2020年江苏专转本高等数学真题

合集下载

江苏省专转本高数真题及答案

江苏省专转本高数真题及答案

江苏省专转本⾼数真题及答案⾼等数学试题卷(⼆年级)注意事项:出卷⼈:江苏建筑⼤学-张源教授1、考⽣务必将密封线内的各项⽬及第 2页右下⾓的座位号填写清楚. 3、本试卷共8页,五⼤题24⼩题,满分150分,考试时间120分钟. ⼀、选择题(本⼤题共6⼩题,每⼩题4分,满分24分) 1、极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、设f (x)⼆2)sinx ,则函数f (x )的第⼀类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有⼀个最⼤值B.只有⼀个极⼩值C.既有极⼤值⼜有极⼩值D.没有极值34、设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. ⼀ dx 3dyD. - dx - 3dy2 21 15、⼆次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d ⼨ o f (「cos 〒,「sin ⼨)d 「B. —4d 丁 ? f (「cos 〒,「sin ⼨)「d 「&下列级数中条件收敛的是()⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝⼙ y ⑺(0) = _______ .江苏省 2 0 12 年普通⾼校专转本选拔考试2、考⽣须⽤钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上⽆效. sec ? iC. o f (「cosd 「sin Jd 「D.4sec ?2d 丁 ? f (「cos ⼨,「sin ⼨):?d "「TVXTnW ?、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“⼆ n3 三、计算题(本⼤题共8⼩题,每⼩题8分,共64 分)2x +2cosx —2 lim ⼚x 0x ln(1 x)2116、计算定积分",-严.17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.18、设函数 “ f(x,xyr (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连-2续导数,求⼀Zc^cy19、已知函数f(x)的⼀个原函数为xe x ,求微分⽅程丫 4/ 4^ f (x)的通解. 20、计算⼆重积分..ydxdy ,其中D 是由曲线y 「x-1,D四、综合题(本⼤题共2⼩题,每⼩题10分,共20分)21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积.3x322、已知定义在(⽫,畑)上的可导函数f(x)满⾜⽅程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数⽅程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平⾯(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本⼤题共2⼩题,每⼩题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6⼗x0 g(t)dt g(x)24、设f(x)⼀2—XHO,其中函数g(x)在(⽫,母)上连续,且lim g(x⼃=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)⼔.⼀. 选择题1-5BCCABD⼆. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x ? 2x T13 t -^dt ⼆21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数⽅程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx ⼆(2x 1)d tanx ⼆(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.?? 32(1)函数f (x)的表达式;17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.解:平⾯⼆的法向量n -OM 「=(0,3,⼀2),直线⽅向向量为S = n "「= (0,-2,-3),直线⽅程:x -1 y -1 z -10 ⼀ -2 ⼀ -3 18、设函数z ⼆f(x,xy^ (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的⼀个原函数为xe x ,求微分⽅程y” ? 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求 y ” ? 4y ' 4y =0 的通解,特征⽅程:r 2 ? 4r *4 = 0,h 、2 = -2,齐次⽅程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代⼊原⽅程9Ax 6A 9^x 1,有待定系数法得:__ 120、计算⼆重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平⾯D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)⼧(討?2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0s y)dy =⼻,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )? x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-⼆,0) (2,::)单调递增,在(0,2)单调递减。

江苏专升本数学2024真题及答案

江苏专升本数学2024真题及答案

江苏专升本数学2024真题一、单项选择题(共8小题,每小题4分,总计32分)1.设1)(,11)(,1cos )(2-=-+=-=xe x x x x x γβα,则当0→x 时()A.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的高阶无穷小B.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的同阶无穷小C.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的同阶无穷小D.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的高阶无穷小2.若函数)(lim 22sin )(0x f xxx f x →+=则=→)(lim 0x f x ()A.4-B.2-C.2D.43.若xe2-是函数)(x f 的一个原函数,则='')(x f ()A.xe 24- B.e4- C.xe 28- D.xe28--4.若)12ln()(+=x x f ,则=)()(x f n ()A.n n x n )12()!1(2)1(1+-⋅⋅-- B.n n n x n )12()!1(2)1(11+-⋅⋅---C.nn n x n )12()!1(2)1(1+-⋅⋅-- D.nn n x n )12()!1(2)1(+-⋅⋅-5.下列级数收敛的是()A.∑∞=++1211n n n B.∑∞=++-122)1(n n n C.∑∞=11sinn n n D.∑∞=-11sin)1(n n n6.设y y x x y x f 232),(223-+-=,则函数),(y x f ()A.在点)1,0(处不取极值,在点)1,1(处取极大值B.在点)1,0(处不取极值,在点)1,1(处取极小值C.在点)1,0(处取极大值,在点)1,1(处取极小值D.在点)1,0(处取极小值,在点)1,1(处取极大值7.矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----278811944113221111111的秩为()A.1B.2C.3D.48.设向量组321,,ααα线性无关,则一定线性相关的向量组为()A.313221,αααααα+++,B.131221,αααααα---,C.321211,αααααα+++, D.321211,αααααα---,二、填空题(共6小题,每小题4分,总计24分)9.若1=x 是函数xx axx x f --=23)(的第一类间断点,则=→)(lim 0x f x 10.设)(x y y =是由参数方程⎪⎩⎪⎨⎧-=+=tt y tt x 3232所确定的函数,若23|0-==t t dx dy ,则=0t 11.设⎪⎩⎪⎨⎧=≠+=0,00,)1ln()(2x x xx x f ,)(sin x f y =,则==0|x dx dy 12.若⎰⎰∞--∞-=az ax dx e dx e 1,则常数=a 13.幂级数∑∞=-1)1(!3n nn n x n n 的收敛半径为14.行列式=4003043002102001三、计算题(共8小题,每小题8分,总计64分)15.求极限2(arctan lim 22π-∞→x x x 16.求不定积分dxx x x ⎰++-+2)3(1217.计算定积分⎰-+1211dx x x x18.已知x xx x x e ey e e y e y 3233,,+=+==是某二阶常系数齐次线性微分方程的三个特解,求该微分方程19.设),(y x z z =是由方程0)32arctan(=-++xyz z y x 所确定的函数,求全微分)0,0(|dz 20.计算二次积分⎰⎰-111cos x dyyy dx 21.设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛541431,100110111,2111C B A ,求矩阵X ,使C AXB =22.求方程组⎪⎩⎪⎨⎧=--+=+-+=-+852725243214321321x x x x x x x x x x x 的通解四、证明题(本题10分)23.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且0)1(,1)0(==f f ,证明:(1)在开区间)1,0(内至少存在一点η,使得ηη=)(f (2)在开区间)1,0(内至少存在一点ξ,使得ξξξξ2)()(=+'f f 五、综合题(本题共2小题,每小题20分,总计20分)24.设函数)(x f 满足)42()()(-=-'x e x f x f x,且5)0(=f ,求:(1)函数)(x f 的解析式(2)曲线)(x f y =的凹凸区间与拐点25.设函数)(x f 在闭区间),1[+∞上单调增加,且0)1(=f .曲线)(x f y =与直线)1(>=t t x 及x 轴所围成的曲边三角形记为t D .已知t D 的面积为1ln +-t t t ,求当e t =时,t D 绕x 轴旋转一周所形成的旋转体的体积答案选择题1-5AADCD 6-8BDB填空题9.110.011.112.2113.e 314.4计算题15.1-16.Cx x ++-+2arctan 2)3ln(17.41π-18.xe y y y 3223=+'-''19.dy dx dz 3231|)0,0(--=20.231cos 1sin -+21.⎪⎪⎭⎫ ⎝⎛01011122.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛003210110131114321C C x x x x 证明题23.(1)x x f x F -=)()(零点定理;(2)2)()(x x xf x g -=罗尔定理24.(1))54()(2+-=x x e x f x;(2)拐点)2,1(),8,1(1e e --,凹区间),1(),1,(+∞--∞凸区间)1,1(-25.)2(-e π。

2020年江苏专转本高等数学真题

2020年江苏专转本高等数学真题

t
,则
B. t
C. t
D. t
()
7.二次积分
在极坐标系中可化为
()
A.
t
B.
t
C.
u
D.
u
8.设函数 A.
h
在区间
h
h h 内可展开成幂级数 an xn , 则
n0
B.−
h
C.
h
D.
h
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
()
_____.
u
的值为
()
A.1
B.2
C.3
D.4
2.设函数

内连续, 为常数,则 −
()
A.-2
B.0
C.2
D.4
3.设函数 在点
处连续,且 ul
,则
A.
B.
C.3
4.已知 A.
的一个原函数是 9
,则 B.
C. 9
D. 9
5.下列反常积分中收敛的是
A.
d
B.
d
C.
d
D.6 D.
() ()
() d
6.设 A. t
(1)平面图形 的面积;
(2)平面图形 绕 轴旋转一周所形成的旋转体的体积。
围成,试求:
25.设函数
,已知曲线
试求: (1) 常数 (2)函数
的值; ⺁的单调区间与极值。
⺁具有水平渐近线
,且有拐
添加小学士微信(xueshi005) 获得高数答案解析
5
的收敛半径为______________.
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)

2020年专升本高等数学真题

2020年专升本高等数学真题

t t则
______________.
8.
tt
______________.
9.设 10. 函数
tt
,则 ______________.
tt
t
在闭区间 tt上的最大值为______________.
11.定积分 12. 设
______________.
是方程
t
t
确定的隐函数,则 _________来自____.t, x 晦,
则对于 t 与 晦 之间的任意一一个数 ,至少存在一点 ,使得
x
B. 若函数 在闭区间 xt上连续,开区间 x 内可导,那么在 x 内至少存在一点 ,
使等式 x
x 成立
C.若函数 在闭区间 xt上连续,那么在 xt上至少存在一个点 ,使等式立: x
x
D. 若函数 在闭区间 xt上连续,那么
,则
是函数 的( )
A.连续点
2.已知
t
A.t
B.可去间断点 t t,则 等于(
B.t t
C.跳跃间断点 )
C.t t
D.第二类间断点 D.t ⌶
3.当
时, t
与 t 是等价无穷小,则 的值为( )
A.
B.
C.3
D.4
4.下列结论不正确的 ( )
A. 设函数 在闭区间 xt上连续,且在区间端点有不同的函数值
题号

得分
高等数学



总分
考试说明: 1、考试时间为 150 分钟; 2、满分为 150 分; 3、答案请写在答题卷上,否则无效; 4、密封线左边各项要求填写清楚完整。
一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共 得分 有 5 个小题,每小题 4 分,共 20 分)

江苏省专转本高数真题及答案

江苏省专转本高数真题及答案

江苏省专转本高数真题及答案高等数学试题卷(二年级)注意事项:出卷人:江苏建筑大学-张源教授1、考生务必将密封线内的各项目及第 2页右下角的座位号填写清楚. 3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟. 一、选择题(本大题共6小题,每小题4分,满分24分) 1、极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、设f (x)二2)sinx ,则函数f (x )的第一类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值34、设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. 一 dx 3dyD. - dx - 3dy2 21 15、二次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d 寸 o f (「cos 〒,「sin 寸)d 「B. —4d 丁 ? f (「cos 〒,「sin 寸)「d 「&下列级数中条件收敛的是()二、填空题(本大题共6小题,每小题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝卩 y ⑺(0) = _______ .江苏省 2 0 12 年普通高校专转本选拔考试2、考生须用钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上无效. sec ? iC. o f (「cosd 「sin Jd 「D.4sec ?2d 丁 ? f (「cos 寸,「sin 寸):?d "「TVXTnW ?、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“二 n3 三、计算题(本大题共8小题,每小题8分,共64 分)2x +2cosx —2 lim 厂x 0x ln(1 x)2116、计算定积分",-严.17、已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直线方程.18、设函数“ f(x,xyr (x 2 y 2),其中函数f 具有二阶连续偏导数,函数具有二阶连-2续导数,求一Zc^cy19、已知函数f(x)的一个原函数为xe x ,求微分方程丫4/ 4^ f (x)的通解. 20、计算二重积分..ydxdy ,其中D 是由曲线y 「x-1,D闭区域.四、综合题(本大题共2小题,每小题10分,共20分)21、在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.3x322、已知定义在(皿,畑)上的可导函数f(x)满足方程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数方程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平面(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本大题共2小题,每小题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6十x0 g(t)dt g(x)24、设f(x)一2—XHO,其中函数g(x)在(皿,母)上连续,且lim g(x丿=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)匕.一. 选择题1-5BCCABD二. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]三. 计算题13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x ? 2x T13 t -^dt 二21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数方程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx 二(2x 1)d tanx 二(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.?? 32(1)函数f (x)的表达式;17、已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直线方程.解:平面二的法向量n -OM 「=(0,3,一2),直线方向向量为S = n "「= (0,-2,-3),直线方程:x -1 y -1 z -10 一 -2 一 -3 18、设函数z 二f(x,xy^ (x 2 y 2),其中函数f 具有二阶连续偏导数,函数具有二阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的一个原函数为xe x ,求微分方程y” ? 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求y ” ? 4y ' 4y = 0 的通解,特征方程:r 2 ? 4r *4 = 0,h 、2 = -2,齐次方程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代入原方程9Ax 6A 9^x 1,有待定系数法得:__ 120、计算二重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平面D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)宀(討?2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0s y)dy =彳,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )? x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-二,0) (2,::)单调递增,在(0,2)单调递减。

江苏专转本高等数学 定积分 例题加习题

江苏专转本高等数学 定积分 例题加习题

- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb a af x dx F b F a F x =-=⎰。

其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。

例4.1.111)edx x ⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x +=例4.2.30dx ⎰ 解:原式t x t x =+-==11222 1121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰22sin πxdx x- 107 -解:原式=⎰-22cos 21πx xd =⎰+-2022cos 21|2cos 21ππxdx x x =20|2sin 414ππx +=4π 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。

例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=112211(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰=112211(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=112211222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+0110)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65- 108 -例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-=3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aaf x dx -≡⎰,这是一个很重要考点。

近十年江苏省专转本高等数学试题分类整理

近十年江苏省专转本高等数学试题分类整理

江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2xx f x x x ⎧∈-⎪=⎨-∈⎪⎩是()A.有界函数B.奇函数C.偶函数D.周期函数(0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是()A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+=(二)极限(0402)当0→x 时,x x sin 2-是关于x 的()A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim 2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭() A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算311lim1x x x →--. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x n sin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b a C.0,1=-=b a D.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n ==(1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小 D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sin x x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0B.2C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a =. (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin)(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导 B.连续且可导 C.不连续也不可导 D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为.(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a =.(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()011xx x f x x x x ⎧<⎪⎪=⎨⎪>⎪+-⎩,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a =. 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线x e x y -=相切,则切点的坐标是( ) A.()1,1 B.()1,1- C.()0,1- D.()0,1 (0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( )A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim()x f x x f x x f x x ∆→+∆--∆'=∆ D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--=.(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d y x . (1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan =,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x . (1208)设函数()22221xy x x x e =⋅+++,则=)0()7(y ________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( )A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx ==.(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=-. (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ. (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -= D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为. (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+. (0824)对任意实数x ,证明不等式:(1)1x x e -⋅≤. (0904)曲线221(1)x y x +=-的渐近线的条数为( ) A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( )A.函数()f x 单调增加且其图形是凹的B.函数()f x 单调增加且其图形是凸的C.函数()f x 单调减少且其图形是凹的D.函数()f x 单调减少且其图形是凸的 (1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b a B.1,3-=-=b a C.3,1-=-=b a D.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根.(1122)证明:当0>x 时,x x201120102011≥+. (1203)设232152)(xx x f -=,则函数)(x f ( )A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分32arcsin d 1x x x=-⎰.(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算1ln d xx x+⎰. (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d xx e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰. (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461 B.C x ++463 C.C x ++8121 D.C x ++8123(0915)求不定积分sin21d x x +⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则222208d R R x x -⎰的值为( )A.SB.4S C.2SD.S 2 (0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x xπ-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰.(0616)计算220cos d x x x π⎰.(0709)定积分()223241cos d x x x x --+⎰的值为.(0716)计算定积分212221d x x x-⎰. (0811)定积分1212sin d 1xx x -++⎰的值为.(0816)求定积分10d xe x ⎰.(0916)求定积分:212d 2x x x-⎰.(1009)定积分31211d 1x x x -++⎰的值为. (1016)计算定积分403d 21x x x ++⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3d 11x xx ++⎰ . (1216)计算定积分21d 21xx x -⎰.(1316)计算定积分22d 24x x+-⎰.(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2d 1xx x +∞⋅-⎰.(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x x C.2cos 2x x D.4sin 2x x (0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42- D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'=.(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x -(1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞. (1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. (1321)设平面图形D 是由曲线2x y =,y x =-与直线1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为. (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( ) A.(2,5,4)B.(2,5,4)-- C.(2,5,4)- D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为. (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k =.(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________. (1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为.(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yx y x u arctan ),(=,22(,)lnv x y x y =+,则下列等式成立的是( )A.y v x u ∂∂=∂∂ B.x v x u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.yvy u ∂∂=∂∂(0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z =.(0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln=在点(2,2)处的全微分d z 为( ) A.11d d 22x y -+ B.11d d 22x y + C.11d d 22x y - D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂=. (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数2ln4z x y =+,则10d x y z===.(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y x y xf z ,=,其中函数f 具有二阶连续偏导数,求yx z∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x ∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dy x y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y x B.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD.0(0511)交换二次积分的次序20111d (,)d x x x f x y y --+=⎰⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰ C.21(,)d d D f x y x y ⎰⎰ D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰.(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续;(2)求)('t g .(0720)计算二重积分22d d Dx y x y +⎰⎰,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域.(0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥.(1005)二次积分1101d (,)d y y f x y x +⎰⎰交换积分次序后得 ( ) A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线21x y =-,直线y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤ C.{}(,)01,10x y x x y ≤≤-≤≤ D.{}(,)12,01x y x y x ≤≤≤≤- (1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线22y x =-,直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰ D.sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰(1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线1y x =-,直线2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线24y x =-(0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是( )A.若(1)发散、则(2)必发散B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n n u 必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n n n B.∑∞=+11n n n C.∑∞=-+1)1(1n n n D.∑∞=-1)1(n n n(0906)设α为非零常数,则数项级数∑∞=+12n n n α() A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n nn ∞=+∑ B.2121n n n n ∞=++∑ C.11(1)n n n ∞=+-∑ D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nn n ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑ D.1(1)nn n ∞=-∑(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑ C.1!2n n n ∞=∑ D.13n n n ∞=∑(二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为. (0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为.(0519)把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间. (0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12nnn x n ∞=⋅∑的收敛域为. (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为.(1106)若x x f +=21)(的幂级数展开式为0()n n n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+nC.(1)2n n- D.1(1)2nn +- (1112)幂级数01nn x n ∞=+∑的收敛域为___________. (1212)幂级数1(1)(3)3n nnn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数12n nn x n∞=∑的收敛域为. 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y ==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为. (1311)微分方程d d y x yx x+=的通解为. (二)二阶线性微分方程(0406)微分方程232x y y y xe '''-+=的特解*y 的形式应为( ) A.xAxe 2 B.x e B Ax 2)(+C.xeAx 22 D.x e B Ax x 2)(+(0712)设x x e C e C y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为. (0806)微分方程321y y y '''++=的通解为( )A.1221++=--x x e c e c yB.21221++=--x xe c e c y C.1221++=-x x e c e c yD.21221++=-xx ec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案20XX 年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e .8、32241-+==-z y x .9、!n .10、C x +4arcsin 41. 11、12201d (,)d d (,)d yy y f x y x y f x y x -+⎰⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式0430(tan sin )d tan sin limlim312xx x t t tx xx x →→--==⎰233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y y y ,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x ex ,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰222211(21)1(2)(2)d(2)24884x x x x x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17、解:原式2111122d d 22arctan (1)12t x t tt t t t t π+∞=∞-+∞+===++⎰⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂. 19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得:0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则22()50070040(50)M x x x =++-(500≤≤x ),由2212(50)5007000240(50)x M x -'=+⨯⨯=+-解得:650050-=x (公里),唯一驻点,即为所求.20XX 年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2.8、1-e .9、2π.10、5. 11、2111d (,)d y y y f x y x ---⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='. 15、解:原式22tan tan sec d (sec 1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos z x f x ∂'=⋅∂,()21212cos 22cos zx f y y x f x y∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---i j kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x =,x e q x =,而1d 1x x e x-⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+=⎪⎝⎭⎰. 把初始条件1x ye ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减,故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x x πππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.20XX 年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1.11、(sin cos )xy e y x x +. 12、1.13、解:原式322131lim 21341==--→x xx . 14、解:2211d 12d 21t t y y t t t x x t -'+==='+,2222d 1d d 122d 41t y x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式3221ln d(1ln )(1ln )3x x x C =++=++⎰.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来yOS1x12y x=图1222202cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程;令y u x =,则d d d d y u u x x x =+,代入得:2d d ux u x=-,分离变量得:211d d u x u x -=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u =+,故ln xy x C=+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以010(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故 20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x . 20、解:22z x f x ∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x∂=+⋅+⋅=++∂∂. 21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S xx x -=--=⎰;(2)()()224804d 8d 16y V y y y y πππ=+-=⎰⎰.24、解:()d d d ()d ()d tt t tD f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰; (1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.20XX 年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln .8、1.9、π2. 10、23.11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;在方程xy e e yx=-两边对x 求导得:''xye e y y x y -⋅=+⋅,故d 'd x yy e y y x e x-==+; 将0=x ,0=y 代入解得:d 1d x x yy x=='==.在方程''x ye e y y x y -⋅=+⋅两边再次对x 求导得:()2'2x y y e e y e y y x y '''''-⋅-⋅=+⋅将0=x ,0=y ,01x y ='=代入解得:2200d 2d x x yy x==''==-.15、解:原式()()222d d x x x xe x e e x ---⎡⎤-=--⎣⎦⎰⎰积进去22d x x x e xe x ---+⎰导出来。

2020年专升本高等数学真题试卷

2020年专升本高等数学真题试卷

高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

一、选择题: 本大题共5小题,每小题4分,共 20分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数1x ()e f x =,则x=0是函数f(x)的( ).(A )可去间断点 (B )连续点 (C )跳跃间断点 (D )第二类间断点2.设函数f(x)在[a,b]上连续,则下列说法正确的是(A )b a ()()()f x dx f b a ζζ∈=-⎰必存在(a,b ),使得(B )'()()f b a ζζ∈-必存在(a,b ),使得f(b)-f(a)= (C )()0f ζξ∈=必存在(a,b ),使得 (D )'()0f ζζ∈=必存在(a,b ),使得 3 下列等式中,正确的是(A )'()()f x dx f x =⎰ (B )()()df x f x =⎰(C )()()d f x dx f x dx=⎰ (D )()()d f x dx f x =⎰4.下列广义积分发散的是 (A )+2011+dx x ∞⎰ (B )10⎰ (C )+0ln x dx x ∞⎰ (D )+0x e dx ∞-⎰ 5. y -32sin ,x y y e x '''+=微分方程则其特解形式为(A )sin x ae x (B )(cos sin )xxe a x b x +(C )sin x xae x (D )(cos sin )x e a x b x + 非选择题部分注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2021年江苏专转本高等数学真题及答案

2021年江苏专转本高等数学真题及答案

江苏省普通高校“专转本”统一考试高等数学一、选取题(本大题共5小题,每小题3分,共15分)1、下列各极限对的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表达 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22t t y te x t ,则==0t dx dy7、0136'''=+-y y y 通解为8、互换积分顺序=⎰⎰dy y x f dx x x220),(9、函数yx z =全微分=dz 10、设)(x f 为持续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 间断点,并阐明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 值. 17、求x x y y sec tan '=-满足00==x y 特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成区域.19、已知)(x f y =过坐标原点,并且在原点处切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处获得极值,试拟定a 、b 值,并求出)(x f y =表达式.20、设),(2y x x f z =,其中f 具备二阶 持续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周体积。

2021年江苏专转本高等数学真题及答案

2021年江苏专转本高等数学真题及答案

江苏省普通高校“专转本”统一考试高等数学一、选取题(本大题共5小题,每小题3分,共15分)1、下列各极限对的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表达 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22t t y te x t ,则==0t dx dy7、0136'''=+-y y y 通解为8、互换积分顺序=⎰⎰dy y x f dx x x220),(9、函数yx z =全微分=dz 10、设)(x f 为持续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 间断点,并阐明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 值. 17、求x x y y sec tan '=-满足00==x y 特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成区域.19、已知)(x f y =过坐标原点,并且在原点处切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处获得极值,试拟定a 、b 值,并求出)(x f y =表达式.20、设),(2y x x f z =,其中f 具备二阶 持续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周体积。

专升本考试:2020专升本《高等数学一》真题及答案(5)

专升本考试:2020专升本《高等数学一》真题及答案(5)

专升本考试:2020专升本《高等数学一》真题及答案(5)1、 Why is Solex suitable for everyone?(单选题)A. Its price is more attractive.B. It can be used to relieve sunburn.C. It can make the skin cells more active.D. It has a mild protection factor.试题答案:D2、第57题的答案是( ) (单选题)试题答案:F3、()(单选题)A. (3,-1,2)B. (1,-2,3)C. (1,1,-1)D. (1,-1,-1)试题答案:A4、()(单选题)A. eB. 2C. 1D. 0试题答案:D5、请填写最佳答案()(单选题)A. timeB. additionC. detailD. summary试题答案:B6、()(单选题)A. 6yB. 6xyC. 3xD. 3x 2试题答案:D7、请填写最佳答案()(单选题)试题答案:G8、(单选题)A. -2B. -1C. 0D. 1试题答案:C9、根据下面材料回答{TSE}题: Passage one I talk to strangers for a living and love the challenge of getting their stories published in newspapers.I've been married for years,but until six months ago,I could be a typical absent—minded husband.Often l was just nodding when l was supposed to.When my wife asked,“ Did you even hear what I just said?”1 would defensively say,“of course I did!” In January,I began to lose my voice.Doctors told me I needed surgery,or my throat would be permanently damaged.Total silence would be required for the first few weeks of my recovery. Two hours after the surgery,my eyes filled with tears as mytwo-year-old son looked puzzled because l wouldn’t answer his questions.I wanted to talk but couldn’t.Luckily,I'd recorded myself reading some of his favorite books.That would come in handy the next couple of weeks. It had never left.I'd just stopped noticing.I found myself understanding her better on topics I'd previously dismissed as “things I just don’t get as a guy”.I also realized my son wasn’t just talking nonstop but that he often had thoughtful things to say.Even while walking my dog in the woods near our home,I began hearing pleasant patterns in birdsongs.Before my surgery,I'd have spent those walks on my phone. After several weeks,I was fully recovered. Conversation in our house is better now,not because I'm talking more.I’m just listening better and becoming less and less surprised that I like what I hear. {TS}According to the passage,the author is most likely a __________ .(单选题)A. driverB. teacherC. doctorD. Journalist试题答案:D10、根据以下材料,回答{TSE}题 Passage Three Whenyou stretch out in the sun you can do one of the three things: you can use no suntan oil, an ordinary sun tan oil; or Bergasol. If you don´t use any sun tan oil when you´re in the sun, you will burn surprisinglyquickly. If you use an ordinary sun tan oil, you will protectyour skin to a lesser or greater degree.How much protection depends onthe"protection-factor number" on the bottle. Some oils block out so manyof the sun ´s rays and you can stay in the sun all day without burning but youwon´t go very brown,either. Bergasol will protect your skin like an ordinary sun tan oil. It also has a tan acceleratorthat speeds up the rate at which the sun activates the skin cells that producemelanin(黑色素). It is melanin that gives the skin itsbrown colour. Bergasol enables you to go brown faster,am as the days pass thedifference will become more obvious.Unfortunately, this special formulation isn´tCheap to prepare.So Bergasol is rather more expensive than ordinary sun tanoil. However, the price looks more attractive as you do. Bergasoi It makes you go brown faster Protection Many people imagine that"cover-up" means you don´t get a tan. Nothing to show for yourholiday. Not so. With "cover-up", you can get brown if you want to. The point of"cover-up" is to protect your skin from the harmful rays of the sunwhich,according to the experts ,make your skinlook older. That´s what Solex Cover-up isallabout--protection for your skin. It has a Sun Protection Factor 8, which makesit suitable for anyone. Find out how it works for you by consulting the SolexSun Chart. On sale wherever Solex is. With Solex Cover-up, you can tan asslowly as you like. As gently as you like. And with much less chance of peeling. Your tan will lookbetter.Your skin will stay young longer. Solex Gentle tan.., full protection {TS} What can we learn from thesecond advertisement?(单选题)A. It is easy to get a suntan in summer.B. Suntan is regarded as a sign ofprotection.C. Sunlight could make one look older.D. Everyone wants to get a suntan fromholiday.试题答案:C11、(单选题)A. 2B. 1C. 1/2D. 0试题答案:C12、(单选题)A. -2sinx 2+CB.C. 2sinx 2+CD.试题答案:D13、设函数y=2x+sin x,则y´=()(单选题)A. 1-cos xB. 1+cos xC. 2-cos xD. 2+cos x试题答案:D14、()(单选题)A. eB. 2C. 1D. 0试题答案:D15、“三一律”是法国古典主义戏剧的创作原则,下列选项不属于“三一律”要素的是( )(单选题)A. 时间B. 地点C. 人物D. 情节试题答案:C16、()(单选题)A. 2xy+3+2yB. xy+3+2yC. 2xy+3D. xy+3试题答案:C17、 What does the underlined word“trilogy”in Paragraph 4 mean?(单选题)A. A work in three volumes.B. An imaginative work.C. A collection of stories.D. Memoirs of famous people.试题答案:A18、从电视节目形态看,《舌尖上的中国》属于()。

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

江苏专转本高等数学 常微分方程 例题加习题

江苏专转本高等数学 常微分方程 例题加习题

- 142 -第五章 常微分方程(简记ODE )本章主要知识点● 可分离变量的ODE● 一阶线性非齐次常微分方程及推广● 二阶常系数线性齐次与非齐次常微分方程● 一些特殊类方程一、可分离变量的ODE1.基本型的解法 基本型:()()dy G x H y dx= 基本解法: ()()dy G x dx H y = ()()dy G x dx H y =⎰⎰例5.1.1)0(,==-y e dx dy y x 解:dx e dy e xy =⎰⎰=dx e dy e x y通解为:c e e x y += 将1,0==y x 得: 1-=e c 得 1-+=e e e x y例5.2.(1)ln y y y xdx '+= 解:(1)ln y dy xdx y+= 1(1)ln dy xdx y +=⎰⎰,- 143 -得:ln ||ln y y x x x C +=-+例5.3.dxy x dy y x )1()1(122+=+- 解:dx x x y dy y 2211)1(-=++,2(1)1y dy y +=+⎰ 得:()21arctan ln 12y y C ++= 例5.4.已知()f x 满足0()(1)()1x f t dt x f x +-=⎰,求()f x 。

解:由0()(1)()1xf t dt x f x +-=⎰知(0)1f =-。

方程两边对x 求导得()()(1)()0f x f x x f x '++-=,分离变量求得2()(1)c f x x =-, 将(0)1f =-代入得1c =-,21()(1)f x x =--。

2.可转化的可分离变量的齐次方程 ()x y f y'= 方法:令()y p y p x x y p xp x''=⇒=⇒=+ xdx p p f dp p f dx dp x p =-⇒=+⇒)()(。

例5.5.y x y x dx dy +-= 解:xyx ydx dy +-=11 令p p dx dp x p xp p y px y x y p +-=+⇒+=⇒=⇒=11'', pp p p p p dx dp x +--=-+-=⇒121112- 144 -x dx p p dp p =--+⇒221)1( xdx p dp p =+-+⇒⎰2)1(2)1( C x p p +=---⇒ln 21ln 212, 将x y p =代入即可。

江苏专转本数学真题共28页文档

江苏专转本数学真题共28页文档

<1>一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211( ) A 、211x- B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x fB 、0)('<x f ,0)(''>x fC 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21( ) A 、0 B 、2C 、-1D 、15、方程xy x 422=+在空间直角坐标系中表示( ) A 、圆柱面 B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数y x z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([ 三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim2002⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求xz∂∂、y x z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积; (3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏专转本高等数学真题 (附答案)

江苏专转本高等数学真题 (附答案)

2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏省“专转本”《高等数学》试卷分类解析不定积分.

江苏省“专转本”《高等数学》试卷分类解析不定积分.

同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。

解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C.2
D.4
3.设函数 在点
处连续,且 ul
,则
A.
B.
C.3
4.已知 A.
的一个原函数是 9
,则 B.
C. 9
D. 9
5.下列反常积分中收敛的是
A.
d
B.
d
C.
d
D.6 D.
() ()
() d
6.设 A. t
t
,则
B. t
C. t
D. t
()
7.二次积分
在极坐标系中可化为
()
A.
t
B.
t
C.
u
D.
江苏省 2020 年普通高校专转本选拔考试
高等数学 试题卷
一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分。在下列每小题中选出一个正
确答案,请在答题卡上将所选项的字母标号涂黑)
1.极限 ul u
u
的值为
()
A.1
B.2
C.3
D.4
2.设函数

内连续, 为常数,则 −
()
A.-2
B.0

D
,ቤተ መጻሕፍቲ ባይዱ
围成的平面区域。
四、证明题(本大题 10 分)
23.证明:当
时,
4
五、综合题(本大题共 2 小题,每小题 10 分,共 20 分)
24.设平面图形 由曲线
与其曲线在 处的法线及直线
(1)平面图形 的面积;
(2)平面图形 绕 轴旋转一周所形成的旋转体的体积。
围成,试求:
25.设函数
,已知曲线
试求: (1) 常数 (2)函数
u
8.设函数 A.
h
在区间
h
h h 内可展开成幂级数 an xn , 则
n0
B.−
h
C.
h
D.
h
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
()
9.设 ul 10.已知函数
ul
,则常数 ______________.
,则
______________.
11.设
是由参数方程
h h 所确定的函数,则
15.求极限 ul
16.求不定积分
u
t
17.计算定积分
2
18.设
,其中函数 具有二阶连续偏导数,求
19.设
是由方程
所确定的函数,求
20.求通过点
,且与直线
⺁ 平行的直线方程
3
21. 巳知函数 件
是微分方程 h 的特解
的一个特解,求该微分方程满足初始条
22.计算二重积分 x y dxdy ,其中 是由直线
的值; ⺁的单调区间与极值。
⺁具有水平渐近线
,且有拐
添加小学士微信(xueshi005) 获得高数答案解析
5
______________.
12.设向量
⺁与
垂直,则常数 ______________.
1
13.微分方程
的通解为______________.
14.设幂级数 an xn 的收敛半径为
n0
8,则幂级数
n0
an xn 3n
的收敛半径为______________.
三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)
相关文档
最新文档