3、的平方根是( )A. B.2 C.-2 D.16【经典例题2】4、若a2=4,b2=9,且ab<0,则a﹣b的值为( )A.﹣2B.±5C.5D.﹣55、设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④6、已知实数x、y满足+|y+3|=0,则x+y的值为( )A.﹣2B.2C.4D.﹣4【经典例题3】7、一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是( )A.a+1B.a2+1C.D.8、已知是二元一次方程组的解,则2m﹣n的算术平方根为( )A.±2B.C.2D.49、有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【经典例题4】10、平方等于16的数是_______; 立方等于本身的数是 .11、一个数的立方根是4,这个数的平方根是 .12、若-2x m-n y2与3x4y2m+n是同类项,则m-3n的立方根是 .【经典例题5】13、求x的值:25(x+1)2=16; 14、求y的值:(2y﹣3)2﹣64=0;15、计算: 16、计算:.【经典例题6】17、已知实数a,b在数轴上的位置如图所示,化简:﹣|a﹣b|.18、阅读理解∵,即,∴.∴的整数部分为1,小数部分为.解决问题:已知是的整数部分,是的小数部分,求的平方根.参考答案1、C;2、B3、A4、B5、C6、A7、B8、C9、D10、±4,0,±111、8,-812、213、x=-0.2,x=-1.8;14、y=5.5或y=﹣2.5;15、10 ;16、-2;17、解:由数轴上点的位置关系,得﹣1<a<0<b<1.原式=a+1+2﹣2b﹣b+a=2a﹣3b+3.18、由题意,得,所以即的平方根为.2018年七年级数学下册实数期末复习试卷一、选择题:1、下列语句中正确的是( )A.﹣9的平方根是﹣3 B.9的平方根是3C.9的算术平方根是±3 D.9的算术平方根是32、下列结论正确的是( )A. B. C. D.3、下列关于的说法中,错误的是( )A.是8的算术平方根 B.2<<3 C.= D.是无理数4、下列各组数中互为相反数的一组是( )A.﹣|2|与 B.﹣4与﹣ C.﹣与|| D.﹣与5、如果=2.872, =28.72,则=( )A.0.2872 B.28.72 C.2.872 D.0.028726、设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④ B.②③ C.①②④ D.①③④7、的算术平方根是( )A.±6 B.6 C. D.8、下列各数中,3.14159,,0.3131131113…(2016春•潮州期末)下列各式表示正确的是( )A. B. C. D.9、已知实数x、y满足+|y+3|=0,则x+y的值为( )A.﹣2 B.2 C.4 D.﹣410、若正数a的算术平方根比它本身大,则()A. 0<a<1B. a>0C. a<1D. a>111、估计-1在()A.0~1之间 B.1~2之间 C.2~3之间 D.3~4之间12、实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是( )A.2a﹣b B.b﹣2a C.b D.﹣b二、填空题:13、(﹣9)2的算术平方根是 .14、如图,在数轴上点A和点B之间的整数是 .15、已知(x﹣1)2=3,则x= .16、如果=1.732, =5.477,那么0.0003的平方根是 .17、若a、b互为相反数,c、d互为负倒数,则=_______.18、已知a,b为两个连续的整数,且a<<b,则a+b= .三、解答题:19、求x的值:9(3x﹣2)2=64. 20、求x的值:21、计算:22、计算:.23、已知x﹣1的平方根为±2,3x+y﹣1的平方根为±4,求3x+5y的算术平方根.24、已知的平方根是,的立方根是2,是的整数部分,求的值.25、阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<7<3,即2<<3,∴的整数部分为2,小数部分为﹣2.请解答:(1)的整数部分是 ,小数部分是 .(2)如果的小数部分为a,的整数部分为b,求a+b的值;(3)已知:x是3的整数部分,y是其小数部分,请直接写出x﹣y的值的相反数.26、若实数a,b,c在数轴上所对应点分别为A,B,C,a为2的算术平方根,b=3,C点是A点关于B点的对称点,(1)求数轴上AB两点之间的距离;(2)求c点对应的数;(3)a的整数部分为x,c的小数部分为y,求的值(结果保留带根号的形式);27、已知字母a、b满足.求的值.参考答案1、D2、A3、C4、C5、A6、C7、D8、C9、A10、A11、C12、C13、9.14、答案为:2.15、答案为:+1.16、±0.01732.17、-118、答案为:5.19、开平方得:3(3x﹣2)=±8解得:x1=,x2=﹣.20、或21、22、-10;23、524、a=5, b=2,c=7,=16.25、解:(1)的整数部分是3,小数部分是﹣3;故答案为:3;﹣3;(2)∵4<5<9,∴2<<3,即a=﹣2,∵36<37<49,∴6<<7,即b=6,则a+b﹣=4;(3)根据题意得:x=5,y=3+﹣5=﹣2,∴x﹣y=7﹣,其相反数是﹣7.26、(1)3;(2)6;(3)y=2-.27、。
《常考题》初中七年级数学下册第六单元《实数》知识点(含答案解析)
一、选择题1.a,小数部分为b,则a-b的值为()A.6-B6C.8D8A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】91516<<,<<,<<34a b∴==,3,3)∴-=-=,336a b故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.2)A.8 B.±8 C.D.± C解析:C【分析】【详解】,8的算术平方根是,.故选择:C.【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3)A.2 B.4 C.2±D.-4A解析:A【分析】【详解】解:∵,∴16的算术平方根是4=2.故选:A.【点睛】本题主要考查了算术平方根的定义,注意要首先计算16=4.4.-18的平方的立方根是()A.4 B.14C.18D.164B解析:B【分析】先根据题意列出代数式,然后再进行计算即可.【详解】解:由题意得:22331118644⎛⎫-==⎪⎝⎭.故答案为B.【点睛】本题考查了平方和立方根,弄清题意、根据题意列出代数式是解答本题的关键.5.在0.010010001,3.14,π,10,1.51,27中无理数的个数是().A.5个B.4个C.3 D.2个D解析:D【分析】根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;【详解】在0.010010001,3.14,π,10,1.51,27中无理数有π,10共2个,故选D.【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;6.数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述正确的是?()A.在A的左边B.介于O、B之间C.介于C、O之间D.介于A、C之间B解析:B【分析】借助O、A、B、C的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d﹣5|=|d﹣c|∴BD=CD,∴D点介于O、B之间.故答案为B.【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.7.8)A.4 B.5 C.6 D.7B解析:B【分析】<<,进而得出答案.直接利用估算无理数的大小的方法得出23【详解】<<,解:459<<,<<23∴-<<-,83882∴<,586∴5.8故选:B.【点睛】8)A.8B.8-C.D.± D解析:D【分析】=,再根据平方根的定义,即可解答.8【详解】=,8的平方根是±8故选:D.【点睛】=.89.一个正方体的体积为16,那么它的棱长在()之间A.1和2 B.2和3 C.3和4 D.4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =, 解得316x =,∵332163<<,∴32163<<,那么它的棱长在2和3之间.故选:B .【点睛】本题考查了估算无理数的大小,解决本题的关键是估算316的范围.10.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n B解析:B【分析】根据n+p=0可以得到n 和p 互为相反数,原点在线段PN 的中点处,从而可以得到绝对值最大的数. 【详解】解:∵n+p=0,∴n 和p 互为相反数,∴原点在线段PN 的中点处,∴绝对值最大的一个是Q 点对应的q .故选B .【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点. 二、填空题11.计算.(1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭; (2)()3328864---(1)4;(2)【分析】(1)变减号为加号同时省略括号和加号先两个分数相加再和最后一个数相加;(2)先算乘方和开方再算乘除最后算加减【详解】(1)原式;(2)原式【点睛】此题考查有理数混合运算其关键解析:(1)4;(2)6-.【分析】(1)变减号为加号同时省略括号和加号,先两个分数相加,再和最后一个数相加; (2)先算乘方和开方,再算乘除,最后算加减.【详解】(1)原式111322=-++ 13=+4=;(2)原式()()8288=-+-÷-⨯82=-+6=-.【点睛】此题考查有理数混合运算,其关键是熟练掌握每种运算和按运算顺序运算,注意用运算律改变运算顺序以使运算简便.12)10152-⎛⎫-+︒ ⎪⎝⎭【分析】根据平方根定义负指数幂零指数幂特殊角的三角函数值计算即可;【详解】解:原式【点睛】本题主要考查了实数的运算结合负整数指数幂零指数幂特殊角的三角函数值计算是解题的关键 解析:32【分析】根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式33421421222=-+-=-+-=. 【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键.13.<x的所有整数x 的和是_____.2【分析】首先通过对和大小的估算可得满足﹣<x <的所有整数进而对其求和可得答案【详解】解:∵﹣2<﹣<﹣12<<3∴满足﹣<x <的所有整数有﹣1012∴﹣1+0+1+2=2故答案为:2【点睛】本题主解析:2【分析】x的所有整数,进而对其求和可得答案.【详解】解:∵﹣21,2 <3,∴<x 的所有整数有﹣1,0,1,2,∴﹣1+0+1+2=2,故答案为:2.【点睛】本题主要考查无理数大小的估算,比较简单,正确理解是解题的关键.14.把下列各数填入相应的集合里:﹣3,|﹣5|,+(13-),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34,﹣|45-|,3π 正数集合:{_____________…};整数集合:{_____________…};负分数集合:{_____________…};无理数集合:{_____________…}.|﹣5|﹣(﹣25)3π﹣3|﹣5|0+()﹣314﹣||﹣12121121112…3π【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号再根据正数整数负分数无理数的定义求解即可【解析:|﹣5|,﹣(﹣2.5),34,3π ﹣3,|﹣5|,0 +(13-),﹣3.14,﹣|45-| ﹣1.2121121112 (3)【分析】先根据绝对值的定义及化简符号的法则去掉绝对值的符号及多重符号,再根据正数、整数、负分数、无理数的定义求解即可.【详解】解:|﹣5|=5,+(13-)13=-,﹣(﹣2.5)=2.5,﹣|45-|45=-,15.1【分析】先根据开方的意义绝对值的意义进行化简最后计算即可求解【详解】解:原式【点睛】本题考查了实数的混合运算理解开方的意义能正确去绝对值是解题关键解析:1【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键.16.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+=(1)或;(2)【分析】(1)适当变形后利用平方根的定义即可解方程;(2)适当变形后利用立方根的定义即可解方程【详解】解:(1)两边乘以2得开平方得即或∴或;(2)移项得开立方得解得【点睛】本题考查解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.17.定义运算“@”的运算法则为:,则2@6 =____.4【分析】把x=2y=6代入x@y=中计算即可【详解】解:∵x@y=∴2@6==4故答案为4【点睛】本题考查了有理数的运算能力注意能由代数式转化成有理数计算的式子解析:4【分析】把x=2,y=6代入中计算即可.【详解】解:∵,∴=,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.18.若已知()2120a b -++=,则a b c -+=_____.6【分析】分别根据绝对值平方和算术平方根的非负性求得abc 的值代入即可【详解】解:因为所以解得故故答案为:6【点睛】本题考查非负数的性质主要考查绝对值平方和算术平方根的非负性理解几个非负数(式)的和解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.19.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.20.若4<5,则满足条件的整数 a 分别是_________________.18192021222324【分析】求出a 的范围是16<a <25求出16和25之间的整数即可【详解】解:∵4<<5a 为整数∴<<∴整数a 有1718192021222324共8个数故答案为:17181解析:18、19、20、21、22、23、24.【分析】求出a 的范围是16<a <25,求出16和25之间的整数即可.【详解】解:∵4<5,a 为整数, ∴∴整数a 有17、18、19、20、21、22、23、24,共8个数,故答案为:17、18、19、20、21、22、23、24.【点睛】本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.三、解答题21.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(2的平方根和立方根.解析:(1)441或49;(2)2± 【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数; (2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果.【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =,这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =,这个正数是:()2243749+==;(2)若18a ==若4a =4==,4的平方根是2±.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法.22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.解析:(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】⨯=18(cm),解:(11622答:正方形纸板的边长为18厘米;(23343=7(cm),则剪切纸板的面积=7×7×6=294(cm2),剩余纸板的面积=324﹣294=30(cm2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.23.观察下列各式,并用所得出的规律解决问题:(12=1.414200=14.1420000=0.03=0.17323=1.732,300=17.32…由此可见,被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(25=2.23650=7.0710.5=,500=;(331=131000=1031000000=100…小数点变化的规律是:.(4310=2.1543100=4.642310000=,30.1=.解析:(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵=2.154=4.642, ∴=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.24.计算:(1)(23)(41)----;(2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+; (4)311()()(2)424-⨯-÷-.解析:(1)4;(2)-11;(3;(4)16-. 【分析】(1)直接利用有理数的加减运算法则计算得出答案; (2)逆用分配律,直接提取公因数-115,进而计算得出答案; (3)直接利用绝对值和立方根的性质分别化简得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【详解】解:(1)(23)(41)---- 15=-+4=;(2)原式11()(5133)5=-⨯-+- 1155=-⨯ 11=-;(3)原式413=+-=(4)原式314429=-⨯⨯ 16=-. 【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.25.求满足条件的x 值:(1)()23112x -=(2)235x -=解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.26.计算:(1)225--(2)1+解析:(1)-4;(2)1.【分析】(1)根据乘方、开方、绝对值的意义化简,再计算即可;(2)先根据绝对值的意义脱去绝对值,再计算即可求解.【详解】解:(1)225--=-4+6-1-5=-4;(2)1)1=++1=+1=-+=-1+2=1.【点睛】本题考查了实数的性质与运算,熟知实数的运算法则和性质是解题关键.27.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=解析:(1)1x =-或5x =-;(2)32x =-. 【分析】 (1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=,移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
(完整版)人教版七年级数学下册第六章实数知识点汇总
2. 如果 x2=a,则 x 叫做 a 的平方根,记作“± a”
(a 称为被开方数)。
4. 平方根和算术平方根的区别与联系: 区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的 算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方 根。(3)0 的算术平方根与平方根同为 0。 5. 如果 x3=a,则 x 叫做 a 的立方根,记作“ a” (a 称为被开方数)。 6. 正数有一个正的立方根;0 的立方根是 0;负数有一个负的立方根。
立方根是 2,④ 3 82 4 。其中正确的有
( )A、1 个
B、2 个
C、3 个 D、4 个
7.易混淆的三个数
(1) a2 (2) ( a )2 (3) 3 a3
2. 下列说法正确的是( )
综合演练一、填空题
A.-2 是(-2)2 的算术平方根 B.3 是-9 的算术平方根 C16 的平方根 是±4 D 27 的立方根是±3
D. 92 9
4、 3 4 = ____________5、若 m、n 互为相反数,则 m 5 n =_________
3.下列说法中正确的是( ) A.9 的平方根是 3 B. 16 的算术平方根是±2 C. 16 的算术平方根
6、若 a 2 a ,则 a______07、若 3x 7 有意义,则 x 的取值范
三、利用平方根解下列方程.
(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0;
3、若 x 1 (3x y 1)2 0 ,求 5x y 2 的值。
The shortest way to do many things is to only one thin
七年级数学下册实数知识点归纳及常见考题
七年级数学下册实数知识点归纳及常见考题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】七年级数学(下)辅导资料(4)【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。
2. 如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为0。
5. 如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525==.10.平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
30;a≥0。
4、公式:⑴2=a(a≥0=(a取任何数)。
5、区分2=a(a≥0),与2a=a6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
【典型例题】1.下列语句中,正确的是( D ) A .一个实数的平方根有两个,它们互为相反数B .负数没有立方根C .一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个 2. 下列说法正确的是( C ) A .-2是(-2)2的算术平方根 B .3是-9的算术平方根 C .16的平方根是±4 D .27的立方根是±33. 已知实数x ,y 满足2=0,则x-y 等于解答:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3.4.求下列各式的值(1)81±;(2)16-;(3)259;(4)2)4(-解答:(1)因为8192=,所以±81=±9.(2)因为1642=,所以-416-=.(3)因为253⎪⎭⎫ ⎝⎛=259,所以259=53.(4)因为22)4(4-=,所以4)4(2=-. 5. 已知实数x ,y 满足2=0,则x-y 等于解答:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3. 6. 计算(1)64的立方根是4(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。
七年级下册实数概念总结及常见题目
七年级下册实数概念总结及常见题目
实数是数学中的一种数集,包括整数、有理数和无理数。
本文将对七年级下册所学的实数概念进行总结,并提供一些常见的相关题目。
实数的分类
实数可分为以下三类:
1. 整数(Z):包括正整数、0和负整数。
例如:-3,0,1。
2. 有理数(Q):可表示为两个整数的比值的数。
包括整数和分数。
例如:-3/4,2/3,5。
3. 无理数(I):不能表示为两个整数的比值的数。
无理数是无限不循环小数。
例如:√2,π。
实数的运算
实数的运算包括加法、减法、乘法和除法。
以下是运算规则的简要说明:
- 加法规则:实数相加,直接将数字相加,符号取决于正负。
例如:2 + (-3) = -1。
- 减法规则:实数相减,利用加法规则,将被减数加上减数的相反数。
例如:5 - 3 = 5 + (-3) = 2。
- 乘法规则:实数相乘,正负数相乘得到负数,两个负数相乘得到正数。
例如:(+2) * (-3) = -6。
- 除法规则:实数相除,利用乘法规则,被除数乘以除数的倒数。
例如:10 / 2 = 10 * (1/2) = 5。
常见题目
以下是一些与实数相关的常见题目:
1. 计算:-3 + 5 = ?
2. 计算:4 * (-2) = ?
3. 计算:12 / 3 = ?
4. 判断:-2 为有理数还是无理数?
5. 计算:√3 + 2 = ?
希望以上内容对您的学习有所帮助。
如有其他问题,请随时咨询。
七年级数学下册第六章实数知识点归纳总结(精华版)(带答案)
七年级数学下册第六章实数知识点归纳总结(精华版)单选题1、下列等式:①√116=18,②√(−2)33=−2,③√(−2)2=2,④√−83=−√83,⑤√16=±4,⑥−√4=−2;正确的有( )A .4个B .3个C .2个D .1个答案:A分析:根据算术平方根定义及立方根定义解答.解:√116=14,故①错误; √(−2)33=−2,故②正确;√(−2)2=2,故③正确;√−83=−√83,故④正确; √16=4,故⑤错误;−√4=−2,故⑥正确;故选:A .小提示:此题考查求一个数的算术平方根及立方根,正确掌握算术平方根定义及立方根定义是解题的关键.2、-2019的相反数是( )A .2019B .-2019C .12019 D .−12019答案:A分析:根据只有符号不同的两个数互为相反数解答即可.解:-2019的相反数是2019.故选:A .小提示:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义.3、如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y 为√3时,输入值x 为3或9;②当输入值x为16时,输出值y为√2;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是()A.①②B.②④C.①④D.①③答案:D分析:根据运算规则即可求解.解:①x的值不唯一.x=3或x=9或81等,故①说法错误;②输入值x为16时,√16=4,,√4=2,y=√2,故②说法正确;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y,如输入π2,故③说法错误;④当x=1时,始终输不出y值.因为1的算术平方根是1,一定是有理数,故④原说法正确.其中错误的是①③.故选:D.小提示:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4、估计√6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间答案:C分析:根据无理数的估算方法估算即可.∵√4<√6<√9∴2<√6<3故选:C .小提示:本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.5、实数−23的倒数是( )A .23B .−23C .123D .−123答案:D分析:根据倒数的意义可直接进行求解.解:实数−23的倒数是−123; 故选D .小提示:本题主要考查实数与倒数的意义,熟练掌握倒数的意义是解题的关键.6、对于数字-2+√5,下列说法中正确的是( )A .它不能用数轴上的点表示出来B .它比0小C .它是一个无理数D .它的相反数为2+√5答案:C分析:根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可.A .数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B .−2+√5>0,故该说法错误,不符合题意;C .−2+√5是一个无理数,故该说法正确,符合题意;D .−2+√5的相反数为2−√5,故该说法错误,不符合题意;故选:C .小提示:本题考查数轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键.7、定义a *b =3a ﹣b ,a ⊕b =b ﹣a 2,则下列结论正确的有( )个.①3*2=7.②2⊕(﹣1)=﹣5.③(13*25)⊕(72⊕14)=﹣29125.④若a *b =b *a ,则a =b .A .1个B .2个C .3个D .4个答案:C分析:先按照定义书写出正确的式子再进行计算就可解决本题.①、3∗2=3×3-2=7,故计算正确,符合题意;②、2⊕(−1)=(﹣1)-22=−5,故计算正确,符合题意;③、(13∗25)⊕(72⊕14)=(3×13−25)⊕[14−(72)2]=35⊕(−12)=(−12)−(35)2=−30925,故计算错误,不符合题意;④、a ∗b =3a −b ,b ∗a =3b −a ,∵a *b =b *a ,3a −b =3b −a ,解得:a =b ,故计算正确,符合题意.综上所述,正确的有:①②④,共3个.故选:C .小提示:本题考查了按照定义运算的知识,严格按照定义书写出正确的式子,准确的计算是解决本题的关键.8、一般地,如果x n =a (n 为正整数,且n >1),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是±2C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为偶数时,2的n 次方根有n 个答案:C分析:根据新定义的意义计算判断即可.解:∵16的4次方根是±2,∴A选项的结论不正确;∵32的5次方根是2,∴B选项的结论不正确;∵当n为奇数时,2的n次方根随n的增大而减小,∴C选项的结论正确;∵当n为偶数时,2的n次方根有2个,∴D选项的结论不正确.故选:C.小提示:本题考查了实数的新定义问题,正确理解新定义的意义是解题的关键.9、运算后结果正确的是()A.2√3÷12=√3B.√43=2C.√8−2√2=0D.√2×√6=3√2答案:C分析:根据实数的运算法则即可求解;解:A.2√3÷12=4√3≠√3,故错误;B.√43≠2,故错误;C.√8−2√2=0,故正确;D.√2×√6=2√3≠3√2,故错误;故选:C.小提示:本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键.10、已知|a−5|+√b−3=0,那么a−b=()A.2B.3C.-2D.8答案:A分析:直接利用绝对值的性质以及算术平方根的性质得出a ,b 的值,进而求解即可.解:∵|a -5|+√b −3=0,∴a -5=0,b -3=0,解得:a =5,b =3,∴a -b =5-3=2,故选:A .小提示:本题主要考查了非负数的性质,代数式求值,正确得出a ,b 的值是解题关键.填空题11、7是__________的算术平方根.答案:49分析:根据算术平方根的定义即可解答.解:因为√49=7,所以7是49的算术平方根.所以答案是:49小提示:本题主要考查的是算术平方根,属于基础题,要求学生认真读题,熟记概念.12、√−643的倒数是 ____,3﹣√10的绝对值是 ______.答案: ﹣14√10﹣3 分析:(1)先化简√−643再根据互为倒数的两个数积为1的概念进行求值即可.(2)根据若一个数小于0,那么它的绝对值为它的相反数,求出√3- 2的相反数即可.解:(1)化简√−643=√(−4)33=−4,又(−4)×(−14)=1, 所以答案是:−14.(2)√3- 2<0,则它的绝对值即为它的的相反数−(√3−2) =2−√3 ,所以答案是:2−√3故答案为−14,2−√3小提示:本题考查立方根,互为倒数和绝对值的概念,务必清楚的是互为倒数的的两个数积1,负数的绝对值等于它的相反数,掌握倒数和求绝对值的相关概念是解题的关键.13、如果√15=3.873,√1.5=1.225,那么√15000=___________.答案:122.5分析:根据算术平方根与被开方数的关系:“被开方数每向左或向右移动4个位数,则它的算术平方根就向左向右移动2个位数”可知答案.解:∵1.5×10000=15000,∴√15000=100√1.5=122.5,所以答案是:122.5.小提示:本题考查了算术平方根与被开方数的关系,关键在于知道它们之间有何关系.14、如图,A,B,C在数轴上对应的点分别为a,﹣1,√2,其中a<﹣1,且AB=BC,则|a|=_____.答案:2+√2分析:先根据数轴上点的位置求出AB=BC=√2−(−1)=√2+1,即可得到−1−a=√2+1,由此求解即可.解:∵A,B,C在数轴上对应的点分别为a,﹣1,√2,∴BC=√2−(−1)=√2+1,∴AB=BC=√2−(−1)=√2+1,∴−1−a=√2+1,∴a=−2−√2,∴|a|=2+√2,所以答案是:2+√2.小提示:本题主要考查了实数与数轴,解题的关键在于能够根据题意求出AB=BC=√2−(−1)=√2+1.15、观察下面的变化规律:2 1×3=1−13,23×5=13−15,25×7=15−17,27×9=17−19,……根据上面的规律计算:2 1×3+23×5+25×7+⋯+22019×2021=__________.答案:20202021分析:本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题.由题干信息可抽象出一般规律:2a•b =1a−1b(a,b均为奇数,且b=a+2).故21×3+23×5+25×7+⋯+22019×2021=1−13+13−15+15−17+⋯+12019−12021=1+(13−13)+(15−15)+⋯+(1 2019−12019)−12021=1−12021=20202021.故答案:20202021.小提示:本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解.解答题16、一个正数x的两个不同的平方根分别是4a﹣1和4﹣a,求a和x的值.答案:a和x的值分别为﹣1,25分析:根据一个正数的两个平方根互为相反数,得到4a﹣1+(4﹣a)=0,求出a=﹣1,再根据x=(4a﹣1)2求出x即可.解:∵一个正数的两个平方根互为相反数,∴4a﹣1+(4﹣a)=0,解得a=﹣1,∴x=(4a﹣1)2=(﹣5)2=25.答:a和x的值分别为﹣1,25.小提示:此题考查了已知一个数的平方根求参数,正确掌握一个正数的两个平方根是一对相反数的性质是解题的关键.17、已知长方形的长为72cm,宽为18cm,求与这个长方形面积相等的正方形的边长.答案:36cm分析:首先求出长方形面积,进而得出正方形的边长.因为长方形的长为72 cm,宽为18 cm,所以这个长方形面积为:72×18=1296(cm2),所以与这个长方形面积相等的正方形的边长为:√1296=36(cm),答:正方形的边长为36 cm.小提示:此题主要考查了算术平方根的定义以及矩形、正方形面积求法,正确开平方是解题关键.18、现有一块长为7.5dm、宽为5dm的木板,能否在这块木板上截出两个面积是8dm2和18dm2的正方形木板?答案:能截出两个面积是8dm2和18dm2的正方形木板.分析:根据正方形的面积可以分别求得两个正方形的边长是2√2和3√2,显然只需比较两个正方形的边长的和与7.5的大小即可.∵两个面积是8dm2和18dm2的正方形木板的边长是2√2和3√2,√8+√18=2√2+3√2=5√2;∵√2<1.5,∴5√2<1.5×5=7.5;答:能够在这块木板上截出两个分别是8dm2和18dm2的正方形木板.小提示:此题考查了算术平方根和估算无理数的大小,能够正确求得每个正方形的边长,然后再进行比较是本题的关键。
人教版七年级数学下册实数知识点归纳及常见考题。
七年级数学(下)辅导资料(4)【学问要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。
2. 假如x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4. 平方根与算术平方根的区分与联络:区分:正数的平方根有两个,而它的算术平方根只有一个。
联络:(1)被开方数必需都为非负数;(2)正数的负平方根是它的算术平方根的相反数,依据它的算术平方根可以马上写出它的负平方根。
(3)0的算术平方根与平方根同为0。
5. 假如x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
8. 立方根与平方根的区分:一个数只有一个立方根,并且符号与这个数一样;只有正数与0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525==.10.平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0与1;立方根是其本身的数是0与±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数一样。
3有非负性,即≥0;a ≥0。
4、公式:⑴()2=a (a ≥0);⑵a 取任何数)。
5、区分2=a (a ≥0),与2a =a6.非负数的重要性质:若几个非负数之与等于0,则每一个非负数都为0(此性质应用很广,务必驾驭)。
【典型例题】1.下列语句中,正确的是( D )A .一个实数的平方根有两个,它们互为相反数B .负数没有立方根C .一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个2. 下列说法正确的是( C ) A .-2是(-2)2的算术平方根 B .3是-9的算术平方根 C .16的平方根是±4 D .27的立方根是±33. 已知实数x ,y满意2=0,则x-y 等于解答:依据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3. 4.求下列各式的值 (1)81±;(2)16-;(3)259;(4)2)4(-解答:(1)因为8192=,所以±81=±9.(2)因为1642=,所以-416-=.(3)因为253⎪⎭⎫⎝⎛=259,所以259=53.(4)因为22)4(4-=,所以4)4(2=-.5. 已知实数x ,y 满意2=0,则x-y 等于 解答:依据题意得,x-2=0,y+1=0, 解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3. 6. 计算(1)64的立方根是 4(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。
《常考题》初中七年级数学下册第六单元《实数》知识点总结(含答案解析)
一、选择题1.下列各式计算正确的是()A.31-=-1 B.38= ±2 C.4= ±2 D.±9=32.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是()A.-130 B.-131 C.-132 D.-1333.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.84.在0、3、0.536、39、227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是()A.3 B.4 C.5 D.65.下列说法正确的是()A.2-是4-的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.8的平方根是46.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等7.下列说法中,正确的是()A.正数的算术平方根一定是正数B.如果a表示一个实数,那么-a一定是负数C.和数轴上的点一一对应的数是有理数D.1的平方根是18.下列各式中,正确的是( )A.16=±4 B.±16=4 C.3273-=-D.2(4)4-=-9.数轴上表示下列各数的点,能落在A,B两个点之间的是()A .3-B .7C .11D .13 10.若53a =-,则a 在( )A .3-和2-之间B .2-和1-之间C .1-和0之间D .0和1之间 11.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A .4B .3C .2D .1 12.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B .7C .11D .无法确定 13.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±914.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个15.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π3二、填空题16.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(212a +的平方根和立方根.17.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.18.计算下列各题(1)38-+16﹣3﹣2;(2)23+52﹣100.04(结果保留2位有效数字). 19.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.20.规定一种新的定义:a ★b =b -a 2,若a =3,b =49,则(a ★b )★b =_________. 21.计算:2(3.14)|2|ππ---=________.22.比较大小:|5|-________25-.(填“>”“=”或“<”)23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:2π、等,而常用的“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如253<<,是因为459<<;根据上述信息,回答下列问题:(1)13的整数部分是___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______; (3)103+也是夹在相邻两个整数之间的,可以表示为103a b <+<则a b +=______;(4)若303x y -=+,其中x 是整数,且01y <<,请求x y -的相反数. 24.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.25.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.26.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).三、解答题27.求下列各式中的x :(1)2940x -=;(2)3(1)8x -=28.已知31a +的算数平方根是4,421c b +-的立方根是3,c22a b c +-的平方根.29)10152-⎛⎫-+︒ ⎪⎝⎭30.(22-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版七年级数学下册《实数》考点归纳及常见考题
【知识要点】
1、算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。
2、如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。
3、正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4、平方根和算术平方根的区别与联系:
区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为0。
5、如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。
6、正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7、求一个数的平方根(立方根)的运算叫开平方(开立方)。
8. 立方根与平方根的区别:
一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0。
9、一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如
25=
=.
2500
,5
50
10、平方表:(自行完成)
1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
30a≥0。
4、公式:⑴2=a(a≥0(a取任何数)。
5、区分2=a (a ≥0),与 2a =a
6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0
【典型例题】
1.下列语句中,正确的是( )
A .一个实数的平方根有两个,它们互为相反数
B .负数没有立方根
C .一个实数的立方根不是正数就是负数
D .立方根是这个数本身的数共有三个 2. 下列说法正确的是( )
A .-2是(-2)2的算术平方根
B .3是-9的算术平方根
C .16的平方根是±4
D .27的立方根是±3
3. 已知实数x ,y 满足2
=0,则x-y 的值为多少?
4.求下列各式的值
(1)81±;(2)16-;(3)259
;(4)2
)4(-
5. 已知实数x ,y 满足2=0,则x-y 等于
6. 计算
(1)64的立方根是 。
(2)下列说法中:①3±都是27的立方根,②
y y =3
3,③64的立方根是2,④()483
2
±=±。
其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个
7.易混淆的三个数(自行分析它们) (1)2a (2)2)(a (3)33a
综合演练 一、填空题
1、(-0.7)2的平方根是
2、若2a =25,b =3,则a+b=
3、已知一个正数的两个平方根分别是2a ﹣2和a ﹣4,则a 的值是
4、
π
π-+-43= ___________ 5、若m 、n 互为相反数,则
n
m +-5=
_________
6、若 a a -=2
,则a______0 7、若73-x 有意义,则x 的取值范围是 8、大于-2,小于10的整数有______个。
9、当_______x 时,3x -有意义。
10、一个正数x 的两个平方根分别是a+2和a-4,则a= ,x= 。
11、当_______x 时,32-x 有意义。
12、当_______x 时,x -11
有意义。
二、选择题
1. 9的算术平方根是( )
A .-3
B .3
C .±3
D .81 2.下列计算正确的是( ) A .
4=±2 B .2(9)81-==9 C.636=± D.992
-=-
3.64的平方根是( )
A .±8
B .±4
C .±2
D .±2 4.4的平方的倒数的算术平方根是( )
A .4
B .18
C .-14
D .1
4
三、利用平方根解下列方程.
1、(1)(2x-1)2
-169=0; (2)4(3x+1)2
-1=0;
四、解答题
1、求972的平方根和算术平方根。
2、计算338
41627-+-+的值
4、若a
5、、b 、c 满足0
1)5(32
=-+++-c b a ,求代数式a c
b -的值。
一、填空题:(每题3分,共30分)
1、如图1,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开
的渠最短,这样设计的依据是________________。
2、如图2,AB ∥CD ,∠1=39°,∠C 和∠D 互余,则∠D=________,∠B=________。
3、如图3,
直线ba,与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④ ∠ 5+∠3=180°,其中能判断a ∥b 的是_______________(填序号)。
4、把命题“等角的余角相等”改写成“如果……,那么……”的形式是_________________。
5、如图4,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠
1=50°,
则∠2的度数为_______________。
6、定点P在直线AB外,动点O在直线AB上移动,当PO最短时,∠POA=_______,这时线段PO
所在的直线是AB的___________,线段PO叫做直线AB的______________。
7、如图5,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1=∠2,则图中互相平行
的直线是
____________________。
8、如图6,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是___________。
9、在下列说法中:⑴△ABC在平移过程中,对应线段一定相等;⑵△ABC在平移过程中,
对应线段一定平行;⑶△ABC在平移过程中,周长保持不变;⑷△ABC在平移过程中,对
应边中点的连线段的长等于平移的距离;⑸△ABC在平移过程中,面积不变,其中正确的有( )
A、⑴⑵⑶⑷
B、⑴⑵⑶⑷⑸
C、⑴⑵⑶⑸
D、⑴⑶⑷⑸
10、如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是( )
A、18°
B、126°
C、18°或126°
D、以上都不对
11、完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD 求证:∠EGF=90°。