正四面体的外接球半径的求法

合集下载

四面体外接球的球心、半径求法

四面体外接球的球心、半径求法

四面体外接球的球心、半径求法在立体几何中,几何体外接球是一个常考的知识点,对于学生来说这是一个难点,一方面图形不会画,另一方面在画出图形的情况下无从下手,不知道球心在什么位置,半径是多少而无法解题。

本文章在给出图形的情况下解决球心位置、半径大小的问题。

一、出现“墙角”结构利用补形知识,联系长方体。

【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径R 2为体对角线长l 即2222c b a R ++=【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。

解:因为:长方体外接球的直径为长方体的体对角线长 所以:四面体外接球的直径为AE 的长 即:22224AD AC AB R ++=1663142222=++=R 所以2=R 球的表面积为ππ1642==R S二、出现两个垂直关系,利用直角三角形结论。

【原理】:直角三角形斜边中线等于斜边一半。

球心为直角三角形斜边中点。

【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,求球O 的体积。

解:BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC , 因为22210517=+ 所以知222PC PA AC +=所以 PC PA ⊥ 所以可得图形为: 在ABC Rt ∆中斜边为AC 在PAC Rt ∆中斜边为AC 取斜边的中点O ,在ABC Rt ∆中OC OB OA ==在PAC Rt ∆中OC OB OP ==所以在几何体中OA OC OB OP ===,即O 为该四面体的外接球的球心521==AC R 所以该外接球的体积为3500343ππ==R V【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。

三、出现多个垂直关系时建立空间直角坐标系,利用向量知识求解 【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB解:由已知建立空间直角坐标系)000(,,A )002(,,B )200(,,D (C设球心坐标为),,(z y x O 则DO CO BO AO ===,由空间两点间距离公式知222222)2(z y x z y x ++-=++ 222222)2(-++=++z y x z y x 222222)3()1(z y x z y x +-+-=++解得 1331===z y xACCy所以半径为3211331222=++=)(R 【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=四、四面体是正四面体处理球的“内切”“外接”问题与球有关的组合体问题,一种是内切,一种是外接。

3.4基本几何体之正四面体

3.4基本几何体之正四面体

基本几何体之正四面体设正四面体的棱长为a ,如下图1、侧面中线AM a =2、高线AH =3、外接球半径R =4、内切球半径12r a =5、对棱距离(BC 与AD 两异面直线的距离)2EF a =其中E 、F 为相应中点,EF 既垂直于BC 又垂直于AD6、AC 垂直BD 、AB 垂直CD 、AD 垂直BC (实际所有正三棱锥都有这个结论,正四面体是特殊的正三棱锥)注1:外接球与内切球半径的求法首先在正四面体中,外接球与内切球的球心是合一的,而且必须在高线AH 上,设球心为O ,外接球半径为R ,内切球半径为r ,而且H 必是一个切点。

如下图所示则有222r R AH R r BH ⎧+==⎪⎨⎪+=⎩又H 还是BCD的重心,有2233BH BM ===因此解222r R a R r ⎧+=⎪⎪⎨⎫⎪+=⎪⎪⎪⎝⎭⎩,即可求得R 与r注2:对棱间距的求法将正四面体放在正方体中讨论(以后会经常这样子做)。

只要在正方体中取不相邻的四个顶点就构成了正四面体。

如下:显然EF等于正方体的棱长,即2a例1 (05年北京)在正四面体P —ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是(C )解析:如下图,做出PO为该四面体的高线,O必在AE上。

A:BC//DF可以得到BC//面PDF,对B:PO DFDF PAEAE DF⊥⎫⇒⊥⎬⊥⎭面,也对C:PO显然不在面PDF中,因此面PDF垂直面ABC不可能D:PO在面PAE内,因此面PAE与面ABC垂直要解此题,必须对正四面体的性质十分熟练。

如O必落在AE上,且O必不在DF上。

因为必有O为ABC的重心。

2=3AO AE,而EF为中位线,所以O必不在EF上。

四面体外接球的球心、半径求法(经典)

四面体外接球的球心、半径求法(经典)

四面体外接球的球心、半径求法在立体几何中,几何体外接球是一个常考的知识点,对于学生来说这是一个难点,一方面图形不会画,另一方面在画出图形的情况下无从下手,不知道球心在什么位置,半径是多少而无法解题。

本文章在给出图形的情况下解决球心位置、半径大小的问题。

第一节 原理部分一、出现“墙角”结构利用补形知识,联系长方体。

【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径R 2为体对角线长l 即2222c b a R ++=【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。

解:因为:长方体外接球的直径为长方体的体对角线长 所以:四面体外接球的直径为AE 的长 即:22224AD AC AB R ++=1663142222=++=R 所以2=R 球的表面积为ππ1642==R S二、出现两个垂直关系,利用直角三角形结论。

【原理】:直角三角形斜边中线等于斜边一半。

球心为直角三角形斜边中点。

【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,求球O 的体积。

解:BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC , 因为22210517=+ 所以知222PC PA AC += 所以 PC PA ⊥ 所以可得图形为: 在ABC Rt ∆中斜边为AC 在PAC Rt ∆中斜边为AC 取斜边的中点O ,在ABC Rt ∆中OC OB OA == 在PAC Rt ∆中OC OB OP ==所以在几何体中OA OC OB OP ===,即O 为该四面体的外接球的球心521==AC R 所以该外接球的体积为3500343ππ==R V【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。

正四面体外接球公式

正四面体外接球公式

正四面体外接球公式
正四面体外接球,也叫正四面体旋转体,是一种数学上的几何体,是由单一晶体构成的固体物质,也是数学上的重要几何体之一。

正四面体外接球的公式成为正四面体外接球公式,它是一种用来确定正四面体外接球的体积和表面积的公式。

正四面体外接球公式中的前提条件是正四面体是一种球体,它由六个正四面体面构成,六个面相互接触,相互垂直。

正四面体外接球的公式计算非常简单,可以用来计算正四面体的表面积和体积。

正四面体外接球公式的具体形式如下:V=√2r3/3,其中V表示正四面体外接球的体积,r表示正四面体外接球的半径。

在计算正四面体外接球体积时,我们只需要计算出外接球半径,然后代入公式中就可以计算出外接球的体积。

正四面体外接球半径可以通过一个简单的公式来计算:r=a√3/6,其中a表示正四面体每个面的边长。

正四面体外接球公式不仅可以用来计算外接球的体积,而且还可以用来计算外接球的表面积,表面积的公式如下:S=4πr2,其中S 表示外接球的表面积,r表示外接球的半径。

要计算出表面积,只需要把外接球半径代入公式中就可以得出外接球的表面积。

在数学和计算机科学中,正四面体外接球的应用非常广泛,它可以用在很多不同的领域中。

比如在计算机中,正四面体外接球可以用来表示物体的大小,控制物体的移动,同时用来判断两个物体是否在特定距离内。

此外,正四面体外接球的体积和表面积公式在几何学和
微积分中也有着广泛的应用。

正四面体外接球公式是一种非常有用的工具,可以根据不同的计算要求来高效率地计算出正四面体外接球的体积和表面积。

同时,它也有着广泛的应用,可以用在计算机科学,几何学和数学上的不同领域中。

正四面体外接球半径公式

正四面体外接球半径公式

一.正四面体外接球半径公式是什么?
答:R=(√6)a/4。

a为正四面体的棱长。

设正四面体的棱长为a,求其外接球的半径.设正四面体V-ABC,D为BC的中点,E 为面ABC的中心,外接球半径为R,则AD=(√3)a/2,AE=2/3*AD=(√3)a/3.在Rt△VAE中,有VE^2=VA^2-AE^2=a^2-a^2/3=(2a^2)/3,VE=(√6)a/3。

在Rt△AEO中,有AO^2=AE^2+OE^2=R^2+(VE-R) ^2,即R^2=a^2/3+[(√6)a/3-R] ^2,可解得:R=(√6)a/4.另外,我们也可以先求出OE,因为OE恰好是四面体的内切球的半径r。

利用等积法可求得r.设四面体的底面积为S,则1/3*S*(R+r)=4*1/3*S*r,可得r=R/3.于是在Rt△AEO中,有R^2 = AE^2+r^2=a^2/3+R^2/9,从而得R=(√6)a/4。

扩展资料:
正四面体的性质:
1、正四面体的四个旁切球半径均相等,等于内切球半径的2倍,或等于四面体高线的一半。

2、正四面体的内切球与各侧而的切点是侧I面三角形的外心,或内心,或垂心,或重心,除外心外,其逆命题均成立。

3、正四面体的外接球球心到四面体四顶点的距离之和,小于空间中其他任一点到四顶点的距离之和。

4、正四面体内任意一点到各侧面的垂线长的和等于这四面体的高。

5、对于四个相异的平行平面,总存住一个正四面体,其顶点分别在这四个平面上。

简单几何体的外接球和内切球的半径的求法

简单几何体的外接球和内切球的半径的求法

简单几何体的外接球和内切球半径的求法1、正方体若正方体的棱长为a ,则其外接球半径为 ,内切球半径为 ,棱切球半径为 球心全是正方体的体对角线的交点32a 12a 22a例:一个正方体的顶点都在球面上,它的棱长是a cm ,求球的体积.解:该球是正方体的外接球,球心到正方体各顶点的距离相等,因此球心是正方体的体对角线的交点,球的直径是正方体的体对角线长设球的半径为R ,a R a R 2332==得则)(23)23(34343333cm a a R πππ==∴球的体积为若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

外接球的球心到多面体各顶点的距离均相等。

例:将一个棱长为6cm 的正方体铁块磨制成一个球体零件,求可能制作的最大零件的体积。

解:这个最大的球体是正方体的内切球,球心到正方体各个面的距离相等,因此球心是正方体的体对角线的交点,球的直径是正方体的棱长设球的半径为R ,则2R =6,得R =3)(3633434333cm R πππ=⨯=∴最大零件的体积为若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

内切球的球心到多面体各面的距离均相等。

⑴正方体的内切球直径=⑵正方体的外接球直径=⑶与正方体所有棱相切的球直径=探究 若正方体的棱长为a ,则a3a2a右图,红色球是正方体的棱切球棱切球的球心到正方体各条棱的距离相等,因此球心是正方体的体对角线的交点,球的直径是正方体的面对角线的长2、长方体若长方体的长、宽、高分别为a、b、c,则其外接球半径为球心是长方体的体对角线的交点222 1+2a b c例:有一个球与长方体的面相切,这个球的最大直径是多少?长方体的长、宽、高中的最小者例:一个长方体的各顶点均在同一个球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为____________若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

几何体外接球常用结论及方法(如何求几何体的外接球半径)

几何体外接球常用结论及方法(如何求几何体的外接球半径)

几何体外接球常用结论及方法(如何求几何体的外接球半径)几何体的外接球是一个常见的问题,其中有一些常用的结论和方法:1.对于三棱锥P-ABC,如果PA垂直于PB和PC,则该三棱锥的外接球半径2R可以用公式2R=PA²+PB²+PC²求得。

2.对于等边三角形,其外接圆的半径等于连长的1/3倍。

3.直角三角形的外接圆半径等于斜边的一半。

4.对于一般的三角形ABC,可以用正弦定理求得外接圆半径R,而内切圆的半径r可以用海龙公式S=Cr求得。

5.如果已知三棱锥P-ABC中PA=a,且△ABC的外接圆半径为r,则该三棱锥的外接球半径2R可以用公式2R=2r+a²求得。

6.正方体的外接球、内切球和棱切球的直径分别为正方体的体对角线长2R=3a、棱长2R=a和面对角线长2R=2√2a。

7.对于四面体P-ABC,如果∠APC=90°且∠ABC=90°,则该四面体的外接球直径为AC。

8.对于正三棱锥V-ABC,可以用射影定理求得其外接球半径,即VA²=h(2R-h)。

9.对于正四面体,其高h=2/3√2a,外接球半径和内切球半径均为a。

10.对于有内切球的多面体,其内切球半径可以用公式V=Sr/3求得。

11.如果三棱锥A-BCD中的面ABD和面BCD互相垂直且其外接圆半径分别为r1和r2,公共棱BD的长度为a,则该三棱锥的外接球半径2R可以用公式2R=2r1+2r2-a²/2√(r1²+r2²)求得。

的公共弦AD和BC的垂线,分别交于点E和F。

连接OE和OF,则OE=OF=R,且OE和OF分别是三棱锥P-ABC 和A-BCD的外接球的直径。

由于三棱锥P-ABC和A-BCD的外接球是重合的,因此它们的直径相等,即2R=2r1+2r2-a。

对于三棱锥P-ABC,已知面PAC与ABC所形成的二面角为θ(θ<θ≤90°),且已知ΔPAC和ΔABC的外接圆的半径分别为r1,r2,AC=a,则该棱锥的外接球半径R满足:left(2R+2\cos\theta\right)\left(R-r_1\right)\left(R-r_2\right)=2\left(r_1+r_2\right)^2-4\left(r_1-r_2\right)^2\cos^2\frac{\theta}{2}$这个公式可以通过对三棱锥P-ABC和A-BCD的共面直角投影,推导出它们的公共弦长等于$\sqrt{a^2+\left(r_1+r_2\right)^2-2r_1r_2\cos\theta}$。

几何体外接球半径常见的求法

几何体外接球半径常见的求法

多面体外接球、内切球半径的求法 与球有关的问题,一种是内切,一种是外接。

作为这种特殊的位置关系在高考中也是考查的重点,但同学们又因缺乏较强的空间想象能力而感到模糊。

解决这类题目时要认真分析图形,明确切点和接点的位置及球心的位置,画好截面图是关键,可使这类问题迎刃而解。

一:定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体, 这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球。

注:1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。

2、正多面体的内切球和外接球的球心重合。

正四面体、正六面体、正八面体、正十二面体、正二十面体3、正棱锥的内切球和外接球球心都在高线上,但不重合。

4、基本方法:构造三角形利用相似比和勾股定理。

5、体积分割是求内切球半径的通用做法。

r S V 表31= 练习:设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则cb a S r ++=2,类比这个结论:四面体S —ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S —ABC 的体积为V ,则R 等于( )A .4321S S S S V +++B .43212S S S S V +++C .43213S S S S V +++D .43214S S S S V +++ (等体积法:()R S S S S V V V V V SBC O SAC O SAB O ABC O ⨯+++=+++=----432131,所以43213S S S S V R +++=.) 二:1、球的表面积公式 ,球的体积公式 。

2、球的截面性质:截面圆的半径r 与球心到截面的距离d 和球的半径R 的关系是 。

例1.(1).用与球心距离为2的平面去截球,所得的截面面积为π,则球的体积为( )A .320πB .3520π C .π520 D .3100π (2)在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积. (3) 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.(4)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.(5).过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比( )A .316B .916C .38D .932(6)棱长为1的正方体1111ABCD A BC D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .22 B .1 C .212+ D .2[(7)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3(8)已知正三角形C AB 三个顶点都在半径为2的球面上,球心O 到平面C AB 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A .74π B .2π C .94π D .3π 三:平面图形外接圆半径的求法a 、直角三角形的外接圆半径b 、等边三角形的外接圆半径c 、三角形外接圆半径的公式(正弦定理)d 、矩形的外接圆半径e 、是不是任何平面四边形都有外接圆(内对角互补的平面四边形有外接圆)f 、若平面四边形有外接圆,则求其中三点构成的三角形的外接圆即可(正弦定理)g 、三角形ABC 中,角A,B,C 的对边分别为a,b,c ,则正弦定理:r Cc B b A a 2sin sin sin === 余弦定理: abc b a C ac b a c B bc a c b A 2cos ;2cos ;2cos 222222222-+=-+=-+= 练习: 平面四边形ABCD 中,AB=1,AD=3,∠BAD=60º,AB ⊥BC,AD ⊥CD,则四边形ABCD 外接圆的半径r= . 四:几个结论1、空间四边形OABC 中,若0A=0B=0C,在O 在平面ABC 内的射影是△ABC 的 心。

四面体外接球的球心半径求法

四面体外接球的球心半径求法

四面体外接球得球心、半径求法在立体几何中,几何体外接球就是一个常考得知识点,对于学生来说这就是一个难点,一方面图形不会画,另一方面在画出图形得情况下无从下手,不知道球心在什么位置,半径就是多少而无法解题。

本文章在给出图形得情况下解决球心位置、半径大小得问题、一、出现“墙角”结构利用补形知识,联系长方体。

【原理】:长方体中从一个顶点出发得三条棱长分别为,则体对角线长为,几何体得外接球直径为体对角线长 即【例题】:在四面体中,共顶点得三条棱两两垂直,其长度分别为,若该四面体得四个顶点在一个球面上,求这个球得表面积。

解:因为:长方体外接球得直径为长方体得体对角线长所以:四面体外接球得直径为得长即:所以球得表面积为二、出现两个垂直关系,利用直角三角形结论。

【原理】:直角三角形斜边中线等于斜边一半。

球心为直角三角形斜边中点。

【例题】:已知三棱锥得四个顶点都在球得球面上,且,,,,求球得体积。

解:且,,,,因为 所以知所以 所以可得图形为:在中斜边为在中斜边为取斜边得中点,在中在中 所以在几何体中,即为该四面体得外接球得球心A C所以该外接球得体积为【总结】斜边一般为四面体中除了直角顶点以外得两个点连线、三、出现多个垂直关系时建立空间直角坐标系,利用向量知识求解ﻩ【例题】:已知在三棱锥中,,,,求该棱锥得外接球半径、解:由已知建立空间直角坐标系解得所以半径为【结论】:空间两点间距离公式:四、四面体就是正四面体处理球得“内切”“外接"问题与球有关得组合体问题,一种就是内切,一种就是外接。

作为这种特殊得位置关系在高考中也就是考查得重点,但同学们又因缺乏较强得空间想象能力而感到模糊。

解决这类题目时要认真分析图形,明确切点与接点得位置及球心得位置,画好截面图就是关键,可使这类问题迎刃而解。

一、棱锥得内切、外接球问题例1.正四面体得外接球与内切球得半径就是多少?分析:运用正四面体得二心合一性质,作出截面图,通过点、线、面关系解之。

正四面体相关结论

正四面体相关结论

正四面体相关结论正四面体是一种具有特殊性质的几何图形,它由四个相等的正三角形组成,每个角都是60度。

在正四面体中,有一些重要的结论和性质,这些结论和性质在解决相关的几何问题时非常有用。

1、中心与顶点之间的关系正四面体的中心到四个顶点的距离相等,也就是说,中心是四个顶点所组成的菱形的中心。

这个结论可以用于计算正四面体的半径和中心到顶点的距离。

2、边长与高之间的关系正四面体的边长和高之间有一个重要的关系,即高是边长的2/3。

这个结论可以用于计算正四面体的高,也可以用于解决与正四面体的边长和高有关的问题。

3、体积与半径之间的关系正四面体的体积与半径之间有一个重要的关系,即体积是半径的立方根。

这个结论可以用于计算正四面体的体积,也可以用于解决与正四面体的体积和半径有关的问题。

4、三个两两垂直的平面相交于一点在正四面体中,三个两两垂直的平面相交于一点,这个结论可以用于解决与正四面体的三个两两垂直的平面相交有关的问题。

5、相对的两条边互相垂直在正四面体中,相对的两条边互相垂直,这个结论可以用于解决与正四面体的相对的两条边互相垂直有关的问题。

正四面体的一些重要结论和性质在解决相关的几何问题时非常有用,这些结论和性质可以帮助我们更好地理解和解决正四面体的问题。

正四面体外接球和内切球的半径的求法在几何学中,正四面体是一种具有特殊性质的几何形态。

它由四个相等的正三角形构成,每个面都是一个等边三角形。

这种几何形态在许多领域都有广泛的应用,包括物理学、化学、工程学等。

在解决实际问题时,我们常常需要找出正四面体的外接球和内切球的半径。

下面将介绍两种求法。

第一种方法是通过几何计算直接求解。

首先,我们需要找到正四面体的中心点。

这个点可以通过连接正四面体的四个顶点并取其中间位置来找到。

一旦找到了中心点,我们就可以通过连接这个点和正四面体的各个顶点,找到外接球的球心。

外接球的半径就是从球心到正四面体顶点的距离。

内切球的半径则是从球心到正四面体四个面的中心的距离。

外接球半径求法

外接球半径求法

外接球半径求法
外接球半径是指一个几何体的外接球的半径,它可以通过该几何体的某些特征来求解。

以下是几种常见的求解方法:
1. 对于正四面体、正六面体、正八面体等正多面体,其外接球半径可以直接通过公式计算得出。

例如,对于正四面体,其外接球半径R等于边长a乘以根号2除以4,即R=a√2/4。

2. 对于任意三角形ABC,其外接圆的半径R可以通过三角形的三边长度a、b、c来计算。

具体而言,可以使用海伦公式计算三角形的面积S,然后通过公式R=abc/4S求解外接圆半径R。

其中a、b、c分别为三角形的三边长度。

3. 对于任意四面体ABCD,其外接球半径可以通过四个顶点之间的距离来计算。

具体而言,假设四个顶点分别为A、B、C和D,则可以先计算出任意两个顶点之间的距离(如AB、AC等),然后使用这些距离来计算四面体各个侧面上三角形的面积,并使用这些面积来计算四面体总表面积S。

最后使用公式R=abc/4S求解出外接球半径R。

以上是几种常见的求解外接球半径的方法,不同的几何体可能需要使
用不同的方法来求解。

在实际应用中,可以根据具体情况选择合适的方法来计算外接球半径。

几何体外接球的几种类型

几何体外接球的几种类型

几何体外接球的几种类型几何体外接球是指可以完全包围一个几何体的球。

在三维空间中,不同的几何体有不同类型的外接球。

本文将介绍一些常见的几何体外接球类型。

一、正方体外接球正方体是一种六个面都相等且相邻面都垂直的立方体,其外接球为正方形。

正方形的对角线长度为边长的根号2倍,因此正方体外接球半径为边长的根号2除以2。

二、长方体外接球长方体是一种六个面都为矩形且相邻面都垂直的立方体,其外接球为椭圆形。

椭圆形有两个不同半轴长度a和b,因此长方体外接球半径为(a²+b²)的平方根除以2。

三、圆柱体外接球圆柱体是由一个矩形沿着一条边旋转而成的几何图形,其外接球为一个圆盘。

圆盘半径等于底面半径r加上高h,即r+h。

四、锥形外接球锥形是由一个平面图形沿着一条线段旋转而成的几何图形,其外接球为一个尖锥。

尖锥半径等于底面半径r加上高h的平方根,即(r²+h²)的平方根。

五、球体外接球球体是一种几何体,其外接球为自身。

球体半径等于外接球半径。

六、四棱锥外接球四棱锥是由一个正方形底面和四个三角形侧面组成的几何图形,其外接球为一个正四面体。

正四面体边长等于底面边长a,因此四棱锥外接球半径为a除以根号3。

七、八面体外接球八面体是由八个正三角形组成的几何图形,其外接球为一个正八面体。

正八面体边长等于正方形对角线长度a,因此八面体外接球半径为a除以根号2。

总结:不同类型的几何体有不同类型的外接球。

通过计算几何图形各个参数可以求得其对应的外接球半径。

掌握这些知识可以帮助我们更好地理解空间中各种几何图形之间的关系,并在实际生活中应用到设计、建造等领域中。

四面体外接球半径的常规求法

四面体外接球半径的常规求法

教学参谋解法探究2018年9月四面体外接球半径的常规求法⑩湖北省武汉市第四十三中学卢伟近几年来,随着三视图的引人,使得立体几何客观 题的考查形式趋于多样化,这其中表现突出的就是四面 体外接球球心在哪里的问题.下面结合具体例题的分 析,归纳,并得出结论,以期能够对这一类问题有一个较 为广泛的认识.(以下例题均只求取四面体外接球的半 径")一、定义法球心到球面上各点的距离相等,即为半径.下面通过对两大类型的分析,从而确定相关特征的 四面体外接球球心的位置.第一类型:“垂直+条件”型(有一条侧棱与底面垂直的四面体)例i在四面体中,丄平面&'(,"&'(为 边长是3的正三角形,且&4)6,求".解析:首先找到的外心G,作OG丄面&'(,且使得〇*)丄$4,则满足条件的02即为该四面体外接球的球心,再取$4的中点,,连接0,,如图1所示,经计算知")2#3.小结:这里不妨设A')-,4S).,V3 4例2在四面体中,S4丄平酿'(,&'丄B(,S()2,求".解析:如图2,易证'(丄邠,由直角三角形斜边的中线等于斜边 '图2的一半知SC的中点0即为球心,故 w")i.(事实上,这里与例i的解题思想是一致的y 例3在四面体中,S4丄平面4'(,120",4')4()4S)2,求".$S去.在双曲线^#02)1中,过右焦点(左焦点对称可得) a1〇的两条垂直相交弦4'与C1,有如下结论:结论4:当(.222-a2)(.2-a222)>0时,|其中2=^ —&=la2-.2l■2a.22-a222)<0时,=la2-.2l2a.2结论5 :当(.222-a2)(. 2-a222)>0时,当(.222-a2)(. 2-a222)<0 时,114'卜1(11丨>-$^.la2- .2l结论6:若4'与(1的中点分别记为,,7,则直线,7结论7:丄+丄=丄.l4'l l(1l2p结论 8:l4'l+l(1l'8p.结论9:若4'与C1的中点分别记为,,7,则直线,7恒过定点|%,0&.五、结语限于篇幅,上述对双曲线与抛物线的证明过程都没 有给出来,感兴趣的读者可以验证一下.至此,我们感叹 于圆锥曲线内部的和谐与统一,同时也激起我们对未知 领域的向往.我们相信如果能够把这样的一种追求与探 索的情感融入到平时的教学中去,感染学生,使之成为 他们学习与成长中的一道风景,帮助学生领悟数学的魅 力所在.l4'l+ l(1l 当(222-a2l4'l l(1l恒过定点(%2,0).在抛物线02=29中,过焦点的两条垂直相交弦4'与 (1,有如下结论:参考文献:1.钟长彬,杨苍洲,圆锥曲线两垂直焦点弦的一组 结论[J].中学数学研究,2014(6).|!94十•?•!{:,■?高中2018年9月解法探究解析:根据例1的作图,结合正弦定理知,2!= —isin 30o !!=2,其中!为外接圆的半径,则可知&=#T .小结:这3个例题都是属于“垂直+条件”型的四面体 外接球球心的问题.根据例1的作图方式我们知道,关键 是先找到底面A #$C 的外心,这里是分别以特殊三角形 (等边三角形,直角三角形h 与一般三角形(利用正弦定 理)为背景,寻找突破口,则可以得到这类问题的统一计算公式这里底面三角形的外接圆半径,*为垂线段#+的长)第二类型:“等腰+条件”型(定义一类特殊的四面体---等腰四面体:三条侧棱相等的四面体)例4已知在四面体+-#$%", ++#)+$)+%)2,$ $#%)30。

正四面体的外接球和内切球

正四面体的外接球和内切球

解题小结: (1) V1:V2=R13:R23; S1:S2=R12:R22. (2) 注意扩大与扩大到的区别.
(3) 解这类问题的关键:找到变化前后 半径的大小关系.
例3. 长方体的三个相邻面的面积分别为2,3, 6,这个长方体的顶点都在同一个球面上,求这个 球的表面积。
例4.在球心同侧有相距9cm的两个平行截面,它们的面 积分别为49πcm² 和400πcm² ,求球的表面积。 若将“球心同侧”这个条件去掉,又如何?
·
M

D
2 在RtBOO1中,由O1B2 BO2 OO 得 1
2
C
2 2 3 2 R ( R) , 解得R , 所以S球 4 R2 3 . 3 2 3
1、一个四面体的所有的棱都为 2 ,四个顶点在同 一球面上,则此球的表面积( )
A 3л
B 4л
C 3 3
D1 A1
解:作出过一条侧棱PC和高 PO的截面,则截面三角形PDC 的边PD是斜高,DC是斜高的射 影,球被截成的大圆与DP、DC
P
相切,连结EO,设球半径为r,
由 Rt PEO ∽ Rt PO1D
r PO 6 , 得r , DO1 PD 2
E A D B O C O1
故S球 4 r 6
A D
E
O C O1 B
所以PO1 4r
6 易求PO1 2 6, 所以r . 2
B 4л
C 3 3
D 6л
A●
解:设四面体为ABCD,O1 为其外接 球心。球半径为R,O为A在平面BCD上 的射影,M为CD的中点。 连结B O1
2 2 3 6 BO BM ( BC ) . 3 3 2 3 2 2 2 所以AO AB BO , 3

外接球与内切八大模型—老师专用

外接球与内切八大模型—老师专用

外接球与内切八大模型—老师专用外接球与内切八大模型—老师专用墙角模型墙角模型是一种求解球半径的方法。

只需找到三条两两垂直的线段,就可以使用公式(2R) = a + b + c 或 2R = a^2 + b^2 + c^2 来求出球半径R。

例如,已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是多少?解:V = ah = 16,a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π。

在另一个例子中,若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是9π。

解:4R = 3 + 3 + 3 = 9,S = 4πR = 9π。

正三棱锥的对棱互垂直。

证明如下:如图(3)-1,取AB,BC的中点D,E,连接AE,CD,AE,CD交于H,连接SH,则H是底面正三角形ABC的中心,因此SH垂直于平面ABC,又SH垂直于AB,因此SH垂直于平面SCD,即AB垂直于SC,同理可证BC垂直于SA,AC垂直于SB,即正三棱锥的对棱互垂直。

在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM垂直于MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积是36π。

解:由前面的证明可知,正三棱锥S-ABC 的三棱条侧棱两两互相垂直,因此可以使用公式4R^2 = a^2 +b^2 + c^2 来求解。

由于SA=23,因此可以得到4R^2 = 36,即R^2 = 9,因此R = 3,外接球的表面积为36π。

如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是多少?球的表面积为(D)11π。

这个问题有误,因为三个侧面两两垂直的三棱锥不存在,因此无法回答这个问题。

已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为多少?这个问题可以使用解析几何的方法来求解。

根据三视图可以得到该几何体的顶点坐标为(0,0,0),(0,0,1),(1,0,0),(0,1,0)和(1,1,1)。

正四面体外接球内接球公式

正四面体外接球内接球公式

正四面体外接球内接球公式正四面体外接球与内切球公式。

一、正四面体的基本性质。

设正四面体的棱长为a。

1. 高。

- 正四面体的高h可以通过将正四面体分割为以底面三角形为底面,高分别为h_1(顶点到底面中心的距离)和h - h_1(底面中心到底面顶点的距离)的两个直角三角形来求解。

- 先求底面三角形的高h_底=(√(3))/(2)a,底面中心到底面顶点的距离为(2)/(3)h_底=(√(3))/(3)a。

- 根据勾股定理可得正四面体的高h = √(a^2)-<=ft((√(3))/(3)a)^{2}=(√(6))/(3)a。

2. 体积。

- 正四面体的体积V=(1)/(3)S_底h,其中S_底=(√(3))/(4)a^2,所以V=(√(2))/(12)a^3。

二、外接球半径R1. 方法一:利用正四面体的高与外接球半径的关系。

- 设正四面体的外接球半径为R,我们可以把正四面体放在一个正方体中,正四面体的棱长a与正方体的棱长x的关系为a = √(2)x。

- 正方体的外接球半径R=(√(3))/(2)x,又因为a=√(2)x,所以x=(a)/(√(2)),则R = (√(6))/(4)a。

2. 方法二:利用等体积法。

- 把正四面体的四个顶点看作是球面上的四个点,设球心为O,正四面体的顶点为A、B、C、D,底面BCD的中心为O_1。

- 由V_A - BCD=V_O - ABC+V_O - ABD+V_O - ACD+V_O - BCD。

- 已知正四面体体积V=(√(2))/(12)a^3,设外接球半径为R,根据等体积法可得(√(2))/(12)a^3=4×(1)/(3)× S_底×√(R^2)-<=ft((√(3))/(3)a)^{2},其中S_底=(√(3))/(4)a^2,解得R=(√(6))/(4)a。

三、内切球半径r1. 利用等体积法。

- 设正四面体的内切球半径为r,因为V=(1)/(3)S_表r,其中S_表=4×(√(3))/(4)a^2=√(3)a^2。

四面体外接球的球心、半径求法

四面体外接球的球心、半径求法

一、出现“墙角”结构利用补形知识,联系长方体。

【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径R 2为体对角线长l 即2222c b a R ++=【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。

解:因为:长方体外接球的直径为长方体的体对角线长 所以:四面体外接球的直径为AE 的长 即:22224AD AC AB R ++=1663142222=++=R 所以2=R 球的表面积为ππ1642==R S二、出现两个垂直关系,利用直角三角形结论。

【原理】:直角三角形斜边中线等于斜边一半。

球心为直角三角形斜边中点。

【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,求球O 的体积。

解:BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC , 因为22210517=+ 所以知222PC PA AC += 所以 PC PA ⊥ 所以可得图形为: 在ABC Rt ∆中斜边为AC 在PAC Rt ∆中斜边为AC 取斜边的中点O ,在ABC Rt ∆中OC OB OA == 在PAC Rt ∆中OC OB OP ==所以在几何体中OA OC OB OP ===,即O 为该四面体的外接球的球心521==AC R所以该外接球的体积为3500343ππ==R V【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。

三、出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB ,求该棱锥的外接球半径。

解:由已知建立空间直角坐标系)000(,,A )002(,,B )200(,,D )031(,,-C设球心坐标为),,(z y x O 则DO CO BO AO ===,由空间两点间距离公式知222222)2(z y x z y x ++-=++ 222222)2(-++=++z y x z y x 222222)3()1(z y x z y x +-+-=++解得 1331===z y x所以半径为3211331222=++=)(R 【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=四、四面体是正四面体处理球的“内切”“外接”问题与球有关的组合体问题,一种是内切,一种是外接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正四面体的外接球半径的求法
正四面体是一种比较灵活的多面体,而球又是高中教材中唯一保留下来的旋转体,此两种几何的组合无疑有着特殊的意义。

现把求四面体外接球的半径的几种方法总结如下,本人认为很有代表意义,希望它对高三备考的师生能有启发作用。

如右图:已知正四面体A BCD -,H 为底面的中心,O 为外接球的球心,设棱长为a ,外接球半径为R ,内切球半径为r ,试求R.
方法一:易知R+r=AH=63a ,由等积法得: A BCD O ABC O BCD O CDA O DAB V V V V V -----=+++ 所以:
11433BCD BCD AH S r S ∆∆⋅=⋅⋅ 故14r AH =,34
R AH = 所以 64
R a =.
方法二:如图AHM BNM ∆≅∆所
HM ON AM OA =,即13r R =,又由6a 可得 64R a =
.
方法三:
如图设延长AH 交球面上一点K,则AK=2R,在直角三角形ABK 中由射影定理得2AB AH AK =⋅ 即2623a a R =⋅ 故得64
R a =. 方法四:如图正四面体可补成一个边长为22
a 的正方体,显然正方体的外接球即为正四面体的外接球,而23(
)22a R =故可得64R a =.
小结:此四种方法立体交叉,思想性、艺术性各有千秋,对培养学生的空间想象能力以及综合解题能很有帮助。

相关文档
最新文档