解直角三角形1教学设计与反思

合集下载

《解直角三角形》 教学设计

《解直角三角形》 教学设计

《解直角三角形》教学设计一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)能够将实际问题中的数量关系转化为解直角三角形的数学问题,并能正确选用适当的锐角三角函数关系式解决问题。

2、过程与方法目标(1)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,培养学生分析问题和解决问题的能力。

(2)通过将实际问题转化为数学问题,体会数学建模的思想。

3、情感态度与价值观目标(1)通过数学学习,让学生体验数学与生活的密切联系,激发学生学习数学的兴趣。

(2)培养学生严谨的科学态度和合作交流的意识。

二、教学重难点1、教学重点(2)将实际问题转化为解直角三角形的数学问题。

2、教学难点将实际问题中的数量关系转化为直角三角形中元素之间的关系。

三、教学方法讲授法、讨论法、练习法四、教学过程1、复习引入(1)提问:直角三角形的三边有什么关系?锐角之间有什么关系?边角之间有什么关系?(2)在直角三角形 ABC 中,∠C = 90°,∠A、∠B、∠C 所对的边分别为 a、b、c。

已知 a = 3,b = 4,求 c 的长度。

(3)已知∠A = 30°,斜边 c = 6,求∠A 的对边 a 的长度。

通过复习,为学习解直角三角形做好知识铺垫。

2、讲授新课(1)解直角三角形的概念在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。

直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。

只要知道其中的两个元素(至少有一个是边),就可以求出其余的三个元素。

(3)解直角三角形的方法①已知两条直角边 a、b,求斜边 c 及锐角 A、B。

由勾股定理\(c =\sqrt{a^2 + b^2}\),\(\tan A =\frac{a}{b}\),则\(A =\arctan\frac{a}{b}\),\(B = 90° A\)。

解直角三角形教学设计及反思

解直角三角形教学设计及反思

解直角三角形教学设计及反思教学内容分析:本节内容是在学习了“锐角三角函数”“勾股定理”等内容的基础上进一步探究如何利用所学知识解直角三角形。

通过直角三角形中边角之间关系的学习,学生将进一步体会数学知识之间的联系,如比和比例、图形的相似、推理证明等。

将为一般性地学习三角形的知识及进一步学习其他数学知识奠定基础。

对部分学生来说,有一定的难度。

教学目标:知识与能力:使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.教学重点直角三角形的解法教学难点三角函数在解直角三角形中的灵活运用.1、知识技能:使学生掌握直角三角形的边角关系,会选用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

2、方法与过程:?通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3、情感、态度与价值观:形成数形结合的数学思想,体会数学与实践生活的紧密联系。

从而增强学生的数学应用意识,激励学生敢于面对数学学习中的困难。

通过获取成功的体验和克服困难的经历,增进学习数学的信心,养成良好的学习习惯。

教学课时:一课时教学重难点:重点:理解并掌握直角三角形边角之间的关系。

难点:从条件出发,正确选用适当的边角关系解题。

教学过程:一、创设情境:问题1:如图所示,一棵大树在一次强大台风中折断倒下,树干折断处距地面3米,且树干与地面的夹角是30°,大树折断之前高多少米?问题2:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤ α ≤ 75°(如图),现有一个长6米的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(结果保留小数点后一位)(2)当梯子底端距离墙面2.4米时,梯子与地面所称的角α等于多少(精确到1°)?这时人是否能够安全使用这个梯子?二、知识回顾:如图,已知:在ΔABC中,∠C=90°,你能说出这个图形有哪些性质吗?1、在一个三角形中,共有几条边?几个角?(引出“元素”这个词语)2、在RtΔABC中,∠C=90°。

解直角三角形教学设计及反思.doc

解直角三角形教学设计及反思.doc

解直角三角形教学设计及反思教学内容分析:本节内容是在学习了“锐角三角函数” “勾股定理”等内容的基础上进一步探究如何利用所学知识解直角三角形。

通过直角三角形中边角之间关系的学习,学生将进一步体会数学知识之间的联系,如比和比例、图形的相似、推理证明等。

将为一般性地学习三角形的知识及进一步学习其他数学知识奠定基础。

对部分学生来说,有一定的难度。

教学目标:1、知识技能:使学生掌握直角三角形的边角关系,会选用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

2、过程与方法:经历探求直角三角形边角关系的过程,体会三角函数在解决问题过程中的作用,感受理论来源于实践又反作用于实践的唯物主义思想。

3、情感态度与价值观:形成数形结合的数学思想,体会数学与实践生活的紧密联系。

从而增强学生的数学应用意识,激励学生敢于面对数学学习中的困难。

通过获取成功的体验和克服困难的经历,增进学习数学的信心, 养成良好的学习习惯。

教学课时:一课时教学重难点:创设情境:2.4米时,梯子与地面所称的角a 等于多少(精重点:理解并掌握直角三角形边角之间的关系。

难点:从条件出发,正确选用适当的边角关系解题。

教学过程:问题1:如图所示,一棵大树在一次强大台风中折断倒下,树干折断处距 地面3米,且树干与地面的夹角是30° ,大树折断之前高多少米?问题2:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所 成的角Q —般要满足50° W a W 75。

(如图),现有一个长6米的梯 子,问: (1)使用这个梯子最高可以安全攀上多高的墙(结果保留小数点后一位)确到1。

)?这时人是否能够安全使用这个梯子?(2)当梯子底端距离墙A C如图,已知:在A ABC中,ZC=90° ,你能说出这个图形有哪些性质吗?知识回顾:1、在一个三角形中,共有几条边?几个角?(引出“元素”这个词语)2、在Rt A ABC中,ZC=90°。

解直角三角形(第一课时) 教学设计与反思

解直角三角形(第一课时) 教学设计与反思
学法:
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人。”因而教师要特别注重对学生学法方式的指导。由于学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“观察——猜想——探究——归纳——总结”的主线进行学习。
而解直角三角形是继锐角三角函数后本章的第二节,一共4个课时。主要研究了如何利用解直角三角形的有关知识解决与直角三角形有关的实际问题。比如:方向角问题、仰角俯角问题、坡度问题等。从这些问题中,我们要理解解直角三角形的方法,了解方向角、仰角、俯角、坡度等相关名词的意义,掌握将实际问题转化为数学模型的思想方法,从而达到灵活运用数学知识解决实际问题的最终目的。
五、教学手段
三角尺、实物投影仪、多媒体设备
六、教学步骤
问题与情境
师生行为
设计意图
[活动1]
复习引入
1.在直角三角形中,共有三条边、三个角(六个元素),你能根据所学的知识谈谈它们之间的关系吗?
2.填一填:特殊角的函数值
由教师利用ppt展示,提出问题,引起学生思考,然后小组内讨论,回答。
课件展示校对讲评。
2、板书出过程,以示范,强调规范性。
学生:
1、根据解直角三角形定义和方法进行分析。
2、思考多种方法,选择最简便的方法。
学生独立完成并板书,请学生点评板练同学的解题,教师作简要归纳,讲评
通过例题学会灵活运用直角三角形有关知识解直角三角形,并能熟练分析问题,掌握方法。
巩固所学,加深对解直角三角形的认识,熟练掌握解直角三角形的方法。
[活动5]
假设一副有一边相等的三角形,如果是相等的边重合,拼接出一个新的图形,你能确定这个图形中的两个直角顶点之间的距离吗?

人教版九年级下册数学第1课时 解直角三角形教案与教学反思

人教版九年级下册数学第1课时 解直角三角形教案与教学反思

28.2 解直角三角形及其应用青海一中李清28.2.1 解直角三角形第1课时解直角三角形【知识与技能】理解直角三角形中三条边及两个锐角之间的关系,能运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.【过程与方法】通过综合运用勾股定理及锐角三角函数等知识解直角三角形的过程,逐步培养学生分析问题、解决问题的能力.【情感态度】渗透数形结合思想,在解决问题过程中,感受成功的快乐,树立良好的学习习惯. 【教学重点】运用直角三角形的边角关系解直角三角形.【教学难点】灵活运用锐角三角函数解直角三角形.一、情境导入,初步认识问题如图(1)所示的是意大利的比萨斜塔,设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为C,如图(2),在Rt△ABC 中,ZC =90,BC =5.2m,AB= 54.5m,你能根据上述条件求出图(2)中∠A的度数(即塔身中心线与垂直中心线的夹角的度数)吗?与同伴相互交流.【教学说明】运用锐角三角函数来解决生活中趣味性问题的过程,可激发学生的学习兴趣,增强运用所学过知识解决问题的信心,教师适时予以点拨.二、思考探究,获取新知在上述问题中,我们已知直角三角形的一条直角边和斜边,利用锐角三角函数可求出它的锐角的度数,事实上,我们还可以借助直角三角形中两锐角互余,求出另一个锐角度数,也可以利用勾股定理得到另一条直角边.一般地,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三形思考(1)直角三角形中,除直角外的5个元素之间有哪些关系?(2)知道5个元素中的几个,就可以求出其余元素?【教学说明】学生相互交流获得结论,教师再与学生一道进行系统的总结,完善知识体系.如图,在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,那么除直角C外的5个元素之间有如下关系:(1) 三边之间的关系:a2+b2=c2(2) 两锐角之间的关系:∠A+∠B=90°;(3) 边角之间的关系:通过它们之间的关系,可以发现,知道其中的2个元素(至少有一条是边),就可以求出其他所 有元素.三、典例精析,掌握新知例1 如图,在 Rt △ABC 中,∠A 、∠B 、∠C 所对的边别为a 、b 、c ,且62==b a ,,解这个直角三角形.【分析】由62==b a ,首先联想到勾股定理可得,22=c ,再利用,21222sin ===c a B 知∠A=30°,从而∠B=60°.这是一例除直角外的两个已知元素都是边的情形,在求它的锐角度数时,有时必须借助计算器才行.例 2 如图,在 Rt △ABC 中,∠C=90°,∠B=40°,且b=20,解这个直角三角形(结果保留一位数).【分析】本例是已知一条边和一个锐角,求这个直角三角形的另两边长和另一个锐角.首先可轻松得到∠A=50°,再利用a B c B 20tan ,20sin ==可求出a ,c 的值,也可由ABAC A =cos ,则,c 2050cos =︒ 求c 的值,再利用勾股定理,或利用锐角的正切函数求出a 的值.注意:由于40°,50°均不是特殊角,它三角函数值可利用计算器获得.【教学说明】以上两例在实际教学时,都可先让学生自主探究,独立完成.教师巡视,对有困难学生给予指导,让学生在探究中加深对知识的理解.最后师生共同给出解答,让学生进行自我评析,完善认知.四、运用新知,深化理解1.Rt △ABC 中,∠C=90°,根据下列条件解直角三角形:(1)a=30,b=20; (2)∠B=62°,c=16.2.已知△AC 中,AD 是BC 边上高,且AD=2,22=AC ,AB=1.(1) 如图(1),求∠BAC 度数;(2) 如图(2),试求∠BAC 的度数.【教学说明】学生自主探究,也可相互交流,探讨问题的解答.教师巡视,适时点拨,让学生在练习中巩固本节所学知识.五、师生互动,课堂小结1.常见的解直角三角形问题可分为哪两类?与同伴交流.2.解直角三角形需要直角外的两个已知条件,其中必须有一个已知边,为什么?【教学说明】师生共同回顾,反思,完善对本节知识的认知1.布置作业:从教材P77〜79习题28.2中选取.2.完成练习册中本课时的练习.利用知识回顾,使学生进一步巩固和深化对锐角三角函数和直角三角形知识的理解,建立起清晰的知识框架,形成严谨的思维习惯.【素材积累】1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。

解直角三角形教学反思_共10篇.doc

解直角三角形教学反思_共10篇.doc

★解直角三角形教学反思_共10篇范文一:解直角三角形教学反思解直角三角形教学反思本节课的重点难点是直角三角形的解法,为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系,正确选用这些关系,是正确、迅速的解决直角三角形的关键。

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。

因此,在处理例题时,首先,应让学生独立完成,培养学生分析问题、解决问题能力,同时渗透数形结合的思想。

通过本节课教学,我觉得教学目标定位准确恰当。

结合课程标准,在对教材深入钻研的基础上,围绕知识与技能、过程与方法、情感态度价值观,制定了以“会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形”作为本节课的核心目标,“渗透数形结合的数学思想、分类思想等,培养学生良好的学习习惯。

”结合课堂教学,我个人认为教学目标达成度是比较高的。

第二,本节课的设计,力求体现新课程理念。

给学生自主探索的时间,给学生宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神、合作精神,激发学生学习数学的积极性、主动性。

第三,教师是课堂教学的组织者、引导者、合作者、帮助者。

在学生选择解直角三角形的诸多方法的过程中,我并没有过多地干预学生的思维,而是通过问题引导学生自己想办法解决问题,教师组织学生比较各种方法中哪些较好,而后选择了一种解法进行板演。

在培养学生的语言表达能力上下了功夫。

通过本节课的实践,我觉得也存在一些需要自己深刻反思和改进的地方。

比如,在探讨解直角三角形的依据时,处理的有些过于仓促,讲话语速太快,影响学生的思考时间,有些问题还应该放手让学生自己去想,可能效果更好;在讲正多边形的例题时,从特殊到一般,处理上有些欠妥。

又如,课堂总结时,总想把现成的规律性结论用学生喜欢的形式告知他们,但忽视了学生在没有亲身体验与感受的情况下,老师的努力将大打折扣。

初中数学_解直角三角形教学设计学情分析教材分析课后反思

初中数学_解直角三角形教学设计学情分析教材分析课后反思

《解直角三角形(1)》教材:义务教育教科书九年级上册【教学目标】知识技能:初步理解解直角三角形的含义,掌握运用直角三角形的两锐角互余勾股定理及锐角三角函数值求直角三角形的未知元素。

数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动,体会从特殊到一般,从具体到抽象的认识过程.发展学生的演绎推理能力和发散思维以及语言表达能力。

解决问题:明确解直角三角形的对象,并让学生亲自经历探索过程,体会解决问题策略的多样性.培养学生在解决问题的过程中与他人相互交流、相互合作的创新意识。

情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐。

【教学重点】直角三角形的解法。

【教学难点】灵活运用锐角三角函数值解直角三角形。

【教学准备】课件、导学案【教学程序】一、旧知回顾提出问题:1.学过哪些三角函数,又分别是如何定义的2、特殊角的三角函数值是多少,同桌之间相互检查设计意图:此环节是先做好知识储备,为新课的知识学习做好铺垫二、创设情景,导入新课如图,已知有一个长为6m的梯子斜靠在墙上,并且梯子与地面的夹角为30度,要使人完全地攀上斜靠在墙上的梯子的顶端,那么在这种情况下,使用这个梯子最高可以攀上多高的墙?设计意图:通过提问激发强烈的好奇心和求知欲,从学生的生活实际出发,创设情境,让学生感受到数学与生活实际紧密联系;明白数学学习的必要性,同时,把思维兴奋点集中到要研究的解直角三角形上来,为下面学习新知识创造了良好开端。

三、出示目标课件出示学习目标边读边画出关键语句设计意图:明确学习目标四、预习检测说一说:如图,在Rt△ABC中,∠C=900 ,∠A,∠B,∠C的对边分别记作a,b,c. (1)、直角三角形三边之间的关系(2)、直角三角形的锐角之间的关系(3)、直角三角形的边和锐角的关系设计意图:让学生对自己预习情况有个更清晰的认识同时教师及时调整教学内容与步骤。

五、探索新知引导学生归纳议一议:在一个直角三角形中,除直角外有5个元素(3条边、2个锐角),只要知道其中的几个元素就可以求出其余的元素?设计意图:教师以合作者的身份深入到各小组中,了解学生的探教师以合作者的身份深入到各小组中,了解学生的探究过程并适当予以指导引导学生归纳(1)、在直角三角形中,除直角外有5个元素(即3条边、2个锐角),只要知道其中的2个元素(至少有1个是边),就可以求出其余的3个未知元素。

人教版九年级数学下册《解直角三角形第一课时》教学反思(精选篇)

人教版九年级数学下册《解直角三角形第一课时》教学反思(精选篇)

人教版九年级数学下册《解直角三角形第一课时》教学反思
人教版九年级数学下册《解直角三角形第一课时》教学反思人教版九年级数学下册《解直角三角形第一课时》教学反思
这堂课作为解直角三角形的第一课时,我比较注重让学生理解解直角三角形的概念,即它的作用,并从例题的解答中寻求解直角三角形的方法。

因此针对不同环节,我设置了三维目标,注重围绕着这些目标让学生去探索不同条件背景下方法的选择,从而得出对解直角三角形
这堂课作为解直角三角形的第一课时,我比较注重让学生理解解直角三角形的概念,即它的作用,并从例题的解答中寻求解直角三角形的方法。

因此针对不同环节,我设置了三维目标,注重围绕着这些目标让学生去探索不同条件背景下方法的选择,从而得出对解直角三角形心得。

通过整个课堂的操演,我发现课容量稍有些大,在学生探索这个环节有些局促,可以适当压缩后面的备选题量,毕竟让学生领悟解直角三角形的概念和使用技巧是我本节课最大的目的。

通过这堂课,我基本达成教学目标,而学生的掌握情况也比较理想。

渐分层,探究领悟是个不错的方法,今后同类课题可以按照这样的形式,自己不用讲太多,学生却掌握得深刻。

湘教版数学九年级上册4.3《解直角三角形》教学设计1

湘教版数学九年级上册4.3《解直角三角形》教学设计1

湘教版数学九年级上册4.3《解直角三角形》教学设计1一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是本册教材中关于直角三角形知识的重要内容。

通过本节课的学习,学生能了解直角三角形的性质,掌握解直角三角形的方法,并能运用所学知识解决实际问题。

本节课的内容为后续学习勾股定理和三角函数等知识打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了锐角三角形和钝角三角形的性质,了解了三角形的分类。

在此基础上,学生需要进一步掌握直角三角形的性质,并学会解直角三角形。

此外,学生需要具备一定的观察能力、动手操作能力和逻辑思维能力,以便在学习过程中更好地理解和掌握所学知识。

三. 教学目标1.知识与技能目标:学生能掌握直角三角形的性质,了解解直角三角形的方法,并能运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生动手操作能力、观察能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:直角三角形的性质,解直角三角形的方法。

2.教学难点:解直角三角形的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过设置情境,引导学生观察、操作、思考,激发学生学习兴趣。

2.合作学习法:学生进行小组讨论、合作探究,培养学生团队合作精神。

3.启发式教学法:教师引导学生发现问题、分析问题、解决问题,培养学生的逻辑思维能力。

4.实践操作法:让学生动手操作,加深对知识的理解和记忆。

六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画、例题等。

2.教学道具:准备直角三角形模型、三角板等道具,以便进行实物演示。

3.练习题:挑选一些有关直角三角形的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如教室的黑板、楼梯的扶手等,引导学生关注直角三角形。

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1一. 教材分析《解直角三角形》是九年义务教育课程标准人教版九年级数学下册第28章第2节的一部分。

本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行的。

本节主要让学生了解解直角三角形的意义和方法,学会使用锐角三角函数来解直角三角形,为以后学习三角函数和解其他三角形打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。

但是,对于如何运用锐角三角函数来解直角三角形,他们可能还比较陌生。

因此,在教学过程中,我需要引导学生理解和掌握锐角三角函数在解直角三角形中的应用。

三. 教学目标1.了解解直角三角形的意义和方法。

2.学会使用锐角三角函数来解直角三角形。

3.能够运用解直角三角形的方法解决实际问题。

四. 教学重难点1.重点:解直角三角形的方法和锐角三角函数在解直角三角形中的应用。

2.难点:如何引导学生理解和掌握锐角三角函数在解直角三角形中的应用。

五. 教学方法采用讲授法、引导法、实践法、讨论法等教学方法,引导学生通过自主学习、合作学习、探究学习,从而掌握解直角三角形的方法和锐角三角函数在解直角三角形中的应用。

六. 教学准备1.准备直角三角形的相关图片和实例。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备相关的练习题和测试题。

七. 教学过程1.导入(5分钟)通过展示一些与直角三角形相关的图片和实例,引导学生回顾直角三角形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)讲解解直角三角形的意义和方法,引导学生理解解直角三角形的重要性。

通过示例,讲解如何使用锐角三角函数来解直角三角形。

3.操练(10分钟)让学生分组进行实践,运用锐角三角函数来解直角三角形。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验他们是否掌握了解直角三角形的方法和锐角三角函数在解直角三角形中的应用。

人教版数学九年级下册-28.2.1 解直角三角形-教案

人教版数学九年级下册-28.2.1  解直角三角形-教案

28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。

本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。

教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。

本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。

通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。

二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。

(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。

并让学生体验到学习是需要付出努力和劳动的。

三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。

四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。

2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。

解直角三角形教学设计及反思

解直角三角形教学设计及反思

解直角三角形教学设计及反思教学设计:解直角三角形教学目标:通过本节课的学习,使学生掌握如何解直角三角形的基本原理和解法,并能运用所学知识解决相关问题。

教学重点:直角三角形的性质和解法教学难点:如何灵活运用直角三角形的解法解决问题教学准备:教学课件、直角三角形的模型、直角三角形的练习题教学过程:Step1: 导入通过问题引入直角三角形的概念,例如:小明想要测量房间一角的大小,但又无法直接测量。

请问他应该如何解决这个问题呢?Step2: 引入直角三角形的概念介绍直角三角形的定义和性质,包括直角三角形的边和角的关系。

Step3: 解直角三角形的基本原理解释直角三角形的基本原理,即正弦定理和余弦定理,并给出相应的公式和应用场景。

示例问题:如果一个直角三角形的两个边长分别为3和4,求斜边的长度。

步骤一:根据勾股定理,已知两个直角边分别为3和4,斜边为x,可以得到方程:3^2+4^2=x^2步骤二:计算出x的值,即可求得斜边的长度。

Step4: 解题实践让学生通过解决一些实际问题来运用所学知识解直角三角形。

示例问题:一艘船要从A地沿直线航行到B地,如果A点与B点之间的距离为10千米,A点与C点之间的距离为8千米,C点与B点之间的距离为6千米。

请问船的航线与AB线之间的夹角大小是多少度?步骤一:通过正弦定理,计算出∠ACB的大小。

步骤二:通过余弦定理,计算出∠ACB与AB线之间夹角大小的余弦值。

步骤三:通过反余弦函数,求得船的航线与AB线之间夹角大小的度数。

Step5: 总结总结本节课所学的知识点和解题方法,并提醒学生在实际问题中如何选择正确的解法,合理运用所学知识。

反思:本节课通过问题导入和实际问题解题的方式,使学生能够主动参与课堂,培养解决问题的能力和兴趣。

然而,在教学设计中可能还存在以下问题:1.配置学生合作学习的环节:本节课中,未设计合作学习的环节,限制了学生与同学的互动和思维碰撞。

下次课堂设计中可考虑将解题任务分配给小组,让学生们合作解决问题,以培养团队协作和沟通能力。

解直角三角形教案精选5篇

解直角三角形教案精选5篇

解直角三角形教案精选5篇解直角三角形教案篇一一、教学目标〔一〕知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.〔二〕能力训练点通过综合运用勾股定理,直角三角形的'两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.〔三〕德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在的两个元素中,为什么至少有一个是边.三、教学过程〔一〕明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?〔1〕边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成。

〔2〕三边之间关系a2+b2=c2〔勾股定理〕〔3〕锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.〔二〕整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习稳固.同时,本课又为以后的应用举例打下根底,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.〔三〕重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素〔至少有一个是边〕后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个元素中至少有一条边?〞让全体学生的思维目标一致,在作出准确答复后,教师请学生概括什么是解直角三角形?〔由直角三角形中除直角外的两个元素,求出所有未知元素的过程,叫做解直角三角形〕.3.例题例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比拟各种方法中哪些较好完成之后引导学生小结“一边一角,如何解直角三角形?〞答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比拟可靠,防止第一步错导致一错到底.例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.4.稳固练习解直角三角形是解实际应用题的根底,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比拟繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.〔四〕总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素〔至少有一个是边〕,就可以求出另三个元素.2.出示图表,请学生完成abcAB1√√2√√3√b=acotA√4√b=atanB√5√√6a=btanA√√7a=bcotB√√8a=csinAb=ccosA√√9a=ccosBb=csinB√√10不可求不可求不可求√√注:上表中“√〞表示。

解直角三角形1教学设计与反思

解直角三角形1教学设计与反思

教学重点 直角三角形的解法。

教学难点三角函数在解直角三角形中的灵活应用。

教学设计预习 作业 检查 1.在Rt△ABC 中,∠ACB =90°,其余5个元素之间有以下关系: (1)两锐角之间的关系:(2)三边满足_________:____(3)边与角关系:sinA =,cosA =,tanA =。

2. 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA=3. 在Rt△ABC 中∠C=90°,c=8,∠B=30°,则∠A=______,a=______,b=______.4.已知:在Rt△ABC 中,∠C=90°,b=23,c = 4,则a=___,∠A=____,∠B=____.(设计意图:数学知识是环环相扣的,课前预习能让学生为接下来的学习作很好的铺垫和自然的过渡。

带着他们的疑问来学习解直角三角形,去探索解直角三角形的条件,激发了他们研究的兴趣和探究的激情。

)教学环节教学活动过程 思考与调整活动内容师生行为“15分钟温故、自学、群学”环节探索新知: 1.观察: (1). 在Rt △ABC 中∠C=90°,c=8,∠B=30°,则∠A=__b=___。

(2).已知:在Rt △ABC 中,∠C =90°,b=2 ,c = 4,则∠B=___,∠A=____。

2.归纳:我们把利用___________求出______________的过程, 叫做解直角三角形。

(设计意图:让学生观察并且在老师的引导下归纳解直角三角形的概念,并且加以理解。

)例题讲解:例1.在Rt△ABC 中,∠C=90°,∠A =30°,a=5,解这个直角三角形。

练习:在Rt△ABC中,∠C=90°,AC=3,AB=6,解这个直角三角形。

(设计意图:让学生初步体会解直角三角形的含义、步骤及解题过程。

通过展示他们的思路让他们更好的体会已知直角三角形的两条边能解出直角三角形。

解直角三角形教学设计

解直角三角形教学设计

教学设计(修改稿)时间:年月日星期课题:28.2.解直角三角形(一)第课时一.教学目标1.使学生理解解直角三角形中五个元素的关系,什么是解直角三角形。

2.会运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形。

3.通过综合运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题,解决问题的能力。

二.教学重点:理解并掌握直角三角形边角之间的关系。

三.教学难点:从条件出发,正确选用适当的边角关系解题。

四.教学方法:引导探究,讨论交流五.教学准备:六.教学过程:教学步骤师生活动设计意图一、复习引入教师提出问题,引起学生思考,然后小组内讨论,回答。

在直角三角形中,共有三条边、三个角(六个元素),你能根据所学的知识谈谈它们之间的关系吗?回顾复习直角三角形中边与边、角与角、边与角之间的关系二、回顾汇总1、在一个三角形中,共有几条边?几个角?(引出“元素”这个词语)2、在RtΔABC中,∠C=90°。

a、b、c、∠A、∠B这些元素间有哪些等量关系呢?教师提出问题,引导提示学生思考总结(引问:边与边、角与角、边与角之间的关系)教师根据学生的回答归纳。

在直角三角形中:1.三边之间关系:a2+b2=c2(勾股定理)2.锐角之间关系:∠A+∠B=90°3.边角之间关系:正弦函数:sinA= cosB=a/c余弦函数:cosA= sinB=b/c回顾复习汇总,为解直角三角形打下基础正切函数:tanA= a/btanB= b/a三、新知探索探究:在RT△ABC中,∠ C=90°(1)若∠A=35°,AB=10,你能求出这个直角三角形中的其他元素吗?(2)若AB=10,BC=5,你能求出这个直角三角形中的其他元素吗?(3)若∠A=35°∠B=55°,你能求出这个直角三角形中的其他元素吗?(4)在直角三角形中知道几个元素就可以求出其他元素?(只讨论方法,不解出结果)1.教师提出问题,引导学生思考分析,并简要讲评。

《解直角三角形(1)》教学设计

《解直角三角形(1)》教学设计

数学教学设计7.5 解直角三角形(1)教学目标1.使学生了解解直角三角形的概念,能运用直角三角形的角与角、边与边、边与角关系解直角三角形;2.通过学生的探索讨论发现解直角三角形所需的条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决;3.通过问题情境,以及对解直角三角形所需的条件的探究,运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想.教学重点直角三角形的解法.教学难点三角函数在解直角三角形中的灵活运用.教学过程(教师)学生活动设计思路新课引入——情景导入五星红旗你是我的骄傲,五星红旗我为你自豪……如何测量旗杆的高度?请同学们说说你的想法.积极思考,回答问题——大多数学生会凭直觉发表自己的观点,有的用尺子度量,有的说我们可以构建直角三角形解决.通过身边的情境让学生思考、交流、发言,调动学生的课堂参与的积极性,激发了他们研究的兴趣和探究的激情.实践探索活动一:(课件展示1)如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞多远?观察、思考、感悟.上面的例子是给了两条边.那么,如果给出一个角和一条边,能不能求出其他元素呢?请看下面的活动.活动二:(课件展示2)如图,为测量旗杆的高度,在C点测得A点的仰角为30°,点C到点B的距离56.3,求旗杆的高度(精确到0.1m).解:略.观察、思考,并归纳、小结得出“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)”.(1)转化的数学思想方法的应用,把实际问题转化为数学模型解决;(2)巩固解直角三角形的定义和目标,初步体会解直角三角形的方法——直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数)使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素(至少AB C有一个是边)就可以求出其余的3个元素” 交流讨论;归纳总结 .归纳总结同学们回答的非常好,通过上面的两个活动,若要完整解该直角三角形,还需求出哪些元素?如图,在Rt △ABC 中, ∠C 为直角,其余5个元素之间有以下关系:(1)三边之间关系:a 2+b 2=c 2(勾股定理).(2)锐角之间的关系:∠A +∠B =90°(直角三角形的两个锐角互余).(3)边角之间的关系:学生交流讨论归纳(课件展示讨论的条件)师总结:解直角三角形,有下面两种情况(其中至少有一边) :(1) 已知两条边(一直角边一斜边;两直角边) ;(2) 已知一条边和一个锐角(一直角边一锐角;一斜边一锐角).自然就可以得出“定义” .这是这节课的重点,让学生归纳和讨论,能让他们深刻理解解直角三角形有几种情况,必须满足什么条件能解出直角三角形 ,给学生展示的平台,增强学生的兴趣及自信心.例题讲解例1 在Rt △ABC 中,∠C =90°,∠A =30°,a =5.解这个直角三角形.例2 已知:在Rt △ABC 中,∠C =90°,a =104,b = 20.49.(1)求c 的值(精确到0.01);(2)求∠A 、∠B 的大小(精确到0.01°).1.根据解直角三角形定义和方法进行分析.2.思考多种方法,选择最简便的方法.例2由学生独立分析,板练完成,并作自我评价,以掌握方法.通过例题学会灵活运用直角三角形有关知识解直角三角形,并能熟练分析问题,掌握所学基础知识及基本方法,并进一步提高学生“执果索因”的能力. sin cos tan a b a A A A c c b===,,.知识巩固1.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形(边长精确到0.1,角度精确到0.1°):求:(1)a=9 ,b=6;(2)∠A=18°,∠C=13.2.如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,求:B、C两地之间的距离.积极思考解决办法——运用本节课所学数学知识解决问题,关键要对知识灵活运用.使学生巩固利用直角三角形的有关知识解决实际问题,考察建立数学模型的能力,转化的数学思想在学习中的应用,提高学生分析问题、解决问题的能力,以及在学习中还存在哪些问题,及时反馈矫正.课堂小结通过今天的学习,你学会了什么?共同小结.通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.布置作业1.必做题:习题7.5第1、2题;2.选做题:如图所示,施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB=4米,斜面距离BC=4.25米,斜坡总长DE=85米.(1)求坡角∠D的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm的长方体台阶来铺,需要铺几级台阶?(参考数据:cos20°≈0.94,sin20°≈0.34,sin18°≈0.31,cos18°≈0.95)课后完成必做题,并根据自己的能力水平确定是否选做思考题.学生可根据自己的能力去自主选做.这样就能实现《课程标准》中所要求的“让不同层次的学生得到不同的发展”.解直角三角形的概念(勾股定理)三边之间关系两锐角之间关系边角之间关系(锐角三角函简单应用17cm A BCD E F。

解直角三角形第一课时教学设计与反思

解直角三角形第一课时教学设计与反思

解直角三角形教案主备:【教学目标】一、知识目标1、 巩固直角三角形中的三角函数定义。

2、 选取多样性的问题,引导学生合理地选择关系式(可以用不同的三角函数关系解决问题)。

二、能力目标1. 应尽量把解直角三角形与实际问题联系起来,减少单纯解直角三角形的习题,在解决实际问题时,应使学生养成“先画图,再求解”的习惯 。

2. 将解直角三角形的应用分为几种问题类型,注意问题选取的多样性,有时解决一个问题,往往可以用不同的三角函数关系式,这时应引导学生合理地选择关系式,培养学生合情推理、数学说理及转化思想。

三、情感态度目标经历观察、操作、归纳与猜想,体会科学发现这一重要方法。

【重点难点】重点:使学生养成“先画图,再求解”的习惯难点:灵活地运用有关知识在实际问题情境下解直角三角形。

疑点:一题多解时多种方法中的灵活选择与运用。

【教学过程】1.情境导入大屏幕展示课本第112页例1。

2、课前热身分组练习,互问互答巩固上节课的内容。

3、合作探究(1)整体感知从复习直角三角形的相关性质和锐角三角函数入手,让学生对解直角三角形的必备知识做一个必要的回顾;从例1的一棵大树的高度引出利用勾股定理解直角三角形;从战争的需要引出利用锐角三角函数解直角三角形;最后归纳总结解直角三角形的两种情况:已知两条边;已知一条边和一个锐角。

(2)四边互动互动1:展示如图19-4-1的所示的图形,根据图填空: sinA= ,cosA= ,tanA= ,cotA= 。

∠A= - , 2c +学生独立思考,交流。

明确:sin A=斜边的对边A ∠叫∠A 的正弦, cos A=斜边的邻边A ∠叫∠A 的余弦,tan A=的邻边的对边A A ∠∠叫∠A 的正切, cot A= 的对边的邻边A A ∠∠叫∠A 的余切一般地,在直角三角形ABC 中,当∠C=090时,sinA=c a ,c b A =cos ,tanA=b a ,cotA=a b 。

互动2:例1 如图19.4.1所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?展示课本中第112页例1(图24.4.1).我们在遇到实际问题时,总是首先把新问题与我们熟悉的问题联系起来,再把新问题转化成熟悉的问题来进行研究.那么,怎样把这个实际问题变成我们熟悉的图形呢?学生动手尝试,分组交流后,举手回答。

《解直角三角形》 教学设计

《解直角三角形》 教学设计

《解直角三角形》教学设计一、教学目标1、知识与技能目标(1)使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力。

2、过程与方法目标(1)通过解直角三角形的学习,让学生体会数学知识在实际生活中的广泛应用,培养学生将实际问题转化为数学问题的能力。

(2)通过对问题的探究,让学生经历思考、分析、解决问题的过程,培养学生的逻辑思维能力和创新精神。

3、情感态度与价值观目标(1)在探究解直角三角形的过程中,培养学生勇于探索、敢于创新的精神,激发学生学习数学的兴趣。

(2)通过实际问题的解决,让学生体会数学与生活的紧密联系,感受数学的实用性,增强学生的应用意识。

二、教学重难点1、教学重点(1)直角三角形中五个元素之间的关系。

(2)会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

2、教学难点(1)选择合适的锐角三角函数关系式解直角三角形。

(2)将实际问题转化为解直角三角形的数学问题,并正确选择恰当的解法。

三、教学方法讲授法、讨论法、练习法相结合四、教学过程1、复习引入(1)复习直角三角形的性质:直角三角形两直角边的平方和等于斜边的平方(勾股定理);直角三角形的两个锐角互余。

(2)复习锐角三角函数的定义:正弦(sin)、余弦(cos)和正切(tan)。

2、探索新知(1)引导学生思考:在一个直角三角形中,除直角外的五个元素(三条边和两个锐角)之间有什么关系?(2)师生共同总结得出:三边之间的关系:a²+ b²= c²(其中 a、b 为直角边,c 为斜边)两锐角之间的关系:∠A +∠B = 90°边角之间的关系:sin A = a/c,cos A = b/c,tan A = a/b(3)给出解直角三角形的定义:由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 过程与方法:通过学生的探索讨论发现解直角三角形的最简条件,使学生了解体会 用化归的思想方法将未知问题转化为已知问题去解决。
3. 情感态度价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的 探究,培养学生的问题意识。
教学重点Байду номын сангаас难点
重点:直角三角形的解法。 难点:三角函数在解直角三角形中的灵活应用。
“15 分钟(设计意图:让学生观察并且在老师的引导下归纳解 温 故 、 自直角三角形的概念,并且加以理解。) 学、群学” 环节
例题讲解: 例 1.在 Rt△ABC 中,∠C=90°,∠A=30°,a=5, 解这个直角三角形。
练习: 在 Rt△ABC 中,∠C=90°,AC=3,AB=6,解这个直 角三角形。
小结反思: 通过本节课的学习, 我知道了_________________________________ ___________________________________________ 当堂检测: 1.在 Rt△ABC 中,∠C=90°,∠A=30°,c=2,则
a=_____,b=____.
教学反思
教学反思可以从以下几个方面思考,不必面面俱到: 1. 反思在备课过程中对教材内容、教学理论、学习方法的认知变化。 2. 反思教学设计的落实情况,学生在教学过程中的问题,出现问题的原因是什么,如 何解决等,避免空谈出现的问题而不思考出现的原因、也不思考解决方案。 3. 对教学设计中精心设计的教学环节,尤其是对以前教学方式进行的改进,通过设计 教学反馈,实际的改进效果如何。 4.如果让你重新上这节课,你会怎样上?有什么新想法吗?或当时听课的老师或者专 家对你这节课有什么评价?对你有什么启发?
教学重点 直角三角形的解法。
教学难点 三角函数在解直角三角形中的灵活应用。
教学设计
1.在 Rt△ABC 中,∠ACB=90°,其余 5 个元素之间有以下关系:
(1)两锐角之间的关系:
(2)三边满足_________: ____
预习 作业 检查
(3)边与角关系:sinA= ,cosA= ,tanA= 。 2. 在 Rt△ABC 中,∠B=900,AB=3,BC=4,则 sinA= 3. 在 Rt△ABC 中∠C=90°,c=8,∠B=30°,则∠A=______,a=______,b=______.
2 . 在 Rt△ABC 中 , ∠C=90° , a=8 , b=6 , 则
c=____,tanA=______.
3.在 Rt△ABC 中,∠C=90°,sinB= 3 ,AC=4, 2
求∠A,∠B 和 BC。
“10分钟
检测、
反馈、
矫正、 4.如图,在△ABC中,∠B=45°,∠C=60°,AC=2,
学情分析
1.在学生已经掌握勾股定理,正弦,余弦定义,特殊角度的三角函数值的基础上,解 直角三角形难度并不大; 2.但是要学生能达到能熟练解决直角三角形组合图形的问题却有一定难度。
教学目标
1. 知识与技能:使学生了解解直角三角形的概念,能运用直角三角形的角与角(两锐角 互余),边与边(勾股定理)、边与角关系解直角三角形。
教学过程 (教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主
要教学环节、教师活动、学生活动、设计意图很清楚地再现。)
教学环节
教师活动
预设学生行为
设计意图
板书设计(需要一直留在黑板上主板书)
教学 三维 目标
知识与技能 使学生了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),
4.已知:在 Rt△ABC 中,∠C=90°,b=2 3 ,c = 4,则 a=___,∠A=____,∠B=____.
教学 环节
(设计意图:数学知识是环环相扣的,课前预习能让学生为接下来的学习作很 好的铺垫和自然的过渡。带着他们的疑问来学习解直角三角形,去探索解直角 三角形的条件,激发了他们研究的兴趣和探究的激情。)
教学设计与反思
基本信息
课题
苏教版(九下)第七章锐角三角函数 7.5 解直角三角形
作者及工作 单位
丹阳市第八中学 景永兴
教材分析
课标要求:1、知道解直角三角形的含义,会解直角三角形;2、能根据问题的需要添加 辅助线构造直角三角形;3、会解由两个特殊直角三角形构成的组合图形的问题,4、能 综合运用直角三角形的性质解决有关问题。
边与边(勾股定理)、边与角关系解直角三角形。
过程与方法 通过学生的探索讨论发现解直角三角形的最简条件,使学生了解体会用化归的
思想方法将未知问题转化为已知问题去解决。
情感态度价值观 通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养
学生的问题意识。
学生学习活动评价设计
设计评价方案,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。另 外,也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价。
小结” 求BC的长。
环节
A
B C
设计意图:
(1)1,2,3 是基本应用; (2)4 是在三角形中的灵活应用,是变形训练, 考察学生对知识的认知和应用程度。
课后 作业
完成作业
师生 反思
(设计意图:1、这是这节课的重点,让学生归 纳和讨论,能让他们深刻理解解直角三角形的 分情况讨论,是变形训练.考察学生对知识的认 知和应用程度。 2、给学生展示的平台,增强学生的兴趣及自信 心。 3、巩固解直角三角形的定义和目标,初步体会 解直角三角形的方法——直角三角形的边角关 系(勾股定理、两锐角互余、锐角三角函数) 使学生体会到“在直角三角形中,除直角外,只 要知道其中 2 个元素(至少有一个是边)就可 以求出其余的 3 个元素”)
教学活动过程 活动内容
师生行为
思考与调整
探索新知: 1.观察: (1). 在 Rt△ABC 中∠C=90°,c=8,∠B=30°,则∠A=___,a=___, b=___。 (2).已知:在 Rt△ABC 中,∠C=90°,b=2 ,c = 4,则 a=___, ∠B=___,∠A=____。 2.归纳: 我们把利用___________求出______________的过程, 叫做解直角三角形。
(设计意图:让学生初步体会解直角三角形的 含义、步骤及解题过程。通过展示 他们的思路让他们更好的体会已知直角三角形 的两条边能解出直角三角形。)
变式 1.在 Rt△ABC 中,∠C=90°,∠A=30°,a=5, 作 CD⊥AB,求 AD。
变式 2.在 Rt△ABC 中,∠C=90°,∠A=30°,a=5, D 为直线 AC 上一点,且∠BDC=45°,求(1)∠ABD 的度数(2)AD 的长。
相关文档
最新文档