4.1总体与样本 《概率论与数理统计》课件

合集下载

概率论与数理统计ppt课件

概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。

《总体和样本》课件

《总体和样本》课件

2
随机抽样方法
随机抽样是一种完全随机的抽样方法,每个个体都有相等的机会被选入样本中, 确保样本的代表性。
3
非随机抽样方法
非随机抽样是根据研究者的主观判断或特定条件选择样本的方法,可以提高效率, 但可能引入偏差。
总体和样本的统计推断
1
参数估计
参数估计是通过样本数据推断总体的参数。可以使用点估计和区间估计方法来对总体 本 中各个值的出现可能性,帮 助我们对总体进行推断和估 计。
样本统计量的概率 分布
样本统计量的概率分布描述 了不同样本统计量的取值可 能性,用于估计总体参数和 进行统计推断。
总体和样本的抽样方法
1
抽样的定义
抽样是从总体中选择样本的过程。它需要严格的抽样方法,以保证样本的代表性 和可靠性。
《总体和样本》PPT课件
在本课件中,我们将深入了解总体和样本的概念和关系,概率分布,抽样方 法以及统计推断的重要性。
什么是总体和样本
总体
总体是指我们研究的整个群体或对象的集合。可以是人群、动物种群或其他感兴趣的对象。
样本
样本是从总体中选取的具有代表性的一部分。通过对样本进行研究和分析,我们可以了解总 体的特性。
总体和样本的区别
1 含义
2 关系
3 特点
总体是整个群体的集合, 而样本是总体的一个子 集。
样本是从总体中抽取的, 可以用来推断总体的特 征和属性。
总体是研究的对象,而 样本是我们可以直接观 察和收集数据的部分。
总体和样本的概率分布
总体的概率分布
总体的概率分布描述了总体 中各个值出现的可能性,并 帮助我们理解总体的统计特 征。
2 总体和样本的概率分布
总体是整个群体,样本是总体的一部分, 样本可以用来推断总体的特征和属性。

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计(完整版)(课堂PPT)

概率论与数理统计(完整版)(课堂PPT)
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,则 相容
P ( Bi |A)P(Bi |A.)
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
P(A 1)P(A 2)P(A n).(有限)可
性3质 . 若 AB,则有 P(BA)P(B)P(A);

《总体和样本》课件

《总体和样本》课件

分层抽样
整群抽样
将总体分成若干群,以群为单位进行 随机抽样,适用于群间差异较小、群 内差异较大的情况。
区域抽样
按照地理位置或行政区域划分,在每 个区域内进行随机抽样,适用于地理 分布较广、区域间差异较大的情况。
CHAPTER 04
总体和样本的误差分析
抽样误差
定义
抽样误差是由于从总体中随机抽 取样本而产生的误差。
全面性
总体包含了研究对象的全体成员,不 偏不倚,无主观筛选。
样本特性
随机性
样本是从总体中随机抽取的,每 个个体被选中的机会均等。
代表性
样本能够反映总体的特性,具有一 定的代表性。
可观测性
样本是可以直接观察和研究的,不 同于某些总体特性可能无法直接观 测。
总体和样本特性的比较
1 2
确定性vs随机性
总体和样本的关系
总体和样本的研究目的
通过样本的特性推断总体的特性。
样本的抽取方法
随机抽样、分层抽样、系统抽样等。
样本的代表性
样本的代表性越高,推断总体的准确性越高。
CHAPTER 02
总体和样本的特性
总体特性
确定性
综合性
总体中的每一个成员都是确定的、具 体的,没有遗漏和重复。
总体包含了研究对象各方面的信息, 具有综合性。
总体和样本的选取方法
随机抽样
简单随机抽样
每个样本被选中的概率相等,适 用于样本数量较小、总体异质性 较小的情况。
系统随机抽样
按照一定的间隔或顺序,每隔一 定数量的样本选取一个,适用于 总体数量较大、有明显周期性特 征的情况。
系统抽样
• 分层随机抽样:将总体分成若干层次,在每一层内进行随机抽 样,适用于总体异质性较大、需要提高样本代表性的情况。

概率论与数理统计课件:数理统计基础知识

概率论与数理统计课件:数理统计基础知识

数理统计基础知识
首页 返回 退出
6.1.1 总体
§6.1 总体和随机样本
总体:研究对象的全部可能观察值叫做总体. 个体:组成全体的每个观察值叫做个体.
如:考察某校学生的身高
总体:该校的所有学生的身高 个体:每个学生的身高
数理统计基础知识
首页 返回 退出
实际问题中,要研究的是有关对象的各种数量指标. 总体可以用一个随机变量及其分布来描述.
首页 返回 退出
由于抽样的目的是为了对总体进行统计推断, 为了使抽取的样本能很好地反映总体的信息,必 须考虑抽样方法.
最常用的一种抽样方法叫作“简单随机抽样” 它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察 的总体有相同的分布.
2. 独立性: X1,X2,…,Xn是相互独立的随机变量.
从一批产品中抽5件,检验产品是否合格.
数理统计基础知识
样本容量为5
首页 返回 退出
样本是随机变量.
抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量(X1,X2,…,Xn).
但是,一旦取定一组样本,得到的是n个具体的数 (x1,x2,…,xn),称为样本的一次观察值,简称样本值 .
数理统计基础知识
总体的指标 如体重、身高、寿命等 是随机变量X 个体的指标 如体重、身高、寿命等 是随机变量X 的一个取值
常用随机变量的记号或用其分布函数表示总体.
如:总体X或总体F X
数理统计基础知识
首页 返回 退出
有限总体 总体
无限总体
1.考察某校大一新生(共2000人)的身高. 有限总体
2.观测某地每天最高气温. 无限总体 3.某厂生产的所有电视显像管的寿命. 无限总体

概率论与数理统计书ppt课件

概率论与数理统计书ppt课件

条件概率与独立性
CHAPTER
随机变量及其分布
02
随机变量的概念与性质
定义随机变量为在样本空间中的实值函数,其取值依赖于随机试验的结果。
随机变量
讨论随机变量的可数性、可加性、正态性等性质。
随机变量的性质
离散型随机变量的概念
定义离散型随机变量为只能取可数个值的随机变量。
离散型随机变量的分布
讨论离散型随机变量的概率分布,如二项分布、泊松分布等。
应用
中心极限定理及其应用
CHAPTER
贝叶斯推断与决策分析
07
贝叶斯推断的基本原理
金融风险管理
贝叶斯推断在金融风险管理领域有着广泛的应用,如信用风险评估、投资组合优化等。
医疗诊断
贝叶斯推断在医疗诊断方面也有着重要的应用,如疾病诊断、预后评估等。
机器学习与人工智能
贝叶斯推断在机器学习算法和人工智能领域中也有着广泛的应用,如朴素贝叶斯分类器、高斯混合模型等。
参数估计与置信区间
01
点估计
用单一的数值估计参数的值。
02
区间估计
给出参数的一个估计区间,通常包括一个置信水平。
比较两个或多个组的均值差异,确定因素对结果的影响。
方差分析
检验两个或多个组的方差是否相等。
方差齐性检验
研究变量之间的关系,并预测结果。
回归分析
假设检验与方差分析
CHAPTER
回归分析与线性模型
应用
在现实生活中,大数定律被广泛应用于保险、赌博、金融等领域,通过统计数据来预测未来的趋势和风险。
大数定律及其应用
在独立随机变量序列中,它们的和的分布近似于正态分布,即中心极限定理。这意味着,当样本量足够大时,样本均值近似于正态分布。

概率论与数理统计ppt课件

概率论与数理统计ppt课件

称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}



1 2 N


1 2 N
……

《总体与样本》PPT课件

《总体与样本》PPT课件


找出所研究的对象的规律性
推断 统计学
参数估计 (第六章) 假设检验 (第七章) 方差分析 (第八章) 回归分析 (第八章)
第五章 统计量及其分布
第一节 总体和样本 第二节 样本数据的整理与显示 第三节 统计量及其分布 第四节 三大抽样分布 第五节 充分统计量
第一节 总体与样本
1 总体和个体 2 样本
100只元件的寿命数据
元件数
4 8 6 5 3 4 5 4
寿命范围
(192,216] (2160,240] (240,264] (264,288] (288,312] (312,336] (336,360] (360,384]
元件数
6 3 3 5 5 3 5 1
寿命范围
(384,408] (408,432] (432,456] (456,480] (480,504] (504,528] (528,552]
n
p(x1, x2 , , xn ; ) p(xi ; ) i 1 以后统一称为概率函数.
例5 设某批产品共有N 个,其中的次品数为M,
其次品率为 M / N
若θ 是未知的,则可用抽样方法来估计它.
从这批产品(总体)中任取一个产品,用随机 变量X来描述它是否是次品:
1, 所取的产品是次品
Tianjin Normal University 数理统计
数理统计 Mathematical Statistics
Tianjin Normal University
国内有关经典著作
1.《数理统计引论》
陈希儒著 科学出版社 1981年版
国外有关经典著作
2. 《统计学数学方法》
H. 克拉默著 1946年版

数理统计的基本概念PPT模板

数理统计的基本概念PPT模板
3 次序统计量和样本分布函数
例 4 设总体服从泊松分布,容量为 10 的样本观测值如下: 2,1,4,3,5,6,4,8,4,3.
试构造样本的分布函数 F10 (x) .
解 将样本的观测值由小到大排列为1 2 3 3 4 4 4 5 6 8 ,所以样本的频 率分布如表 5-1 所示.
设 X1 ,X2 , ,Xn 是总体 X 的样本,则可定义以下统计量.
(1)样本均值为
X
1 n
n i 1
Xi

(5-1)
它的观测值记为
x
1 n
n i 1
xi

数理统计的基础知识
数理统计的基本概念
1.2 参数与统计量
(2)样本方差为
S2 1 n n 1 i1
Xi X
2
1 n 1
n i 1
数理统计的基本概念
1.2 参数与统计量
由于样本具有二重性,统计量作为样本的函数也具有二重性,即 对一次具体的观察或试验,它们都是具体的数值,但当脱离具体的某 次观察或试验,样本是随机变量,因此统计量也是随机变量.
统计量是用来对总体分布参数进行估计或检验的,它包含了样本 中有关参数的信息,在数理统计中,根据不同的目的构造了许多不同 的统计量.
设 样 本 X1 ,X2 , ,Xn 的 次 序 统 计 量 为
X (1) X (2)
X(n) ,对应的样本观测值为
x(1) x(2)
x(n) ,令
0 ,x x(1) ,
1 n
,x(1)
x x(2) ,
Fn
(x)
k
n
,x(k )
x x(k 1) ,
1,x x(n) .
(5-6)

《总体与样本》课件

《总体与样本》课件
探究泊松分布的特征和应用场景,研究事件发生率和概率密度函数。
学习参数估计与假设检验
1 参数估计
介绍参数估计的原理和常 用方法,了解如何通过样 本推断总体参数。
2 假设检验
研究假设检验的基本步骤 和原理,掌握如何评估假 设的显著性。
3 类型I和类型II错误
讨论类型I和类型II错误的 概念和实际案例,认识假 设检验中的风险。
答疑环节
解答学员的问题和疑惑,帮助他们理解和应用统计学的基本原理。
离散程度
研究标准差和方差,了解数据 的变异程度和离散程度如何衡 量。
分布形态
讨论偏态和峰态,理解数据集 的分布形状对统计分析的影响。
掌握常用的概率分布
正态分布
学习正态分布的特性和重要性,探究其在统计推断和假设检验中的应用。
二项分布
研究二项分布的概念和公式,了解它在二元试验和样本比例估计中的应用。
泊松分布
案例分析:如何运用总体与样本进行统计 分析
数据图表
使用样本数据设计并创建有效的 数据图表,提升Biblioteka 据可视化和沟 通效果。回归分析
运用总体数据进行回归分析,探 索变量之间的关系和预测模型的 准确性。
假设检验
利用样本数据进行假设检验,验 证对总体的推断是否具有统计显 著性。
总结与答疑
知识回顾
回顾总体与样本的重要概念和关系,巩固所学的统计描述和推断方法。
《总体与样本》PPT课件
总体与样本的概述
探究总体与样本的关系
1
总体
了解总体的定义和特点,探究统计学中总体的重要性。
2
样本
掌握样本的选择方法和抽样技术,了解样本对总体的推断和描述的作用。
3
关系

《概率论与数理统计》课件

《概率论与数理统计》课件

条件概率与独立性
条件概率
在某个事件B已经发生的条件下,另 一事件A发生的概率,记为P(A|B)。
独立性
两个事件A和B如果满足 P(A∩B)=P(A)P(B),则称事件A和B是 独立的。
随机变量及其分布
01
随机变量
随机变量是定义在样本空间上的 一个实值函数,表示随机试验的 结果。
02
离散型随机变量
03
连续型随机变量
离散型随机变量的取值可以一一 列举出来,其概率分布可以用概 率质量函数或概率函数表示。
连续型随机变量的取值范围是一 个区间或半开区间,其概率分布 可以用概率密度函数表示。
数理统计初步
02
统计数据的描述
01
统计数据的收集
描述如何通过调查、试验或观测 等方法,获取用于统计分析的数
据。
03
夫链
随机过程的基本概念
随机过程
随机过程是一组随机变量,每个随机 变量对应于时间或空间的一个点。
有限维分布
描述随机过程在有限个时间点上的联 合分布。
独立性
如果随机过程在不相交的时间区间上 的随机变量是独立的,则该随机过程
是独立的。
马尔科夫链及其性质
马尔科夫性
在已知现在状态下,未来与过去独立,即“未来 只取决于现在”。
03
数据的可视化
介绍如何使用图表(如直方图、 散点图等)将数据可视化,以便 更直观地理解数据分布和关系。
02
数据的整理
介绍如何对数据进行分类、排序 和分组,以便更好地理解和分析

04
数据的数字特征
介绍如何使用均值、中位数、众 数、方差等统计量来描述数据的
中心趋势和离散程度。
参数估计与置信区间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 样本表示同一批n个电子元件的寿命(小时).
(3) 样本表示同一批n件产品某一尺寸(mm).
通过分析或经验,我们容易知道:
(1) 服从两点分布,其概率分布为 px(1p)1x,x=0,1,所需确
定的是参数 p [0,1.] (2) 通常服从指数分布,其密度函数
f
(x;)
ex,x0
,
0, x0
所需确定的是参数 >0.
(3) 通常服从正态分布 N (, 2 ) ,其密度函数
f(x; , 2) 1 e(x22)2,xR 2
所需确定的是参数( , 2 ),其中 R , 2 0 ,对于每个总体, 我们称其分布中参数的一切可能取值的集合为参数空间,记 为.
今后对于统计推断,如果总体的分布为形式ቤተ መጻሕፍቲ ባይዱ知, 仅对参数进行推断,我们就称之为参数推断(估计,检 验);否则,称为非参数推断.
f* (x 1 ,x 2 , ,x n )i n 1f(x i)i n 1x ix !e (x 2 i 2 )2 (2 1)ne 2 1 2 i n 1(x i )2
. 三、 参数与参数空间 如前所述,数理统计问题的分布一般来说是未知的,需要
通过样本来推断.但如果对总体绝对地一无所知,那么,所
的未知参数,这就是数理统计所要解决的首要问题,办 法是什么呢?以上述例子来说,我们要掌握车辆速度的 分布,电视机寿命的分布,次品率的值,就必须对这一 公路上行驶的车辆的速度,电视机的寿命及三极管中的 次品作一段时间的观察或测试一部分,从而对所关心的 问题作出推断.即: 在数理统计学中,我们总是从所要研究的对象全体中抽 取一部分进行观测或试验,以取得信息,从而对我们所 关心的问题(整体)作出推断和估计.于是如何抽取样本如 何合理地获取数据,怎样合理地利用采集的数据资料对 问题作出推断等等就成为数理统计研究的问题.
2) 1,2, ,n是相互独立的随机变量.
称( 1,2, ,n )为一组简单随机样本,简称为样本.
若 为离散型随机变量,其分布列为P令x

若f(x)为P 连续x型随机变量,其密度函数为 ,令
称为 总体的概率函数.
p(x)
f(x)p(x)
设总体的概率函数为 ,
为取自总体的一组
样本,则
的联合f ( x概) 率(函1,数2 为n)
例如 1) 在一段时间内某段公路上行驶的车辆的速度服从什么概 率分布是完全不知道的. 2) 某工厂生产的一批电视机的寿命遵循何种分布也可能是 不知道的. 3) 某仪器厂向某元件厂购买一批三极管,任抽一件是次品 或正品遵循的是两点分布(即分布概型已知),但是分布 中的参数(即次品率)往往是未知的.
找出一个随机现象所联系的随机变量的分布或分布中
(1,2 n)
n
f*(x1,x2xn) f(xi)
i1
例5.1.1 设总体 服从参数为 的泊松分布,(1,2, ,n)
为取自总体 的一组样本,求(1,2, ,n)的联合概率函
数. 解:
因为 ~P(),所以
f(x)P (x)xe,x0,1 ,2, 从
而(1,2 n)的联合概率函数为
x!
f*(x1,x2
对于样本需要强调:样本并非一堆杂乱无章无规律可循的 数据,它是受随机性影响的一组数据,因此,用概率论的话 说,就是每个样本既可以视为一组数据,又可视为一组随机 变量,这就是所谓样本的二重性.当通过一次具体的试验,得 到一组观测值,这时样本表现为一组数据;但这组数据的出 现并非是必然的,它只能以一定的概率(或概率密度)出现, 这就是说,当考察一个统计方法是否具有某种普遍意义下的 效果时,又需要将其样本视为随机变量,而一次具体试验得 到的数据,则可视为随机变量的一个实现值.今后为行文方便, 我们常交替使用上述两种观点来看待样本,而不去每次声明 此处样本是指随机变量还是其观测值.
第四章 数理统计的 基本概念
§4.1总体与样本
在概率论的讨论中,概率分布通常总是已知的,而一切 计算和推理就是在这已知的基础上得出的.但在实际问题中, 情况就并非如此,一个随机现象所遵循的分布是什么概型可 能完全不知道;或者我们根据随机现象所反映的某些事实能 断定其概型,但却不知道其分布函数中所含的参数.
n
xi
xn)i n1f(xi)i n1xix !ex1!x2i! 1
en. xn!
例5.1.2 设总体 服从 N(,2),(1,2, ,n)为取自总体的一组样
本,求(1,2, ,n)的联合概率函数.
解: 因为 服从 N(,2) ,
所以
f (x)
1
e , (x22)2
2
从而 (1,2, ,n)的联合概率函数为
为了能使抽到的样本能够对总体作出较可靠的推断,就希 望它能很好地代表总体.这就对抽样方法提出一些要求.最简单 的抽取的样本必须具有(1)样本能代表总体;(2)每个个 体都是随机地抽出的.这就是简单随机样本的概念.
若( 1,2, ,n)为来自总体的一组样本,且满足
1) 1,2, ,n与总体具有相同的分布;
二、简单随机样本
实际上,从总体中抽取样本可以有各种不同的方法. 例如设一组抽奖券共10000张,其中有5张有奖.问连续抽 取3张均有奖的概率为多少?
对于这个问题,我们可以采取“有放回的”或“无放回的” 连续抽取.
显然无放回的抽样方式不是独立的,每次抽样的结果都将 影响下一次抽样的分布,这种抽样不是我们所希望的抽样.而 有放回的抽样,则是多次独立的抽样,它们是同分布的,是我 们通常所采用的抽样.称为的随机抽样.
能做出的推断的可信度一般也极为有限.在很多情况下,往
往是知道总体所具有的分布形式,而不知道的仅仅是分布
中的参数.这在实际中是大量能见到的,因为,分布的总体
形式我们往往可以通过具体的应用背景或以往的经验加以
确定.
例5.1.3 考虑如何由样本的 1,2, ,n实际背景确定统计模型,
即总体 的分布:
(1) 样本记录随机抽取的n件产品的正品、废品情况.
相关文档
最新文档