概率统计知讲义识点归纳

合集下载

概率与统计知识点总结

概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。

随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷骰子得到的点数就是随机事件。

必然事件,就是在一定条件下必然会发生的事件。

比如太阳从东方升起,这就是必然事件。

不可能事件,就是在一定条件下不可能发生的事件。

比如在地球上,水往高处流就是不可能事件。

概率的取值范围在 0 到 1 之间。

0 表示事件不可能发生,1 表示事件必然发生。

二、古典概型古典概型是一种最简单、最基本的概率模型。

它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。

三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。

比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。

几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。

四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。

计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

统计概率知识点梳理总结

统计概率知识点梳理总结

统计概率知识点梳理总结第一章随机事件与概率一、教学要求1.理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与运算.2.了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.4.理解事件的独立性概念,掌握运用事件独立性进行概率计算.5.掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.本章重点:随机事件的概率计算.二、知识要点1.随机试验与样本空间具有下列三个特性的试验称为随机试验:(1) 试验可以在相同的条件下重复地进行;·(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3) 每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用eΩ=.表示,e称为样本空间中的样本点,记作{}e2.随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ)看作特殊的随机事件.3.**事件的关系及运算(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃).(2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =.(3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12n A A A ⋃⋃⋃(简记为1nii A =).(4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nAA A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件1,2,,n A A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件1,2,,nA A A 互不相容.(6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .(8) 交换律:对任意两个事件A和B 有A B B A ⋃=⋃,AB BA =.(9) 结合律:对任意事件A ,B ,C 有()()A B C A B C ⋃⋃=⋃⋃, ()()A B C A B C ⋂⋂=⋂⋂.(10) 分配律:对任意事件A ,B ,C 有()()()A B C A B A C ⋃⋂=⋃⋂⋃, ()()()A B C A B A C ⋂⋃=⋂⋃⋂.(11) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.4.频率与概率的定义 (1) 频率的定义设随机事件A 在n 次重复试验中发生了A n 次,则比值A n /n 称为随机事件A 发生的频率,记作()n f A ,即 ()An n f A n =.(2) 概率的统计定义在进行大量重复试验中,随机事件A 发生的频率具有稳定性,即当试验次数n 很大时,频率()n f A 在一个稳定的值p (0<p <1)附近摆动,规定事件A 发生的频率的稳定值p 为概率,即()P A p =. (3) **古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型: (i) 试验的样本空间Ω是个有限集,不妨记作12{,,,}n e e e Ω=;(ii) 在每次试验中,每个样本点i e (1,2,,i n =)出现的概率相同,即12({})({})({})n P e P e P e ===.在古典概型中,规定事件A 的概率为()An A P A n ==Ω中所含样本点的个数中所含样本点的个数.(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·(5) 概率的公理化定义设随机试验的样本空间为Ω,随机事件A 是Ω的子集,()P A 是实值函数,若满足下列三条公理:公理1 (非负性) 对于任一随机事件A,有()P A ≥0; 公理2 (规范性) 对于必然事件Ω,有()1P Ω=;公理3 (可列可加性) 对于两两互不相容的事件1,2,,,n A A A ,有11()()i i i i P A P A ∞∞===∑,则称()P A 为随机事件A的概率. 5.**概率的性质由概率的三条公理可导出下面概率的一些重要性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,nA A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3) 对于任意一个事件A :()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) 对于任意一个事件A ,有()1P A ≤. (6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,nA A A ,有111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑.6.**条件概率与乘法公式设A 与B 是两个事件.在事件B 发生的条件下事件A 发生的概率称为条件概率,记作(|)P A B .当()0P B >,规定()(|)()P AB P A B P B =.在同一条件下,条件概率具有概率的一切性质.乘法公式:对于任意两个事件A 与B ,当()0P A >,()0P B >时,有()()(|)()(|)P AB P A P B A P B P A B ==.7.*随机事件的相互独立性如果事件A 与B 满足()()()P AB P A P B =,那么,称事件A 与B 相互独立.关于事件A ,月的独立性有下列两条性质:(1) 如果()0P A >,那么,事件A 与B 相互独立的充分必要条件是(|)()P B A P B =;如果()0P B >,那么,事件A 与B 相互独立的充分必要条件是(|)()P A B P A =. 这条性质的直观意义是“事件A 与B 发生与否互不影响”. (2) 下列四个命题是等价的: (i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立; (iv) 事件A 与B 相互独立.对于任意n 个事件1,2,,nA A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,nA A A 总满足11()()()k k i i i i P A A P A P A =,则称事件1,2,,nA A A 相互独立.这里实际上包含了21nn --个等式.8.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,kn k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,称这组概率为二项概率. 9.**全概率公式与贝叶斯公式全概率公式:如果事件1,2,,nA A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 离散型随机变量及其分布一、教学要求1.理解离散型随机变量及其概率函数的概念并掌握其性质,掌握0-1分布、二项分布、泊松(Poisson)分布、均匀分布、几何分布及其应用.2.理解二维离散型随机变量联合概率函数的概念及性质;会利用二维概率分布计算有关事件的概率.3.理解二维离散型随机变量的边缘分布,了解二维随机变量的条件分布. 4.掌握离散型随机变量独立的条件.5. 会求离散型随机变量及简单随机变量函数的概率分布. 本章重点:离散型随机变量的分布及其概率计算.二、知识要点 1.一维随机变量若对于随机试验的样本空间Ω中的每个试验结果e ,变量X 都有一个确定的实数值与e 相对应,即()X X e =,则称X 是一个一维随机变量.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 2.**离散型随机变量及其概率函数如果随机变量X 仅可能取有限个或可列无限多个值,则称X 为离散型随机变量. 设离散型随机变量X 的可能取值为(1,2,,,)i a i n =,(),1,2,,,.i i p P X a i n ===若11ii p∞==∑,则称(1,2,,,)i p i n =离散型随机变量X 的概率函数,概率函数也可用下列表格形式表示:X12n a a ar P12np p p3.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.由已知的概率函数可以算得概率()i ia SP X S p ∈∈=∑,其中,S 是实数轴上的一个集合. 4.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)in in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4) 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>.(5) 均匀分布,它的概率函数为1()i P X a n ==,其中,0,1,2,,i n =.5.二维随机变量若对于试验的样本空间Ω中的每个试验结果e ,有序变量(,)X Y 都有确定的一对实数值与e 相对应,即()X X e =, ()Y Y e =,则称(,)X Y 为二维随机变量或二维随机向量.6.*二维离散型随机变量及联合概率函数如果二维随机变量(,)X Y 仅可能取有限个或可列无限个值,那么,称(,)X Y 为二维离散型随机变量.二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.7.二维离散型随机变量的边缘概率函数 设(,)X Y 为二维离散型随机变量,ijp 为其联合概率函数(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘概率函数,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘概率函数,记为.jp ,并有.jp =(),1,2,j ij iP Y b p j ===∑.8.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.9.随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为X12n a a ar P12np p p则随机变量函数()Y g X =的概率函数可由下表求得()Y g X = 12()()()n g a g a g ar P1p 2pn p但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布一、教学要求1.理解连续型随机变量及其概率密度的概念,并掌握其性质,掌握均匀分布、指数分布、正态分布及其应用.2.理解二维随机变量的联合分布的概念、性质以及连续型随机变量联合概率密度;会利用二维概率分布计算有关事件的概率.3.理解二维随机变量的边缘分布,了解二维随机变量的条件分布. 4.理解随机变量的独立性概念,掌握连续型随机变量独立的条件.5.掌握二维均匀分布;了解二维正态分布的密度函数,理解其中参数的概率意义.(不考)6.会求两个独立随机变量的简单函数的分布,会求两个独立随机变量的简单函数的分布,会求两个随机变量之和的概率分布. (不考)7.会求简单随机变量函数的概率分布.本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算.二、知识要点 1.*分布函数随机变量的分布可以用其分布函数来表示,随机变量X 取值不大于实数x 的概率()P X x ≤称为随机变量X 的分布函数,记作()F x , 即()(),F x P X x x =≤-∞<<∞.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()F x 是非减函数,即当12x x <时,有12()()F x F x ≤;(3) ()0,()1lim lim x x F x F x →-∞→+∞==;(4) ()F x 是右连续函数,即0()()lim x a F x F a →+=.由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率()()();P a X b F b F a <≤=-也可以求得()()(0)P X a F a F a ==--.3.联合分布函数二维随机变量(,)X Y 的联合分布函数规定为随机变量X 取值不大于x 实数的概率,同时随机变量Y 取值不大于实数y 的概率,并把联合分布函数记为(,)F x y ,即(,)(,),,F x y P X x Y y x y =≤≤-∞<<+∞-∞<<+∞.4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2) (,)F x y 是变量x (固定y )或y (固定x )的非减函数;(3)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,l i m l i mx x y y F x y Fx y→-∞→+∞→-∞→+∞==;(4) (,)F x y 是变量x (固定y )或y (固定x )的右连续函数;(5) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥(2)()1f x dx +∞-∞=⎰;(3)连续型随机变量X 的分布函数为()F x 是连续函数,且在()F x 的连续点处有()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()21(),2x f x ex μσπσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为221(),2x f x e x π-=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dt π--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度.9.二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞;(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;(3) 设(,)X Y 为二维连续型随机变量,则对任意一条平面曲线L ,有((,))0P X Y L ∈=; ’(4) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(5) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212222112112()()()()11(,)exp 22(1)21x x y x f x y μμμμρρσσσσπσσρ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪-⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .如果X 与Y 的联合分布函数等于,X Y 的边缘分布函数之积,即(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.多维随机变量的相互独立性可类似定义.即多维随机变量的联合分布函数等于每个随机变量的边缘分布函数之积,多维连续型随机变量的独立性有与二维相应的结论. 13.随机变量函数的分布 **一维随机变量函数的概率密度设连续型随机变量X 的概率密度为()X f x ,则随机变量()Y g X =的分布函数为()()(())()()yY y XI F y P Y y P g X y P X I fx dx=≤=≤=∈=⎰其中,{}y X I ∈与{()}g X y ≤是相等的随机事件,而{||()}y I x g x y =≤是实数轴上的某个集合.随机变量Y 的概率密度()Y f y 可由下式得到:'()()Y Y f y F y =.连续型随机变量函数有下面两条性质:(i) 设连续型随机变量的概率密度为()X f x ,()Y g X =是单调函数,且具有一阶连续导数,()x h y =是()y g x =的反函数,则()Y g X =的概率密度为()(())|'()|Y f y f h y h y =⋅.(ii) 设2~(,)X N μσ,则当0k ≠时,有22~(,)Y kX b N k b k μσ=++,特别当1,k b μσσ==-时,有~(0,1)Y kX b N =+,~(0,1)X N μσ-.特别有下面的结论:设211~(,)X N μσ,222~(,)Y N μσ,且X 与Y 相互独立,则221212~(,)X Y N μμσσ+++.第四章 随机变量的数字特征一、教学要求1.理解随机变量的数学期望、方差的概念,并会运用它们的基本性质计算具体分布的期望、方差,2.掌握二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望和方差. 3.会根据随机变量X 的概率分布计算其函数()g X 的数学期望[()]E g X ;会根据随机变量(,)X Y 的联合概率分布计算其函数(,)g X Y 的数学期望正[(,)]E g X Y .(不考)4.理解协方差、相关系数的概念,掌握它们的性质,并会利用这些性质进行计算,了解矩的概念。

概率 统计知识点总结

概率 统计知识点总结

概率统计知识点总结一、概率统计基本概念1. 随机事件和样本空间在概率统计中,随机事件是指在一次试验中可能发生的结果,例如抛硬币的结果可以是正面或反面。

样本空间是指所有可能的结果的集合,例如抛硬币的样本空间为{正面,反面}。

2. 概率和基本概率公式概率是指某一事件在所有可能事件中发生的频率,通常用P(A)表示。

基本概率公式是P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间的大小。

3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,通常表示为P(A|B)。

4. 独立事件两个事件A和B称为独立事件,意味着事件A的发生不受事件B的影响,其概率关系为P(A∩B)=P(A)×P(B)。

二、概率统计的数据分析方法1. 描述性统计描述性统计是对数据进行总结和描述的方法,包括平均数、中位数、众数、标准差、极差等指标,用来描述数据的集中趋势、离散程度和分布形状。

2. 探索性数据分析探索性数据分析是一种用图表和统计分析方法探索数据背后的规律和结构的方法,通过绘制图表和计算相关指标,发现数据之间的关系、趋势和异常值。

3. 统计推断统计推断是根据样本数据对总体参数进行推断的方法,包括点估计和区间估计,以及假设检验。

三、概率统计的应用1. 随机过程随机过程是研究随机事件随时间或空间变化的规律性的数学模型,包括马尔可夫过程、布朗运动、泊松过程等,广泛应用于金融、电信、生物等领域。

2. 统计建模统计建模是根据数据建立数学模型,预测未来的趋势和规律,包括线性回归模型、时间序列模型、机器学习模型等。

3. 贝叶斯统计贝叶斯统计是一种基于贝叶斯定理的概率统计方法,它将先验信息和样本数据结合起来,进行参数估计和模型推断,常用于医学、生态学、市场营销等领域。

四、概率统计的挑战和发展1. 大数据与统计随着大数据时代的到来,传统的统计方法和模型已经无法满足大规模、高维度、非结构化数据的分析需求,需要发展新的统计方法和算法。

概率统计知识点大全

概率统计知识点大全

n
n
x2
∫ 3° P(x1 < X ≤ x2 ) = F (x2 ) − F (x1 ) = f (x)dx 。 x1
4° 若 f (x) 在 x 处连续,则有 F ′(x) = f (x) 。
容易验证,满足离散型分布率的条件。
当 n = 1时,P( X = k) = p k q1−k ,k = 0.1 ,这就是(0-1)
对于 n 个事件类似。 两两互斥→互相互斥。
间 (a, b] 的概率。也就是说,分布函数完整地描述了随机
两两独立→互相独立?
变量 X 随机取值的统计规律性。
(3)伯努利试验
定义 我们作了 n 次试验,且满足 每次试验只有两种可能结果, A 发生或 A 不发生; n 次试验是重复进行的,即 A 发生的概率每次均一
P(B | A) = P( AB) = P( A)P(B) = P(B)
P( A)
P( A)
所以这与我们所理解的独立性是一致的。
(3)条件概率和乘法公式
若事件 A 、B 相互独立,则可得到 A 与 B 、A 与 B 、
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 P( A)
则称上式为离散型随机变量 X 的概率分布或分布律。有
时也用分布列的形式给出:
X
| x1, x2,Λ , xk,Λ
P( X = xk) p1, p2,Λ , pk,Λ 。
显然分布律应满足下列条件:
(1) pk ≥ 0 , k = 1,2,Λ ,

∑ pk = 1
(2) k =1

(2)分布函数
对于非离散型随机变量,通常有 P(X = x) = 0 ,不可 能用分布率表达。例如日光灯管的寿命 X ,P( X = x0) = 0 。

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。

以下是对概率论与数理统计主要知识点的详细总结。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

我们通常用大写字母A、B、C 等来表示。

随机事件的关系包括包含、相等、互斥(互不相容)和对立等。

2、概率的定义概率是用来度量随机事件发生可能性大小的数值。

概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。

概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。

3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。

二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。

其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。

2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。

三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。

2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。

2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。

3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。

4.概率的性质:概率具有非负性、规范性、可列可加性等性质。

二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。

2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。

3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。

4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。

三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。

2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。

正态分布在自然界和社会现象中广泛存在。

3.其他分布:包括卡方分布、指数分布、F分布、t分布等。

四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。

2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。

包括点估计和区间估计两种方法。

3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。

包括单样本假设检验、两样本假设检验、方差分析等。

五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。

2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。

六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。

2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。

概率和统计知识点总结

概率和统计知识点总结

概率和统计知识点总结1. 概率的基本概念概率是描述随机现象发生可能性的数学工具。

在概率论中,我们研究的对象是随机实验,即是某种条件下可能出现的各种可能和其相应的概率。

概率的基本概念包括样本空间、事件、概率的定义和性质等。

样本空间是指随机实验的所有可能结果的集合。

事件是样本空间的子集,即是样本空间中的某一部分。

事件的概率就是事件发生的可能性。

概率的定义有频率派和贝叶斯派的不同观点,频率派认为概率是频率的极限,贝叶斯派认为概率是主观的相信程度。

概率的性质包括非负性、规范性、可加性等。

2. 常见的概率分布在概率论中,概率分布是表示随机变量取值可能性的函数。

常见的概率分布包括离散型概率分布和连续型概率分布。

离散型概率分布包括伯努利分布、二项分布、泊松分布等。

伯努利分布描述的是一个随机变量只有两个可能取值的概率分布,二项分布表示的是n重伯努利试验的概率分布,泊松分布描述的是单位时间或单位面积内随机事件出现次数的概率分布。

连续型概率分布包括均匀分布、正态分布、指数分布等。

均匀分布描述的是在一定范围内随机变量取值均匀分布的概率分布,正态分布是一种对称的连续型概率分布,指数分布描述的是一个随机事件首次发生的时间间隔的概率分布。

3. 统计参数估计统计参数估计是利用样本数据估计总体参数的方法。

在统计学中,总体参数是描述总体特征的变量,样本是从总体中抽取的一部分数据。

参数估计包括点估计和区间估计。

点估计是用样本数据估计总体参数的具体值。

常见的点估计方法包括最大似然估计、矩估计等。

最大似然估计是通过寻找数据使得似然函数最大化的方法来估计总体参数,矩估计是利用样本矩来估计总体矩。

区间估计是用样本数据估计总体参数的区间范围。

区间估计的原理是通过置信区间来估计总体参数的范围,通常使用样本均值和标准差来构建置信区间。

4. 假设检验假设检验是统计学中用来验证总体参数的方法。

在假设检验中,我们设定一个或者两个关于总体参数的假设,然后利用样本数据进行检验。

概率统计知识点全面总结

概率统计知识点全面总结

知识点总结:统计与概率I 统计1.三大抽样 (1)基本定义:①总体:在统计中,所有考查对象的全体叫做全体.②个体:在所有考查对象中的每一个考查对象都叫做个体. ③样本:从总体中抽取的一部分个体叫做总体的样本. ④样本容量:样本中个体的数目叫做样本容量. (2)抽样方法:①简单随机抽样:逐个不放回、等可能性、有限性。

=======★适用于总体较少★抽签法:整体编号(1~N )放入不透明的容器中搅拌均匀逐个抽取n次,即可得样本容量为n 的样本。

随机数表法:整体编号(等位数,如001、111不能是1、111)从0~9中随机取一行一列然后初方向随机(上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。

②系统抽样:容量大.等距,等可能。

=======★适用于总体多★用随机方法编号,若N 无法被整除,则剔除后再分组,nNk。

再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。

(每组编号相同)。

③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =nN3.总体分布的估计: (1)一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势★注:总体分布的密度曲线与横轴围成的面积为1。

(2)茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。

②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

4.样本分析(1)在频率直方图中计算众数.平均数.中位数众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。

(最多的那个)--忽视其他数据中位数在频率分布直方图中,中位数左边和右边的直方图的面积应该相等。

概率统计每章知识点总结

概率统计每章知识点总结

概率统计每章知识点总结第一章:基本概念1.1 概率的概念1.2 随机变量及其分布1.3 大数定律和中心极限定理第一章主要介绍了概率统计的基本概念,包括概率的定义、随机变量的概念以及大数定律和中心极限定律。

概率是描述事物发生可能性的数学工具,是对随机事件发生规律的度量和描述。

随机变量是描述随机现象的数学模型,可以用来描述随机现象的特征和规律。

大数定律和中心极限定律则是概率统计中重要的两个定律,它们描述了大量独立随机变量的和的分布规律。

第二章:随机事件的概率计算2.1 古典概型2.2 几何概型2.3 等可能概型2.4 条件概率2.5 独立性第二章主要介绍了随机事件的概率计算方法,包括古典概型、几何概型、等可能概型、条件概率和独立性。

古典概型是指实验的样本空间是有限的且每个样本点的概率相等的情形,可以直接计算出随机事件的概率。

几何概型是指随机事件的概率与其所在的几何形状有关,需要通过几何方法来计算。

等可能概型是指实验的样本空间是有限的,但不同样本点的概率不一定相等,需要通过计算总体概率来计算随机事件的概率。

第三章:随机变量及其分布3.1 随机变量及其分布3.2 数学期望3.3 方差3.4 常用离散型随机变量的分布3.5 常用连续型随机变量的分布第三章主要介绍了随机变量及其分布的知识,包括随机变量的概念、数学期望、方差以及常用的离散型和连续型随机变量的分布。

随机变量是描述随机现象的数学模型,可以是离散型的也可以是连续性的。

数学期望和方差是描述随机变量分布特征的重要指标,它们能够描述随机变量的集中程度和离散程度。

离散型随机变量常用的分布包括伯努利分布、二项分布、泊松分布;连续型随机变量常用的分布包括均匀分布、正态分布、指数分布等。

第四章:多维随机变量及其分布4.1 二维随机变量4.2 多维随机变量4.3 边际分布4.4 条件分布4.5 独立性第四章主要介绍了多维随机变量及其分布的知识,包括二维随机变量、多维随机变量、边际分布、条件分布和独立性。

概率和统计知识点梳理

概率和统计知识点梳理

概率和统计知识点梳理
概率知识点
1.实验和事件
实验:进行观察,观察结果不确定的活动。

事件:实验中可能发生的结果,通常用字母表示。

2.样本空间和样本点
样本空间:一个实验的所有可能结果的集合。

样本点:样本空间中的每一个结果。

3.概率
概率:某事件发生的可能性大小。

概率的范围:0 ≤ P(A) ≤ 1.
概率的计算方法:P(A) = 事件A的样本点数 / 样本空间的样本点数。

4.独立事件
独立事件:某事件的发生不受其他事件的影响。

统计知识点
1.调查和统计
调查:收集数据的过程。

统计:对数据进行整理、分析、总结和展示。

2.数据的分类和整理
分类:将数据按照某个特征或属性进行分组。

整理:将数据按照一定的顺序进行排列。

3.数据的分析和总结
分析:通过图表等方式展示数据的规律和特点。

总结:根据数据的分析结果得出结论。

4.图表的使用
直方图:用于表示数据的分布情况。

条形图:用于比较不同类别的数据大小。

折线图:用于表示数据的变化趋势。

饼图:用于表示部分和整体的关系。

5.平均数和范围
平均数:用于表示一组数据的集中趋势。

范围:用于表示一组数据的离散程度。

以上是小学六年级概率和统计知识点的梳理,希望能够帮助到你!。

概率统计知识点总结

概率统计知识点总结

概率统计知识点总结作者: 日期:概率统计知识点汇总1 •分类加法计数原理完成一件事有 n 类不同的方案,在第一类方案中有 m i 种不同的方法,在第二类方案中有 m 2 种不同的方法, ,在第 n 类方案中有 m n 种不同的方法,则完成这件事情,共有 N = m i + m 2+・・・+ m n 种不同的方法.2 •分步乘法计数原理完成一件事情需要分成 n 个不同的步骤,完成第一步有 m i 种不同的方法,完成第二步有 m 2 种不同的方法, ,完成第n 步有 m n 种不同的方法,那么完成这件事情共有 N =m i x m 2X^x m n 种不同的方法. 3 •两个原理的区别分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区 别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这 件事才算完成.4 •排列与排列数公式 (1) 排列与排列数从n 个不同元 按照一定的顺序 素中取出m m w n 个元素 排成一列(2) 排列数公式A m = n(n — 1)( n — 2)…(n — m + 1)= n — m ! (3) 排列数的性质① A n = n !; ② 0!= 1. 5 •组合与组合数公式 (1) 组合与组合数 从n 个不同元 合成一组 素中取出 ------- :m m w n 个元素 (2) 组合数公式(3) 组合数的性质 ①c o = 1;②c m =c n —m ;③c m + c m —1= c m +1.所有不同---------- >组合数 组合的个数c m =A m =nn — 1 n — 2 …n — m + 1m !6. 排列与组合问题的识别方法7. 二项式定理⑴定理:(a + b)n= C n a n+ C n a n 1b+…+ C n a n k b k+ …+ C n b n(n € N*).(2) 通项:第k+ 1 项为:T k+1 = c S a n_k b k.(3) 二项式系数:二项展开式中各项的二项式系数为:c n(k= 0,1,2,…,n).&二项式系数的性质对称性一与首末等距的两个二项式系数和等,即 __________9.概率与频率(1) 在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A) = 学为事件A出现的频率.(2) 对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).11 •理解事件中常见词语的含义:(1) A, B中至少有一个发生的事件为 A U B;(2) A, B都发生的事件为AB ;(3) A, B都不发生的事件为A B ;(4) A, B恰有一个发生的事件为AB U AB;(5) A, B至多一个发生的事件为A B U AB U A B.12.概率的几个基本性质⑴概率的取值范围:0W P(A) < 1.(2) 必然事件的概率:P(E)= 1.(3) 不可能事件的概率:P(F)= 0.⑷概率的加法公式:如果事件A与事件B互斥,则P(A U B) = RA) + P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A) = 1 - P(B).13 •互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.14.基本事件的特点』(1) 任意两个基本事件是互斥的.(2) 任何事件(除不可能事件)都可以表示成基本事件的和. 15•古典概型(1) 定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.① 试验中所有可能出现的基本事件只有有限个. ② 每个基本事件出现的可能性相等.A 包含的基本事件的个数(2)古典概型的概率公式:P (A 戸 基本事件的总数—.16.几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度 (面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的概率公式: P 构成事件A 的区域长度面积或体积P(A)—试验的 所构成的区域长度 面积或体积*17•条件概率及其性质(1)对于任何两个事件 A 和B ,在已知事件A 发生的条件下, (2)条件概率具有的性质: ① 0< P(B|A)W 1;② 如果B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A).18. 相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称 A B 是相互独立事件.⑵若A 与B 相互独立,则 P(B|A)= P(B), P(AB)= P(B|A)P(A)= P(A)P(B).⑶若A 与B 相互独立,则 A 与B , A 与B , A 与B 也都相互独立. ⑷若P(AB)= P(A)P(B),则A 与B 相互独立. 19. 离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母 X , Y , E, n …表示.所有取值可以 - 列出的随机变量,称为离散型随机变量. 20. 离散型随机变量的分布列及其性质(1) 一般地,若离散型随机变量 X 可能取的不同值为 X 1, X 2,…,X i ,…,X n , X 取每一个值 x i (i = 1,2,…,n)的概率 P(X = x i ) = p i ,则表事件B 发生的概率叫做条件概率,用符号P(B| A)来表示,其公式为 P(B|A) =n ABn A(2)离散型随机变量的分布列的性质:n①P i > 0(i = 1,2,…,n); ②环=1.21. 常见离散型随机变量的分布列 (1)两点分布:若随机变量X 服从两点分布,则其分布列为其中p = P(X = 1)称为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X = k }发生的概率为(3)①独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试 验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都 是一样的. ②在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件 A 发生的概率为p ,贝U P(X = k)= Cp k (1— p)n —k (k = 0,1,2,…,n),此时称随机变量 X 服从二项分布,记为 X 〜B(n , p),并称p 为成功概率.22•离散型随机变量的均值与方差 若离散型随机变量 X 的分布列为<1>均值:称E(X)= X 1p 1+ X 2p 2+・・・+ X i p i +・・・+ x n p n 为随机变量 X 的均值或数学期望,它反映 了离散型随机变量取值的平均水平.n<2>方差:称D(X) = p 1 (X i — E(X))2p i 为随机变量X 的方差,它刻画了随机变量 X 与其均值E(X) 的平均偏离程度,其算术平方根 D X 为随机变量X 的标准差.<3>均值与方差的性质 1 E aX + b = _______(a , b 为常数).2 D aX + b = ______P(X = k)=k n kC M CN — M ,k = 0,1,2,…,m ,其中 m = min{ M , n},且 n < N , M < N , n , M , N €C NN *,称分布列为超几何分布列<4>两点分布与二项分布的均值、方差23. 正态曲线的特点⑴曲线位于x轴上方,与x轴不相交;(2) 曲线是单峰的,它关于直线x= □对称;1(3) 曲线在x =卩处达到峰值&2n ;⑷曲线与x轴之间的面积为1 ;⑸当b—定时,曲线随着卩的变化而沿x轴平移;⑹当□一定时,曲线的形状由b确定.b越小,曲线越"瘦高”,表示总体的分布越集中;(T 越大,曲线越“矮胖”,表示总体的分布越分散.(7)正态分布的三个常用数据(不需记忆)①Pg— b< X W 叶b= 0.682 6;②Pg—2 b< X W 卩+ 2 b= 0.954 4;③Pg—3b< X W 卩+ 3 b= 0.997 4.24. 简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n W N), 且每次抽取时各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样.(2)常用方法:抽签法和随机数表法.25. 系统抽样(1) 步骤:①先将总体的N个个体编号;②根据样本容量n,当N是整数时,取分段间隔k = N;n n③在第1段用简单随机抽样确定第一个个体编号1(1 W k);④按照一定的规则抽取样本.(2) 适用范围:适用于总体中的个体数较多时.26. 分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样. ⑵适用范围:适用于总体由差异比较明显的几个部分组成时.27. 三种抽样方法的比较28(1) 求极差(即一组数据中最大值与最小值的差).(2) 决定组距与组数.(3) 将数据分组.(4) 列频率分布表.(5) 画频率分布直方图.29. 频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.⑵总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.30. 茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指__________ 的一列数,叶是从茎的旁边生长出来的数.31 .样本的数字特征(1) 众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2) 中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位数.a 1 + a2 +,■,+ a n⑶平均数:把n 称为a1, a2,…,a n这n个数的平均数.(4) 标准差与方差:设一组数据X1, X2, X3,…,x n的平均数为X,则这组数据标准差为S= " 1[ X1- X 2+ X2- x 2+・・・+ X n—X 2]方差为S2= 1[(X1—X )2+ (X2 —X )2+-+ (X n—X )2]32. 变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.33. 两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.A A A⑵回归方程为y = bx+ a,其中⑶通过求Q=.工(y i- bx i- a)2的最小值而得出回归直线的方法,即求回归直线,使得样本[二I数据的点到它的距离的平方和最小,这一方法叫做最小二乘法.(4) 相关系数:当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强. r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r|大于0.75时,认为两个变量有很强的线性相关性.34. 独立性检验假设有两个分类变量X和Y,它们的取值分别为{x i, X2}和{y i ,2},其样本频数列联表(称为2X 2 列联表)为:K2=2n ad - bca +b a +c b +d c+ d (其中n = a+ b + c+ d为样本容量).A —— A——,a= y—b x .11。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。

- 样本空间:所有可能事件发生的集合。

- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。

- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。

- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。

- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。

- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。

2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。

- 离散随机变量:取值为有限或可数无限的随机变量。

- 连续随机变量:可以在某个区间内取任意值的随机变量。

- 概率分布函数:描述随机变量取值的概率。

- 概率密度函数:连续随机变量的概率分布函数的导数。

- 累积分布函数:随机变量取小于或等于某个值的概率。

- 期望值:随机变量的长期平均值。

- 方差:衡量随机变量取值的离散程度。

3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。

- 边缘分布:通过联合分布求得的单个随机变量的分布。

- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。

- 协方差:衡量两个随机变量之间的线性关系。

- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。

4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。

- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。

5. 数理统计基础- 样本:从总体中抽取的一部分个体。

- 总体:研究对象的全体。

- 参数估计:用样本统计量来估计总体参数。

- 点估计:给出总体参数的一个具体估计值。

- 区间估计:给出一个包含总体参数可能值的区间。

- 假设检验:对总体分布的某些假设进行检验。

- 显著性水平:拒绝正确假设的最大概率。

概率统计知识点归纳

概率统计知识点归纳

概率统计知识点归纳概率统计是数学的一个分支,研究与描述随机现象的规律和特征。

本文将归纳概率统计的一些重要知识点,包括基本概念、概率分布、参数估计、假设检验等。

1.基本概念概率统计的基本概念包括随机试验、样本空间、事件、概率以及随机变量等。

-随机试验指的是具有不确定性的实验,其结果有多种可能性。

-样本空间是随机试验所有可能结果的集合。

-事件是样本空间的子集,表示一些结果的集合。

-概率是事件发生的可能性,用一个介于0和1之间的数值表示。

-随机变量是定义在样本空间上的函数,将每个结果映射到一个实数。

2.概率分布概率分布描述了随机变量的所有可能取值及其对应的概率。

重要的概率分布包括离散概率分布和连续概率分布。

-离散概率分布是指随机变量只能取到有限个或可数个值的分布。

常见的离散概率分布有伯努利分布、二项分布和泊松分布等。

-连续概率分布是指随机变量可以取到任意实数值的分布。

常见的连续概率分布有均匀分布、正态分布和指数分布等。

3.参数估计参数估计是通过已知样本数据来估计总体参数的过程。

常见的参数估计方法有点估计和区间估计。

-点估计是通过选择一个统计量来估计总体参数的值。

常见的点估计方法有最大似然估计、矩估计和最小二乘估计等。

-区间估计是通过给出总体参数一个区间范围来估计参数的值。

常见的区间估计方法有置信区间估计和预测区间估计等。

4.假设检验假设检验用于确定观察到的样本数据是否支持或反对一些关于总体的假设。

假设检验中包括原假设和备择假设。

-原假设是对总体参数的其中一种假设,例如总体均值等于一些值。

-备择假设是对原假设的补充,如总体均值不等于一些值。

-假设检验的步骤包括建立假设、选择显著水平、计算检验统计量、计算p值和作出决策等。

5.相关性分析相关性分析用于研究两个或多个变量之间的相关性程度。

常见的相关性分析方法有协方差和相关系数。

-协方差是衡量两个变量之间关系强弱和方向的统计量。

协方差为正表示两个变量正相关,为负表示两个变量负相关。

统计和概率知识点总结

统计和概率知识点总结

第一章数据的收集、整理与描述1、全面调查:考察全体对象的调查方式叫做全面调查。

2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3、总体:要考察的全体对象称为总体。

4、个体:组成总体的每一个考察对象称为个体。

5、样本:被抽取的所有个体组成一个样本。

6、样本容量:样本中个体的数目称为样本容量。

7、样本平均数:样本中所有个体的平均数叫做样本平均数。

8、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。

9、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

10、频率:频数与数据总数的比为频率。

11、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

第二章 数据的分析1、平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++= 叫做这n 个数的平均数,x 读作“x 拔”。

2、加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里nf f f k =++ 21)。

那么,根据平均数的定义,这n 个数的平均数可以表示为n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。

3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )。

5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

6、在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。

概率与统计基本知识点总结

概率与统计基本知识点总结

概率与统计基本知识点总结1.概率理论:概率的定义:概率是描述随机事件发生可能性的数值,通常用介于0和1之间的数表示。

概率的基本性质:概率值在0到1之间,且所有可能事件的概率之和为1事件的独立性:两个或多个事件相互独立,意味着一个事件的发生不受其他事件发生与否的影响。

加法法则:若A和B是两个事件,则它们联合发生的概率等于它们各自发生的概率之和减去它们同时发生的概率。

乘法法则:对于两个独立事件A和B,它们同时发生的概率等于它们各自发生的概率之积。

条件概率:事件A在事件B发生的条件下发生的概率,表示为P(A,B)。

贝叶斯定理:根据已知的条件概率,求解另一个条件概率的计算公式。

2.随机变量与概率分布:随机变量:将随机事件的结果映射到实数上的变量。

离散型随机变量:取有限个或可数个值的随机变量。

连续型随机变量:取任意实数值的随机变量。

概率分布:描述随机变量取各个值的概率的函数。

离散型概率分布:包括离散均匀分布、二项分布、泊松分布等。

连续型概率分布:包括连续均匀分布、正态分布、指数分布等。

期望:随机变量的平均值,反映其分布的中心位置。

方差:随机变量偏离其均值的程度,反映其分布的离散程度。

3.统计推断:总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。

参数与统计量:总体的数值特征称为参数,样本的数值特征称为统计量。

抽样分布:样本统计量的概率分布。

中心极限定理:在一定条件下,样本容量足够大时,样本的均值近似服从正态分布。

置信区间:用样本统计量作为总体参数的估计范围。

假设检验:通过对样本数据的分析,判断总体参数是否满足其中一种假设。

概率统计各章节知识点总结

概率统计各章节知识点总结

n k 1
Xk
P
p
X1, X 2 ,, X n ,相互独立
E( Xk ) 同分布
1
n
n k 1
Xk
P
n
X1 , X 2 ,, X n ,相互独立
X k n 近似
同分布E( X k ) D( X k ) 2 k1 n
~ N (0,1)
X n ~ B(n, p)
Xn np
近似
~ N(0,1)
f ( x, y)dxdy D是积分区域g( x, y) z与f ( x, y)
D(z)
取值非零区域的交集
第四章
随机变量的数学期望与方差
离散型随机变量
X
E( X ) xk pk
k 1
Y g( X ) E(Y ) E[g( X )]
g连续
g( xk ) pk
k 1
连续型随机变量
E( X ) xf ( x)dx
第三章 第四节 两个随机变量的函数的分布
Z g(X ,Y ) f ( X ,Y ) fZ (z) ? f Z (z) FZ (z)
1)Z X Y
fZ (z)
f (z y, y)dy
f X (z y) fY ( y)dy
2)Z max{X ,Y } Z min{X ,Y }
np(1 p)
第六章
常用统计量及抽样分布
2分布
X i ~ N (0,1) i 1,2,, n 独立
n
2
X
2 i
~
2(n)
i 1
2 (n)
E( 2 ) n D( 2 ) 2n 2 (n) 1 2(z
X ~ N (0,1), Y ~ 2 (n), 独立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档