高中数学高二《反证法》公开课表格式教案设计
反证法教案高中数学
反证法教案高中数学
一、教学内容:反证法
二、教学目标:
1. 了解反证法的基本概念和应用;
2. 能够灵活运用反证法解决问题。
三、教学重点和难点:
1. 反证法的基本原理和思想;
2. 如何正确运用反证法进行证明。
四、教学准备:
1. 教材:高中数学教材;
2. 教具:黑板、彩色粉笔、教学PPT等。
五、教学步骤:
1. 引入:通过一个生活中的例子引发学生对反证法的兴趣,引出反证法的概念。
2. 讲解:讲解反证法的基本原理和思想,以及在数学证明中的应用方法。
3. 练习:设计一些简单的例题,让学生通过反证法进行证明。
4. 拓展:提供一些更具挑战性的问题,引导学生灵活运用反证法解决问题。
5. 总结:对本节课内容进行总结,并强调反证法在解决问题中的重要性。
六、课后作业:
1. 完成课堂练习题,并写出解题思路;
2. 查找一些实际问题,尝试用反证法进行证明。
七、教学反思:
在教学中要注重引导学生思考和灵活运用反证法,培养其逻辑思维和解决问题的能力,同时要注重培养学生的合作意识和自主学习能力。
人教课标版高中数学选修1-2:《反证法》教案-新版
2.2.2 反证法一、教学目标1.核心素养培养学生用反证法证明简单问题的推理技能,进一步培养分析能力、逻辑思维能力及解决问题的能力2.学习目标(1)理解反证法的概念(2)体会反证法证明命题的思路方法及反证法证题的步骤(3)会用反证法证明简单的命题3.学习重点对反证法的概念和三个步骤的理解与掌握.4.学习难点理解“反证法”证明得出“矛盾的所在”即矛盾依据.二、教学设计(一)课前设计【学习过程】1.预习任务任务1预习教材P42—P43,思考:什么是反证法?你以前学过反证法吗?任务2反证法证明问题的步骤是什么?值得注意的问题哪些?2.预习自测1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()①结论相反的判断,即假设②原命题的条件③公理、定理、定义等④原结论A.①②B.①②④C.①②③D.②③答案:C【知识点:三角形内角和的性质,命题的否定,反证法】由反证法的定义可知应选C.2.如果两个实数之和为正数,则这两个数()A.一个是正数,一个是负数B.两个都是正数C.两个都是非负数D.至少有一个是正数答案:D3.已知a+b+c>0,ab+bc+ca>0,abc>0,用反证法求证a>0,b>0,c>0时的假设为()A.a<0,b<0,c>0B.a≤0,b>0,c>0C.a,b,c不全是正数D.abc<0答案:C4.否定“至多有两个解”的说法中,正确的是()A.有一个解B.有两个解C.至少有两个解D.至少有三个解答案:D(二)课堂设计1.知识回顾著名的“道旁苦李”的故事:王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友摘了李子一尝,原来是苦的.他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这棵树上却结满了李子,所以李子一定是苦的.”王戎的论述运用了什么推理思想?王戎的推理方法是:假设李子不苦,则因树在“道”边,李子早就被别人采摘而没有了,这与“多李”产生矛盾.所以假设不成立,李为苦李.2.问题探究问题探究一反证法的概念●活动一1.什么是反证法?引例:证明:在一个三角形中至少有一个角不小于60°.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个不小于60°.∆的三个内角∠A,∠B,∠C都小于60°,证明:假设ABC则有∠A <60°,∠B < 60°,∠C <60°,∠A+∠B+∠C<180°这与三角形内角和等于180°相矛盾.所以假设不成立,所求证的结论成立.先假设结论的反面是正确的,然后通过逻辑推理,推出与公理、已证的定理、定义或已知条件相矛盾,说明假设不成立,从而得到原结论正确.这种证明方法就是——反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.反证法也称归谬法●活动二1.常用词语的反义词从上面的引例可以看出:用反证法证明问题时,都是得到一系列矛盾结果,会出现一些反义词,因此,同学们要注意常见词语的反义词,你知道哪些反义词呢?下面是一些常见反义词:问题探究二反证法的证题的基本步骤●活动一反证法的证明过程从前面的引例中你可以总结出反证法证明问题有哪些步骤?反证法的证明过程:否定结论——推出矛盾——肯定结论,即分三个步骤:反设—归谬—存真反设——假设命题的结论不成立;归谬——从假设出发,经过一系列正确的推理,得出矛盾;存真——由矛盾结果,断定反设不成立,从而肯定原结论成立.●活动二归谬矛盾的方法思考一下,归谬矛盾的方法有哪些?归谬矛盾主要有以下方法:(1)与已知条件矛盾.(2)与假设矛盾或自相矛盾.(3)与已有公理、定理、定义、事实矛盾.●活动三反证法证明问题的适用范围同学们知道用反证法证明问题的范围有哪些吗?是不是所有的问题反证法都适用?反证法证明问题的适用范围(1)否定性命题;(2)限定式命题;(3)无穷性命题;(4)逆命题;(5)某些存在性命题;(6)全称肯定性命题;(7)一些不等量命题的证明;(8)基本命题;(9)结论以“至多……”“至或少……”的形式出现的命题等.问题探究三反证法可以解决哪些问题?●活动一用反证法证明否(肯)定式命题例1 设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.【知识点:函数的零点,命题的否定,反证法;数学思想:函数与方程】详解:假设f(x)=0有整数根n,则an2+bn+c=0(n∈Z).而f(0),f(1)均为奇数,即c 为奇数,a+b为偶数,则an2+bn=-c为奇数,即n(an+b)为奇数.∴n,an+b均为奇数.又a+b为偶数,∴an-a为奇数,即a(n-1)为奇数,∴n-1为奇数,这与n为奇数矛盾.∴f(x)=0无整数根.点拔:(1)此题为否定形式的命题,直接证明很困难,可选用反证法.证题的关键是根据f(0),f(1)均为奇数,分析出a,b,c的奇偶情况,并应用.(2)对某些结论为肯定形式或者否定形式的命题的证明,从正面突破较困难时,可用反证法.通过反设将肯定命题转化为否定命题或将否定命题转化为肯定命题,然后用转化后的命题作为条件进行推理,推出矛盾,从而达到证题的目的.●活动二用反证法证明“唯一性”命题例2 若函数f(x)在区间[a,b]上的图象连续不断开,f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有一个零点.【知识点:函数的零点,函数的单调性,命题的否定,反证法】详解:由于f(x)在[a,b]上的图象连续不断开,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f (x )在(a ,b )内至少存在一个零点,设零点为m ,则f (m )=0,假设f (x )在(a ,b )内还存在另一个零点n ,且n ≠m .,使f (n )=0,若n >m ,则f (n )>f (m ),即0>0,矛盾;若n <m ,则f (n )<f (m ),即0<0,矛盾.因此假设不正确,即f (x )在(a ,b )内有且只有一个零点.点拔:证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”、“只有一个”、“唯一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其唯一性就较简单明了.●活动三 用反证法证明“至多、至少”问题例3 已知x ,y >0,且x +y >2.求证:1+x y ,1+y x 中至少有一个小于2.【知识点:不等式的性质,不等式的证明,命题的否定,反证法】详解: 假设1+x y ,1+y x 都不小于2,即1+x y ≥2,1+y x ≥2.∵x >0,y >0,∴1+x ≥2y,1+y ≥2x .∴2+x +y ≥2(x +y ).即x +y ≤2,这与已知x +y >2矛盾.∴1+x y ,1+y x 中至少有一个小于2.点拔:反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个等.例4 设二次函数2()f x x px q =++,求证:(1),(2),(3)f f f 中至少有一个不小于12. 【知识点:不等式的性质,绝对值不等式的性质,不等式的证明,命题的否定,反证法】 详解:假设(1),(2),(3)f f f 都小于12,则 .2)3()2(2)1(<++f f f (1)另一方面,由绝对值不等式的性质,有2)39()24(2)1()3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确.点拔:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行.议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况.试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?●活动四利用反证法证题时,假设错误而致误例5 已知a,b,c是互不相等的非零实数.求证:三个方程ax2+2bx+c=0,bx2+2cx+a =0,cx2+2ax+b=0至少有一个方程有两个相异实根.【错解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac<0,Δ2=4c2-4ab<0,Δ3=4a2-4bc<0,相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2<0,即(a-b)2+(b-c)2+(c-a)2<0,此不等式不能成立,所以假设不成立,即三个方程中至少有一个方程有两个相异实根.【知识点:方程的根,反证法】【错因分析】上面解法的错误在于认为“方程没有两个相异实根就有Δ<0”,事实上,方程没有两个相异实根时Δ≤0.【正解】假设三个方程都没有两个相异实根,则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,即(a-b)2+(b-c)2+(c-a)2≤0,(*)由题意a,b,c互不相等,所以(*)式不能成立.所以假设不成立,即三个方程中至少有一个方程有两个相异实根.点拔:用反证法证题要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.3.课堂总结【知识梳理】(1)反证法:假设原命题的反面正确,根据已知条件及公理、定理、定义,按照严格的逻辑推理导出矛盾.从而说明假设不正确,得出原命题正确.(2)反证法是间接证明的一种方法,在证明否定性命题、唯一性命题和存在性命题时运用反证法比较简便.(3)反证法的基本步骤是:①反设——假设命题的结论不成立,即假设原结论的反面为真;②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾的结果;③存真——由矛盾结果,断定反设不真,从而肯定结论成立.【难点突破】用反证法证题时,应注意的事项:(1)周密考察原命题结论的否定事项,防止否定不当或有所遗漏.(2)推理过程必须完整,否则不能说明命题的真伪性.(3)在推理过程中,要充分使用已知条件,否则推不出矛盾,或者不能断定推出的结果是错误的.(4)反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个.(5)归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.4.随堂检测1.用反证法证明“如果a>b,那么3a>3b”的假设内容应是()A.3a=3bB.3a<3bC.3a≤3bD.3a≥3b答案:C【知识点:不等式的性质,绝对值不等式的性质,不等式的证明,命题的否定,反证法】“大于”的对立面为“小于等于”,故应假设“3a ≤3b ”.2.否定“任何一个三角形的外角都至少有两个钝角”时正确的说法为( )A .存在一个三角形,其外角最多有一个钝角B .任何一个三角形的外角都没有两个钝角C .没有一个三角形的外角有两个钝角D .存在一个三角形,其外角有两个钝角答案:A【知识点:三角形的性质,命题的否定,反证法】原命题的否定为:存在一个三角形,其外角最多有一个钝角.3.用反证法证明命题:若a 、b 是实数,且|a -1|+|b -1|=0,则a =b =1时,应作的假设是________.答案:a ≠1或b ≠1.【知识点:命题的否定,反证法】∵“a =b =1”的否定为“a ≠1或b ≠1”,故应填a ≠1或b ≠1.4.证明方程2x =3有且仅有一个实根.【知识点:命题的否定,反证法】证明:∵2x =3,∴x =32,∴方程2x =3至少有一个实根.设x 1,x 2是方程2x =3的两个不同实根,则⎩⎨⎧2x 1=3, ①2x 2=3, ② 由①-②得2(x 1-x 2)=0,∴x 1=x 2,这与x 1≠x 2矛盾.故假设不正确,从而方程2x =3有且仅有一个实根.三、智能提升★基础型 自主突破1.(2013·海口高二检测)用反证法证明命题:三角形三个内角至少有一个不大于60°时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°答案:B三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°,故B正确.2.实数a,b,c不全为0等价于()A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0答案:D【知识点:命题的否定,反证法】实数a,b,c不全为0,即a,b,c至少有一个不为0,故应选D.3.(1)已知p3+q3=2,求证p+q≤2.用反证法证明时,可假设p+q≥2.(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下结论正确的是()A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确答案:D【知识点:命题的否定,反证法】(1)的假设应为p+q>2;(2)的假设正确.答案是D4.下列命题不适合用反证法证明的是()A.同一平面内,分别与两条相交直线垂直的两条直线必相交B.两个不相等的角不是对顶角C.平行四边形的对角线互相平分D.已知x,y∈R,且x+y>2,求证:x,y中至少有一个大于1答案:C【知识点:命题的否定,反证法】A中命题条件较少,不易正面证明;B中命题是否定性命题,其反设是显而易见的定理;D 中命题是至少性命题,其结论包含两种情况,而反设只有一种情况,适合用反证法证明.5.命题“三角形中最多只有一个内角是直角”的否定是_____________.答案:三角形中最少有两个内角是直角【知识点:三角形的性质,命题的否定,反证法】“最多”的反面是“最少”,故本题的否定是:三角形中最少有两个内角是直角.能力型 师生共研1.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c 中( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2答案:C【知识点:基本不等式,命题的否定,反证法】假设都大于-2,则1116a b c b c a+++++>-,又()112a a a a ⎡⎤+=--+≤-=-⎢⎥-⎣⎦,同理12b b +≤-,12c c +≤-, 故1116a b c b c a+++++≤-,矛盾.即a +1b ,c +1a ,b +1c 中至少有一个不大于-2,所以答案C . 2.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________. 答案:a 、b 不全为0【知识点:命题的否定,反证法】“a 、b 全为0”即“a =0且b =0”,因此它的反设为“a ≠0或b ≠0,3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.答案:③①②【知识点:三角形的性质,命题的否定,反证法】4.甲乙丙三位同学中,有一位同学做了一件好事,这时候老师问他们三人,是谁做的?甲说:"丙做的.”丙说:“不是我做的.”乙也说:“不是我做的.”如果知道他们三个人中,有两人说了假话,有一人说真话,你能判断出是谁做的吗?【知识点:推理与证明,命题的否定,反证法】解:每人讲的话中都有一句真话,一句假话.乙说:“我没有做这件事,丙也没有做这件事.”说明乙丙两人中有一人做了这件事,甲一定没做而甲说:“我没有做这件事,乙也没有做这件事.”前一句是真的,后一句一定是假的.所以,是乙做的这件好事!5.用反证法证明:无论m 取何值,关于x 的方程x 2-5x +m =0与2x 2+x +6-m =0至少有一个有实数根.【知识点:推理与证明,命题的否定,反证法】解:假设存在实数m ,使得这两个方程都没有实数根,则⎩⎨⎧ Δ1=25-4m <0,Δ2=1-8(6-m )<0,解得⎩⎪⎨⎪⎧ m >254,m <478,无解.与假设存在实数m 矛盾.故无论m 取何值,两个方程中至少有一个方程有实数根.6.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.【知识点:不等式的证明,命题的否定,反证法】证明: 假设a <0,由abc >0得bc <0,由a +b +c >0,得b +c >-a >0,于是ab +bc +ca =a (b +c )+bc <0,这与已知矛盾.又若a =0,则abc =0,与abc >0矛盾,故a >0,同理可证b >0,c >0.探究型 多维突破1.若x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,则a ,b ,c 中是否至少有一个大于0?请说明理由.【知识点:推理与证明,实数非负性,命题的否定,反证法】解:假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0.而a +b +c =x 2-2y +π2+y 2-2z +π3+z 2-2x +π6=(x -1)2+(y -1)2+(z -1)2+π-3,因为π-3>0,且无论x ,y ,z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,所以a +b +c >0.这与假设a +b +c ≤0矛盾.因此,a,b,c中至少有一个大于0.2.如下图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;(2)用反证法证明:直线ME与BN是两条异面直线.【知识点:线面垂直,面面垂直,异面直线,命题的否定,反证法】解:(1)如图,取CD的中点G,连接MG,NG,∵ABCD,DCEF为正方形,且边长为2,∴MG⊥CD,MG=2,NG=2.∵平面ABCD⊥平面DCEF,∴MG⊥平面DCEF.∴MG⊥GN.∴MN=MG2+GN2=6.(2)证明假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN∩平面DCEF=EN.由已知,两正方形ABCD和DCEF不共面,故AB⊄平面DCEF.又AB∥CD,∴AB∥平面DCEF,∴EN∥AB,又AB∥CD∥EF.∴EF∥NE,这与EF∩EN=E矛盾,故假设不成立.∴ME与BN不共面,它们是异面直线.(四)自助餐1.用反证法证明命题“若a,b∈N,ab可以被7整除,则a,b中至少有一个能被7整除”,其假设正确的是()A.a,b都能被7整除B.a,b都不能被7整除C.a不能被7整除D.a,b中有一个不能被7整除答案:B【知识点:推理与证明,命题的否定,反证法】“至少有一个”的否定是“一个也没有”.所以选B.2.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形的内角中最多有一个钝角”的反面是“三角形的内角中没有钝角”,其中正确的叙述有()A.0个B.1个C.2个D.3个答案:B【知识点:推理与证明,命题的否定,反证法】①错,应为a≤b.②对.③错,应为三角形的外心在三角形内或三角形的边上.④错,应为三角形的内角中有2个或3个钝角.即选B.3.设正实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于()A.1 3B.1 2C.3 4D.2 5答案:A【知识点:推理与证明,命题的否定,反证法】假设a,b,c中至少有一个数不小于x的反命题成立,即假设a,b,c都小于x,即a<x,b<x,c<x,∴a+b+c<3x.∵a+b+c=1,∴3x>1.∴x>13,若取x=13就会产生矛盾.故选A.4.下列命题错误的是()A.三角形中至少有一个内角不小于60°B.四面体的三组对棱都是异面直线C.闭区间[a,b]上的单调函数f(x)至多有一个零点D.设a、b∈Z,若a、b中至少有一个为奇数,则a+b是奇数答案:D【知识点:推理与证明,命题的否定,反证法】a+b为奇数⇔a、b中有一个为奇数,另一个为偶数,故D错误.因此选D.5.已知α∩β=l,a⊂α,b⊂β,若a,b为异面直线,则()A.a,b都与l相交B.a,b中至少有一条与l相交C.a,b中至多有一条与l相交D.a,b都不与l相交答案:B【知识点:推理与证明,命题的否定,反证法】逐一从假设选项成立入手分析,易得B是正确选项,故选B.6.以下各数不能构成等差数列的是()A.3,4,5B.2,3, 5C.3,6,9D.2,2, 2答案:B【知识点:推理与证明,命题的否定,反证法】假设2,3,5成等差数列,则23=2+5,即12=7+210,此等式不成立,故2,3,5不成等差数列.7.“任何三角形的外角都至少有两个钝角”的否定应是________.答案:存在一个三角形,其外角最多有一个钝角【知识点:命题的否定,反证法】“存在一个三角形,其外角最多有一个钝角”.“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.8.设二次函数f(x)=ax2+bx+c(a≠0)中,a、b、c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.【知识点:函数的奇偶性,推理与证明,命题的否定,反证法】证明设f(x)=0有一个整数根k,则ak2+bk=-c.①又∵f(0)=c,f(1)=a+b+c均为奇数,∴a+b为偶数,当k为偶数时,显然与①式矛盾;当k为奇数时,设k=2n+1(n∈Z),则ak2+bk=(2n+1)·(2na+a+b)为偶数,也与①式矛盾,故假设不成立,所以方程f(x)=0无整数根.9.如图,已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a.求证:b与c是异面直线.【知识点:线面平行,线线平行,推理与证明,命题的否定,反证法】证明:证明:假设b,c不是异面直线,则①b∥c;②b∩c=B.①若b∥c,∵a∥c,∴a∥b,与a∩b=A矛盾,∴b∥c不成立.②若b∩c=B,∵c⊂β,∴B∈β.又A∈β,A∈b,∴b⊂β.又b⊂α,∴α∩β=b.又α∩β=a,∴a与b重合.这与a∩b=A矛盾.∴b∩c=B不成立.∴b与c是异面直线.10.若下列方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.【知识点:判别式,不等式组的解法,命题的否定,反证法】解:设三个方程均无实根,则有⎩⎨⎧ Δ1=16a 2-4(-4a +3)<0,Δ2=(a -1)2-4a 2<0,Δ3=4a 2-4(-2a )<0,解得⎩⎪⎨⎪⎧ -32<a <12,a <-1,或a >13,-2<a <0,所以-32<a <-1. 所以当a ≥-1,或a ≤-32时,三个方程至少有一个方程有实根.11.已知函数f (x )=x 22x -2,如果数列{a n }满足a 1=4,a n +1=f (a n ),求证:当n ≥2时,恒有a n <3成立.【知识点:推理与证明,命题的否定,反证法】证明:法一(直接证法) 由a n +1=f (a n )得a n +1=a 2n 2a n -2, ∴1a n +1=-2a 2n +2a n =-2⎝ ⎛⎭⎪⎫1a n -122+12≤12, ∴a n +1<0或a n +1≥2;(1)若a n +1<0,则a n +1<0<3,∴结论“当n ≥2时,恒有a n <3”成立;(2)若a n +1≥2,则当n ≥2时,有a n +1-a n =a 2n 2a n -2-a n =-a 2n +2a n 2(a n -1)=-a n (a n -2)2(a n -1)≤0, ∴a n +1≤a n ,即数列{a n }在n ≥2时单调递减;由a 2=a 212a 1-2=168-2=83<3, 可知a n ≤a 2<3,在n ≥2时成立.综上,由(1)、(2)知:当n ≥2时,恒有a n <3成立.法二:(用反证法) 假设a n ≥3(n ≥2),则由已知得a n +1=f (a n )=a 2n 2a n -2, ∴当n ≥2时,a n +1a n=a n 2a n -2=12·⎝ ⎛⎭⎪⎫1+1a n -1≤12⎝ ⎛⎭⎪⎫1+12=34<1,(∵a n -1≥3-1), 又易证a n >0,∴当n ≥2时,a n +1<a n ,∴当n >2时,a n <a n -1<…<a 2;而当n =2时,a 2=a 212a 1-2=168-2=83<3,∴当n ≥2时,a n <3;这与假设矛盾,故假设不成立,∴当n≥2时,恒有a n<3成立.三、数学视野边际分析法是这一时期产生的一种经济分析方法,同时形成了经济学的边际效用学派,代表人物有瓦尔拉(L.Walras)、杰文斯(W.S.Jevons)、戈森(H.H.Gossen)、门格尔(C.Menger)、埃奇沃思(F.Y.Edgeworth)、马歇尔(A.Marshall)、费希尔(I.Fisher)、克拉克(J.B.Clark)以及庞巴维克(E.von Bohm-Bawerk)等人.边际效用学派对边际概念作出了解释和定义,当时瓦尔拉斯把边际效用叫做稀缺性,杰文斯把它叫做最后效用,但不管叫法如何,说的都是微积分中的“导数”和“偏导数”.西方经济学中,边际分析方法是最基本的分析方法之一,是一个比较科学的分析方法.西方边际分析方法的起源可追溯到马尔萨斯.他在1814年曾指出微分法对经济分析所可能具有的用途.1824年,汤普逊(W.Thompson)首次将微分法运用于经济分析,研究政府的商品和劳务采购获得最大利益的条件.功利主义创始人边沁(J.Bentham)在其最大快乐和最小痛苦为人生追求目标的信条中,首次采用最大和最小术语,并且提出了边际效应递减的原理.边际分析法是把追加的支出和追加的收入相比较,二者相等时为临界点,也就是投入的资金所得到的利益与输出损失相等时的点.如果组织的目标是取得最大利润,那么当追加的收入和追加的支出相等时,这一目标就能达到.边际分析法的数学原理很简单.对于离散discrete情形,边际值marginal value为因变量变化量与自变量变化量的比值;对于连续continuous情形,边际值marginal value为因变量关于某自变量的导数值.所以边际的含义本身就是因变量关于自变量的变化率,或者说是自变量变化一个单位时因变量的改变量.在经济管理研究中,经常考虑的边际量有边际收入MR、边际成本MC、边际产量MP、边际利润MB等.。
人教版高中数学反证法教案
人教版高中数学反证法教案
教学内容:反证法
教学目标:
1. 了解反证法的基本概念和原理;
2. 能够熟练运用反证法证明数学命题;
3. 培养学生的逻辑思维能力和数学推理能力。
教学重点:反证法的基本原理和运用。
教学难点:运用反证法证明数学命题。
教学准备:教案、黑板、粉笔、教学课件等。
教学过程:
Step 1:导入新知识(5分钟)
教师简单介绍反证法的基本概念和原理,引起学生对反证法的兴趣。
Step 2:学习反证法(15分钟)
教师通过具体案例,详细讲解反证法的基本原理和运用方法,引导学生理解反证法的逻辑推理过程。
Step 3:练习应用(20分钟)
教师设计一些练习题,要求学生用反证法证明数学命题,让学生在实践中掌握反证法的运用技巧。
Step 4:总结回顾(5分钟)
教师对本节课的内容进行总结回顾,并再次强调反证法的重要性和实际应用价值。
Step 5:作业布置(5分钟)
布置相关作业,加深学生对反证法的理解和掌握程度。
教学反思:
本节课通过简单易懂的方式,引导学生了解反证法的基本原理和运用方法,培养了学生的逻辑思维能力和数学推理能力。
在后续的教学中,应多加练习,提高学生对反证法的应用能力。
高中数学《反证法》教案(北师大版选修
高中数学《反证法》教案(北师大版选修)一、教学目标1.理解并掌握反证法的基本概念和应用方法;2.能够熟练运用反证法解决数学问题;3.培养学生逻辑思维和推理能力;4.培养学生批判性思维和解决问题的能力。
二、教学重点和难点2.1 教学重点1.反证法的基本概念和原理;2.反证法的应用方法;3.反证法解决数学问题的实例。
2.2 教学难点1.理解和掌握反证法的原理;2.运用反证法解决复杂的数学问题。
三、教学内容和教学步骤3.1 反证法的基本概念反证法是一种利用逻辑推理的方法,通过假设命题的否定,推导出与已知条件或已有结论相矛盾的结论,从而证明原命题的方法。
3.2 反证法的原理反证法的原理是:如果假设命题的否定,能够推导出与已知条件或已有结论相矛盾的结论,则原命题成立。
3.3 反证法的应用方法1.假设命题的否定;2.推导出与已知条件或已有结论相矛盾的结论;3.得出原命题成立的结论。
3.4 反证法解决数学问题的实例示例1:证明根号2是无理数。
解:假设根号2是有理数,即可以表示为p/q(其中p和q互质)。
根据根号2的定义,有(p/q)^2 = 2,即p^2 = 2q^2。
根据整数的奇偶性,可知p为偶数,表示为p = 2m。
代入上述等式,得到(2m)^2 = 2q2,即4m2 = 2q2,简化得到2m2 = q^2。
根据整数的奇偶性,可知q也为偶数,与p、q互质的前提相矛盾。
所以根号2是无理数。
四、教学方法和学时安排4.1 教学方法1.讲解法:通过简洁明了的语言讲解反证法的概念、原理和应用方法;2.实例法:通过实际例子演示反证法的具体应用;3.讨论法:引导学生讨论反证法在数学问题中的应用。
4.2 学时安排本教案预计用时2课时,具体安排如下:第一课时: - 介绍反证法的基本概念和原理(20分钟) - 示例1的讲解和演示(15分钟) - 学生讨论与思考(15分钟)第二课时:- 复习上节课的内容(10分钟)- 示例2的讲解和演示(15分钟)- 学生讨论与思考(20分钟)五、教学评估5.1 自我评估教师可以通过观察学生的学习情况、听取他们的问题和解答,来进行自我评估。
2.2.2反证法(优秀经典公开课比赛教案).
2.2.2反证法(优秀经典公开课⽐赛教案).课题:2.3反证法学科:数学年级:⾼⼆班级:⼀、教材分析:本节主要研究反证法的概念以及反证法证明问题的⼀般步骤。
在上⼀节中,我们已经学习了直接证明,但是对于有的题⽬,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;或者如果从正⾯证明,需要分成多种情形进⾏分类讨论,⽽从反⾯进⾏证明,只要研究⼀种或很少的⼏种情形。
所以,教材在直接证明之后安排反证法的内容是很有必要的。
⼆、教学⽬标:1.知识与技能结合实例了解间接证明的⼀种基本⽅法——反证法,了解反证法的思考过程与特点.会⽤反证法证明数学问题.2.过程与⽅法使学⽣经历“总结归纳反证法的操作步骤”的过程,培养学⽣归纳、总结、推理论证的能⼒.增强学⽣的数学应⽤意识和创新意识.3.情感、态度与价值观注重培养学⽣积极参与、⼤胆探索的精神以及合作意识.通过让学⽣体验成功,培养学⽣学习数学的⾃信⼼.通过科学家的故事,培养学⽣的耐⼼、恒⼼、⾃信⼼和抗挫折能⼒.从⽽发展学⽣的数学思维能⼒,提⾼思维品质.三、教学重点重点:反证法概念的理解以及反证法的解题步骤.四、教学难点难点:应⽤反证法解决问题,在推理过程中发现⽭盾.在教学中要明确反证法证明的三个步骤:(1)做待证命题的否命题;(2)根据所做出的否命题,结合已知条件或⼰知的其他的真命题,推导出和已知条件或已知的真命题相⽭盾的地⽅;(3)否定所做的否命题,也就是肯定原命题的正确性.让学⽣亲⾝体会并总结三个步骤中的关键因素,集体探索解决⽅法,突出重点、化解难点.五、教学准备1、课时安排:1课时2、教具选择:电⼦⽩板六、教学⽅法:建议本节课采取探究式教学法,让学⽣参与证明问题的否定假设,推理归谬,激发学⽣积极参与的热情,开发其论证推理能⼒的潜能,培养良好的思维品质.关于反证法的教学需要注意以下⼏点:(1)书写格式及解题步骤:假设——归谬——指出⽭盾——得出结论.(2)提出反设的⽅式⽅法:引导学⽣弄清反设词语的含义,掌握常见量词的反设词.(3)归谬⽅法:在归谬过程中要注意假设条件的利⽤,通过例题分析总结归谬的⽅法技巧.(4)反证法的适⽤范围及对象:反证法⼀般适⽤于题⽬条件中含有量词“⾄多”“⾄少”“全部”“都”或否定性命题.其次是在直接证明受阻的情况下,考虑间接证明.七、教学过程:1、⾃主导学:阅读课本42—43页回答下列问题:(学⽣课前预习后提出疑惑,⽼师解答)【问题导思】著名的“道旁苦李”的故事:王戎⼩时候,爱和⼩朋友在路上玩耍.⼀天,他们发现路边的⼀棵树上结满了李⼦,⼩朋友⼀哄⽽上,去摘李⼦,独有王戎没动.等到⼩朋友摘了李⼦⼀尝,原来是苦的.他们都问王戎:“你怎么知道李⼦是苦的呢?”王戎说:“假如李⼦不苦的话,早被路⼈摘光了,⽽这棵树上却结满了李⼦,所以李⼦⼀定是苦的.”王戎的论述运⽤了什么推理思想?【提⽰】实质运⽤了反证法的思想.1.反证法假设原命题不成⽴(即在原命题的条件下,结论不成⽴),经过正确的推理,最后得出⽭盾,因此说明假设错误,从⽽证明了原命题成⽴,这样的证明⽅法叫做反证法.2.反证法常见的⽭盾类型2、合作探究(1)分组探究探究点1 反证法的定义和探究点2 反证法的应⽤1.设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0⽆整数根.【思路探究】此题为否定形式的命题,直接证明很困难,可选⽤反证法.证题的关键是根据f(0),f(1)均为奇数,分析出a,b,c的奇偶情况,并应⽤.【⾃主解答】假设f(x)=0有整数根n,则an2+bn+c=0(n∈Z).⽽f(0),f(1)均为奇数,即c为奇数,a+b为偶数,则an2+bn =-c为奇数,即n(an+b)为奇数.∴n,an+b均为奇数.⼜a+b为偶数,∴an-a为奇数,即a(n-1)为奇数,∴n-1为奇数,这与n为奇数⽭盾.∴f(x)=0⽆整数根.2.若函数f(x)在区间[a,b]上的图象连续不断开,f(a)<0,f(b)>0,且f(x)在[a,b]上单调递增,求证:f(x)在(a,b)内有且只有⼀个零点.【思路探究】先由函数零点存在性判定定理判定函数在(a,b)内有零点,再⽤反证法证明零点唯⼀.【⾃主解答】由于f(x)在[a,b]上的图象连续不断开,且f(a)<0,f(b)>0,即f(a)·f(b)<0,所以f(x)在(a,b)内⾄少存在⼀个零点,设零点为m,则f(m)=0,假设f(x)在(a,b)内还存在另⼀个零点n,即f(n)=0,则n≠m.若n>m,则f(n)>f(m),即0>0,⽭盾;若n<m,则f(n)<f(m),即0<0,⽭盾.因此假设不正确,即f(x)在(a,b)内有且只有⼀个零点.(2)教师点拨1.对某些结论为肯定形式或者否定形式的命题的证明,从正⾯突破较困难时,可⽤反证法.通过反设将肯定命题转化为否定命题或将否定命题转化为肯定命题,然后⽤转化后的命题作为条件进⾏推理,推出⽭盾,从⽽达到证题的⽬的.2.常见否定词语的否定形式如下表所⽰:3、巩固训练1.已知⾮零实数a 、b 、c 成等差数列a ≠c ,求证:1a ,1b ,1c不可能成等差数列.【证明】假设1a ,1b ,1c成等差数列,则2b =1a +1c =a +c ac,⼜a 、b 、c 成等差数列,∴2b =a +c ,∴b =a +c 2,∴4a +c =a +c ac,∴(a -c )2=0,即a =c .这与a ≠c ⽭盾.故假设错误,原命题正确.2.已知a 与b 是异⾯直线,求证:过a 且平⾏于b 的平⾯只有⼀个.【证明】如图所⽰.假设过直线a 且平⾏于直线b 的平⾯有两个,分别为α和β,在直线a 上取点A ,过b 和A 确定⼀个平⾯γ,且γ与α、β分别交于过点A 的直线c 、d ,由b ∥α,知b ∥c ,同理b ∥d ,故c ∥d ,这与c 、d 相交于点A ⽭盾,故假设不成⽴,原结论成⽴.3.已知x ,y >0,且x +y >2.求证:1+x y ,1+y x中⾄少有⼀个⼩于2. 【思路探究】明确“⾄少”的含义―→对结论作出假设―→得出⽭盾.【⾃主解答】假设1+x y ,1+y x 都不⼩于2,即1+x y ≥2,1+y x ≥2.∵x >0,y >0,∴1+x≥2y,1+y≥2x.∴2+x+y≥2(x+y).即x+y≤2,这与已知x+y>2⽭盾.∴1+xy,1+yx中⾄少有⼀个⼩于2.常见结论词与反设词列表如下:。
反证法高中数学教案
反证法高中数学教案
主题:反证法
教学目标:
1. 理解反证法的基本原理和应用方法;
2. 掌握运用反证法证明数学定理的能力;
3. 提高逻辑推理能力,培养思维严谨的数学思维。
教学内容:
1. 反证法的基本原理;
2. 反证法在证明数学定理中的应用;
3. 经典反证法例题分析。
教学步骤:
1. 引入反证法的概念,解释其基本原理;
2. 通过一个简单的例子,让学生体会反证法的思维过程;
3. 结合具体数学定理,教授学生如何运用反证法进行证明;
4. 给学生分发若干反证法相关的练习题,让他们在课堂上进行实践训练;
5. 教师梳理反证法的应用技巧和注意事项,强化学生的学习效果;
6. 结束课堂,布置反证法相关的家庭作业。
教学评估:
1. 基于课堂练习题,检查学生对反证法的理解和掌握情况;
2. 评判学生在应用反证法进行证明时的逻辑推理是否严谨;
3. 针对学生的反证法运用能力进行评估,给予相应的指导和补充。
教学延伸:
1. 拓展反证法在其他领域的应用,如物理学、哲学等;
2. 鼓励学生自主尝试应用反证法解决数学难题;
3. 组织讨论会,分享学生在反证法中的心得体会。
以上是一份反证法高中数学教案范本,希望能够帮助教师更好地设计和开展相关教学工作。
祝教学顺利!。
反证法教案
〔二〕教学重点和难点
重点:1、理解反证法的概念;
2、掌握反证法证明命题的思路方法及答题步骤;
3、用反证法证明简单的命题。
难点:1、理解反证法中的“假设”内在含义及作用
2、理解反证法中的矛盾推导。
〔三〕教学方法
讲授法,比照归纳法,练习法。
〔四〕教学准备
多媒体课件、黑板
学生思考对话中蕴含的反证法思想,并结合自己的生活实际,消化这种思维。
1、方便学生理解反证法思想。
2、实例不仅体会了数学思想在生活中的广泛应用,也让学生明白数学来源于生活实际。
〔六〕、板书设计
反证法
主板副板
概念:…………例1、…………例2、…………思考………
步骤:〔1〕……………………………………
〔2〕……
乙:你说得太对了.要是下雨,肯定是不可能只下在马路上的.你刚刚这种说理的方法用的就是反证法.
甲:啊,这就是反证法.
乙:是的.你想,你刚刚在跟我争论的观点是不是要证明“昨晚没有下雨?”
甲:不错呀!
乙:你知不知道你是用哪一句话来让我心服口服的?
甲:“要是下雨,……”
乙:对.你一开始就用“要是下雨”,也就是说“假设下雨”,然后就会怎么样、怎么样,导出一个奇怪的现象或矛盾.你看,你没有直接说明“因为什么,所以没有下雨”,相反地却是先“假设下雨,然后会怎么样,最后导出一个矛盾”,这就是反证法.
所以 。
显然 与已知条件矛盾。
因此假设不成立。原命题成立。
〔肯定型命题,与条件矛盾〕
教师点明:1、否认的结论作为条件使用,以此进行推理论证。
2、强调反证法的答题步骤及书写标准。
例2、假设函数 在区间 上是增函数,那么方程 在区间 上至多只有一个实根。
人教版高中数学选修2-22.2.2反证法教案
2.2.2 反证法教课建议1.教材剖析本节主要内容是反证法的观点及应用反证法进行证明的一般步骤 ,经过学习本节内容 , 对培育学生的逆向思想是特别有益的 ,反证法是间接证明的一种基本方法 .要点 :认识反证法的含义及思想过程和特色,并能简单应用.难点 :应用反证法解决问题.2.主要问题及教课建议(1)方法的选择 .建议教师要修业生总结何时采纳反证法证明更好.当问题波及否认性,独一性 ,至多 ,起码等字眼或问题很明显从正面没法下手时能够考虑反证法.(2)证明过程中的问题.建议教师注意展现学生的证明过程,有针对性地更正以下错误现象: 不会反设或反设不全面,反设后不会应用反设 (若不用反设就不是反证法了 ),对推出矛盾没有预示性或推不出矛盾 ,指引学生学会制造矛盾 .备选习题1.如图 ,设 SA,SB 是圆锥 SO 的两条母线 ,O 是底面圆的圆心,C 是 SB 上一点 .求证 :AC 与平面 SOB 不垂直.证明 :如图 ,连结 AB ,OB,假定 AC⊥平面 SOB.∵直线 SO 在平面 SOB 内 ,∴AC⊥ SO.∵SO⊥底面圆 O,∴SO⊥ AB.又 A B∩AC=A ,∴SO⊥平面 ABC,∴平面 ABC∥底面圆 O.这明显与 AB? 底面圆 O 矛盾 ,∴假定不建立 .故 AC 与平面 SOB 不垂直 .2.设{ a n}是公比为q的等比数列,S n是它的前n 项和 .(1)求证 :数列 { S n} 不是等比数列 ;(2)数列 { S n} 是等差数列吗 ?为何 ?(1)证明 :反证法 :假定 { S n} 是等比数列 ,则 =S1S3,即 (1+q )2=a 1·a1(1+q+q 2).∵a1≠ 0,∴(1+q )2= 1+q+q 2,即 q= 0,与 q≠0矛盾 ,∴{ S n} 不是等比数列 .(2)解 :当 q= 1 时 ,{ S n} 是等差数列 .当 q≠1时 ,{ S n} 不是等差数列 .假定 q≠1时 ,{ S n} 是等差数列 ,则 S1,S2,S3成等差数列 ,即 2S2=S1+S 3.∴2a1(1+q )=a 1 +a 1(1+q+q 2 ).因为 a1≠ 0,∴2(1+q )= 2+q+q 2 ,q=q2. ∵q≠1,∴q= 0,与 q≠0矛盾 .∴当 q≠1时 ,{ S n} 不是等差数列.。
高中数学新北师大版精品教案《《反证法》教学设计》
由生活中的小问题过渡到数学问题
耶稣有13门徒,
请你证明:其中至少两个人的生日在同一个月。
学生活动2:指定学生仿照葛优选餐馆问题的解决方法,解决本问题。
让学生熟悉反证法的操作过程。
让学生知道怎么做。
以简单实例认识反证法证明思想和证题步骤
引例1、求证:垂直同一直线的两直线平行。
引例2、证明:一个三角形的三个外角中,至多有一个是锐角。
本节课教学法创新之处是:
◆拟从学习心理学的角度出发,对教学方法和学生的学习方法两个方面进行设计。
◆让学生在活动中掌握知识,在活动中培养学习能力。
优化课堂设计,帮助学生快速掌握和学习“反证法”的重难点。
●本节课教学法设计
教学意图
教学素材
学生活动与心理学依据
以一句广告词趣味导入
葛优说:选餐馆就选经济实惠的,哪家人多就选哪家。
课后作业
课本15页题2、3、5。
引导学生复习课堂学习内容、消化课堂内容、自主检测知识掌握情况。
反思
牛顿曾经说过:“反证法是数学家最精当的武器之一”。反证法不仅在数学证明中发挥着重要的作用,在生活中也有着广泛的运用。将心理学原理应用于教学当中,准确把握教学节奏,合理安排教学内容,可以更好的让学生掌握反证法的思想并运用于学习和生活之中,提高学生素养。
让学生能操作。
以例题训练学生熟练运用反证法证明命题
例1、求证:在同一平面内,如果一条直线和两条平行直线中的一条相交, 那么和另一条也相交
已知:直线L1,L2,L3在同一平面内,且L1∥L2,L3与L1相交于点P。
求证:L3与L2相交。
例2、已知:a是整数,2整除a2
求证:2能整除a 。
例3、求证:实数是无理数。
高中数学1.3.9《反证法》教案(北师大版选修2-2)
§3 反证法第九课时 反证法一、教学目标:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程与特点。
二、教学重点:了解反证法的思考过程与特点。
教学难点:正确理解、运用反证法。
三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:综合法与分析法综合法与分析法各有其特点.从需求解题思路来看,分析法执果索因,常常根底渐近,有希望成功;综合法由因导果,往往枝节横生,不容易奏效。
就表达过程而论,分析法叙述烦琐,文辞冗长;综合法形式简洁,条理清晰.也就是说,分析法利于思考,综合法宜于表述。
因此,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法有条理地表述解题过程。
(二)、探究新课1、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
2、例题探析例1、已知a 是整数,2能整除2a ,求证:2能整除a.证明:假设命题的结论不成立,即“2不能整除a ”。
2.2.2 反证法教案-高二数学人教A版选修1-2
[教学设计•高中数学]《反证法》教学设计《反证法》教学设计第一部分:教学内容解析本节课是《普通高中课程标准实验教科书选修2-2》(人教A版)第一章《推理与证明》的第3节《反证法》.“逻辑推理能力”是高中数学核心素养中非常重要的一个环节,也是人们学习和生活中,经常使用的思维方式。
推理与证明贯穿于高中数学的整个体系,也是学数学、做数学的基本功。
这一部分的学习是新课标教材的一个亮点,是对以前所学知识与方法的总结、归纳,并对后继学习起到引领的作用第二部分:学生学情诊断学生在初中已经接触过反证法,但是不够系统和详细。
也已经在选修2-1《逻辑与推理》环节接触过命题的真假、逆否命题。
但用反证法证明数学问题却是学生学习的一个难点。
究其原因,主要是反证法的应用需要逆向思维,但在中小学阶段,逆向思维的训练和发展都是不充分的,所以本节课要引导学生联系已学过的教学实例学习新内容进行教学。
由于所教学生基础较好,但是数学思维相对欠缺,对于反证法证明简单命题问题不大,但由于对数论基础知识不是特别专长、对生活中的逻辑学生对数的了解不多,研究不够,所以例1能顺利解决,但是例2例3,解决起来还是会出现一定困难。
第三部分:教学目标设置(1)知识与能力:了解反证法证题的基本步骤,会用反证法证明简单的命题。
通过实例,培养学生用反证法证明简单问题的推理技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力。
(2)过程与方法:通过直观感知—观察—操作确认的认识方法培养学生观察、探究、发现的能力和逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
(3)情感、态度、价值观:通过体验数学活动,渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想。
在学习和生活中遇到困难的时候,要学会换个角度思考问题,也许会使问题出现转机。
核心素养:逻辑推理能力第四部分:重点难点分析重点:1、理解反证法的概念。
反证法 教案
反证法教案教案标题:反证法教案目标年级:高中学科:数学教学目标:1. 了解反证法的基本概念和原理。
2. 理解如何使用反证法证明一个数学命题。
3. 学会在解答问题时灵活运用反证法。
教学准备:1. PowerPoint演示文稿2. 黑板、白板或投影仪3. 教材和教具教学过程:引入:1. 通过展示一道数学题目,如证明根号2是无理数,引发学生兴趣和思考。
2. 介绍数学证明的方法,包括直接证明、归纳法和反证法,并重点强调反证法。
主体:1. 详细解释反证法的概念和原理,即通过否定要证明的结论的途径来得出矛盾的结论。
2. 提供一些简单的例子,让学生在小组或个人活动中运用反证法来证明一些简单的数学命题,如证明一个整数平方的结尾不能为2、证明无理数加有理数仍然是无理数等。
3. 展示一些经典的数学问题,如欧几里得证明无理数的存在、费马大定理的证明过程等,让学生了解反证法在数学领域的广泛应用。
4. 分组讨论和总结,让学生思考反证法的优点和适用范围,以及何时使用反证法进行数学证明效果更好。
拓展:1. 鼓励学生寻找其他数学问题,并使用反证法进行证明。
2. 分析一些常见错误和误区,帮助学生更好地理解和运用反证法。
3. 给予学生自主思考和学习的机会,以便扩展他们的数学思维和解题能力。
结语:1. 总结本节课所学内容,强调反证法在数学证明中的重要性。
2. 鼓励学生在日常学习中多运用反证法,提高他们的问题解决能力。
3. 鼓励学生勇于挑战更复杂的数学问题,并帮助他们在发现矛盾和解决问题中成长。
教学反思:1. 教师要适时调整教学方法和节奏,确保学生能够跟上教学进度。
2. 配备足够的教材和教具,以便学生更加直观地理解反证法的原理和应用。
3. 鼓励学生积极参与课堂讨论和活动,提高他们的主动学习能力。
注:教学内容可根据实际情况和学生水平进行调整。
人教课标版高中数学选修2-2《反证法》教学设计
2.2.2 反证法一、教学目标1.核心素养通过学习反证法,初步形成基本的数学抽象和逻辑推理能力.2.学习目标了解反证法的思考过程、特点.3.学习重点了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点.4.学习难点根据问题特点,结合反证法的思考过程、特点,选择适当的证明方法.二、教学设计(一)课前设计1.预习任务任务1预习教材P89-91,思考什么是反证法?反证法的逻辑依据是什么?2.预习自测1. 应用反证法推出矛盾的推导过程中,下列可作为条件的是()①结论的假设;②已知条件;③定义、公理、定理等;④原结论A.①②B.②③C.①②③D.①②④解:C2.用反证法证明命题:“三角形的内角中至多有一个钝角”时,反设正确的是()A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角中都不是钝角或至少有两个钝角解:B(二)课堂设计1.知识回顾(1)综合法的逻辑是由因索果.(2)分析法的逻辑是执果索因.2.问题探究问题探究 反证法●活动一 结合实例,体会反证思想实例体会:桌面上有3枚正面向上的硬币,每次用双手同时翻转2枚硬币,那么无论怎么翻转,都不能使硬币全部反面向上.你能解释这种现象吗?问题:什么是反证法?反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法. ●活动二 运用反证思想,证明问题例1:已知:a +b +c >0,ab +bc +ca >0,abc >0.求证:a >0,b >0,c >0.【知识点:反证法的应用;数学思想:转换与化归】详解:假设a ,b ,c 不都是正数,由abc >0可知,这三个数中必有两个为负数,一个为正数,不妨设a <0,b <0,c >0,则由a +b +c >0,可得c >-(a +b ). 又a +b <0,∴c (a +b )<-(a +b )(a +b )ab +c (a +b )<-(a +b )(a +b )+ab即ab +bc +ca <-a 2-ab -b 2∵a 2>0,ab >0,b 2>0,∴-a 2-ab -b 2=-(a 2+ab +b 2)<0,即ab +bc +ca <0, 这与已知ab +bc +ca >0矛盾,所以假设不成立.因此a >0,b >0,c >0成立.点拨:反证法的初始理论依据是基于“原命题与其逆否命题等价”的逻辑原理,通过“结论不成立推出条件不成立”产生“条件成立所以结论成立”的结果,是一种间接证明的方法.例2:求证:2、3、5不可能成等差数列.【知识点:反证法的应用;数学思想:转换与化归】详解:假设2、3、5成等差数列,则23=2+5.所以22)52()32(+=,化简得1025=,22)102(5=,即4025=,这是不可能的.所以假设不成立,从而原命题成立.点拨:反证法的难点在于如何由结论不成立去推导矛盾.这个矛盾常常是以下的三种情形:①与条件发生矛盾;②与已知的定义、公理、定理、事实等发生矛盾;③自相矛盾.3.课堂总结【知识梳理】反证法是一种间接的证明方法,用这种方法证明一个命题的一般步骤:(1)假设命题的结论不成立;(2)根据假设进行推理,直到推理中导出矛盾为止;(3)断言假设不成立;(4)肯定原命题的结论成立.【重难点突破】反证法主要适用于以下两种情形①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰; ②如果从正面证明,需要分成多种情形进行分类讨论而从反面进行证明,只研究一种或很少的几种情形.常见否定用语是——不是 有——没有 等——不等 成立——不成立都是——不都是,即至少有一个不是 都有——不都有,即至少有一个没有 都不是——部分或全部是,即至少有一个是 唯一——至少有两个 至少有一个有(是)——全部没有(不是) 至少有一个不——全部都4.随堂检测1.用反证法证明命题“设a 、b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根【知识点:反证法;数学思想:转换与化归】解:A .2.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )A. 假设三内角都不大于60度;B. 假设三内角都大于60度;C. 假设三内角至多有一个大于60度;D. 假设三内角至多有两个大于60度【知识点:反证法;数学思想:转换与化归】解:B .3. 否定结论“至多有两个解”的说法中,正确的是( )A .有一个解B .有两个解C .至少有三个解D .至少有两个解【知识点:反证法;数学思想:转换与化归】解:C .4. 下列命题不适合用反证法证明的是( )A .同一平面内,分别与两相交直线垂直的两条直线必相交B .两个不相等的角不是对顶角C .平行四边形的对角线互相平分D .已知R y x ∈,,且2>+y x ,求证y x ,中至少有一个大于1【知识点:反证法;数学思想:转换与化归】解:C .5.否定“自然数a 、b 、c 中恰有一个偶数”时的正确反设为( )A .a 、b 、c 都是奇数B .a 、b 、c 或都是奇数或至少有两个偶数C .a 、b 、c 都是偶数D .a 、b 、c 中至少有两个偶数 【知识点:反证法;数学思想:转换与化归】解:B .(三)课后作业基础型 自主突破1. 判断 (1)综合法是直接证明,分析法是间接证明.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)用反证法证明结论“a>b”时,应假设“a<b”.()(4)反证法是指将结论和条件同时否定,推出矛盾.()(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()(6)证明不等式2+7<3+6最合适的方法是分析法.()【知识点:直接证明与间接证明】解:错;错;错;错;对;对.2.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了()A.分析法B.综合法C.综合法与分析法结合使用D.间接证法【知识点:直接证明与间接证明】解:B3.要证明3+5<4可选择的方法有以下几种,其中最合理的为() A.综合法B.分析法C.反证法D.归纳法【知识点:直接证明与间接证明】解:B4.否定:“自然数a,b,c中恰有两个偶数”时正确的反设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是偶数或至少有两个奇数【知识点:反证法】解:D5.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有()A.0个B.1个C.2个D.3个【知识点:反证法】解:B6.用反证法证明命题:“a、b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为()A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除【知识点:反证法】解:B能力型师生共研7.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0有有理根,那么a,b,c中存在偶数”时,否定结论应为()A.a,b,c都是偶数B.a,b,c都不是偶数C.a,b,c中至多一个是偶数D.至多有两个偶数【知识点:反证法】解:B8.已知数列{a n}的前n项和为S n,且满足a n+S n=2.(1)求数列{a n}的通项公式;(2)求证:数列{a n}中不存在三项按原来顺序成等差数列.【知识点:反证法的应用;数学思想:转换与化归】解:(1)当n=1时,a1+S1=2a1=2,则a1=1.又a n+S n=2,所以a n+1+S n+1=2,两式相减得a n+1=12a n,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1. (2)证明 反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*) 又因为p <q <r ,所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立.所以假设不成立,原命题得证.9. 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【知识点:反证法的应用;数学思想:转换与化归】解:由已知得⎩⎨⎧ a 1=2+1,3a 1+3d =9+32,∴d =2, 故a n =2n -1+2,S n =n (n +2).(2)证明 由(1)得b n =S n n =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2).∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎨⎧q 2-pr =0,2q -p -r =0.∴(p +r 2)2=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴假设不成立,即数列{b n }中任意不同的三项都不可能成等比数列.10. 直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.【知识点:反证法的应用;数学思想:转换与化归】解:(1)因为四边形OABC 为菱形,则AC 与OB 相互垂直平分.由于O (0,0),B (0,1),所以设点A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1,则t =±3,故|AC |=2 3.(2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎨⎧x 2+4y 2=4,y =kx +m ,消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m 1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,直线OB 的斜率为-14k ,因为k ·⎝ ⎛⎭⎪⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.探究型 多维突破11. 已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是函数f (x )的一个零点;(2)试用反证法证明1a>c . 【知识点:反证法的应用;数学思想:转换与化归】证明:(1)∵f (x )图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a (1a ≠c ),∴1a 是f (x )=0的一个根.即1a 是函数f (x )的一个零点.(2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0,知f (1a )>0与f (1a )=0矛盾,∴1a ≥c , 又∵1a ≠c ,∴1a >c .12.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1),数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.【知识点:反证法的应用;数学思想:转换与化归】解:由题意可知,1-a 2n +1=23(1-a 2n ).令c n =1-a 2n ,则c n +1=23c n . 又c 1=1-a 21=34,则数列{c n }是首项为c 1=34,公比为23的等比数列,即c n =34·(23)n -1,故1-a 2n =34·(23)n -1⇒a 2n =1-34·(23)n -1. 又a 1=12>0.a n a n +1<0,故a n =(-1)n -1 1-34·(23)n -1.b n =a 2n +1-a 2n =[1-34·(23)n ]-[1-34·(23)n -1]=14·(23)n -1. (2)证明 用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b r >b s >b t ,则只能有2b s=b r +b t 成立.∴2·14(23)s -1=14(23)r -1+14(23)t -1,两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s . 由于r <s <t ,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列{b n }中任意三项不可能成等差数列.自助餐1.实数a 、b 、c 不全为零等价于( )A .a 、b 、c 均不为零B .a 、b 、c 中至多有一个为零C .a 、b 、c 至少有一个为零D .a 、b 、c 至少有一个不为零【知识点:反证法】解:D2.设a 、b 、c 均大于0,则三个数:b a 1+,c b 1+,ac 1+的值( ) A .都大于2 B .至少有一个不大于2C .都小于2D .至少有一个不小于2【知识点:反证法】解:D.3.(1)已知233=+q p ,求证2≤+q p .用反证法证明时,可假设2≥+q p .(2)已知R b a ∈,,1||||<+b a ,求证方程02=++b ax x 的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 满足1||1≥x .以下结论正确的是( )A .(1)与(2)的假设都错误B .(1)与(2)的假设都正确C .(1)的假设正确,(2)的假设错误D .(1)的假设错误,(2)的假设正确【知识点:反证法】解:D (1)的假设应为2>+q p .4.设a 、b 、c 是正数,c b a P -+=,a c b Q -+=,b a c R -+=,则“0>PQR ”是“P 、Q 、R 同时大于零”的( )A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件【知识点:反证法】解:C .5.命题“△ABC 中,若∠A >∠B ,则a >b ”的结论的否定应该是( )A .a <bB .a ≤bC .a =bD .a ≥b【知识点:反证法】解:B “a >b ”的否定应为“a =b 或a <b ”,即a ≤b .故应选B.6.已知a ,b 是异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( )A .一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线【知识点:反证法】解:C假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.7.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.【知识点:反证法】解:没有一个是三角形或四边形或五边形.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________.【知识点:反证法】8.解:③①②9.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、p n,令p=p1p2…p n+1.显然,p不含因数p1、p2、…、p n.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、p n之外,还有质数,因此原假设不成立.于是,质数有无限多个.【知识点:反证法】解:质数只有有限多个除p1、p2、…、p n之外10.已知a,b,c∈(0,1).求证:(1-a)b,(1-b)c,(1-c)a不能同时大于14. 【知识点:反证法的应用;数学思想:转换与化归】证法1:假设(1-a)b、(1-b)c、(1-c)a都大于14.∵a、b、c都是小于1的正数,∴1-a、1-b、1-c都是正数.(1-a)+b2≥(1-a)b>14=12,同理(1-b )+c 2>12,(1-c )+a 2>12.三式相加,得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32,即32>32,矛盾所以(1-a )b 、(1-b )c 、(1-c )a 不能都大于14.证法2:假设三个式子同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14, 三式相乘得:(1-a )b (1-b )c (1-c )a >143①因为0<a <1,所以0<a (1-a )≤1-a +a 22=14.同理,0<b (1-b )≤14,0<c (1-c )≤14.所以(1-a )a (1-b )b (1-c )c ≤143.②因为①与②矛盾,所以假设不成立,故原命题成立.11.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R .(1)若a +b ≥0,求证:f (a )+f (b )≥f (-a )+f (-b );(2)判断(1)中命题的逆命题是否成立,并证明你的结论.【知识点:反证法的应用;数学思想:转换与化归】解:(1)证明:∵a +b ≥0,∴a ≥-b .由已知f (x )的单调性得f (a )≥f (-b ).又a +b ≥0⇒b ≥-a ⇒f (b )≥f (-a ).两式相加即得:f (a )+f (b )≥f (-a )+f (-b ).(2)逆命题: f (a )+f (b )≥f (-a )+f (-b )⇒a +b ≥0.下面用反证法证之.假设a +b <0,那么:a +b <0⇒a <-b ⇒f (a )<f (-b )a +b <0⇒b <-a ⇒f (b )<f (-a ) ⇒f (a )+f (b )<f (-a )+f (-b ).这与已知矛盾,故只有a +b ≥0.逆命题得证.12.已知函数f (x )=a x +x -2x +1(a >1),用反证法证明方程f (x )=0没有负数根. 【知识点:反证法的应用;数学思想:转换与化归】证明:假设方程f (x )=0有负数根,设为x 0(x 0≠-1).则有x 0<0,且f (x 0)=0.∴ax 0+x 0-2x 0+1=0⇔ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1,∴0<-x 0-2x 0+1<1. 解上述不等式,得12<x 0<2.这与假设x 0<0矛盾.故方程f (x )=0没有负数根.数学视野直接论证与间接论证,正论证是用已知为真的判断来确定某一判断的真实性或虚假性的思维过程.根据论证的目的,论证可分为证明与反驳,证明是用已知为真的判断来确定某一判断的真实性的思维过程,反驳是用已知为真的判断来确定某一判断的虚假性的思维过程.根据论证方式,论证可分为演绎论证、归纳论证和类比论证.根据论证的方法,论证可分为直接论证和间接论证;直接论证又可以分为直接证明和直接反驳,间接论证也可以分为间接证明和间接反驳.。
《反证法》 教学设计
《反证法》教学设计一、教学目标1、知识与技能目标学生能够理解反证法的概念,掌握反证法的证明步骤,能运用反证法证明一些简单的命题。
2、过程与方法目标通过对反证法的学习,培养学生的逻辑思维能力和推理能力,提高学生分析问题和解决问题的能力。
3、情感态度与价值观目标让学生感受数学的严谨性和逻辑性,激发学生对数学的兴趣和探索精神,培养学生的创新意识和批判性思维。
二、教学重难点1、教学重点理解反证法的概念,掌握反证法的证明步骤,能运用反证法证明简单命题。
2、教学难点如何正确地提出反设,以及如何通过推理得出矛盾。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过一个有趣的故事引入反证法。
故事:有一个人被指控偷了邻居的钱,他宣称自己没有偷。
法官问他:“如果不是你偷的,那钱怎么会在你的口袋里?”这个人无法回答。
提问学生:法官的这种推理方法有什么特点?2、讲解概念(1)给出反证法的定义:先假设命题的结论不成立,然后通过推理得出矛盾,从而证明原命题成立的方法叫做反证法。
(2)强调反证法的关键在于“反设”和“归谬”。
3、示例讲解(1)例 1:证明“在一个三角形中,至少有一个内角小于或等于60°”。
分析:假设三角形的三个内角都大于 60°,然后推出矛盾。
证明过程:假设三角形的三个内角都大于 60°,则三角形的内角和大于 180°,这与三角形内角和定理矛盾。
所以,原命题成立。
(2)例 2:证明“根号 2 是无理数”。
分析:假设根号 2 是有理数,设根号 2 = m / n(m、n 为互质的正整数),然后推出矛盾。
证明过程:假设根号 2 是有理数,设根号 2 = m / n(m、n 为互质的正整数),则 2 = m²/ n²,即 m²= 2n²。
因为 2n²是偶数,所以m²是偶数,从而 m 是偶数。
设 m = 2k(k 为正整数),则 4k²= 2n²,即 2k²= n²,所以 n 也是偶数,这与 m、n 互质矛盾。
《反证法》教案范文
《反证法》教案范文教案:《反证法》一、教学目标1.了解反证法的基本概念和基本思想。
2.掌握运用反证法解决问题的方法和步骤。
3.提高学生的逻辑思维和证明能力。
二、教学重点1.反证法的基本思想和基本概念。
2.运用反证法解决问题的方法和步骤。
三、教学难点1.运用反证法解决较为复杂的问题。
2.培养学生的证明能力和逻辑思维。
四、教学准备1.教材:《数学》(普通高中课程标准实验教科书)。
2.学具:黑板、彩色粉笔、投影仪。
五、教学过程1.导入(8分钟)教师可以通过提问,引导学生对“反证法”进行初步了解。
如:“如果一道数学题要求你用证明的方法解决,你会怎么做呢?”“你曾经解决过反证法的问题吗?你是怎么做的呢?”等。
2.正文(60分钟)(1)引入新知识通过教师的介绍,使学生了解“反证法”的基本概念和基本思想。
教师可以通过举例,让学生理解“反证法”的基本思路和过程。
(2)例题讲解教师选择一些例题进行讲解,指导学生掌握运用反证法解决问题的方法和步骤。
例如:已知a、b是有理数,且a/b是无理数,证明a和b不可能是有理数;已知方程x^2=2有理数解,证明与此相矛盾。
(3)学生练习教师布置一些练习题,要求学生运用反证法解决问题。
学生进行自主练习,教师巡回指导,及时解答学生疑问。
例如:1.证明:如果正整数n^2是偶数,则n是偶数。
2.已知n是一个整数,证明15n-7不是一个完全平方数。
(4)示范演练教师选取一些典型的复杂题目,进行示范演练。
可以通过投影仪将题目在黑板上呈现给学生,步骤和思路画在黑板上,让学生参考。
同时要鼓励学生在解题时思考多个角度和方法。
(5)讲解反证法的应用领域教师通过讲解反证法在数学、哲学、物理等领域的应用,培养学生将抽象的概念运用到实际问题中的能力。
3.拓展与巩固(15分钟)教师布置一些拓展题和巩固题,让学生进行练习巩固已学知识。
同时,可以鼓励学生通过查阅相关资料,了解一些反证法的著名定理和问题。
4.总结与归纳(7分钟)教师与学生一起总结本节课的学习内容,回答学生提出的问题。
高二数学 反证法教案
高二数学反证法教案
高二数学教案反证法
授课类型公开课授课班级高二(7)班教室
教材分析学生从初中开始就对反证法有所接触。
反证法的逻楫规则并不复杂,但用反证法证明数学问题却是学生学习的一个难点。
三维目标
知识与技能1.了解反证法的思考过程与特点。
2.掌握反证法的基本步骤。
3.了解应用反证法的几种情形。
4.能根据具体问题选择适当的证明方法。
5.能应用反证法证明比较简单的数学问题。
过程与方法通过数学问题的证明提高学生的逆向思维能力,分析问题、解决问题的能力。
情感态度与价值观1.让学生感受间接证明在数学以及日常生活中的作用。
2.让学生养成言之有理,论证有据的习惯。
教学重点应用反证法证明比较简单的数学问题。
教学难点1.根据具体问题选择适当的证明方法。
2.应用反证法证明比较简单的数学问题。
教学方法启发式、探究式、讲练结合
教具准备多媒体设备,制作课件等。
高中数学高二《反证法》公开课表格式教案设计
2、已知a,b,c是一组勾股数,即 ,求证:a,b,c不可能都是奇数。
3、若a,b,c均为实数,且 , , 求证:a,b,c中至少有一个大于0。
4、求证: 是无理数。
四、课堂小结:
1、反证法的基本步骤:(1)假设命题的结论不成立,即假设命题的反面成立。(2)从这个假设出发,经过推理论证,得出矛盾。(3)从矛盾判断假设不正确,从而肯定命题的结论正确。
(反证法的理论依据是原命题和逆否命题是等价命题。通过证明逆否命题是真命题得到原命题是真命题。)
2、思考:A,B,C三个人,A说B撒谎,B说C撒谎,C说A,B都撒谎,则C必定是在撒谎,为什么?
分析:假设C不是地撒谎,即C真,则A假且B假,由A假得B真,这与B假矛盾,所以假设不成立。
3、定义:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法。
4、反证法的基本步骤:(1)假设命题的结论不成立,即假设命题的反面成立。(2)从这个假设出发,经过推理论证,得出矛盾。(3)从矛盾判断假设不正确,从而肯定命题的结论正确。
5、应用反证法的情形:(1)直接证明困难。(2)需分成很多类进行讨论。(3)结论中含有“至少”、“至多”、“有无穷多个”、“唯一”等字眼。
启
发
与
归
纳
例
题
解
析
练
习
课
堂
小
结
一、例题:
例1.已知直线a,b和平面 ,如果说 , 且,求证:
证明:假设 不成立, , a与 相交,不妨设 ,若0 b,则 ,这与a//b矛盾;若 ,则a与b异面,也与a//b矛盾,假设不成立,
《反证法》公开课教学设计【高中数学】
《反证法》教学设计◆教材分析本节课是反证法部分.证明一般包括直接证明与间接证明.“直接证明”的两种基本方法是综合法和分析法,它们是解决数学问题常用的思维方式;“间接证明”的一种基本方法是反证法,但是反证法的应用需要逆向思维,这是学生学习的一个难点.所以,本节课的关键是让学生在动脑思考、动手证明的过程中体会反证法的思维过程,建立应用反证法的过程.◆教学目标1.培养学生应用反证法证明简单问题的推理技能,能进一步培养观察能力、分析能力、逻辑思考能力及解决问题的能力.2.了解反证法证题的基本步骤,会用反证法证明简单的命题.3.培养学生观察、探究、发现的能力和空间想象能力、逻辑思考能力.让学生在观察、探究、发现中学习,增强自信心,树立积极的学习态度,提高学习的自我效能感.◆教学重难点◆【教学重点】1.理解反证法的概念;2.体会反证法证明命题的思路方法及反证法证题的步骤;3.用反证法证明简单的命题.【教学难点】理解“反证法”证明得出“矛盾的所在”即矛盾依据.◆课前准备多媒体课件、黑板.◆教学过程复习导入上节课我们学习了用______,______直接证明问题的方法.但是有的问题是显然成立的或要分为多种情况进行讨论.我们再用直接方法就显得比较困难或麻烦,那么证明一个问题的成立是不是还有其他的方法呢?这节课我们就来学习或用间接的方法证明一个问题是成立的---反证法.新课导入看故事并回答:中国古代有一个叫《路边苦李》的故事:王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴纷纷去摘取果子,只有王戎站在原地不动,有人问王戎为什么?王戎回答说:“树在道边而多李子,此必苦李.”小伙伴摘取一个尝了一口果然是苦李.王戎是怎么知道李子是苦的吗?答:_____________.他运用了怎样的推理方法?答:_______.新课讲解1.反证法(1)定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这种证明方法叫做反证法.(2)理解反证法不是直接去证明结论,而是先否定结论,在否定结论的基础上,运用演绎推理,导出矛盾,从而肯定结论的真实性.反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.2.反证法常见矛盾类型反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件、假设、定义、定理、公理、事实矛盾等.3.反证法可以适用的两种情形(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰.(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.4.反证法常用的“结论词”和“反设词”5. “反证法”与“证逆否命题”的区别与联系(1)联系:通过证明逆否命题成立来证明原命题成立和通过反证法说明原命题成立属于间接证明,都是很好的证明方法.(2)区别:证明逆否命题实际上就是从结论的反面出发,推出条件的反面成立.而反证法一般是假设结论的反面成立,然后通过推理导出矛盾.这里所说的矛盾不是一味追求与原命题题设矛盾,还可以是与已知公理、定义、定理及明显的事实矛盾或自相矛盾等.(3)由反证法的定义可知反证法的一般步骤是:①反设:否定结论,即假设命题结论不成立,即假设结论的反面成立;②归谬:从假设出发,经过推理论证,得出矛盾的结果;③由矛盾判断出假设不正确,从而肯定原命题的结论正确.教学例题1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用( )①结论的否定;②已知条件;③公理、定理、定义等;④原结论A.①②B.②③C.①②③ D.①②④答案:C【解析】根据反证法的定义,推导过程中,不能把原结论作为条件使用,其他都可以.2.“实数a,b,c不全大于0”等价于( )A.a,b,c均不大于0B.a,b,c中至少有一个大于0C.a,b,c中至多有一个大于0D.a,b,c中至少有一个不大于0答案:D【解析】“不全大于零”即“至少有一个不大于0”,它包括“全不大于0”.3.用反证法证明命题“三角形的内角中至少有一个角不大于60°”时,反设正确的是( )A.假设三个内角都不大于60°B.假设三个内角都大于60°C.假设三个内角至多有一个大于60°D.假设三个内角至少有两个大于60°答案:B【解析】“至少有一个”的反面是“一个也没有”,即一个也没有不大于60°,也即都大于60°.4.用反证法证明:已知a,b均为有理数,且√a和√b都是无理数,求证:√a+√b是无理数.证明:证法一:假设√a+√b为有理数,令√a+√b=t,则√a=t-√a,两边平方,得b=t2-2t √a+a,∴√a=t 2+a−b2t.∵a,b,t均为有理数,∴也是有理数.即√a为有理数,这与已知√a为无理数矛盾,故假设不成立.∴√a+√b一定是无理数.证法二:假设√a+ √b为有理数,则(√a+ √b)(√a- √b)=a-b.由于a>0,b>0,得√a+ √b>0.∴√a- √b=√a+√b.∵a,b为有理数,且√a+√b为有理数,为有理数,及√a- √b为有理数.∴a−b√a+√b∴√a+√b+(√a- √b)为有理数,即2√a为有理数.从而√a也应为为有理数,这与已知√a为有理数矛盾,∴√a+√b一定为无理数.教学总结1.几何问题中适用反证法的类型①一些基本命题的和基本定理②唯一性命题③存在性命题2.反证法要处理好一个关键问题用反证法题时,一定要处理好推出矛盾这一步骤,因为反证法的核心就是从求证的结论反面出发,导出矛盾的结果,因此如何导出矛盾,就成为了关键所在,对于证题步骤,绝不可死记,要具有全面扎实的基础知识,并能灵活运用.◆教学反思略.。
最新人教版高中数学教案-课题:反证法-公开课教案
难点:反证过程中的反设,以及如何推出矛盾。
教具:多媒体辅助教学
教学过程
设计意图
一、创设情境,引入新课
小故事:中国古代有一个叫《路边苦李》的故事:王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子。小伙伴们纷纷去摘果子,只有王戎站在原地不动。有人问王戎为什么?
最新人教版高中数学教案-课题:反证法
授课教师:时间:班级:高二(4)班
教学目标:
1.知识与技能:理解反证法的概念,掌握反证法的证明步骤.
2.过程与方法:通过反证法的学习,体会直接证明与间接证明之间的辩证关系.
3.情感、态度与价值观:培养学生独立思考、积极探索的学习态度,认识数学的科学价值,提高数学的学习兴趣.
证明步骤:
1反设:假设命题的结论不成立,即假设结论的反面成立。
2归谬:从假设出发,经过正确的推理证明,得出矛盾。
3结论:由矛盾判定假设不正确,从而肯定命题的结论正确。
问3:反证法的思维方法及关键步骤是什么?
思维方法:正难则反
关键在与:从假设出发,在正确的推理下得出矛盾(与已知矛盾,与假设矛盾,与定义、定理、公理矛盾,与事实矛盾等)。
3、学习了哪些数学思想方法?从知源自角度、思维方法角度归纳总结这节课的收获
五、作业:
P91 A 1、4
六、板书:(略)
王戎回答说:“树在道边而多子,此必苦李。”小伙伴摘取一个尝了一下,果然是苦李。
问1:王戎是怎样知道李子是苦的?他运用了怎样的思考问题的方法?
从小故事入手,不仅能激发学生的兴趣,也能更好的说明反证法的推理思想
二、探索新知,得出概念
问2:你能概括出反证法的定义及步骤吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逐步探究、明确反证的思考过程和特点
讲练结合,提高学生的逆向思维能力,分析问题、解决问题的能力。
通过小结,使学生理清这节课的重难点,深化对知识的理解
布置作业
1.P91: 4
2、思考:A,B,C三个人,A说B撒谎,B说C撒谎,C说A,B都撒谎,则C必定是在撒谎,为什么?
分析:假设C不是地撒谎,即C真,则A假且B假,由A假得B真,这与B假矛盾,所以假设不成立。
3、定义:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法。
启
发
与
归
纳
例
题
解
析
练
习
课
堂
小
结
一、例题:
例1.已知直线a,b和平面 ,如果说 , 且,求证:
证明:假设 不Leabharlann 立, , a与 相交,不妨设 ,若0 b,则 ,这与a//b矛盾;若 ,则a与b异面,也与a//b矛盾,假设不成立,
例2.已知 ,证明x的方程ax=b有且只有一个根。
证明: , 方程至少有一根x= ,假设方程不只一个根,则至少有两根,不妨设 是它的两个不同的根,则a =b,a =b, a = a , a( - )=0, , ( - ) 0, a=0,这与已知条件a 0矛盾, 假设不成立,因此,当 时方程ax=b有且只有一个根。
例题的分析是本节的关键,教学中,引导学生积极参与,认真考虑为什么要采用反证法,如何从假设出发,推出矛盾,让学生从中体验反证法的思考过程和特点。因为反证法证明数学问题是学生学习的一个难点,所以例题分析要关注学生的参与,学生的领会情况。
由于学生对反证法不太熟悉,因此教学中安排比较多的时间让学生练习,使学生在动手的过程中逐步体会这种证明方法的内涵,建立应用反证法的感觉。
4、反证法的基本步骤:(1)假设命题的结论不成立,即假设命题的反面成立。(2)从这个假设出发,经过推理论证,得出矛盾。(3)从矛盾判断假设不正确,从而肯定命题的结论正确。
5、应用反证法的情形:(1)直接证明困难。(2)需分成很多类进行讨论。(3)结论中含有“至少”、“至多”、“有无穷多个”、“唯一”等字眼。
5.能应用反证法证明比较简单的数学问题。
过程与方法
通过数学问题的证明提高学生的逆向思维能力,分析问题、解决问题的能力。
情感态度与价值观
1.让学生感受间接证明在数学以及日常生活中的作用。
2.让学生养成言之有理,论证有据的习惯。
教学重点
应用反证法证明比较简单的数学问题。
教学难点
1.根据具体问题选择适当的证明方法。
2.《优化》P47:例2 ,P48:1-8 ,9-13 选做
巩 固
板书设计
课题: 反证法
一、知识回顾 二、例题
教学反馈
教学反思
学生以前已经接触过反证法,而且反证法的逻辑规则并不复杂,所以直接从简单的“思考”出发,和学生一起回顾、归纳反证法的定义、步骤、应用情形。
本节从“思考”引出反证法,解决这个问题产关键是懂得从结论的反面入手,将问题转化为简单逻辑推理。教学中,引导学生试着用直接法分析,比较两种证明方法的各自特点,从中体验反证法的思考过程和特点。
课 题
反证法
授课类型
公开课
授课班级
高二(7)班教室
教材分析
学生从初中开始就对反证法有所接触。反证法的逻楫规则并不复杂,但用反证法证明数学问题却是学生学习的一个难点。
三维目标
知识与技能
1.了解反证法的思考过程与特点。
2.掌握反证法的基本步骤。
3.了解应用反证法的几种情形。
4.能根据具体问题选择适当的证明方法。
2.应用反证法证明比较简单的数学问题。
教学方法
启发式、探究式、讲练结合
教具准备
多媒体设备,制作课件等
教学环节
教学过程与设计
教法与学法
知
识
回
顾
一、反证法的概念与步骤:
1、引入:同学们以前有没有接触到反证法?在哪里?
(反证法的理论依据是原命题和逆否命题是等价命题。通过证明逆否命题是真命题得到原命题是真命题。)
三、练习: 1、如果a>b>o,那么
2、已知a,b,c是一组勾股数,即 ,求证:a,b,c不可能都是奇数。
3、若a,b,c均为实数,且 , , 求证:a,b,c中至少有一个大于0。
4、求证: 是无理数。
四、课堂小结:
1、反证法的基本步骤:(1)假设命题的结论不成立,即假设命题的反面成立。(2)从这个假设出发,经过推理论证,得出矛盾。(3)从矛盾判断假设不正确,从而肯定命题的结论正确。