GPS原理及其应用
gps的原理和应用

GPS的原理和应用一、GPS的原理GPS(全球定位系统)是一种通过卫星定位技术来确定地理位置的系统。
它由一组卫星、地面控制站和用户接收器组成。
GPS的工作原理可以简单地概括为以下几个步骤:1.卫星发射信号:GPS系统中的卫星通过发射无线电信号来传输位置和时间信息。
2.接收器接收信号:GPS接收器通过天线接收卫星发射的信号。
3.信号处理:接收器将接收到的信号进行解码和处理,以获取卫星的位置和时间信息。
4.定位计算:接收器使用接收到的卫星信号来计算用户的地理位置。
5.显示位置:GPS接收器将计算得到的地理位置信息显示在设备上,如地图显示或坐标展示。
二、GPS的应用GPS作为一种全球定位技术,广泛应用于各个领域。
以下是一些GPS的应用示例:1. 导航和车辆定位现代交通导航系统几乎都采用了GPS技术。
通过GPS导航设备,我们可以得到准确的车辆位置信息,并根据设定的目的地提供最佳的行车路线。
GPS的应用使得我们能够更加轻松、快速地到达目的地,提高了交通效率。
2. 灾害救援GPS在灾害救援中发挥了重要的作用。
当灾害发生时,救援人员可以使用GPS 设备来确定灾区的具体位置,从而更加精确地进行救援行动。
GPS还可以提供实时定位信息,以便救援人员更好地协调和组织行动。
3. 航空和航海航空和航海领域是GPS应用的重要领域之一。
飞行器和船只常常需要准确的位置信息来导航和定位。
通过GPS技术,飞行员和船长可以轻松确定飞机或船只的位置,以确保安全的飞行和航行。
4. 体育和健身GPS在体育和健身中也有广泛的应用。
例如,跑步爱好者可以使用带有GPS功能的手表或手机来跟踪自己的跑步路线和距离。
此外,体育运动员和教练员也可以利用GPS来分析运动员的表现和训练效果,以提高训练质量。
5. 物流和交通管理GPS在物流和交通管理中的应用有助于提高效率和准确性。
通过GPS设备,物流公司可以实时监控货物的位置和运输情况,及时调整运输计划。
交通管理部门可以利用GPS来监控交通流量、优化信号配时,从而改善交通拥堵问题。
GPS测量原理及应用

GPS测量原理及应用GPS是全球定位系统的简称,是一种利用卫星进行位置测量的技术。
GPS测量原理基于三角测量原理,通过接收来自卫星的信号以及计算接收信号的时间差,可以确定接收器所在的位置。
下面将详细介绍GPS测量原理及应用。
首先,GPS系统由一组卫星组成,这些卫星以特定的轨道随着地球旋转,不断发射信号。
这些信号会被接收器接收到,并通过计算信号的时间差来确定接收器与卫星之间的距离。
接下来,接收器会同时接收到多颗卫星的信号,通过测量信号的到达时间差,可以获取到接收器与每颗卫星之间的距离。
然后,根据接收器与每颗卫星之间的距离,可以通过三角测量的原理来确定接收器的位置。
最后,通过接收器与至少三颗卫星之间的距离计算,可以确定接收器所在的三维位置(经度、纬度和海拔),同时可以测量接收器的速度和方向。
GPS系统的应用十分广泛,主要包括导航定位、地图制作、车辆监控等方面。
首先,GPS的最主要应用是导航定位。
我们常用的汽车导航系统就是利用GPS进行定位,通过接收卫星信号,可以确定汽车的位置,并根据地图数据提供导航指引。
此外,GPS也广泛应用于航海、航空和军事导航等领域。
其次,GPS在地图制作中也具有重要作用。
通过对地球表面的点进行GPS测量,可以确定这些点的坐标,并绘制出高精度的地图。
这对于用于安排基础设施建设、城市规划以及资源调查等具有重要意义。
另外,GPS还广泛应用于车辆监控及运输管理。
一些车辆管理系统通过安装在车辆上的GPS设备,可以实时追踪车辆的位置、行驶速度和行驶路线等信息,从而实现对车辆的监控和管理。
此外,GPS还被应用于时间同步、气候观测、地震监测、测量绘图以及室外运动等领域。
例如,GPS可以用来同步各个设备的时间,确保精确的时间标准;GPS还可以用来测量地震的震源和震级,以及监测大气中的水汽含量和温度等。
总之,GPS测量原理基于卫星信号的三角测量,能够实现精确的位置测量和导航定位。
它在导航、地图制作、车辆监控以及其他应用领域都具有重要作用,为人们的生活和各种行业提供了很大的便利。
gps的测量原理及应用

GPS的测量原理及应用1. GPS的测量原理GPS(全球定位系统)是一种利用卫星信号进行位置测量的技术。
其测量原理基于三角测量法和时间测量法。
1.1 三角测量法GPS接收器接收到来自至少四颗卫星的信号,通过测量这些卫星信号的传播时间和位置,利用三角测量法计算出接收器的位置。
具体步骤如下:1.接收器接收到卫星发出的信号,并记录下每颗卫星信号的传播时间。
2.GPS接收器通过与卫星之间的信号传播时间差推算出卫星与接收器之间的距离。
3.GPS接收器通过多个卫星之间的距离,使用三角测量法计算出接收器的位置。
1.2 时间测量法除了三角测量法,GPS还利用时间测量法来测量位置。
具体步骤如下:1.GPS卫星通过精确的原子钟来保持时间的一致性。
2.GPS接收器接收到卫星发射的信号,并记录下信号的时间。
3.GPS接收器通过比较信号接收时间与卫星发射时间的差值,计算出信号传播的时间。
4.通过多颗卫星信号的传播时间,GPS接收器可以计算出自身的位置。
2. GPS的应用GPS技术在现代社会中有广泛的应用,涵盖了许多领域。
2.1 车辆导航GPS技术在车辆导航系统中被广泛应用。
通过将GPS接收器与导航软件结合,车辆可以实时获取自身的位置,并根据用户输入的目的地,提供最佳的导航路线和指示。
这种技术使得驾驶者无需担心迷路,更加方便地到达目的地。
2.2 航空和航海导航航空和航海领域也广泛使用GPS技术来进行导航。
通过在飞行器或船舶上安装GPS接收器,飞行员或船长可以准确地确定其位置、航向和速度。
这对于飞行器或船舶在大范围领域内进行定位和导航至关重要,提高了安全性和效率。
2.3 地图制作和地理信息系统GPS技术被用于制作地图和地理信息系统(GIS)。
通过在地图上标记GPS测量的点,可以准确地绘制地理要素的位置和形状。
这对于制作精确的地图、进行地理空间分析和规划非常重要。
2.4 灾难救援和紧急定位在灾难救援和紧急情况中,GPS技术可以提供准确的位置信息,帮助救援人员快速找到被困者。
全球定位系统GPS原理及应用

全球定位系统GPS原理及应用全球定位系统(GPS)是一种利用卫星导航技术来确定地理位置的系统。
它由一组由美国政府运行的卫星、地面控制站和接收器组成。
全球定位系统的原理基于三角测量原理,通过计算接收器与卫星之间的距离来确定地理位置。
以下是全球定位系统的原理及应用的详细介绍。
当一个接收器接收到来自至少4颗卫星的信号后,它会通过测量信号的传输时间来确定从卫星到接收器的距离。
由于每颗卫星的位置已知,并且信号传播速度是已知的,因此可以通过距离和位置信息来确定接收器的地理位置。
全球定位系统还可以利用多次测量的平均值来提高定位的准确性。
1.航海和航空导航:全球定位系统在航海和航空方面被广泛使用,可以提供精确的位置和导航信息,帮助船舶和飞机安全地导航到目的地。
2.车辆导航和交通管理:全球定位系统可以在汽车、卡车和公共交通工具中使用,提供实时导航和交通信息,帮助驾驶员选择最佳路线,减少交通拥堵和行驶时间。
3.军事和安全应用:全球定位系统在军事和安全领域中扮演着重要角色,可以用于军事导航、目标定位和监视、军事行动规划等。
4.资源勘探和地质测量:全球定位系统可以用于资源勘探和地质测量,可以提供准确的地理位置和测量数据,帮助研究人员进行资源勘探和地质研究。
5.灾害管理:全球定位系统可以在灾害管理中使用,例如地震、洪水和风暴等灾害发生时,可以提供准确的位置信息和灾情监测,帮助救援人员进行灾情评估和救援行动。
总结:全球定位系统是一种利用卫星导航技术来确定地理位置的系统,它通过测量接收器与卫星之间的信号传输时间来确定地理位置。
全球定位系统广泛应用于航海、航空、车辆导航、军事、资源勘探、地质测量、灾害管理等领域。
随着技术的不断发展,全球定位系统的应用将进一步扩展,为人类的生活和工作带来更大的便利和效益。
gps的原理及其应用

GPS的原理及其应用1. GPS的原理GPS(全球定位系统)是一种通过卫星定位来确定地球上任意位置的系统。
其原理基于距离测量和三角定位。
1.1 距离测量GPS系统中有24颗卫星,它们围绕地球运行并向地面发送精确的时间信号。
用户接收到来自多颗卫星的信号后,通过测量信号的传播时间来计算用户与卫星之间的距离。
1.2 三角定位GPS系统至少需要接收到三颗卫星的信号以确定用户的位置。
通过在三个卫星上的已知位置和与这些卫星之间的距离,可以通过三角计算方法来定位用户的位置。
更多的卫星信号可以提高定位的准确性。
2. GPS的应用2.1 航海和航空GPS在航海和航空领域具有广泛的应用。
航海员和飞行员可以通过GPS确定他们的位置、航向和速度,以便更好地导航和控制航行路径。
2.2 汽车导航现代汽车导航系统几乎都使用了GPS技术。
通过GPS定位,汽车导航系统可以提供实时的导航指引,包括行驶方向、转向提示和道路交通情况等信息,帮助驾驶员更安全、高效地到达目的地。
2.3 手持设备定位手机、平板电脑和手持式GPS设备都可以利用GPS技术来定位。
这使得用户可以随时随地获得自己的地理位置信息,并在地图上查找周边设施、规划路线等。
2.4 建筑和测量在建筑领域和土地测量中,GPS可以提供准确的位置信息。
这对于工程测量、土地勘测和建筑设计等方面非常重要。
2.5 军事应用军事部门是GPS技术最早应用的领域之一。
GPS系统为军队提供了高精度的导航、目标定位和时间同步等功能,对于军事行动的成功至关重要。
2.6 太空探索在太空探索中,GPS系统被用于监测和导航航天器。
它可以提供准确的时间参考和航向信息,帮助航天器在太空中定位和导航。
2.7 天气预报GPS系统中的卫星可以通过测量大气中水蒸汽的含量来提供天气预报所需的数据。
这些数据对于预测天气模式、监测气候变化非常有帮助。
3. 总结GPS通过距离测量和三角定位原理,可以提供准确的地理位置信息。
它在航海、航空、汽车导航、建筑测量等诸多领域有重要应用。
gps定位技术的原理和应用

GPS定位技术的原理和应用1. GPS定位技术的概述•GPS(全球定位系统)是一种通过卫星进行定位的技术,可以精确确定地球上任何一个点的位置信息。
•GPS定位系统由一组卫星、地面控制站和用户设备组成,广泛应用于导航、地图制作、科学研究等领域。
2. GPS定位的原理•GPS定位原理是基于三角测量的原理,通过测量接收到的卫星信号的时间差来计算位置。
•GPS接收器接收到来自多颗卫星的信号,并通过计算信号传播时间差来确定接收器与卫星之间的距离。
•通过接收多颗卫星的信号,可以得到多个距离数据,进而通过三角测量计算出接收器的精确位置。
3. GPS定位技术的应用•导航系统:GPS技术广泛应用于汽车、航空、船舶等导航系统,帮助用户确定当前位置和获取最佳路线。
•地图制作:GPS定位技术可以精确测量地理坐标,用于绘制准确的地图。
•GIS系统:GPS定位技术与地理信息系统(GIS)相结合,可以进行空间数据采集、分析和管理。
•灾害预警:GPS定位技术可以追踪地壳运动,预测地震、火山喷发等自然灾害。
•物流管理:GPS定位技术可以实时跟踪货物位置,提高物流管理的效率和安全性。
•科学研究:GPS定位技术被广泛用于地壳运动、气候变化、植被监测等科学研究领域。
4. GPS定位技术的发展趋势•高精度定位:随着技术的发展,GPS定位精度不断提高,从米级定位逐渐发展到亚米级、厘米级定位。
•多模定位:将GPS与其他定位技术(如北斗、GLONASS等)结合,实现多模定位,提高定位的准确性和可用性。
•室内定位:在室内环境下,GPS信号容易受到干扰,无法正常工作。
因此,研究人员正在开发针对室内定位的新技术。
•智能交通:将GPS技术与车联网、智能交通系统相结合,实现交通信息的实时监控与管理。
•集成导航系统:将GPS定位技术与地图、导航软件等集成,提供更丰富的导航功能。
5. 结论•GPS定位技术已经成为现代社会不可或缺的一部分,它在导航、地图制作、科研等各个领域都发挥着重要作用。
gps技术的原理及应用

GPS技术的原理及应用1. GPS技术的原理GPS全称为全球定位系统(Global Positioning System),它是一种通过卫星定位和导航的技术。
其原理主要基于三个要素:卫星、接收器和传感器。
1.1 卫星GPS系统由一组卫星组成,这些卫星以不同的轨道运行在地球上空的几乎固定位置上。
目前,全球共有24颗工作卫星,其中至少有4颗卫星可见某一时刻处于天空中。
这些卫星发射精确的时间信号以及位置信息。
1.2 接收器GPS接收器是一个设备,用于接收卫星发射的无线电信号。
它通过分析卫星信号的时间差来计算出接收器与卫星之间的距离。
接收器还需了解卫星所处的位置以及其运动方式。
1.3 传感器GPS接收器通常还集成了一些传感器,用于提供额外的数据。
例如,加速度计可用于测量移动速度和方向,陀螺仪可用于测量旋转角度。
这些传感器数据与GPS 定位数据集成,以提供更精确的定位和导航信息。
2. GPS技术的应用GPS技术在各个领域具有广泛的应用。
以下列举了几个主要的领域:2.1 车辆导航系统车辆导航系统是GPS技术最常见的应用之一。
通过将GPS接收器和地图数据集成,驾驶员可以通过车载导航系统在未知领域中准确定位和导航。
这种导航系统还可以提供实时交通信息和最佳路径建议,以优化驾驶体验。
2.2 运输和物流管理在运输和物流管理中,GPS技术用于跟踪货物和车辆的位置。
通过安装GPS设备,货主和物流公司可以实时了解货物的位置和运输进度,提高运输效率和安全性。
此外,GPS技术还可用于跟踪物流车辆的行驶行为,以改善驾驶员行为和车辆维护管理。
2.3 个人健康和健身追踪GPS技术也广泛应用于个人健康和健身追踪领域。
智能手表、智能手环等设备配备了GPS功能,可以跟踪用户的运动轨迹、步数、速度和距离等信息。
这些数据可以帮助用户评估运动表现、制定锻炼计划,并与其他用户进行比较和竞争。
2.4 地图绘制和地理信息系统GPS技术可以用来制作地图和地理信息系统。
GPS的原理及数学知识应用

GPS的原理及数学知识应用1. GPS的基本原理GPS(全球定位系统)是一种通过卫星定位来确定地球上任意位置的系统。
它由三部分组成:空间部分、控制部分和用户接收机。
GPS的基本原理是通过接收来自多颗卫星的信号,利用三角测量的原理来计算出接收机所在位置的经度、纬度和海拔高度。
GPS信号由卫星发射并在地球上的接收机上接收。
接收机接收到多颗卫星发射的信号后,通过测量信号的传播时间来确定到每颗卫星的距离,再利用这些距离信息进行三角定位计算,从而确定接收机的位置。
2. GPS定位的数学知识应用GPS定位是基于数学计算的,以下是几种常见的数学知识应用:2.1 三角测量GPS定位中的核心原理是三角测量,即通过测量角度和距离来确定位置。
根据三角定位原理,接收机需要同时接收到至少三颗卫星的信号,并测量到这些卫星的距离,然后根据这些距离信息计算出接收机的位置。
这个计算过程涉及到三角函数的运算,例如正弦定理和余弦定理。
2.2 空间几何在GPS定位中,卫星和接收机之间的相对位置是非常重要的。
为了精确计算接收机的位置,需要考虑到卫星和接收机的空间几何关系。
这包括卫星的位置、接收机的位置和卫星与接收机之间的夹角等。
通过空间几何的计算,可以更准确地确定接收机的位置。
2.3 数值计算GPS定位中的计算过程涉及到大量的数值计算。
接收机需要通过测量距离、角度和时间来进行多个数值计算,包括三角函数的运算、方程求解和矩阵计算等。
这些数值计算过程对于确定接收机的位置非常重要。
3. GPS定位的误差及精度尽管GPS定位是一种非常准确的定位技术,但仍然存在一些误差。
以下是几种常见的GPS定位误差:3.1 信号传播延迟GPS信号在空间中传播的过程中会经历传播延迟,这是由于信号传播速度有限所导致的。
虽然这个传播延迟可以通过接收机进行校正,但仍然会引入一定的测量误差。
3.2 卫星轨道误差GPS卫星的轨道并不是完全理想的圆形,而是略微偏离正圆形。
这个轨道误差会影响到卫星位置的准确度,从而引入一定的定位误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
据和信息。用户利用观测值以及这些信息和数据就能进行导
航和定位。
GPS的常用坐标系-- WGS--84世界大地坐标系:
原点是地球的质心
Z轴指向国际时间局BIH1984.0定义的协议地球北极(CTP)方向 X轴指向BIH1984.0的零子午面和CTP相对应的赤道的交点 Y轴垂直于ZOX平面且与Z、X轴构成右手坐标系
有人说过,只有我们想不到的,没有GPS做不到的。 有人预言, GPS将改变我们的生活方式。
GPS系统的组成 GPS卫星系统的组成
空间星座部分 (空间部分)
地面支撑系统 (地面监控部分)
GPS接收机 (用户部分)
空间部分 由24颗GPS卫星组成
用户部分 由GPS接收机组成
注入站 主控站
监测站
地面监控系统 由监测站、主控站、注入站组成
作用: 主控站将编辑的卫星电文传送到位于三大洋的三个
注入站,定时将这些信息注入各个卫星,然后由GPS卫 星发送给广大用户,这就是所用的广播星历。此外,注 入站能主动向主控站发射信号,每分钟报告一次自己的 工作状态。
(3)监测站
地点:五个监测站:除一个主控站、三个注入站兼作外,还有一 个在夏威夷岛
设备:监控站有双频GPS接收机,对每颗卫星长年连续不断地进行 观测,每6秒进行一次伪距测量和积分多普勒观测,采集 气象要素等数据
GPS用户部分
用户部分观测和记录由若干卫星发送的数据,并运 用数学方法求得三维空间位置以及时间和速度
=
用户部分包括用户组织系统和根据要求安装相应的设备, 但其中心设备是GPS接收机。它是一种特制的无线电接收机, 用来接收导航卫星发射的信号,并以此计算出定位数据。
G
P 机内软件
接收天线
S
天线单元
用 GPS接收机硬件
1)定位速度快。 2)无多值性问题。 3)可作为载波相位测量中整波数不确定问题(模 糊度)的辅助资料。 4)一次定位精度不高,(P码定位误差约为10 m, C/A码定位误差约为 20~30 m)。
载波相位测距
载波相位观测
载波L1的波长为19cm ,L2的波长为24 cm
接收仪将接收到的卫星载波信号的相位与其自身产生 的参考载波信号的相位进行比较
(1)伪距测量 伪距——由卫星发射的测距码信号到达GPS接收机的传
播时间乘以光速所得出的量测距离。由于卫星钟、接收机 钟的误差以及无线电通过电离层和对流层中的延迟,实际 测出的距离与卫星到接收机的几何距离有一定的差值, 因此一般称量测出的距离为伪距。
用C/A码进行测量的伪距为C/A码伪距;用P码进行测量 的伪距为P码伪距。 (C/A码与P码都是伪随机码)
②在卫星飞越注入站上空时,接收由地面注入 站不断发送到卫星的导航电文和其它有关信息,并 通过GPS信号电路,适时地和发送给广大用户。
③接收地面主控站通过注入站发送到卫星的调 度命令,适时地改正运行偏差或启用备用时钟等。
GPS地面监控部分
1个主控站
斯 平 士
3个注入站
阿 松
狄 哥
卡 瓦
·
森伽 迦
岛西 兰
-1
解扩
数据
11111111
+1 -1
其他的经过
扩频后的信号
+1
-1
干扰信号
+1
-1
+8
积分后的结果
-8
信号
噪声
测距码伪距测定
接收到的卫星测距码
接收仪复制出的测距码
dT
测距伪随机码 每一卫星播发一个伪随机测 距 码信号,该信号大约每1毫秒
播 发一次 接收仪同时复制出一个同样结构的 信号并与接收到的卫
由于卫星钟差、电离层折射和大气对流的影响,可以通 过导航电文中所给的有关参数加以修正,而接收机的钟差却 难以预先准确地确定,所以把接收机的钟差当作一个未知数, 与测站坐标一起解算。这样,在一个观测站上要解出4个未知 参数,即3个点位坐标分量和1个钟差参数,所以至少同时观 测4颗卫星。
伪距测量与载波相位测量
使用“正确”的数学序列可以将 任一个码信道从接收到的复合
信号中抽去出来.
UNWANTED POWER FROM OTHER SOURCES
扩频/解扩频
S(f)
S(f)
扩频前信号
f
S(f)
S(f)
突发干扰
白噪声
扩频后信号
f
突发干扰 白噪声
解扩后信号
f
解扩前信号
f
扩频/解扩原理-频域解释
Eb / No = Ec / Io ×增益
相应的CDMA接收机
载波提取
汉明解码
PSK解调
差分译码
高放 RX 超前1/2位
乘法器1 TX1 BPF1
包络检波1 TX3 门限判决
TX2
GD-TX
乘法器2 CQ1 BPF2 CQ2 包络检波2 CQ3
GD-CQ
VCO-
减法器
C
滞后1/2位
乘法器3 ZH1 BPF3 ZH2 包络检波3 ZH3 GD-ZH
➢ 跟踪:在捕获的基础上,完全对准接收信号Gold码与本地 Gold码。
Gold同步第一步:捕获
解扩
解调
BPF
包络检波
PN码发生器
时钟 扣码
滑动相关捕获原理
门限判决
Gold同步第二步:跟踪
(t)
BPF
(t)
BPF
包络检波 包络检波
+ ∑
-
PN码 发生器
压控 时钟
环路滤波
PN码的跟踪
伪距法定位的优缺点
VCO
Gold同步
GOLD序列 发生器3
GOLD 3置位
扣码电路 判断是否停止扣码
Gold同步
Gold同步是接收机的关键部分。
接收机组成:Gold同步(扩频码的捕获和跟踪)、载波 提取、PSK解调和差分译码、汉明解码。
Gold同步对于GPS的意义:可确定电播传播时延。
Gold同步的分步实现:
➢ 捕获:使本地产生的Gold码与接收到的Gold码相位误差小 于1个码片
测距的方法
码相位(伪距法)测距 测量载波相位差测距
距离测定原理
Xll
Vl
距离测定原理
Xll
Vl
距离测定原理
Xll
Vl
距离测定原理
Xll
距离 = 传播时间 x 光速
Vl
GPS采用的单程测距原理(单工通信)。这就要求卫星时 钟与接收机时钟要严格同步。但实际上,两者难于严格同步, 因此存在不同步误差,另外,测距码在大气中传播还受到大 气电离层折射及大气对流层的影响,产生延迟误差。因此, 测距码所求得距离值并非真正的站星几何距离,习惯上称其 为“伪距”。
通过导航电文解译出三颗卫星的坐标,通过测量 求出三颗卫星到测站的距离ρ,用距离交会即可求出 测站点的坐标(X , Y,Z)。
ρ12 = (X - X1)2 + (Y - Y1)2 + (Z - Z1)2 ρ22 = (X – X2)2 + (Y – Y2)2 + (Z – Z2)2 ρ32 = (X – X3)2 + (Y – Y3)2 + (Z – Z3)2
3
日常生活中的GPS
车载
手机
4
日常生活中的GPS
Deray 的北京到巴黎 單車旅行 (/)
GPS定位技术与应用
5
目前,拥有定位系统的国家或地区:
美国——GPS(始建于1973年) 俄罗斯——GLONASS(始建于1978年目前在轨道
上只有6颗星可用 ) 欧盟——Galileo(伽利略计划)(始建于2002年) 日本——准天顶卫星系(2008年投入使用) 中国——北斗导航定位卫星(2002年已应用,07
功率谱
系统所允许的最大干扰电平
增益
解调门限 可以给所有用户共享的功率
其他用户干扰信号
Echip
扩频技术
符号
1
0
010源自数据+1-1
码片
扩频码
+1
11011001
-1
扩频
扩频后的信号
+1
-1
扩频码
+1
-1
解扩频
+1
数据
-1
扩频技术
扩频后的信号 1 1 0 1 1 0 0 1
+1
-1
+1
扩频码
11011001
Z WGS-84
协议地球北极CTP
国际时间局(BIH) 定义的零子午圈
X WGS-84
O
协议地 球赤 道
地球质心
Y WGS-84
GPS定位原理
利用三个以上卫星的已知空间位置,交会出地 面未知点(用户接收机)的位置。
(x2 ,y2,z2)
(x1 ,y1,z1)
ρ1
ρ2
(x3 ,y3,z3)
ρ3
(X ,Y,Z)
GPS原理及其应用
主讲 刘云
GPS定义
GPS的英文全称是:Navigation Satellite Timing And Ranging Global Position System
测量用户的 PVT:
Position(三维位置) Velocity (三维速度) Time(时间)
日常生活中的GPS
空间部分
由21颗工作卫星 和3颗备用卫星。
空间部分
24颗卫星(21+3) 6个轨道平面(相互交角60°) 55º轨道倾角(相对于赤道面) 20200km轨道高度(地面高度) 11h58min(恒星时)轨道周期 5h7min出现在地平线以上(每颗星)