Network Simplex Method网络单纯形法

合集下载

单纯形方法(SimplexMethod)

单纯形方法(SimplexMethod)

单纯形⽅法(SimplexMethod)最近在上最优理论这门课,刚开始是线性规划部分,主要的⽅法就是单纯形⽅法,学完之后做了⼀下⼤M算法和分段法的仿真,拿出来与⼤家分享⼀下。

单纯形⽅法是求解线性规划问题的⼀种基本⽅法。

线性规划就是在⼀系列不等式约束下求⽬标函数最⼤值或最⼩值的问题,要把数学中的线性规划问题⽤计算机来解决,⾸先要确定⼀个标准形式。

将所给的线性规划问题化为标准形式:s.t.是英⽂subject to 的简写,意思是受约束,也就是说第⼀个⽅程受到后⾯两个⽅程的约束。

对于求最⼤值问题可以将⽬标函数加负号转换为最⼩值问题。

对于求最⼤值问题可以将⽬标函数加负号转换为最⼩值问题。

其他的问题就是将实际问题中的不等式约束改为等式约束,主要⽅法是引进松弛变量和剩余变量,以及将⾃有变量转换为⾮负变量。

①对于不等式,引⼊松弛变量将其变为等式形式如下:②对于不等式,引⼊剩余变量将其变为等式形式如下:③若变量为⾃有变量(可取正、负或零,符号⽆限制),则引⼊两个⾮负变量将其表⽰如下:关于线性规划问题的解:确定了标准形式,我们就针对这个标准形式讨论⼀下线性规划问题的解。

线性规划问题的解能满⾜标准形式中约束条件的向量X的值,但只有最优解才能使⽬标函数值最⼩。

对于上⽂中的标准形式,约束矩阵A是⼀个m*n维矩阵,且m<n,所以⼀定可以从A中找到⼀个满秩m*m矩阵。

这个矩阵就称作矩阵A的⼀个基阵,矩阵A就可以写作 [B N] , 相应的解 x 也可以写成 x=(xB,xN)’,那么 Ax=b 就变为,左式两端同乘B矩阵的逆,得到。

由此引出下列名词:基阵:⾮奇异矩阵(满秩矩阵、可逆矩阵)B基向量:基阵B由m个线性⽆关的向量组成,称之为基向量基变量:向量xB各分量,与基向量对应的xB中的m个分量成为基变量⾮基变量:向量xN各分量基本解:令xN各分量为0,由得到的解称为基阵B对应的基本解基本可⾏解:当成⽴时,称基本解为基本可⾏解,因为只有满⾜所有分量不⼩于0,才符合标准形式中的约束条件(最后⼀条)。

单纯形法

单纯形法

cj 基 解
3 5 000 x1 x2 x3 x4 x5
0 x3 8 1 0
5 x2 6 0 1
第 0 x5 12 3 0


30 -3 0
迭 代
0
x3
4
5 x2 6
00 01
3 x1 4
10
1 00 0 1/2 0 0 -2 1
0 5/2 0 1 2/3 -1/3 0 1/2 0 0 -2/3 1/3
Simplex Method 第二章 单纯形法
SM
第2章 单纯形法
2.1 单纯形法的基本思想 2.2 单纯形法的计算过程 2.3 人工变量法 2.4 单纯形法补遗
2
第2章 单纯形法
2.1 单纯形法的基本思想
单纯形法有三种形式: ① 方程组形式 ② 表格形式 ③ 矩阵形式
2.1.1 方程组形式的单纯形法
2x2 0 +1x4 0 = 12 ②
3x1 + 4x2 0 0 +1x5 = 36 ③
条典
⑴ 当前基:m阶排列阵 ⑵ 目标方程中:一切基变量
的系数 σj = 0
满足条典的方程组称为典式(方程组)。 初始基本可行解
排列阵:
每行每列有且仅有一个元素 为1,其余元素全为0 的方阵。
X0 = (0, 0, 8, 12, 36)T z0 = 0
2.3 人工变量法
考虑标准型 (M): 分别给每个约束方程硬性加入一个非负变量
a11x1 +a12x2+…+a1nxn +xn+1
a12x1 +a22x2+…+a2nxn
+xn+2
… … ………

单纯形法

单纯形法

单纯形法simplex method求解线性规划问题的通用方法。

单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。

它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。

顶点所对应的可行解称为基本可行解。

单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。

因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。

如果问题无最优解也可用此法判别。

根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2,…x n的值称为一个解,满足所有的约束条件的解称为可行解。

使目标函数达到最大值(或最小值)的可行解称为最优解。

这样,一个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。

求解线性规划问题的目的就是要找出最优解。

最优解可能出现下列情况之一:①存在着一个最优解;②存在着无穷多个最优解;③不存在最优解,这只在两种情况下发生,即没有可行解或各项约束条件不阻止目标函数的值无限增大(或向负的方向无限增大)。

单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。

②若基本可行解不存在,即约束条件有矛盾,则问题无解。

③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。

④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。

⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。

用单纯形法求解线性规划问题所需的迭代次数主要取决于约束条件的个数。

现在一般的线性规划问题都是应用单纯形法标准软件在计算机上求解,对于具有106个决策变量和104个约束条件的线性规划问题已能在计算机上解得。

Network Simplex Method网络单纯形法-精选文档54页

Network Simplex Method网络单纯形法-精选文档54页
52
Optimality
• If no arc like ki exists, then your prices can not be undercut
– A competitor could break even at best
Algebraic Description (Step 1)
• Each step begins with a feasible tree solution x defined by a tree T.
• Requirements
– The amount entering a node minus the amount leaving it is equal to its demand
– The amount shipped over any arc is nonnegative
Example
-5 1
3 1
0
12
1 43
33 0
0
2 5 -2
LP Formulation
• Let c be a row vector and x a column vector indexed by the set of arcs
– cij is the cost of shipping over ij – xij is the amount to ship over ij
– You want to ship as much as possible – You must also adjust the rest of your
schedule to conform with demand
Example
01
4 5
3
52

单纯形法——精选推荐

单纯形法——精选推荐

单纯形法单纯形法的基本思想(Simplex method )简要地讲就是,每次从单纯形上的⼀个顶点⾛到⼀个更好的顶点直到找到最⼩(⼤)值。

线性规划是由两部分组成的:线性的⽬标函数和线性的限制条件。

限制条件由等式和不等式组成。

每⼀个线性的等式在⼏何上就限制了可⾏解必须在⼀个超平⾯上。

每⼀个线性的不等式在⼏何上就限制了可⾏解必须在⼀个超平⾯的⼀边。

于是这些限制条件就限制了可⾏解必须在某个单纯形上,所谓单纯形就是很多超平⾯围成的区域。

由于⽬标函数也是线性的,所以如果最优解存在,⼀定有⼀个最优解是单纯形上的⼀个顶点。

所以⽬标变成了找单纯形上最好的顶点。

最好的顶点怎么找?最直接的办法就是逐个找。

聪明⼀点的办法是,每次找到的新的顶点都⽐原来的好。

单纯形法就是这类⽅法。

问题描述min z =CXs.t.AX =b X ≥0单纯形法基本思路:从⼀个初始的基本可⾏解出发,选中⼀条达到最优基本可⾏解的最佳途径。

确定初始的基本可⾏解约束⽅程AX =b 表⽰为:AX =(B N )X B X N=BX B +NX N =b得:X B =B −1b −B −1NX N 若令所有⾮基变量X N =0,则基变量X B =B −1b由此可得初始的基本可⾏解X =B −1b 0判断现⾏的基本可⾏解是否最优假如已经求得⼀个基本可⾏解X =B −1b 0将其代⼊⽬标函数,可求得相应的⽬标函数值z =CX =C B C NB −1b 0=C B B −1b其中,C B 和C N 分别表⽰基变量和⾮基变量所对应的⽬标函数系数⼦向量.怎么判断C B B −1b 是否已经达到最⼩值?min z =C BB −1b+(C N −C BB −1N )XN s.t.X B =B −1b −B −1NX N X B ,X N ≥0定理1 (最优化准则)如果σN ≥0,则基可⾏解x =B −1b 0为原问题的最优解.其中,σN =C N −C B B −1N =(σm +1,σm +2,⋯,σn )称为⾮基变量X N 的检验向量,它的各个分量称为检验数.若σN 的每⼀个检验数均⼤于等于0,即σN ≥0,则⽬前的基本可⾏解就是最优解.()()()()()()基本可⾏解的改建— 基变换先从检验数为负的⾮基变量中确定⼀个换⼊变量,使它从⾮基变量变成基变量,再从原来的基变量中确定⼀个换出变量,试它从基变量变成⾮基变量,由此可得到⼀个新的基本可⾏解.换⼊变量的确定—最⼤减⼩原则选取最⼩负检验数所对应的⾮基变量为换⼊变量,即若min {σj |σj <0,m +1≤j ≤n }=σm +k则选取对应的x m +k 为换⼊变量.由于σm +k <0且为最⼩,因此当x m +k 由零增⾄正值时,可使⽬标函数值最⼤限度的减⼩.换出变量的确定—最⼩⽐值原则如果确定确定x m +k 为换⼊变量,设p m +k 为A 中与x m +k 对应的系数列向量.现在需要在X B 中确定⼀个基变量为换出变量. 当x m +k 由零慢慢增加到某个值时,为保持解的⾮负性,可以按最⼩⽐值原则确定换出变量:θ=min {(B −1b )i(B −1p m +k )i|(B−1p m +k )i >0,1≤i ≤m }=(B −1b )l(B −1p m +k )l则选取对应的基变量x l 为换出变量.例⼦min z =−5x 1−2x 2−3x 3+x 4−x 5s.t.x 1+2x 2+2x 3+x 4=83x 1+4x 2+x 3+x 5=7x 1,x 2,x 3,x 4,x 5≥0解:已知A =1221034101,b =87,C =(−5,−2,−3,1,−1)1. 确定初始基本可⾏解基变量x 4,x 5,B =P 4P 5=1001,X B =x 4x 5T ,X N =x 1x 2x 3T ,B =1001,N =122341,C B =1−1,X N =−5−2−3b =87T令X N =0,则X B =B −1b =87T ,X =00087Tz =C B B −1b =11. 检验X 是否最优检验向量σN =C N −C B B −1N =(−3,0,−4)因为σ1和σ3均⼩于0,所以X =00087T 不是最优解.1. 基本可⾏解的改进(1)选取换⼊变量{[][]()[]()()[][]()()()()()()因为min {−3,−4}=−4,选取x 3为换⼊变量(2)选取换出变量B −1b =87T ,B −1P 3=21T >0,因为min {82,71}=82,选取x 4为换出变量.1. 求解改进了的基本可⾏解— 旋转运算对约束⽅程组的增⼴矩阵A b 施以初等⾏变换,使换⼊变量x 3所对应的系数向量P 2变换成换出向量x 4所对应的单位向量P 4,保持x 5的系数向量P 5为单位向量不变.122108341017⇒121112045230−1213基变量x 3,x 5,B =P 3P 5=1001,X B =x 3x 5T ,X N =x 1x 2x 4T ,B =1001,N =12112523−12,C B =−3−1,X N =−5−2−1b =43T令X N =0,则X B =B −1b =43T ,X =00403Tz =C B B −1b =−151. 转2,检验X 是否最优检验向量σN =C N −C B B −1N =(−1,4,2)因为σ1⼩于0,所以X =00403T 不是最优解.1. 转3,基本可⾏解的改进(1)选取换⼊变量因为σ1=−1,选取x 1为换⼊变量(2)选取换出变量B −1b =43T ,B −1P 3=1252T>0,因为min {41/2,35/2}=35/2,选取x5为换出变量.1. 转4,求解改进了的基本可⾏解对约束⽅程组的增⼴矩阵施以初等⾏变换,使换⼊变量x 1所对应的系数向量P 1变换成换出向量x 5所对应的单位向量P 5,保持x 3的系数向量P 3为单位向量不变.()()[]()()()[]()()[][]()()()()()()()()121112045230−1213⇒25135−151751650−152565基变量x3,x1,B=P3P1=10 01,X B=x3x1T,X N=x2x4x5T,B=1001,N=2535−1565−1525,C B=−3−5,X N=−21−1b=17565T令X N=0,则X B=B−1b=17565T,X=65017500Tz=C B B−1b=−8151. 转2,检验X是否最优检验向量σN=C N−C B B−1N=(265,95,25)因为所有检验系数均⼩于0,所以X=65017500T是最优解.参考资料()() ()[]()()[][]()()()()()()Processing math: 100%。

第二章 单纯形法

第二章 单纯形法

最小比值规则
当确定进基变量后, 当确定进基变量后,以进基变量的系数列向量 中的正数为分母, 中的正数为分母,以相应的方程右端常数为分子求 最小比值,所得到的最小比值的分母就是主元 主元. 最小比值,所得到的最小比值的分母就是主元.主 元所在的方程中的基变量就是离基变量 离基变量. 元所在的方程中的基变量就是离基变量.即:
bi bl min α ik > 0 = a ik a lk
令新的非基变量 x3 = x 4 = 0 ,得到新的 基本可行解: 基本可行解: T 经济含义—— 经济含义—— 分别生产甲,乙产品20 20个 分别生产甲,乙产品20个,此时可获得 利润200百元. 200百元 利润200百元.
几个名词
进基, 进基,进基变量 离基, 离基,离基变量 最大检验数规则 最小比值规则 主元/ 主元/主方程 迭代(旋转运算) 迭代(旋转运算)
增加单位产品甲比乙对目标函数 的贡献值大(600>400),故先把非 的贡献值大(600>400),故先把非 ), 变成基变量, 基变量 x1 变成基变量,称为让 x1 进基, 进基变量. 进基,同时称 x1 为进基变量.
R( A) = R( A, b ) = 3 < 5
则该函数约束等式方程组有无穷多组解. 则该函数约束等式方程组有无穷多组解.
分析目标函数表达式
max z = 6 x1 + 4 x 2 + 0 x3 + 0 x 4
非基变量的系数都是正数,若将它们转换 非基变量的系数都是正数, 为基变量,目标函数值则就会可能增加. 为基变量,目标函数值则就会可能增加. 经济含义:每分别多生产一个单位产品甲, 经济含义:每分别多生产一个单位产品甲, 目标函数值分别增加6 乙,目标函数值分别增加6,4,即利润分 别增加600 600元 400元 别增加600元, 400元.

单纯形法

单纯形法

定理2.2 定理
在已知一个基本可行 初始基本可行解)的前提下, 解(初始基本可行解)的前提下, 使用单纯形法求解线性规划时, 使用单纯形法求解线性规划时,若 每次迭代得出的基本可行解的基变 量均大于零(称为非退化), ),则算 量均大于零(称为非退化),则算 法必有限步终止。 法必有限步终止。
P22
min z = 9 10 x1 +27 x3 s.t. x2 = 5 + x1 3x3 x4 = 6 2 x1 + 4 x3 x1 , x2 , x3 , x4 ≥ 0 T 是否为(2.9)的最优解 判断 (0,5,0,6) 是否为(2.9)的最优解
1 0 0 0 1 0
T
(2.9)
-2 1 7
0 0 1 0 -1/5 2/5 3/5 1/5
4 2 5 16 3 4 3 17
从表中知( , , , , ) 从表中知(4,3,3,0,0)T为最优 略去松弛变量, 解,略去松弛变量,得:
x = (4,3)
T
——最优解 最优解Fra bibliotekz = 17
——最优值 最优值
§2.5
大M法 法
引入:问题提出, 引入:问题提出,当初始 基本可行解不知道时, 基本可行解不知道时,如何 求解? 求解? 先利用容许的运算使右列 为非负, 为非负,然后在中心部位人 工地添加一个单位子块。 工地添加一个单位子块。
最优解的读法: 最优解的读法: 单位子块中1所对应的变量取相应右列的值, 单位子块中 所对应的变量取相应右列的值,不在 所对应的变量取相应右列的值 单位子块位置中的变量取值为0。 单位子块位置中的变量取值为 。而右下端元素变号 即为LP的最优值 的最优值。 即为 的最优值。 单纯形法的步骤: 单纯形法的步骤:

Network Simplex Method网络单纯形法

Network Simplex Method网络单纯形法
• What price should you sell the commodity for at each node?
– Assume that you ship according to x
Price Setting
• You want to set the price yi at node i
Transshipment Problem
• Find the cheapest way to ship prescribed amounts of a commodity from specified origins to specified destinations through a transportation network
– For all ji in T, yi = yj + cji – If the price was lower then you would lose
– The sum of all the demands is zero
• Each arc has a cost to ship a unit of commodity over it
Example
-5 1
4 5Байду номын сангаас
3
12
7 43
33 1
9
5 5 -2
Schedule
• A schedule describes how much of the commodity is shipped over each arc
i
LP Formulation (2)
• Let A be the matrix indexed by the set of nodes x the set of arcs

运筹学-图论

运筹学-图论

v3
v5
v7
v1
v6
v2
v4
图 5.5
图的基本概念
一个图G或有向图D中的点数,记作P(G)或P(D),简记作P;边数 或者弧数,记作q(G)或者q(D),简记作q 。 如果边[vi ,vj]E ,那么称vi , vj 是边的端点,或者vi ,vj是相邻的。 如果一个图G中,一条边的两个端点是相同的,那么称为这条边 是环,如图5.4中的边[v3 ,v3]是环。
C
A
B
D
哥尼斯堡七橋問題可以看成是:对这样一个封闭的图形,是否可以
一笔画完成C 它并且回到原点
A
B
D
数学家欧拉(Euler, 1707-1783) 于1736年严格地证明了上述哥尼斯堡七桥问题无解,并且 由此开创了图论的典型思维方式及论证方式
即能否从某一点开始不重复地一笔画出这个图形, 最终回到原点。欧拉在他的论文中证明了这是不可 能的,因为这个图形中每一个顶点都与奇数条边相 连接,不可能将它一笔画出,这就是古典图论中的 第一个著名问题。
• 各种通信网络的合理架设 • 交通网络的合理分布等
生活 中的 一些 例子
台大网路架构图
例5.1 图5.2是我国北京、上海、重庆等十四个城市之间的铁路交通图,这里用
点表示城市,用点与点之间的线表示城市之间的铁路线。诸如此类还有城市中的 市政管道图,民用航空线图等等。
太原 重庆
石家庄 郑州
北京 天津
vV2
图的连通性: 链:由两两相邻的点及其相关联的边构成的点边序列。 如:v0 ,e1 ,v1 ,e2 ,v2,e3 ,v3 ,…,vn-1 , en , vn ; v0 ,vn分别为链的起点和终点 。 记作( v0 ,v1 , v2, ,v3 , …, vn-1 , vn ) 简单链:链中所含的边均不相同; 初等链:链中所含的点均不相同, 也称通路;

simplex 单纯形法

simplex 单纯形法

simplex 单纯形法单纯形法(Simplex Algorithm)是一种用于线性规划问题求解的有效算法。

它由美国运筹学家Dantzig于1947年提出,被广泛应用于工业生产优化、资源分配、物流管理等领域。

本文将介绍单纯形法的基本原理、步骤与应用,并探讨其优缺点。

一、基本原理单纯形法是通过不断地在可行解空间中移动来逼近最优解的方法。

该方法从一个初始可行解出发,通过一系列迭代操作,每次改变一个基本变量以达到更优的目标函数值。

最终,算法将找到一个全局最优解或者判断问题无界或无可行解。

二、基本步骤1. 线性规划标准形式化:将线性规划问题转化为标准形式,即目标函数最小化,约束条件为线性等式。

2. 初始可行解:找到一个满足约束条件的初始可行解,并将其称为基本可行解。

3. 进行迭代操作:通过改变基本变量来改善目标函数值,直到达到最优解或者判断问题无界或无可行解。

4. 基本变量的选择:在每一次迭代中,选择一个非基本变量作为入基变量,并选取一个基本变量作为出基变量。

5. 确定迭代终止条件:判断是否终止迭代,若目标函数值无法继续改善或者判断问题无界或无可行解,则终止迭代。

6. 输出最优解:若找到了最优解,输出最优解及最优目标函数值。

若判断问题无界或无可行解,则给出相应的判断结果。

三、应用领域单纯形法广泛应用于工业生产优化、资源分配、物流管理等领域。

以下是一些典型应用案例:1. 生产计划优化:通过使用单纯形法,可以优化生产计划以最大化产出,同时考虑资源约束和成本限制。

这对于提高生产效率和降低成本非常重要。

2. 物流网络优化:单纯形法可以帮助优化物流网络的设计和运作,以最小化物流成本、最大化物流效率,并满足客户需求。

3. 能源系统调度:单纯形法可以应用于能源系统的调度问题,包括电力系统、天然气输送网络等,以最大化供应效率,并解决资源分配和运营问题。

4. 金融投资组合优化:通过单纯形法,可以优化金融投资组合以最大化收益或最小化风险,并满足投资者的需求。

运筹学术语(新版11)

运筹学术语(新版11)

翻译以下英文术语,并深入了解术语的含义。

1.optimal solution:最优解,使目标函数取得最大值的可行解。

P352.objective function:目标函数,指需优化的量,即欲达的目标,用决策变量的表达式表示。

P123.feasible region:可行域,指所有可行解的集合。

P284. simplex method:单纯形法:是一种迭代的算法,其核心思想是不仅将取值范围限制在顶点上,而且保证每换一个顶点,目标函数值都有所改善.P1175. BF solutions:基可行解,满足变量非负约束条件的基解称为基可行解。

P1816. sensitivity analysis:敏感性分析:指对系统或事物因周围条件变化显示出来的敏感程度的分析。

P1467. algorithm:算法,指系统的求解过程。

p1078. spanning tree:生成树,若有限图的生成子图是一棵树,则称为该图的生成树。

树指不含有圈的连通网。

P3799. states:状态,各阶段开始时的客观条件. P44510.directed arc:有向弧,指通过一条弧的流只有一个方向的弧。

P37611. unbounded:无界,指约束条件不能阻止目标函数值在有利的方向上(正的或者负的)增长。

P3512. CPF solution:顶点(角点)可行解,指位于可行域顶点的解。

P3713. functional constraints:约束条件,指决策变量取值时受到的各种资源条件的限制,通常表达为含决策变量的等式或不等式。

P3414 multiple optimal solutions:多个最优解的问题,指有无穷多解,每一个解都有相同的目标函数值的问题。

P12215. slack variable:松弛变量,添加x i到约束条件的不等式中使其变为等式的变量P10816. augmented solution:增广解,指原始变量(决策变量)取值再加入相应的松弛变量取值后而形成的解。

网络单纯形算法

网络单纯形算法

11
5
39
跟随从结点8开始的线 跟随从结点 开始的线
1 8 3 10 6 9 7 2 12
什么是 thread(8)?
11
5
40
跟随从结点8开始的线 跟随从结点 开始的线
1 8 3 10 6 9 7 2 12
什么是 thread(3)?
11
5
41
跟随从结点8开始的线 跟随从结点 开始的线
1 8 3 10 6 9 7 2 12
什么是 thread(10)?
11
5
42
跟随从结点8开始的线 跟随从结点 开始的线
1 8 3 10 6 9 7 2 12
什么是 thread(11)?Biblioteka 11543
跟随从结点8开始的线 跟随从结点 开始的线
1 8 3 10 6 9 7 2 12
什么是 thread(6)?
11
5
44
停止规则
1
停止规则: 停止规则 当depth(当 当 前结点) 前结点 ≤ depth(8)的时 的时 候停止
为了计算流,向上 为了计算流, 迭代树, 迭代树,寻找流能 唯一确定的弧. 唯一确定的弧
3
2
2 4
在弧(5,3)中的流是 中的流是 在弧 什么? 什么?
3
计算生成树流
1 1 -6 2 1 3 6 -4 7
在弧(3,2)中的流是 中的流是 在弧 什么? 什么?
3
2
2 4
3
5 3
4
计算生成树流
1 1 -6 2 7 6 -4
7
depth = 1
3 10
8 6
depth = 1
2
11

运筹学术语(新版11)

运筹学术语(新版11)

翻译以下英文术语,并深入了解术语的含义。

1.optimal solution:最优解,使目标函数取得最大值的可行解。

P352.objective function:目标函数,指需优化的量,即欲达的目标,用决策变量的表达式表示。

P123.feasible region:可行域,指所有可行解的集合。

P284. simplex method:单纯形法:是一种迭代的算法,其核心思想是不仅将取值范围限制在顶点上,而且保证每换一个顶点,目标函数值都有所改善.P1175. BF solutions:基可行解,满足变量非负约束条件的基解称为基可行解。

P1816. sensitivity analysis:敏感性分析:指对系统或事物因周围条件变化显示出来的敏感程度的分析。

P1467. algorithm:算法,指系统的求解过程。

p1078. spanning tree:生成树,若有限图的生成子图是一棵树,则称为该图的生成树。

树指不含有圈的连通网。

P3799. states:状态,各阶段开始时的客观条件. P44510.directed arc:有向弧,指通过一条弧的流只有一个方向的弧。

P37611. unbounded:无界,指约束条件不能阻止目标函数值在有利的方向上(正的或者负的)增长。

P3512. CPF solution:顶点(角点)可行解,指位于可行域顶点的解。

P3713. functional constraints:约束条件,指决策变量取值时受到的各种资源条件的限制,通常表达为含决策变量的等式或不等式。

P3414 multiple optimal solutions:多个最优解的问题,指有无穷多解,每一个解都有相同的目标函数值的问题。

P12215. slack variable:松弛变量,添加x i到约束条件的不等式中使其变为等式的变量P10816. augmented solution:增广解,指原始变量(决策变量)取值再加入相应的松弛变量取值后而形成的解。

12-Simplex method单纯性法

12-Simplex method单纯性法

Example
find the extreme points adjacent to x = (1, 0) (for example on p. 12–6) 1. try to remove k = 1 from active set J = {1, 2} • compute ∆x 0 −1 −1 −1 ∆x 1 ∆x 2 = −1 0 =⇒ ∆x = (−1, 1)
• x ˆ = x+α ˆ ∆x is feasible with active constraints J = (J \ {k }) ∪ I , where I = {i | aT i ∆x bi − a T i x > 0, =α ˆ} T a i ∆x
• x ˆ is an extreme point (rank(AJ ) = n): take any j ∈ I ; since aT j ∆ x > 0, aT i ∆x = 0 for i ∈ J \ {k }
1 • therefore x can be written as x = A− J bJ , where bJ = (bi1 , bi2 , . . . , bin )
an extreme point is degenerate if more than n inequalities are active at x note: • extremality is a geometric property (of the set P = {x | Ax ≤ b}) • (non-)degeneracy also depends on the description of P (i.e., A and b)
Simplex method
x1 x2

Simplex Method

Simplex Method
第2讲
表格单纯形法 人工变量法
单纯形法
单纯形法的一般原理
线性规划问题的进一步讨论 改进单纯形法
2.1
• • • • • • 1 2 3 4 5 6
单纯形法的一般原理
引例 初始基可行解的确定 最优性检验 基变换 迭代(旋转运算) 解的判别定理
在上一讲中,我们已经知道,若LP问题有最优解,必在 某个顶点上达到。即在某个基本可行解上的达到最优解。 因此最容易想到的是:对LP问题,把所有基本可行解找出 来,然后逐个进行比较,求出最优解。我们称之为“枚举 法”。但此法在决策变量较多的时是不可行的,因为基本 m C n ,但随着m,n的增大迅速地增大,使得 可行解的个数 枚举法事实上不可行。如
1 2 3
(1 6)
1 引例
高斯消去法
• 将(1-6)式中x2的系数列向量变换为单位列向量。 其运算步骤是: • ③′=③/4;①′=①-2×③′;②′=②, • 并将结果仍按原顺序排列有:
1 x3 2 x1 x5 2 x4 16 4 x1 1 x2 3 x5 4
P x
j 1 j
n
j
b
xj 0
的系数构成的列向量Pj(j=1,2,…,n)中,通过直接观察,找出一 个初始可行基
1 1 B P , P2 , Pm 1 1
2 初始基可行解的确定
(2)加松弛变量
对所有约束条件为“≤”形式的不等式,利用化标准型的方 法,在每个约束条件的左端加上一个松弛变量。经过整理, 重新对xj及aij (i=1,2,…,m; j=1,2,…,n)进行编号,则可得下列 方程组(x1,x2,…,xm 为松弛变量):m 1 am xn

求解线性规划的单纯形法(1)

求解线性规划的单纯形法(1)
Q3:如何找下一个相邻的基本可行解?
◦ 确定移动的方向 ◦ 确定在何处停下 ◦ 确定新的基本可行解
求解线性规划的单纯形法
例:用单纯形法求解以下线性规划问题
求解线性规划的单纯形法 首先将模型转化成标准形式
求解线性规划的单纯形法
Q1:确定初始的基本可行解
• 选择原点:
– 令决策变量 x1= x2 = 0得:X0 = ( 0,0,3,4)T
xx33 = 1 -x2 ≥=0 → x2 ≤ 1/1
x4 = 2 -x2 ≥ 0 → x2 ≤ 2/1
离基(最小比值规则) :
x2 ≤ min {1/1,2/1 } = 1 x2 = min {1/1,2/1 } = 1
x3为离基变量
X1 = ( 0, 1, 0, 1)T
求解线性规划的单纯形法
3
x1 + 2x2
+ x4 =4
初等数学 变换
新的BF解 x1 =0,x4 =0 x3 =?1 ,x2 =2
新方程
Z x1/2
+ 3x4 /2 =6
x1/2 + x3 - x4 / 2 1
x1/2 + 2x2 + x4 /2 =2
非最优解!
• 寻找新的基本可行解:
– 初等数学变换
非基变量 x1的系数 X*=(0, 2, 1, 0) 是正数!
x1 2
x1 2

x1 4
初等行变换
x3

0
确定x3为离基变量
Z*=7,X*=(2,1,0,0)
非基变量系 数>0,最优!
Z x1/2
+ 3x4 /2 =6
x1/2 + x3 - x4 / 2 1

Network Simplex Method网络单纯形法

Network Simplex Method网络单纯形法
– For all ji in T, yi = yj + cji – If the price was lower then you would lose
money – If the price was higher then a competitor could
Network Simplex Method
Fatme Elmoukaddem Jignesh Patel Martin Porcelli
Outline
• Definitions • Economic Interpretation • Algebraic Explanation • Initialization • Termination
Network
• A network is a collection of nodes connected by arcs
• Each node has a demand for the commodity
– Nodes that are sources of the commodity have a negative demand
• Has a nice economic interpretation
Economic Interpretation
• Given a spanning tree T and an associated feasible tree solution x
• Imagine you are the only company that produces the commodity
– The sum of all the demands is zero
• Each arc has a cost to ship a unit of commodity over it

单纯形算法一般原理

单纯形算法一般原理

单纯形算法的一般原理单纯形法的基本思路是有选择地取基本可行解,即是从可行域的一个极点出发,沿着可行域的边界移到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。

考虑到如下线性规划问题:其中A一个m ×n 矩阵,且秩为m ,b总可以被调整为一个m 维非负列向量,C为n 维行向量,X为n 维列向量。

根据线性规划基本定理:如果可行域D={ X∈Rn / AX=b,X≥0}非空有界,则D上的最优目标函数值Z=CX一定可以在D的一个顶点上达到。

这个重要的定理启发了Dantzig 的单纯形法,即将寻优的目标集中在D 的各个顶点上。

Dantzig 的单纯形法把寻优的目标集中在所有基本可行解(即可行域顶点)中。

其基本思路是从一个初始的基本可行解出发,寻找一条达到 最优基本可行解的最佳途径。

单纯形法的一般步骤如下:(1)寻找一个初始的基本可行解。

(2)检查现行的基本可行解是否最优,如果为最优,则停止迭代,已找到最优解,否则转一步。

(3)移至目标函数值有所改善的另一个基本可行解,然后转会到步骤(2)。

求解思想如下图所示:maxZ=CX AX=b X 0⎧⎨≥⎩确定初始的基本可行解等价于确定初始的可行基,一旦初始的可行基确定了,那么对应的初始基本可行解也就唯一确定为了讨论方便,不妨假设在标准型线性规划中,系数矩阵A中前m 个系数列向量恰好构成一个可行基,即A=(BN),其中B=(P1,P2,…Pm )为基变量x1,x2,…xm 的系数列向量 构成的可行基,N=(Pm+1,Pm+2, …Pn)为非基变量xm+1,xm+2, …xn 的 系数列向量构成的矩阵。

那么约束方程AX=b 就可表示为:用可行基B的逆阵B-1左乘等式两端,再通过移项可推得:若令所有非基变量 ,则基变量由此可得初始的基本可行解B B N N X AX=(BN)=BX +NX =b X ⎛⎫ ⎪⎝⎭-1-1B N X =B b-B NX N X =0-1B X =B b 1B b X=0-⎛⎫ ⎪⎝⎭-1-1-1B N B N N B AX=b BX +NX =b X =B b-B NX X =0,X =B b →→→● 问题:➢ 要判断m 个系数列向量是否恰好构成一个基并不是一件容易的事。

单纯形法

单纯形法

z z0 j x j
j m 1
n(1.2.21)称 j ( j m 1 ,, n ) 为检验数。
定理1.2.1 设(1.2.17)和(1.2.21)是最大
化线性规划问题关于当前基本可行解x*的两个典式。
若关于非基变量的所有检验数σ j≤0成立,则当前
基本可行解x*就是最优解。 将σ j≤0称为最大化问题的最优性准则。显然, 对于最小化问题最优性准则应是σ j≥0。
30x1 + x3 = 160 - 20x2 5x1 = 15 - x2 - x4 (1.2.6) x1 + x5 = 4 进一步分析,用消元法将(1.2.6)中x1的系数列向量 (30,5,1)T 化成(1.2.3)中x4的系数矩阵(0,1,0)T
的形式。得到:
x3 = 70 - 14x2 + 6x4 x1 = 3 - 1/5x2 - 1/5x4
(b'1, b'2, … , b'm ,0 , …, 0)T是当前基本可行解。若有一个非
基变量xm+t的检验数σ
m+t>0,且xm+t对应的系数列向量
P'm+t=(a'1,m+t,a'2,m+t,„,a'm,m+t)中,所有分量a'i,m+t≤0,则该 线性规划问题具有无界解(或称无最优解)。
1.2.2 单纯形表
x2= 5 - 1/14x3 + 3/7x4
x1 = 2 + 1/70x3 - 2/7x4
(1.2.11)
x5 = 2 - 1/70x3+ 2/7x4
将(1.2.11)代入目标函数式,得到用非基变 量x 3

《管理运筹学》求解线性规划的单纯形法

《管理运筹学》求解线性规划的单纯形法

– 基变量在目标函数中的系数为0
– 非基变量在目标函数中的系数<=0.
(注意:目标函数形式 z = 2x1 + 3x2)
– 若目标函数为方程形式:
检验数
z - 2x1 - 3x2=0,则需非基变量的系数>=0
求解线性规划的单纯形法
Q3:如何找下一个相邻的基本可行解
• 迭代步骤1:确定移动的方向
确定进基变量
例:z = 2x1 + 3x2 – 选择 x1 ?Z的增长率=2 – 选择 x2 ?Z的增长率=3 – 3>2,选择x2!
• 进基变量的选择:
检验数的 绝对值哦
~~~
– 选择非基变量的系数最大的!
求解线性规划的单纯形法
Q3:如何找下一个相邻的基本可行解
• 迭代步骤2:确定在何处停下 – 增加x2 的值, x1 =0
• 选择单元阵作为初始基:
1 1 1 0
A 1
2
0
1


(a1
,
a2
,
a3
,
a4
)
1 0
B


0
1


(a3
,
a4
)
令非基变量 x1= x2 = 0得:X0 = ( 0,0,3,4)T
求解线性规划的单纯形法
Q2:最优性检验
• 非最优:增加非基变量的值,可以使 得目标函数Z值增加
x1,
x2,
x3,
=1 +x4 =2 x4 ≥0
然后确定初始基本可行解
X0 = (0, 0, 1, 2)T z0 = 0
最优性检验:一切σj ≥ 0 ?
当前解 X0 非优; 须由X0 转化为另一个基本可行解 X1。 思路:让X0 中的一个非基变量进基,去替换原来的一个基变量(离基)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Transshipment Problem
• Find the cheapest way to ship prescribed amounts of a commodity from specified origins to specified destinations through a transportation network
• Has a nice economic interpretation
Economic Interpretation
• Given a spanning tree T and an associated feasible tree solution x
• Imagine you are the only company that produces the commodity
• Requirements
– The amount entering a node minus the amount leaving it is equal to its demand
– The amount shipped over any arc is nonnegative
Example
-5 1
3 1
0
12
1 43
33 0
0
2 5 -2
LP Formulation
• Let c be a row vector and x a column vector indexed by the set of arcs
– cij is the cost of shipping over ij – xij is the amount to ship over ij
– The sum of all the demands is zero
• Each arc has a cost to ship a unit of commodity over it
Example
-5 1
4 5
3
12
7 43
Hale Waihona Puke 33 195 5 -2
Schedule
• A schedule describes how much of the commodity is shipped over each arc
Example
-5 1
4 5
3
12
7
43
33 1
9
5 5 -2
12 13 14 23 25 35 54
1 1 1 1 0 0 0 0
2

1
0
0 1 1 0
0

3 0 1 0 1 0 1 0
4

0
0
1
0
0
0
1

5 0 0 0 0 1 1 1
LP Formulation (2)
Network Simplex Method
Fatme Elmoukaddem Jignesh Patel Martin Porcelli
Outline
• Definitions • Economic Interpretation • Algebraic Explanation • Initialization • Termination
• What price should you sell the commodity for at each node?
– Assume that you ship according to x
Price Setting
• You want to set the price yi at node i
minimize cx subject to
ij xij 0
Ax b
bi 0
i
Tree Solution
• A spanning tree of a network is a network containing every node and enough arcs such that the undirected graph it induces is a tree
– For all ji in T, yi = yj + cji – If the price was lower then you would lose
• Let b be a column vector indexed by the set of nodes
– bi is the demand at i
Example
-5 1
4 5
3
12
7
43
33 1
9
5 5 -2
c 54739 1 5
x 12

x 13

x


i
LP Formulation (2)
• Let A be the matrix indexed by the set of nodes x the set of arcs
– Ai,jk is either
• -1 if i=j • 1 if i=k • 0 otherwise
• A is known as the incidence matrix of the network
• A feasible tree solution x associated with a spanning tree T is a feasible solution with
– xij = 0 if ij is not an arc of T
Network Simplex Method
• Search through feasible tree solutions to find the optimal solution
Network
• A network is a collection of nodes connected by arcs
• Each node has a demand for the commodity
– Nodes that are sources of the commodity have a negative demand
x x
14 23


x 25

x 35
x 54
b 5133 2
LP Formulation
minimize cx cij xij subject to
ij
ij
xij 0
i
x ji xij bi
ji
ij
bi 0
相关文档
最新文档