统计学 秩和检验

合集下载

医学统计学秩和检验

医学统计学秩和检验

对统计分析的结果进行解释和报告,包 括显著性水平、效应大小等。
医学统计学秩和检验的优势
1 非参数方法
医学统计学秩和检验不需要假设数据服从特 定的分布,更适用于真实世界的数据。
2 强大的统计推断
医学统计学秩和检验能够进行假设检验、置 信区间估计和相关分析等多种统计推断。
3 对异常值的鲁棒性
由于基于秩次而不是原始数据,医学统计学 秩和检验对异常值具有较好的鲁棒性。
3 基本原理
医学统计学秩和检验基于 非参数统计方法,不依赖 于数据的分布情况,更适 用于小样本和偏态数据。
医学统计学秩和检验的应用
药效试验
用于评估不同药物的疗效,判断药物之间的差异。
生存分析
用于分析患者的生存时间和生存率,评估不同因 素对生存的影响。
配对设计研究
用于比较两种相关观察结果之间的差异,如治疗 前后的数据比较。
相关分析
用于分析两个变量之间的相关程度,评估它们的 线性关系。
医学统计学秩和检验的步骤
1
收集数据
收集与研究目的相关的数据,并确保数
将数据转换为秩次
ห้องสมุดไป่ตู้
2
据质量和完整性。
对数据进行排序,将其转换为秩次,以
便进行后续的统计分析。
3
应用适当的秩和检验方法
根据研究设计和研究问题选择合适的秩
解释和报告结果
4
和检验方法。
4 广泛适用性
医学统计学秩和检验适用于不同类型的数据, 包括定量数据、定性数据和顺序数据。
医学统计学秩和检验的案例
临床试验
通过医学统计学秩和检验,研究 人员可以评估新药的疗效和安全 性。
流行病学调查
医学统计学秩和检验可以用于分 析调查数据,研究疾病的发病率 和风险因素。

医学统计学09秩和检验

医学统计学09秩和检验

22
u=
|11186 − 88(216 + 1) / 2 − 0.5 128 × 88 × (216 + 1) /12
(t 3 − t j ) ∑ j (N 3 − N )
= 3.628
C = 1− = 1−
823 − 82 ) + ( 783 − 78 ) + ( 303 − 30 ) + ( 263 − 26 ) ( 216 − 216
9
秩和
A组: - 、±、+、+、+、 ++ 秩和: 1 2 4.5 4.5 4.5 8.5
TA=25
B组: +、++、++、++、+++、+++ 秩和: 4.5 8.5 8.5 8.5 11.5 11.5 TB=53
TA+TB=N(N+1)/2=78
10
秩次:在一定程度上反映了等级的高低; 秩和:在一定程度上反映了等级的分布位置。 对等级的分析,转化为对秩次的分析。 秩和检验就是通过秩次的排列求出秩和,对总 体的分布进行假设检验。
α =0.05。
编秩 ,求秩和T。 确定检验统计量T 若两样本例数不等,以例 数较少者为n1,检验统计量T=T1=560.5。 确定P值,作出推断结论
29
560.55 − 24 × (68 + 1) / 2 − 0.5 u= = 3.4265 24 × 44 × (68 + 1) / 12
(16 3 − 16) + ( 28 3 − 28) + (19 3 − 19) + (5 3 − 5) C = 1− 68 3 − 68

秩和检验【医学统计学】

秩和检验【医学统计学】

568.4
14.0
384.6
3.0
556.2
13.0
369.1
1.0
435.7
7.0
377.8
2.0
574.8
15.0
436.7
8.0
468.7
12.0
662.9
19.5
433.4
6.0
582.8
16.5
442.3
10.0
438.1
9.0
426.1
5.0
n1 10
T1 101
n2 12
T2 152
2.求检验统计量T 值
①省略所有差值为0的对子数,观察单位数减去0对子数 的个数 ②按差值的绝对值从小到大编秩,绝对值相等的差值若 符号不同取平均值,并保持原差值的正负号;
③任取正秩和或负秩和为T,本例取T-=3。
3. 确定P 值,作出推断结论
2020/8/8
15
检验步骤
查附表12 • 本例T=3,n=10,
3 9 6 8 7 -1 10 4 -2 5
T 52 T 3
2020/8/8
10
配对符号秩检验基本思想
• 当H0(差值的总体中位数Md=0)成立,任一配对差值出现正号、负号的 机会均等,秩和T-与T+的理论数也应相等为n(n+1)/4
• 可以证明:
• H0为真时,秩统计量T是对称分布 • H0非真时,T呈偏态分布
单纯⑴虚寒型 ⑵3 ⑶6 ⑷25 ⑸26 13 ⑻ 73
喘息虚寒型
1
3 10
9
3 26
虚寒阻塞型 16 28 61 27 ⑹9 141
2020/8/8
21

35页卫生统计学:秩和检验

35页卫生统计学:秩和检验

确定P值与结论
确定P值
根据统计量和样本量等参数,计算出相应的P值。
结论推断
根据P值的大小,判断差异是否具有统计学显著性,从而得出研究结论。一般来 说,P值小于0.05或0.01时,认为差异具有统计学显著性。
04
秩和检验的优缺点分析
优点分析
非参数性质
秩和检验是一种非参数统计方法,不需要假设数据符合特定的概率分 布,因此具有更广泛的适用性。
计算方法
将两个样本的秩次相加,并根据总数计算检 验统计量。
特点
对数据分布要求较低,能够处理非参数数据 。
等级相关秩和检验
适用范围
适用于等级资料或有序分类数据的关联性分析 。
计算方法
利用Spearman或Kendall等级相关系数计算秩 和检验统计量。
特点
能够分析有序分类变量之间的相关性,不受数据分布限制。
35页卫生统计学:秩和检验
• 秩和检验概述 • 秩和检验的基本类型 • 秩和检验的步骤与操作 • 秩和检验的优缺点分析 • 秩和检验的实例分析 • 结论与展望
01
秩和检验概述
定义与背景
秩和检验是一种非参数统计方法 ,用于比较两组或多组独立样本 来判断它们是否来自同一总体。
它基于对观察值进行排序,并利 用秩次(即观察值的顺序位置) 进行统计分析,适用于数据不服
对等级数据适应性有限
秩和检验主要适用于连续型数 据,对于等级数据(如评分等 级)的适应性相对有限。
对样本量要求较高
相对于其他参数检验方法,秩 和检验需要的样本量较大,在 小样本情况下可能不适用。
对数据关联性假设敏感
秩和检验依赖于独立同分布的假设 ,如果数据间存在相关性或集群效 应,可能会影响检验结果的准确性 。

医学统计学 9第九讲 秩和检验

医学统计学 9第九讲 秩和检验

7
2.20 0.05 2.5 2.99 0.84
8
2.12 -0.03 -1 3.19 1.04
9
2.42 0.27
4
3.37 1.22 10
2.52 0.37
5
4.57 2.42 11
1. 建立假设 H0:差值总体中位数为0 H1:差值总体中位数不为0;
α=0.05 2. 计算统计量: T+=62.5,T-=3.5
B组:1
2
4.5 4.5 4.5
+
8.5
++
++
++
+++
+++
6 8 9 10 11 12
4.5 8.5 8.5 8.5 11.5 11.5
秩和
A组: - 、、+、+、+、 ++ 秩和: 1 2 4.5 4.5 4.5 8.5
TA=25
B组: +、++、++、++、+++、+++ 秩和: 4.5 8.5 8.5 8.5 11.5 11.5
(4)将秩次冠以正负号,计算正、负秩和(T+,T-); T++T- =n(n+1)/2
(5)用不为“0”的对子数n及T(取绝对值小的秩和作为统
计量T)查T界值表,得到P值作出判断。
编秩
A组: - 、、+、+、+、++ B组: +、++、++、++、+++、+++

秩和检验

秩和检验
结果: W检验:W1=0.865,P=0.019<0.05; W2=0.891,P=0.014<0.05; W3=0.937, P=0.232>0.05 其中两组独立样本资料均不符合正态分布
三、建立假设检验,确定检验水准
H0: 三组总体分布相同,即三组吞噬指数的总体 分布相同
H1: 三组总体分布不全相同,即三组吞噬指数的 总体分布不全相同
787.47
880.83
差值
10
27.88
1.15
154.72
结果展示: 根据样本数据分布类型,选择合适的表示方法 正态分布时,用均数和标准差表示(mean±SD) 偏态分布时,用中位数和四分位间距表示
两样本比较的秩和检验
例2、在河流监测断面优化研究中,研究者从某河流甲乙两个
断面分别随机抽取10和15个样本,测得其亚硝酸盐氮(mg/L)
表1 不同剂量组小鼠肝糖原含量(mg/100g)
小鼠对号 1 2 3 4 5 6 7 8 9 10
中剂量组 620.16 866.50 641.22 812.91 738.96 899.38 760.78 694.95 749.92 793.94
高剂量组 958.47 838.42 788.90 815.20 783.17 910.92 758.49 870.80 862.26 805.48
要求掌握内容
计算机操作
配对比较的秩和检验 两样本比较的秩和检验 多个独立样本比较的秩和检验
结果的表达
配对比较的秩和检验
例1、某研究者欲研究保健食品对小鼠抗疲劳作用,将同种属的小鼠按性 别和年龄相同、体重相近配成对子,共10对,并将每对中的两只小鼠随 机分到保健食品两个不同的剂量组,过一定时期将小鼠处死,测得其肝 糖原含量(mg/100g),结果见表1,问不同剂量组的小鼠肝糖原含量有 无差别?

第十一讲 秩和检验

第十一讲 秩和检验

适用范围
1、成组设计的两样本计量数据,不符合 t 检 验的条件(方差相等,且服从正态分布); 2、两组等级资料或两端无确切值的资料。
一、原始数据的两样本比较
基本思想: • 假定:两组样本的总体分布形式相同(即 H0成立),则两样本来自同一总体,且任 一组秩和不应太大或太小 。即T 与平均秩 和 n1(N+1)/2应相差不大。 N = n1+n2
• 前面介绍的检验方法首先假定分析变量 服从特定的已知分布(如正态分布), 然后对分布参数(如均数)作检验。这 类 检 验 方 法 称 参 数 检 验 ( parametric test)。 • 今天介绍的检验方法不对变量的分布作 严格假定,这类检验称非参数检验 (nonparametric test)。
非参数统计
(nonparametric statistics)
对总体的分布类型不 作特殊要求 ,统计 推断时不涉及参数 不受总体参数的影响,比 较的是分布或分布位置
依赖于特定分布类 型,比较的是参数
非参数统计的适用情况
• • • • • 等级资料 偏态分布资料 分布不明资料 个别数据偏离过大的资料 各组方差明显不齐的资料
• 确定P值: 以较小绝对值的秩和为T值。 本例T=3.5 以n=11查附表6(P268,单侧) p<0.005, • 判定结果: 按α=0.05水准,拒绝H0,接受H1,故可以 认为该厂工人尿氟含量高于当地健康人。
第二节 成组设计两样本比较 的秩和检验
Wilcoxon rank sum test
这下面一行(记为Ri)就是上面一行数 据Xi的秩。
秩和检验原理
• 秩和检验(rank sum test):是通过对数 据依小到大排列的秩次,以求秩次之和来 进行假设检验的方法。

医学统计学秩和检验

医学统计学秩和检验
诊断和疗效评价
在医学研究中,秩和检验常用于比较两种或多种治疗方案的效果,如药物、手术等。通过 对秩和的统计分析,可以得出哪种方案更有效的结论。
疾病流行病学研究
在疾病流行病学研究中,秩和检验可用于分析不同人群或地区的发病率或死亡率差异。通 过对这些数据的分析,可以评估不同因素对疾病发生的影响。
临床决策支持
秩和检验在临床决策支持系统中也得到广泛应用。通过对病人的各种指标进行统计分析, 医生可以更好地了解病人的病情,从而制定更有效的治疗方案。
生物领域的应用
01
基因表达分析
在基因表达分析中,秩和检验可用于比较不同样本之间的基因表达谱
差异。通过对基因表达谱的统计分析,可以找出与特定疾病或生理过
程相关的关键基因。
根据样本数据计算检验统计量的值。
确定显著性水平
确定在假设检验中拒绝零假设的最小显著 性水平。
假设检验的推断与解释
推断
根据计算出的p值或其他统计指标,推断样 本数据所来自的总体的特性或参数。
解释
解释推断结果,考虑研究的假设和目的, 结合其他相关信息做出科学结论。
05
秩和检验的实际应用与案例 分析
医学领域的应用
社会科学研究
在社会科学研究中,秩和检验常用于比较不同群体或地区的经济社会指标差异。通过对这些数据的统计分析,可以评估不同 因素对社会发展的影响。
公共政策评估
秩和检验可用于评估公共政策的效果。通过对政策实施前后的数据进行统计分析,可以得出政策是否有效的结论,从而为 政策制定者提供参考。
市场调研
在市场调研中,秩和检验可用于比较不同产品或品牌的市场占有率差异。通过对这些数据的统计分析,可以帮助企业了解 市场状况,从而制定更有效的市场策略。

秩和检验

秩和检验

1、建立假设及确定检验水准 H0:差值总体水平为0。 H1:差值总体水平不为0。 α =0.05 2、计算T值 (1)求差:算出每对差值 (2)编秩:按差值绝对值大小从小到大编秩,并冠以 原差值的正负号。 A 若差值为0,可删去不计,不编秩。 B 若差值的绝对值相等,符号相反,则以平均秩 次作为每一个差值的秩次,保留原差值符号。 C 若差值完全相等,则按原秩号,不必平均。 (3)求秩和:将正负秩次分别相加,以秩和绝对值小 则为T。本例T=8。
3、确定值,判断结果。 (1)查表法:当n 50 时
得: T0.05,

11
= 10~56,( T0.01,
11
=
5~61)
T+ 或 T- :
落在范围内,则P>0.05; 落在范围外, 则P<0.05; 等于界值, 则P=0.05。
现T=8或58,故 0.01 < P<0.05
基本思想
注意:配对的对子数不能少于6。 本法的基本思想:若H0成立,则样本的正负秩和应较接近于T值的均数n(n+1 )/4,T值不会很小。若正负秩和相差悬殊,则T值特别小,则在H0成立的情况下, 由于抽样误差所至的可能性很小,当P<α 时,拒绝H0。 随着n增大,T的分布逐渐逼近均数为n(n+1)/4,方差为n(n+1)(2n+1) /24的正态分布。N>50时,可用u-T代替秩和检验。
本例 T = 170 查表得: T0.05,
(10,2) (10,2)
= 84~146
T0.01,
所以 P < 0.01
= 79~151
(2)正态近似法:
当超过附表的范围时(n1>10, n2 - n1 >10)

医学统计学等级资料的秩和检验

医学统计学等级资料的秩和检验
排除异常值
在某些情况下,可以排除异常值以提高检验的稳定性。但应谨慎处理,确保不会排除对 总体分布有重要影响的值。
稳健统计方法
采用稳健统计方法可以在一定程度上减少异常值对检验结果的影响,如使用中位数、众 数等稳健统计量进行秩和检验。
06
秩和检验的展望
秩和检验的发展趋势
广泛应用
秩和检验作为一种非参数统计方法,在医 学、生物学、环境科学等秩和,判断 两组数据的优劣或差异性,从而 进行假设检验。
适用范围
适用于等级资料和连续变量资料, 尤其适用于小样本和不服从正态 分布的数据。
秩和检验的步骤
01
数据整理
对等级资料进行排序,并赋予相应 的秩。
确定检验统计量
根据秩和计算出检验统计量,如Z值、 H值等。
03
02
计算秩和
在蛋白质组学研究中,秩和检验 用于分析蛋白质表达水平在不同 样本之间的差异。
在其他领域的应用
环境卫生研究
在环境卫生研究中,秩和检验用于评估不同暴露水平对健康的影响。
心理学研究
在心理学研究中,秩和检验用于比较不同干预或实验条件下的心理状态或行为差异。
05
秩和检验的注意事项
样本量的问题
样本量过小
当样本量过小时,无法充分反映总体分布情况,可能导致 检验结果不准确。
等级资料
按照事物的属性特征进行等级划分所得的数据,如 疗效评价中的治愈、显效、好转、无效等。
计量资料
通过度量衡等方法获得的数据,如身高、体重等。
等级资料的特点
有序性
等级资料具有有序性,不同等级之间存在一定的顺序 关系。
差异性
不同等级之间存在差异,同一等级内的数据具有相似 性。
相对性

非参数统计中的秩和检验方法详解(Ⅰ)

非参数统计中的秩和检验方法详解(Ⅰ)

非参数统计中的秩和检验方法详解统计学是一门研究数据收集、分析、解释和展示的学科,它在各个领域都有着广泛的应用。

而在统计学中,参数统计和非参数统计是两种常见的方法。

参数统计是根据总体的参数进行推断,而非参数统计则是不对总体参数做出假设的一种统计方法。

在非参数统计中,秩和检验方法是一种常用且重要的方法。

本文将详细介绍非参数统计中的秩和检验方法。

一、秩和检验简介秩和检验是一种基于秩次的非参数检验方法,它主要用于对两个独立样本或多个相关样本的总体分布进行比较。

这种方法的优势在于对数据的分布形状没有要求,适用于各种类型的数据。

在进行秩和检验时,首先需要将样本数据进行排序,然后根据排序后的秩次进行计算。

接下来,通过比较秩和的大小来进行假设检验,从而得出结论。

二、秩和检验的应用场景秩和检验方法可以应用于诸多实际场景中。

比如,在医学研究中,可以用秩和检验方法来比较两种不同治疗方法的疗效;在工程领域,可以用秩和检验方法来比较不同生产工艺的产品质量;在市场营销中,可以用秩和检验方法来比较不同促销策略的效果等等。

总之,秩和检验方法在实际问题的解决中有着广泛的应用。

三、秩和检验的类型秩和检验包括了许多不同类型,其中最常见的包括Mann-Whitney U检验、Wilcoxon秩和检验和Kruskal-Wallis H检验。

下面将分别对这些检验进行详细介绍。

1. Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。

它基于两组数据的秩次进行比较,通过计算秩和来判断两组数据是否来自同一总体分布。

Mann-Whitney U检验的原假设是两组样本来自同一总体分布,备择假设是两组样本来自不同总体分布。

通过计算U统计量和p值来进行假设检验,从而得出结论。

2. Wilcoxon秩和检验Wilcoxon秩和检验是一种用于比较两个相关样本的非参数检验方法。

它与Mann-Whitney U检验类似,同样是基于秩次进行比较。

医学统计学秩和检验课件

医学统计学秩和检验课件
原理
秩和检验基于以下原理:对于来自同一总体的两个样本,它 们的样本分布形状应该相同;如果来自不同总体的两个样本 ,它们的样本分布形状应该有显著差异。
秩和检验的优缺点
优点
秩和检验不依赖于数据的分布假设,因此它比参数统计方法更具有稳健性; 同时,秩和检验可以处理各种类型的数据,包括定性和定量数据。
缺点
场景3
在社会科学研究中,对于一些评价社会现象的指标,如幸福感、生活质量等,秩和检验可 以用来比较不同地区或不同群体之间的差异。
02
秩和检验的类型与方法
配对比较法
01 02
定义
配对比较法也称为配对t检验,它是在医学研究中经常使用的一种统计 方法。这种方法主要用于分析两组配对的样本,以评估它们之间的平 均值是否存在显著差异。
适用范围
配对比较法适用于分析两种相关样本间的关系,例如同一组患者在治 疗前后的血压或血糖水平的变化。
03
步骤
首先,将两组配对的样本数据按大小进行排序,并赋予秩次;然后,
计算每组的平均秩次,并使用t检验来比较两组的平均秩次是否存在显
著差异。
独立样本法
定义
独立样本法也称为独立t检验,它是在医学研究中常用的 另一种统计方法。这种方法主要用于比较两个独立的样 本,以评估它们的平均值是否存在显著差异。
其他秩和统计量及其分布
Mann-Whitne…
也称为U统计量,用于比较两个独立样本的总体中 位数是否相同。
Jonckheere-…
也称为Z统计量,用于比较两个或更多有序样本的 总体中位数是否相同。
分布
Mann-Whitney U统计量服从于正态分布,其均 值和方差与Wilcoxon秩和统计量相同。
选择研究对象

医学统计学之秩和检验

医学统计学之秩和检验

医学统计学之秩和检验什么是秩和检验?秩和检验(Wilcoxon rank-sum test),又称为Mann-Whitney U检验,是非参数假设检验的一种常用方法,用于比较两个独立样本的位置差异。

这个方法基于样本的秩次,而不依赖于数据的具体分布。

秩和检验的适用场景秩和检验通常用于以下情况:1.样本数据不满足正态分布假设;2.无法满足方差齐性假设;3.样本容量较小。

秩和检验是一种非常灵活的方法,适用于大部分类型的数据分布,甚至可以包括极端的离群值。

秩和检验的原理秩和检验的原理是将两个样本的观察值合并后,按照大小重新排列,并赋予秩次。

然后利用秩次之和来比较两个样本的位置差异。

1.对于两个独立样本,将两组数据合并为一个整体的样本。

2.对于每个观察值,分别计算出在整体样本中的秩次。

3.计算两组样本的秩和,比较其大小。

4.根据秩和的大小以及样本容量,查表或计算检验统计量的p-value。

秩和检验的步骤秩和检验的具体步骤如下:1.将两个样本合并为一个整体样本,并标记属于哪个样本。

2.对整体样本中的观察值进行排序,得到秩次。

3.计算秩和,并比较两个样本的秩和大小。

4.根据秩和大小以及样本容量,查找临界值。

5.根据临界值判断是否拒绝原假设,或者计算统计量的p-value。

6.根据p-value判断是否拒绝原假设。

秩和检验的示例假设我们有两个医学治疗方法A和B,想要比较其对病人治疗效果的差异。

我们随机选择了两组病人,分别给予方法A和B进行治疗,然后观察他们的疗效。

以下是我们观察到的结果:组A:8, 10, 12, 10, 14 组B:9, 11, 14, 12, 13我们可以按照秩次将两组数据合并,并计算秩和:组A:8(1), 10(3), 12(4), 10(3), 14(5) 组B:9(2), 11(4), 14(5), 12(4), 13(2)组A的秩和为16,组B的秩和为17。

然后,我们根据秩和的大小以及样本容量,在秩和表中查找临界值。

卫生统计学实验课件秩和检验Nparway过程

卫生统计学实验课件秩和检验Nparway过程

定义与目的
定义
非参数秩和检验nparway是一种 用于比较两组或多组独立样本的 非参数统计方法。
目的
通过比较各组观察值的秩次(即 数据排序位置)来推断各组之间 的差异,适用于数据不符合正态 分布或总体分布未知的情况。
适用范围与限制
适用范围
适用于多组独立样本的比较,尤其适 用于数据不符合正态分布或总体分布 未知的情况。
THANKS FOR WATCHING
感谢您的观看
05 nparway秩和检验在实际 应用中的注意事项
数据质量与样本量问题
数据质量
在进行nparway秩和检验之前,应确保 数据质量,避免因数据录入错误、遗漏 或异常值导致的分析结果偏差。
VS
样本量问题
样本量的大小对秩和检验的结果具有显著 影响。在确定样本量时,应充分考虑研究 目的、效应大小、误差率等因素,以确保 足够的统计效能。
数据展示
数据集1包含四组,每组有30个观测值;数据集2包含四组, 每组有4个观测时间点,每个时间点有30个观测值。
实例分析过程
1 2 3
数据预处理
对数据进行清洗和整理,确保数据准确无误。
建立假设
对于数据集1,假设四组人群在某项指标上无显 著差异;对于数据集2,假设四组人群在不同时 间点的测量值无显著差异。
结果讨论
根据nparway秩和检验的结果,分析可能的原因,并探讨如何改进实验设计和数据处理方法,以提高实验的准确 性和可靠性。
04 nparway秩和检验与其他 检验方法的比较
与其他非参数检验方法的比较
与Kruskal-Wallis检验的比较
Kruskal-Wallis检验是一种单因素的非参数检验方法,而nparway秩和检验可以用于多因素的非参数 检验,具有更广泛的应用范围。

统计学秩和检验

统计学秩和检验

案例展示:医学研究中应用秩和检验
案例一
某医学研究比较了两种不同治疗方法对患者疼痛程度的影响。由于疼痛程度为等级资料,且样本量较小,研究者 选择了Wilcoxon符号秩和检验进行分析。结果显示,两种治疗方法的疼痛程度存在统计学差异(P<0.05),表 明其中一种治疗方法在减轻患者疼痛方面更有效。
案例二
THANKS
感谢观看
适用于连续型数据,且两个样本相互独立的情况 。
多重比较与Kruskal-Wallis H检验
目的
用于比较多个独立样本所来自的总体的分布是否存在显著差异。
方法
将多个样本数据混合后按大小排序,计算每个样本的秩和,通过比较各组秩和的差异判 断多个总体分布是否存在显著差异。如果存在差异,可进一步进行两两比较。
基于模型的秩和检验
基于模型的秩和检验方法结合了参数模型和非参数检验的优点,通过建立适当的统计模型来描述数据 的分布规律,并利用模型参数进行假设检验,从而提高了检验的灵活性和准确性。
前沿动态及未来发展趋势
基于大数据的秩和检验
随着大数据时代的到来,基于大数据的秩和检验方法将具有更广阔的应用前景。这些方法 可以利用大规模数据集提供的丰富信息,通过挖掘数据间的关联性和规律性,进一步提高 秩和检验的效能和准确性。
• · 适用范围:秩和检验适用于等级资料、不满足参数检验前提的计量资料以及某些特殊情况下 的计数资料。例如,在临床医学中,常常用于评价两种治疗方法对患者生存时间的影响是否 存在差异;在生物学中,可用于比较不同基因型对某种表型的影响等。
适用范围及优缺点
优点:秩和检验的优点包 括
对异常值和离群点相对不 敏感;
03
适用范围
适用于连续型数据,且样本量较小的 情况。

医学统计学-非参数检验秩和检验

医学统计学-非参数检验秩和检验
(4)确定P值和作出推断结论: 当n≤50时,查T界值表 T在界值范围内 P>α T在界值范围外 P<α T与界值相等 P=α
正态近似法 当n>50,可采用正态近似法,计
算u值。
T -n(n+1)/4-0.5 u=
n(n+1)(2n+1)/24
正态近似法
若相同秩次较多,应作校正计算。
T-n(n+1)/4-0.5
检验
诊断试验ROC曲线分析
配对设计差值比较的符号秩和检验 由Wilcoxon1945年提出,又称 Wilcoxon符号秩和检验,常用于检验 差值的总体中位数是否等于零。
分析步骤:
(1)建立检验假设,确定检验水准 Ho:差值总体中位数Md=0 H1:差值总体中位数Md≠0 α=0.05
(2)编秩:
依赖于特定分布类 型,比较的是参数
不受分布类型的影响,比 较的是总体分布位置
优点:方法简便、易学易用,易于推广使用、 应用范围广;可用于参数检验难以处理的资料 (如等级资料,或含数值“>50mg”等 )
缺点:方法比较粗糙,对于符合参数检验条件者,采用 非参数检验会损失部分信息,其检验效能较低;样本含 量较大时,两者结论常相同
例2 9名 肺炎病人的治疗结果:
疗效
治愈 治愈 死亡 无效 治愈 有效 治愈 有效 无效
秩次
12 9 7 3 5 4 6 8
平均秩次 2.5 2.5 9 7.5 2.5 5.5 2.5 5.5 7.5
SPSS中的菜单位置
基于秩次的非参数检验
• 两个独立样本比较的非参数检验 • 多个独立样本比较的非参数检验 • 配对样本比较的非参数检验 • 随机区组设计多个样本比较的非参数

医学统计学第13讲 秩和检验

医学统计学第13讲   秩和检验

诸如此类只能用严重程度、优劣等级、时序先后 等形式表达的资料, 既非呈连续分布的定量资料, 也非仅按属性归类的无序分类资料, 它们对观察 指标的表达比“定量”粗, 而比一般的“定性” 细, 组成了有确定顺序差别的若干“阶梯”, 但毗 邻的阶梯之间既不能度量, 又非等距。
人们通常把该类介于定量与定性之间的资料称作 等级资料, 又称有序分类资料。
A组:
组1: 组2: 组: 组4: .5组: 组:
8.5
11.5
两组的秩和(T)分别为: TA=25, TB=53
设A组有n1例, B组有n2例, n1+n2=N例, 则
TA+TB=N(N+1)/2=78
秩次一定程度上反映了等级的高低; 秩和一定程度上反映了等级(各组秩次) 的分布位置。
秩和检验是通过秩次的排列求出秩和, 从 而对总体的分布或分布位置进行假设检 验的方法。
15
653
16
712
17.5
762
21
843
22
849
24
896
25.5
901
27
-
179
⑴建立检验假设,确定检验水准 H0: 3个总体的分布位置相同 H1: 3个总体的分布位置不全相同
α=0.05
(2)计算检验统计量H
混合编秩, 相同数值, 取平均秩, 算得各组 的秩和R,
H
12 Ri2 3(N 1) N (N 1) ni
(4)
(5) (6)
(7)
(8)= (9) = (10)= (2)(7) (3)(7) (4)(7)
控制 36 4
1
41 1~41 21.0 756.0 84
21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 Biostatistics
2 秩次与秩和
秩次:在一定程度上反映了等级的高低; 秩和:在一定程度上反映了等级的分布 位置。 对等级的分析,转化为对秩次的分析。 秩和检验就是通过秩次的排列求出秩和, 进行假设检验。
9
Biostatistics
示例
假如两组等级分布相同
理论上两组秩和相近.
疗 效:痊愈、显效、有效、无效、恶化
化验结果:-、、+、++
体格发育:下等、中下、中等、中上、上等
心功能分级:I、II、III、IV
文化程度:小学、中学、大学、研究生
营水平:差、一般、好
4
Biostatistics
等级资料的特点
既非呈连续分布的定量资料,也非仅 按性质归属于独立的若干类的定性资 料; 比“定量”粗,而比一般的“定性” 细; 等级间既非等距,亦不能度量。
35
Biostatistics
H 的校正
当有相同秩次时,H 需校正:
C 1 ( t t j ) /[ N N )]
3 j 3
HC H / C
36
Biostatistics
例题(page89)
例8.3 某医院用三种复方小叶枇杷治疗老年 性慢性支气管炎,数据见表8.2第(1)~(4)栏, 试比较其疗效有无差异。
分布情况
第1 种情形…
A B
第2种情形…
B A
13
基本思想
如果H0 成立,即两组分布位置相同, 则A组的实际秩和应接近理论秩和n1(N+1)/2; (B组的实际秩和应接近理论秩和n2(N+1)/2). 或相差不大,差值很大的概率应很小 。 如果相差较大,超出了预定的界值,则可认 为H0不成立。
14
Biostatistics
基本思想
A组 实际秩和 25 B组 53 和 78
理论秩和 n1(N+1)/2 n2(N+1)/2 N(N+1)/2 39 差值 -14 39 14 抽样误差? 78
0
如果H0成立,则理论秩和与实际秩和之差 纯粹由抽样误差造成。
15 Biostatistics
23
Biostatistics
例题( page87 )
表 8.1 复方猪胆胶囊治疗两型老年性慢性支气管炎疗效比较 人数 秩和 疗效 喘息 单纯 秩次范围 平均秩次 合计 喘息型 单纯型 型 型
( 1) ( 2) ( 3) ( 4) 治愈 显效 好转 无效 23 83 65 11 60 98 51 12 83 181 116 23 ( 5) 1~ 83 84~264 265~380 381~403 ( 6) 42 174 322.5 392 ( 7) 966 14442 20962.5 4312 ( 8) 2520 17052 16447.5 4704
3 ( t j tj )
3.3669
c 1 1 N3 N 833 83 1813 181 116 3 116 233 23 4033 403
0.8766
uc u
C 3.3669/ 0.8766 3.5961 u 0.01
等级资料的秩和检验
Rank Sum Test of Ranked Data
陈涛
Department of Epidemiology & Biostatistics, School of Public Health Nanjing Medical University
资料的分类
数值变量资料
分类资料
二分类 无序多分类
Biostatistics
等级相同(tie)取平均秩次!!
7
秩和
A组: - 、、+、+、+、 ++
秩和: 1
2 4.5 4.5 4.5 8.5
TA=25
B组: +、++、++、++、+++、+++ 秩和: 4.5 8.5 8.5 8.5 11.5 11.5 TB=53
TA+TB=N(N+1)/2=78
Sum of ranks = 37 Sum of ranks = 41
B
A 两样本合并排序
1
10
2
3
4
5
6
7
8
9
10
11
12
3 两样本比较的秩和检验
检验假设
H0 :A、B两组等级分布相同; H1 :A、B两组等级分布不同。 =0.05。
11
Biostatistics
Distribution of two populations when their locations are same
注:相同观察值不同组时取平均;相同组时,按位置顺序编号
29 Biostatistics
例题
【例】 某医生在研究再生障碍性贫血时,测 得不同程度再生障碍性贫血患者血清中可溶 性CD8抗原水平(U/ml),问不同程度再生 障碍性贫血患者血清中可溶性 CD8抗原水平 有无差别?
30
Biostatistics
两样本秩和检验 T 界值
n1=6,n2-n1=0 28~50 26 24 23 ~ ~ ~ 52 54 55 间距 22 双侧 单侧 0.10 0.05 0.05 0.025 0.02 0.01 0.01 0.005
26 30 32
6(12+1)/2=39(理论值)
16 Biostatistics
检验结果
如果H0成立,则按0.05水准, A组秩和之界值为26~52。 现A组的实际秩和为25,在界值之外, 故拒绝 H0 ,接受 H1 ,认为两组的分 布位置不同。
17
Biostatistics
秩和检验的结论判断
A组的实际秩在界值之外, (小于或等于下界,大于或等于上界) 则拒绝H0,接受H1。 A组的实际秩在界值之内, (大于下界且小于上界) 则不拒绝H0。
合计 n1=182 n2=221 403
T1=40682.5 T2=40723.5
24
Biostatistics
例题( page88 )
建立检验假设
H0:两型老慢支疗效分布相同 ; H1:两型老慢支疗效分布不同; =0.05。

检验统计量
n1=182, n2=221,检验统计量T=40682.5 。
18 Biostatistics
例题
【例】 某实验室观察在缺氧条件下猫和兔的 生存时间,结果见表,试检验在缺氧条件下 猫和兔的生存时间有无差别?
19
Biostatistics
例题

猫 生存时间 (min) 25 34 44 46 46 48 49 50 秩次 9.5 13 15 16 17 18 19 20 生存时间 (min) 14 15 16 17 19 21 21 23 25 28 30 35
5
Biostatistics
2 秩次与秩和
Wilcoxon 在1945年首先提出了比较两个总体分布函 数的秩和检验。秩和检验以及其它的秩检验法,都 是建立在秩及秩统计量基础上的非参数方法。
秩次(rank),秩统计量
是指全部观察值按某种顺序排列的位序; 秩和(rank sum) 同组秩次之和。
例题 (假设不满足参数检验的要求)
表 不同程度再障患者血清中 CD8 抗原水平(U/ml)
正常组
( 1)
轻度组
( 3)
重度组
( 5)
42 51 98 141 141 318 382 408 620
31
448 555 585 620 712 753 758 845 896
562 631 653 712 762 843 849 896 901
建立检验假设
H0 :各组总体的等级分布相同; H1 :各组总体的等级分布不同或不全相同。 =0.05。 计算检验统计量H值
R 12 H 3( N 1) N ( N 1) ni
33 Biostatistics
2 i
多组等级比较的检验假设
12 49.5 2 149.5 2 1792 H ( ) 3(27 1) 16.250 27(27 1) 9

检验统计量T值
n1=8,n2=12,检验统计量T=127.5
确定P值和作出推断结论
查附表10得T界值是58~110。则双侧P<0.05,按 =0.05水准, 拒绝H0,接受H1,差异有统计学意义,故可认为在缺氧条件下 猫的生存时间较兔长。
21
Biostatistics
例题(page87)
例8.2 用复方猪胆胶囊治疗老年性慢性支气 管炎患者 403 例,疗效见表 8.1 第 (1)~ (3) 栏。 问该药对此两型支气管炎疗效是否相同?
缺氧条件下猫和兔的生存时间
兔 秩次 1 2 3 4 5 6 7 8 9.5 11 12 14
n1=8
20
T1=127.5
n2=12
T2=82.5
Biostatistics
例题
检验假设
H0 :猫和兔在缺氧条件下生存时间总体分布相同 ;
H1 :猫和兔在缺氧条件下生存时间总体分布不同 。
=0.05。
多分类
有序多分类 (等级资料)
2
Biostatistics
内容提要:
1 医学研究中的等级资料
2 秩次与秩和
3 两样本比较的秩和检验 4 多样本比较的秩和检验 5 配对设计的秩和检验 6 配伍组比较的秩和检验
相关文档
最新文档