(完整版)高等数学第一章测试题10选择(带答案和解析)
高数(一)第一章练习题
高等数学(一)(第一章练习题)一、 单项选择题1.设f (1-cos x )=sin 2x, 则f (x )=( A )A.x 2+2xB.x 2-2xC.-x 2+2xD.-x 2-2x2.设x 22)x (,x )x (f =ϕ=,则=ϕ)]x ([f ( D )A.2x 2B.x 2xC.x 2xD.22x3.函数y=31x1ln -的定义域是( D ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1] D .(0,1)4.函数2x x y -=的定义域是( D )A.[)+∞,1B.(]0,∞-C.(][)+∞∞-,10,D.[0,1]5.设函数=-=)x 2(f 1x x )x 1(f ,则( A ) A.x 211- B.x 12- C.x 2)1x (2- D.x)1x (2- 6.已知f(x)=ax+b,且f(-1)=2,f(1)=-2,则f(x)=( )A.x+3B.x-3C.2xD.-2x7.设f(x+1)=x 2-3x+2,则f(x)=( B )A.x 2-6x+5B.x 2-5x+6C.x 2-5x+2D.x 2-x 8.已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )A .[a,3a]B .[a,2a]C .[-a,4a]D .[0,2a]9.函数y=ln(22x 1x 1--+)的定义域是( C )A .|x|≤1B .|x|<1C .0<|x|≤1D .0<|x|<110.函数y=1-cosx 的值域是( C )A.[-1,1]B.[0,1]C.[0,2]D.(-∞,+∞) 11.设函数f(x-1)=x 2-x,则f(x)=( B )A .x(x-1)B .x(x+1)C .(x-1)2-(x-1)D .(x+1)(x-2)12.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( D )A.[0,2]B.[0,16]C.[-16,16]D.[-2,2]13.设f(t)=t 2+1,则f(t 2+1)=( D )A.t 2+1B.t 4+2C.t 4+t 2+1D. t 4+2t 2+2 14.设1)1(3-=-x x f ,则f (x )=( B )A .x x x 2223++B .x x x 3323++C .12223+++x x xD .13323+++x x x15.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( C )A.(-1,51)B.(-51,5)C.(0,51)D.(51,+∞) 16.函数f(x)=arcsin(2x-1)的定义域是( D )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]17.设函数y =f (x )的定义域为(1,2),则f (ax )(a <0)的定义域是( B ) A.(a a 2,1) B.(aa 1,2) C.(a ,2a) D.(a a ,2] 18.函数f (x )=2211⎪⎭⎫ ⎝⎛--x 的定义域为( B ) A .[]1,1- B .[]3,1- C .(-1,1)D .(-1,3) 19.函数f (x )=21sin 2x x++是( C )A.奇函数B.偶函数C.有界函数D.周期函数 20.函数f (x )=ln x - ln(x -1)的定义域是( C )A .(-1,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) 二、填空题1.已知f (x +1)=x 2,则f (x )=________.2.设函数f(x)的定义域是[-2,2],则函数f(x+1)+f(x-1)的定义域是___________.3.函数y=x ln ln 的定义域是 .4.若f(x+1)=x+cosx 则f(1)=__________.5.函数y=1+ln(x+2)的反函数是______.6..函数y=arcsin(x-3)的定义域为___________。
高等数学第一章测试题
高等数学第一章测试题1. 请问函数的定义是什么?函数是一种将一个集合的元素映射到另一个集合的关系。
具体来说,如果有两个集合A和B,函数f可以将A中的每个元素映射到B中的唯一元素。
函数通常以以下形式表示:f: A → B,其中A为函数的定义域,B为函数的值域。
2. 简述函数的性质和特点。
函数具有以下几个性质和特点:- 映射关系:函数中的每个输入元素都对应着唯一的输出元素,不存在多对一的情况。
- 定义域和值域:函数的定义域是指所有可能作为输入的元素的集合,值域是指函数的输出元素的集合。
- 单调性:函数可以是单调递增的(当输入增加时,输出也增加),也可以是单调递减的(当输入增加时,输出减少)。
- 奇偶性:函数可以是奇函数(满足f(-x) = -f(x))或偶函数(满足f(-x) = f(x))。
- 周期性:函数可以是周期函数,具有以某个常数为周期的特点。
- 极限性质:函数在某些点或无穷远处可能存在极限值,可以用来描述函数的增长趋势。
3. 简述极限的定义和性质。
极限是描述函数在某一点上的趋势和变化的概念。
数学中,当自变量逐渐接近某个特定值时,函数的极限描述了因变量的变化趋势。
具体来说,对于函数f(x),当x趋近于某个常数a时,如果存在一个常数L,使得当x足够接近a时,f(x)无论是大于L还是小于L,那么我们就称L为函数f(x)当x趋近于a时的极限,记作lim(x→a)f(x)=L。
极限具有以下几个性质:- 唯一性:如果函数在某一点上存在极限,那么极限值是唯一确定的。
- 局部性:函数的极限只与函数在某一点附近的取值有关,与函数在其他点的取值无关。
- 保序性:如果函数在某一点的左侧和右侧存在极限,且左极限小于右极限,那么函数在该点的极限存在。
- 代数运算性质:极限运算可以与基本的代数运算(如加法、减法、乘法、除法等)进行组合,具体规则可根据各种运算法则进行推导。
4. 列举几个常见的初等函数,并简要介绍它们的性质和特点。
高等教育数学测试和答案解析[第一章]
高等数学测试(第一章)一 .选择题(每题2分,共20分) 1.(2分)712arcsin16)(2-+-=x x x f 的定义域为 ( ) A .[]3,2 B .[]4,3- C .[)4,3- D .()4,3-2.(2分) 已知函数)12(-x f 的定义域为[]1,0,则函数)(x f 的定义域为 ( ) A .⎥⎦⎤⎢⎣⎡1,21 B .[]1,1- C .[]1,0 D .[]2,1-3.(2分)已知1)1(2++=+x x x f , 则)(x f = ( ) A .22+-x x B .12--x x C .12++x x D .12+-x x4.(2分)下列函数对为相同函数的是 ( )A .1)(,11)(2-=+-=x x g x x x f B . 3ln )(,ln 3)(x x g x x f == C .2ln )(,ln 2)(x x g x x f == D . 2)(,)(x x g x x f ==5.(2分)若()f x ()x R ∈为奇函数,则下列函数一定为偶函数的是 ( ) A .(2)f x B .(2)f x -+ C .(||)f x D .2()f x6.(2分)函数122+=x xy 的反函数为 ( )A .x x y -=1log 2B .x x y +=1log 2C .x x y +=1log 2D .xx y -=1log 2 7.(2分)已知极限22lim()0x x ax x→∞++=,则常数a 等于 ( ) A .-1 B .0 C .1 D .28.(2分)当0x +→ ( )A.1-.ln(1 C1 D.1-9.(2分)点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的 ( )A .连续点B .可去间断点C .跳跃间断点D .第二类间断点10.(2分)下列命题正确的是 ( ) A . 两无穷大之和为无穷大; B . 两无穷小之商为无穷小;C . )(lim 0x f x x →存在当且仅当)(lim 0x f x x -→与)(lim 0x f x x +→均存在;D . )(x f 在点0x 连续当且仅当它在点0x 既左连续又右连续. 二.填空题(每题3分,共15分)11.(3分)函数()f x 在点0x 处有定义是()f x 在0x 处极限存在的________________. 12.(3分)当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常数A=____________. 13.(3分)已知函数()f x 在点0x =处连续,且当0x ≠时,函数21()2x f x -=,则函数值(0)f =_____.14.(3分)若lim ()x f x π→存在,且sin ()2lim ()x xf x f x x ππ→=+-,则lim ()x f x π→=________________.15.(3分)设函数()()[]x x x f g x x f -=-=1,21,则⎪⎭⎫⎝⎛21g =________________. 三. 计算题(共55分)16.(5分)⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 2221...2111lim . 17.(5分))1(lim 2x x x x -++∞→.18.(5分)xx e x x x 2sin 1lim 3202-→--. 19.(5分)xx x x cot 20)32sin 1(lim +-→.20.(5分)()⎥⎦⎤⎢⎣⎡+-→x x x 1ln 11lim 0. 21.(5分)30tan sin lim x x x x →-.22.(5分)01x x e →-. 23.(5分) xx x +→0lim .24.(7分)设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值.25.(8分)若)(lim 1x f x →存在,且23)(2++=x x x f )(lim 1x f x →,求)(x f 和)(lim 1x f x →.四.证明题(共10分)26.(10分)设函数()f x ,()g x 均在闭区间[],a b 上连续,且有()()f a g a a >+,()()f b g b b <+,证明:存在,a b ξ∈(),使()()fg ξξξ=+成立.答案: 一. 选择题1—5 BBDBC ;6—10 AABBD .二.填空题11、无关条件; 12、3; 13、 0; 14、 1;15、3. 三.计算题16. ⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n 2221 (211)1lim . 【解析】因为),...,2,1(1111222n i n i n nn =+≤+≤+, 所以11 (21)1122222+≤++++++≤+n n nn n n nn n ,而11limlim22=+=+∞→∞→n nnn n n n .由两边夹逼准则可知,11 (211)1lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n . 17.)1(lim 2x x x x -++∞→.【解析】原式211111lim1lim22=++=++=+∞→+∞→x xx x x x . 18. xx ex x x 2sin 1lim3202-→--. 【解析】原式16116lim 161lim 3222lim 81lim 2202030320222-=-=+-=+-=--=→-→-→-→xx x e x xe x x x e x x x x x x x x . 19. xx x x cot 20)32sin 1(lim +-→.【解析】原式x x x xx x x xx x xx x x eex x tan 32sin limtan 32sin 0tan 32sin 32sin 122022lim )32sin 1(lim +-+-→+-∙+-→→==+-=23lim2sin lim32sin lim20020-+-+-===→→→e eex x x x x x x x x x .20. ()⎥⎦⎤⎢⎣⎡+-→x x x 1ln 11lim 0. 【解析】原式()()()212111lim 1ln lim 1ln 1ln lim 0200-=-+=-+=+-+=→→→x x x x x x x x x x x x . 21. 30tan sin lim x x x x→-. 【解析】原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x xx x x x x x x →→→--===.22.21lim1x x e →-.【解析】原式=2121lim sin 21lim 22020==→→x xxx x x x .23.(5分) xx x +→0lim . 【解析】原式1lim 011lim1ln limln lim ln 02000======-→+→+→+→+e eeee x x xxxx xx x x x x .24.设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值.【解析】因为1lim(1)0x x →-+=,所以 321lim(4)0x x ax x →---+=,因此 4a = 并将其代入原式321144(1)(1)(4)lim lim 1011x x x x x x x x l x x →-→---++--===++25.若)(lim 1x f x →存在,且23)(2++=x x x f )(lim 1x f x →,求)(x f 和)(lim 1x f x →.【解析】设A x f x =→)(lim 1,对等式23)(2++=x x x f )(lim 1x f x →两边同时取极限()1→x 可得,())(lim 23lim )(lim 1211x f x x x f x x x →→→++=,即()A x x A x 23lim 21++=→,故4)(lim 1-==→A x f x .所以83)(2-+=x x x f . 四.证明题26.设函数()f x ,()g x 均在闭区间[],a b 上连续,且有()()f a g a a >+,()()f b g b b <+,证明:存在,a b ξ∈(),使()()fg ξξξ=+成立.【证明】 构造函数()()()F x f x g x x =--,则函数()F x 在闭区间[],a b 上连续, 而()()()0F a f a g a a =-->,()()()0F b f b g b b =--<, 显然()()0F a F b ⋅<于是由连续函数的零点定理知,(,),a b ξ∈使得()0F ξ=,即 存在,a b ξ∈(),使()()fg ξξξ=+.。
(完整版)高等数学测试题及解答(分章)
第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sinlim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
高等数学测试题及答案1-9章全
高等数学测试题及答案1-9章全第1章自测题一、 选择题1. 若函数()f x 在点0x 处的极限存在,则( ) A ()f x 在点0x 处的函数值必存在,并且等于极限值; B ()f x 在点0x 处的函数值必存在,但不一定等于极限值; C ()f x 在点0x 处的函数值可以不存在; D 如果0()f x 存在的话,一定等于极限值 . 答案: C .提示:根据极限的定义.2.下列函数中,在点2x =处连续的是( ) .A ln(2)x -; B 22x -; C 242x y x -=-; D答案: B .提示:A 与C 在2x =处无意义,D 在2x =处左连续.3.函数53sin ln x y = 的复合过程是( )A x w w v v u u y sin ,,ln ,35====B x u u y sin ln ,53== ;C x u u y sin ,ln 53== ;D x v v u u y sin ,ln ,5=== . 答案:A .4.设,0(),0x e x f x a x x ⎧<⎪=⎨+⎪⎩≥ ,要使()f x 在0x =处连续,则a =( )A 2 ; B 1 ; C 0 ; D -1 .答案: B .提示:0lim ()lim e e 1x x x f x --→→===,00lim ()lim()x x f x a x a ++→→=+=. 二、填空题5. 函数()34f x x =-的反函数是 . 答案:43x y +=.提示:反表示为43y x +=.6. 函数y 的复合过程是 .答案:2ln ,,cos y u v v t t x ====.7. 若2()f x x =, ()x g x e =,则[()]f g x = ,[()]g f x = .答案: 22[()](e )e x x f g x ==,2[()]x g f x e =. 8. 函数1()ln(2)f x x =-的连续区间为 .答案:(2,3)和(3,)+∞. 提示:20x ->且ln 20x -≠.三、 解答题9.设函数ln ,01()1,122x x f x x x x ⎧<⎪=-<⎨⎪>⎩≤≤ ,(1) 求()f x 的定义域;(2) 作出函数图像;(3) 讨论()f x 在1x =及2x =处的连续性 .解 (1) 函数()f x 的定义域为(0,)+∞. (2) 函数图像为第1题图(3) 观察图像知,函数()f x 在1x =处连续,在2x =处不连续性.10.指出函数2πsin (3)4y x =-是有哪些简单函数复合而成的.解 2π,sin ,34y u u v v x ===-.11.计算下列各极限:(1) 22125lim 1x x x x →-+++ ; (2)221241lim 232x x x x →-+-; (3) 32lim(2)x x x →- ;(4)224lim 2x x x →--+;(5) 221lim()x x x→∞- ;(6)2241lim 232x x x x →∞-+-.解 (1) 22125125lim2111x x x x →-++-+==++; (2)2211122241(21)(21)214lim lim lim (21)(2)25232x x x x x x x x x x x x →→→--++===-+++-;(3) 33222lim(2)lim 2lim 484x x x x x x x →→→-=-=-=- ;(4)22224(2)(2)lim lim lim (2)422x x x x x x x x x →-→-→---+==-=-++;(5) 222121lim()lim lim 000x x x x x xx →∞→∞→∞-=-==-= ;(6)22221441limlim 2322322x x x x x x x x→∞→∞--==+-+-.12. 利用高级计算器计算下列各极限:(1)2lim sinx x x→∞ ; (2)3x → ;(3)lim x →+∞ (4)21lim()xx x x→∞+.解(1)2lim sin2x x x→∞= ; (2)314x →=; (3)x →∞=0; (4)221lim()e xx x x→∞+=.四、应用题1.若某厂每天生产某种产品60件的成本为300元,生产80件的成本为340元.求这种产品的线性成本函数,并求每天固定成本和生产一件产品的可变成本为多少?解 300602(),,()180234080180a b a C Q aQ b C Q Q a b b =+=⎧⎧=+⇒⇒∴=+⎨⎨=+=⎩⎩; 固定成本为180元,一件产品的变动成本为2元.2.甲向乙购买一套价值300万元的房子,乙提出三种付款方式:(1)全部付现款,可以优惠10万元;(2)先首付100万元,余款每隔一年付40万元,但每次付款必须加还40万元产生的利息(按年利率5%计算),5年后还清;(3)先首付200万元,一年后付余款100万元,但必须加还100万元的利息(按年利率5%计算);分别计算这三种付款方式实际付款金额. 解 (1)300—10=290(万元);(2)234510040(15%)40(15%)40(15%)40(15%)40(15%)332.076513++++++++++=万元;(3)(3)200100(15%)305++=万元.第2章 自测题一、 选择题1.过曲线2y x x =-上M 点处切线斜率为1,M 点坐标为( ). A.()1,0;B.()1,1;C.()0,0;D.()0,1.答案: A .提示:切线斜率为211,1k x x =-==,0y =.2.设在0x =处可导,则0(2)(0)lim h f h f h→-=( ).A.0;B.2(0)f '-;C.(0)f ';D.2(0)f '.答案: D .提示:00(2)(0)(02)(0)lim lim 22(0)2h h f h f f h f f h h→→-+-'=⋅=3.函数()f x 在点0x x =取得极大值,则必有( ). A.()00f x '=;B.()00f x '<;C ()00f x '=且()00f x =;D.()0f x '等于零或不存在.答案: D .提示:()0f x '等于零或不存在的点都是可能的极值点. 4.函数sin y x x =-在[]0,π上的最大值是( ).; B.0; C.π-; D.π. 答案: C. 提示:因为cos 10y x '=-≤,所以函数单调递减.最大值为()f ππ=-5.函数e arctan x y x =+在区间[]1,1-上( ). A.单调减少;B.单调增加;C.无最大值;D.无最小值.答案: B .提示:因为2101x y e x'=+>+. 6.d d yx=( ).C.D.答案: C .提示:0,y y ''==. 7. 设()211f x x =+ (0)x >,则()f x '=( ). A.21(1)x -+; B.21(1)x +;C.;. 答案: C .提示:()f x,所以y '= 8.设32,2t x te y t t -==+,则1t dydx =-=( ) A.2e -; B.2e -; C.2e; D.2e答案:C .提示:因为262ttdy t tdx e te--+=-,所以12t dy dx e =-= 9.设(),()y f u u x ϕ==,则dy =( )A.()f u dx ';B.()()f x x dx ϕ''C.()()f u x dx ϕ'';D.()()f u x du ϕ'' 答案: C .提示:根据复合函数求导法则. 二、填空题10.已知某商品的收益为375)(Q Q Q R -=,则其边际收益=')(Q R 解 2375)(Q Q R -='11.函数1x y e -=在2x =-处的切线斜率为 . 解 13222xx x k y e e -=-=-'==-=.12.曲线()21f x x =-在区间 上是单调增加函数. 解 ()2f x x '=-,所以在(,0)-∞上是单调增加函数. 13.如果2,0.01x x =∆=,则22()x d x == .解 2220.01()20.04x x x d x x x==∆==⋅∆=.14.函数x y xe -=在[]1,2-上的最大值为 .解 (1)x y e x -'=-,得驻点1x =,12(1),(1),(2)f f e f e e=-=-=,所以最大值为2(2)f e=.15.如果2sin 2y x =,则y '= . 解 2sin 2cos222sin 4y x x x '=⋅⋅=.16. 某需求曲线为1003000Q P =-+,则20P =时的需求弹性E = 解 202020()(100)21003000P P P P P E Q P Q P ==='=-=--=-+ . 17.已知ln 2y x =,则y ''= .解 211,y y x x'''==-.三、计算题18. 求下列函数的导数(1)(1y =+ (2)cos πy =+解y =解231(1)3y x -'=⋅+。
高一数学第一章试题及答案
高一数学第一章试题及答案【高一数学第一章试题及答案】一、选择题1. 在直线上,如果两点A、B的坐标分别是(2, 3)和(6, 9),则点A到点B的距离是:A. 4B. 5C. 6D. 7解析:根据坐标公式,设点A(x1,y1)、点B(x2,y2),则点A到点B 的距离为√((x2-x1)²+(y2-y1)²)。
代入数值计算:√((6-2)²+(9-3)²) =√(16+36) = √52,即点A到点B的距离是√52,约等于7.211。
选D。
2. 已知函数 f(x) = x²-4x+3,那么 f(-1) 的值等于:A. 8B. 6C. 4D. 2解析:将x = -1代入函数f(x)中计算:f(-1) = (-1)²-4(-1)+3 = 1+4+3 = 8。
选A。
3. 若两个圆的半径分别为3cm和4cm,则它们的外切圆的半径为:A. 7B. 5C. 3.5D. 2.5解析:两个圆的外切圆半径等于两个圆半径之和。
即 3 + 4 = 7。
选A。
二、填空题1. 若直线l的斜率为2/3,过点(4, 5),则直线l的方程为y =___________。
解析:直线的斜率为2/3,表示直线上任意两点的纵坐标变化量与横坐标变化量的比值为2/3。
过点(4, 5)的直线方程为 y - 5 = (2/3)(x - 4),整理得 y = (2/3)x + 14/3。
填写答案为 (2/3)x + 14/3。
2. 设集合A={1, 2, 3},集合B={2, 3, 4},则 A∪B = ________。
解析:集合的并运算指的是将两个集合中所有不重复的元素放在一起。
集合A={1, 2, 3},集合B={2, 3, 4},则 A∪B = {1, 2, 3, 4}。
填写答案为 {1, 2, 3, 4}。
三、解答题1. 解方程 3(x+2) + 2(2x-1) = 4(3x-2)。
高数测试卷一及答案(第一章)
高数第一章测试一、选择题(每题5分)1、当x →0时,下列函数哪一个是其他三个的高阶无穷小( )A .x 2 B. 1-cos x C. x - tan x D. ln(1+x 2)答案:C;211cos ~2x x -,22ln(1)~x x +, 222222000011tan cos 11sin 1cos lim lim lim lim 022cos 2cos x x x x x x x x x x x x x x x→→→→---===-=, ∴该选(C )2、设当x →0时,(1-cos x )ln(1+x 2)是比x sin x n 高阶的无穷小,而x sin x n 是比(2x e )高阶的无穷小,则正整数n 为()A.1B.2C.3D.4答案:B ;因为当0x →时,224121(1cos )ln(1)sin ,(1)2n n x x x x x x x e x +-+-,,所以214n <+<满足题设条件的2n =。
故选B 。
3、设232)(-+=x x x f ,则当x →0时() A. )(x f 与x 是等价无穷小量 B. )(x f 与x 是同阶但非等价无穷小量C. )(x f 与比x 较高阶的无穷小量D. )(x f 与比x 较低阶的无穷小量 答案:B ;【解法1】ln 22ln32121ln 2(ln 2)2!131ln 3(ln 3)2!()232(ln 2ln 3)()x x x x x x e x x e x x f x x x ο==+++ ==+++∴=+-=++ 故0x →时()f x 与x 是同阶但非等价无穷小量。
【解法2】 000()2322ln 23ln 3lim lim lim ln 2ln 31x x x x x x x f x x x →→→+-+===+ ∴0x →时()f x 与x 是同阶但非等价无穷小量。
4、下列极限存在的是() A.x x x x 1arctan sin lim 0→ B. x x x x 1arctan sin lim 0→ C. x x x x 1arctan sin lim 0→ D. x x x x 1arctan sin lim 0→答案:A;因为00sin sin 11lim arctan (1)()lim arctan 12222x x x x x x x x ππππ-→→=--==⨯=+,。
(完整版)高数第一章例题及答案(终)理工类吴赣昌
第一章函数、极限与连续内容概要课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① a log □,( □0>) ② /N □, ( □0≠) ③(0)≥W④ arcsin W (W[]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ;(2)31121121arcsin≤≤-⇒≤-≤-⇒-=x x x y ; (3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★ 2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,x x g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★ 3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数;思路:注意自变量的不同范围; 解:216sin)6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★ 4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。
高数一试题与答案解析
高数一试题(卷)与答案解析(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《 高等数学(一) 》复习资料一、选择题1. 若23lim 53x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim 21x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( )A.22y x =+B.22y x =-+C.23y x =+D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+ 5. 211lim sin x x x →-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( ) A 1 B 2 C 3 D 47. 求函数43242y x x =-+的拐点有( )个。
A 1B 2C 4D 08. 当x →∞时,下列函数中有极限的是( )。
A. sin xB.1x e C. 211x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3)lim 2h f h f h→--=( ) 。
A. 32 B. 32- C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。
A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定12. [()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C ) 2222(ln )(ln )f x f x x '. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 222(ln )()f x f x x ' 14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C + 15. 2ln x dx x=⎰( D ) A.2ln x x C + B.ln x C x + C.2ln x C + D.()2ln x C + 16. 211lim ln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( ) A 1 B 0 C 2- D 218. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A ) A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x - D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求.3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分80⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求11. 求2212x xe dx -⎰12. 求3x ⎰13. 求21ln e xdx x ⎰14.求⎰三、解答题1.若(1lim 36x x →∞=,求a 2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型 4. 设2sin ,.xy xy x e y '+=求5.求y =的导数. 6. 求由方程cos sin x a t y b t =⎧⎨=⎩确定的导数x y '. 7. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin y y y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1y y xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解.4. 求方程3595x y y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题1-5: DABAA6-10:DBCDD11-15: BCCBD16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求dx x⎰.解:13(43ln )(ln )x d x x=+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1x x x dx x =-+⎰21arctan ln(1)2x x x C =-++. 4.求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C =+.5. 求2356x dx x x +-+⎰. 解:由上述可知23565623x x x x x +-=+-+--,所以 2356()5623x dx dx x x x x +-=+-+--⎰⎰115623dx dx x x =-+--⎰⎰5ln 26ln 3x x C =--+-+.6.求定积分80⎰t =,即3x t =,则23dx t dt =,且当0x =时,0t =;当8x =时,2t =,于是28222000313ln(1)3ln312t dt t t t t ⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算20cos x xdx π⎰. 解:令2u x =,cos dv xdx =,则2du xdx =,sin v x =,于是 22200000cos sin (sin )2sin 2sin x xdx x d x x x x xdx x xdx πππππ==-=-⎰⎰⎰⎰. 再用分部积分公式,得20000cos 2cos 2(cos )cos x xdx xd x x x xdx ππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰ 002(cos )sin 2x x x πππ⎡⎤=-=-⎣⎦.8. 求2128dx x x +-⎰. 解:221113(1)(1)ln 28(1)963(1)x dx d x C x x x x -+=+=++-+-++⎰⎰ 12ln 64x C x-=++. 9. 求解:令u =32x u =-,23dx u du =,从而有22311311u u du du u u -+==++⎰⎰ 213(1)3(ln 1)12u u du u u C u =-+=-++++⎰ 11. 求2212x xe dx -⎰ 解:2222222411112x x x xe dx e dx e e e -----===-⎰⎰12. 求3x ⎰解:333223(3)(3)3xx x C =--=--+⎰13. 求21ln ex dx x⎰ 解:22111ln 111ln (ln )ln ln 333e e e x dx xd x x e x ====⎰⎰ 14.求⎰解:3322222121(3)(3)(3)233x x C x C =--=-⋅-+=--+⎰三、解答题1.若(1lim 36x x →∞=,求a解:因为223x =,所以9a =否则极限不存在。
高数第一章+习题详细解答
习 题 1-11.求下列函数的自然定义域:(1)211y x =-;解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -=解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅.(3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<.(4)312x xy -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞.(6)1arctan y x =解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且.2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++-(0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-; 当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +; 当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+; 当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅.3.设21()1,f x x ⎛⎫= ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫=- ⎝,则 2211(2)142a f a a a a -⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4.设1||1,()0||1,()21|| 1.x x f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21x x xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,1012||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11 ||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1, 1.x x f f x x +<-⎧=⎨≥-⎩证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证.6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么?(1)))()ln,()ln3f x x g x ==- ;不是,因为定义域和对应法则都不相同. (2)()()f x g x == 是.(3)22()2,()sec tan f x g x x x ==-; 不是,因为对应法则不同. (4)2()2lg ,()lg f x x g x x ==; 不是,因为定义域不同.7.确定下列函数在给定区间内的单调性: (1)3ln y x x =+,(0,)x ∈+∞;解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x-=-,(,1)x ∈-∞.解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1x y x -=-是单调递减的.8. 判定下列函数的奇偶性.(1)lg(y x =;解:因为1()lg(lg(lg(()f x x x x f x --=-==-=-,所以lg(y x =是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数.(3)22cos sin 1y x x x =++-; 解:因为2()2c o s s i n 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22c o s s i n 1y x x x =++-既非奇函数,又非偶函数.(4)2x xa a y -+=.解:因为()()2x x a a f x f x -+==,所以函数2x xa a y -+=是偶函数. 9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数; (2)()f x 可表示成偶函数与奇函数之和的形式. 证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则 ()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证.10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界. 证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M ≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期: (1)|sin |y x =; 周期函数,周期为π. (2)1sin πy x =+; 周期函数,周期为2. (3)tan y x x =; 不是周期函数. (4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数:(1)331xx y =-;解:依题意,31x y y =-,则3log 1yx y =-,所以反函数为13()log ,(,0)(1,)1xf x x x -=∈-∞⋃+∞-.(2)()ax by ad bc cx d+=≠+;解:依题意,b dy x cy a -=-,则反函数1()()b dxf x ad bc cx a--=≠-.(3)(lg y x =;解:依题意,1(1010)2y y x -=+,所以反函数11()(1010),2x x f x x R --=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤ ⎪⎝⎭.解:依题意,arccos32yx =,所以反函数1arccos 3(),[0,3]2x f x x -=∈.13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-. 解:(1)215()e ,(0),(2)x y f x f e f e +====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πVh V r H r=∈.15.某城市的行政管理部门,在保证居民正常用水需要的前提下,为了节约用水,制定了如下收费方法:每户居民每月用水量不超过4.5吨时,水费按0.64元/吨计算.超过部分每吨以5倍价格收费.试建立每月用水费用与用水数量之间的函数关系.并计算用水量分别为3.5吨、4.5吨、5.5吨的用水费用.解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2, 4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以(3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+ , (1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-= 1022121||||,331393a -=-=100220121||||33013903a -=-=. (2) 要使 42||10,3n a --< 即 4113310<(n+1), 则只要9997,9n > 取N =99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立. (3)要使2||3n a ε-<成立,13,9n εε-> 取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-< 成立.2.根据数列极限的定义证明:(1)1lim 0!n n →∞=; (2)1n →∞=. 解:(1)0ε∀>, 要使111|0|!!n n n ε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使2212)nε-=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有1|ε<, 则1n →∞=. 3.若lim n n x a →∞=,证明lim||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0,由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对0ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim||||n n x a →∞=. 同理可证0a <时, lim||||n n x a →∞=成立.反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-, ||1n x =,显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=.证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>, 存在N ,当n N >时, |0|n y ε-<, 因为对上述N , 当n N >时, |0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=.5.设数列{}n x 的一般项(3)π2n n x +=,求lim n n x →∞.解: 因为0x =, (3)π|cos |12n +≤, 所以 (3)π02x n +=. 6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞.证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<, 同理,0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时,||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<?解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<,只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X 等于多少,使当||x X >时,|2|0.001y -<?解:要使222217|2||2|3|3|x y x x +-=-=--<0.001, 只要2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X ≥3.根据函数极限的定义证明:(1)3lim(21)5x x →-=; (2)35lim31x x x →∞+=-;(3)224lim 42x x x →--=-+; (4)lim0x =. 证明:(1) 由于|(21)5|2|xx --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim(21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时, 对0ε∀>,总有35|3|1x x ε+-<-,故有35lim 31x x x →∞+=-.(3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim 42x x x →--=-+.(4) 由于0|-=<,任给0ε>,要使0|ε-<,ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有|0|ε<,故lim 0x =. 4.用X ε-或εδ-语言,写出下列各函数极限的定义: (1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=; (3)lim ()x af x b +→=; (4)3lim ()8x f x -→=-. 解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<; (4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<. 5.证明:0lim ||0x x →=.证明: 由于0lim ||lim 0x x x x ++→→==, 0lim ||lim()0x x x x --→→=-=,所以0lim ||0x x →=. 6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则l i m ()x f x A →∞=.证明: 由于li m ()x f x A →+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A →-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M >时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x =为当x →∞时的无穷小;(3)13xy x+=为当0x →时的无穷大.证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故211lim 01x x x →-=+.(2) 0ε∀>,因为111|sin 0||sin |||||x x x x x -=≤,取1M ε=, 则当||x M >时, 总有1|sin |1|sin 0|||||x x x x x ε-=≤<, 故1lim sin 0x x x →∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x M x x x +=+>->,所以 013lim x x x→+=∞. 2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大?解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数 sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的. 0M ∀>,π2π2n x n ∃=+且()n x n →+∞→∞, πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,取[]01N M =+, 00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M =+≥,所以sin y x x =是无界的.3.证明:函数11cos y x x=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1t x=,类似第2题可得.习 题 1-51.求下列极限:(1)23231lim 41n n n n n →∞+++-;(2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ ; (3)22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭ ;(4)1132lim 32n nn n n ++→∞+-; (5)2211lim 54x x x x →--+;(6)3221lim 53x x x x →+-+;(7)limx →+∞;(8)2221lim 53x x x x →∞+++;(9)330()lim h x h x h→+-;(10)22131lim 41x x x x →+-+;(11)3131lim 11x x x →⎛⎫- ⎪--⎝⎭; (12)23lim 531x x xx x →∞+-+;(13)x →(14)3lim 21x x x →∞+;(15)3lim(236)x x x →∞-+;(16)323327lim 3x x x x x →+++-.解:(1) 23231lim 41n n n n n →∞+++- = 233311lim 0411n n n n n n→∞++=+-. (2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ = 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦ = 1lim(1)11n n →∞-=+. (3) 22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭=21(1)12lim 2n n n n →∞+=. (4) 1132lim 32n nn n n ++→∞+-=21()13lim 2332()3n n n →∞+=-⋅. (5) 2211lim 54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim 43x x x →+=--.(6) 3221lim 53x x x x →+-+=322132523+=--⨯+.(7) limx →+∞=limx=limx=111lim2x -=. (8) 2221lim53x x x x →∞+++=2212lim 2531x x x x→∞+=++. (9) 330()lim h x h x h →+-=322330(33)lim h x x h xh h x h→+++-=3220lim(33)3h x xh h x →++=.(10) 3131lim 11x x x →⎛⎫- ⎪--⎝⎭=2313(1)lim 1x x x x →⎛⎫-++ ⎪-⎝⎭=21(1)(2)lim (1)(1)x x x x x x →-+-++ =212lim 11x xx x →+=++. (11) 23lim 531x x x x x →∞+-+=22311lim 0315x x x x x→∞+=-+.(12) x →=x →=x →(13) 3lim 21x x x →∞+=2lim 12x x x→∞=+∞+.(14) 3lim(236)x x x →∞-+=32336lim (2)x x x x→∞-+=∞.(15) 323327lim 3x x x x x →+++-=32331lim(327)lim 3x x x x x x →→+++⨯=∞-.2.设,0,()2,0.x e x f x x a x ⎧<=⎨+≥⎩问当a 为何值时,极限0lim ()x f x →存在.解:因为0lim ()lim 1,lim ()lim(2)x x x x x f x e f x x a a --++→→→→===+=,所以,当0lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在.3.求当x 1→时,函数12111x x e x ---的极限. 解:因为11211111limlim(1)0,1x x x x x e x e x ----→→-=+=- 11211111lim lim(1),1x x x x x e x e x ++--→→-=+=+∞- 所以12111lim1x x x e x -→--不存在。
自测题(1-7章附参考答案)-高等数学上册
第一章 函数与极限一、 选择题:1.函数1arccos 2x y +=的定义域是( )(A)1x ≤; (B)31x -≤≤; (C)(3,1)-; (D){}{}131x x x x <⋂-≤≤.2.函数23,401,03x x x x --≤≤⎧⎨+<≤⎩的定义域是( )(A)40x -≤≤;(B)3≤;(C)(4,3)-; (D){}{}4003x x x x -≤≤⋃<≤. 3、函数cos sin y x x x =+是( ) (A)偶函数; (B)奇函数;(C)非奇非偶函数;(D)奇偶函数. 4、函数()1cos2f x x π=+的最小正周期是( )(A)2π; (B)π; (C) 4 ; (D)12. 5、函数21xx +在定义域为( )(A)有上界无下界; (B)有下界无上界; (C)有界,且 1122()f x ≤≤;(D)有界,且 2221xx -≤≤+ . 6、与()f x =)(A) x ;(B) 2;(C) 3; (D) x . 7、当0x →时,下列函数哪一个是其它三个的高阶无穷小( )(A )2x ; (B )1cos x -; (C )tan x x -; (D )ln(1)x +.8、设00,0,a b ≠则当( )时有10101010........lim .........m m m n n x na x a x a ab x b x b b --→∞+++=+++ . (A)m n > ; (B)m n = ;(C)m n < ; (D),m n 任意取 . 9、设1,10,01x x x x --<≤⎧⎨<≤⎩,则0lim ()x f x →=( )(A)-1 ; (B)1 ; (C)0 ; (D)不存在 . 10、0limx xx→( ) (A)1; (B)-1;(C)0; (D)不存在. 二、求下列函数的定义域:1sin(21)arctan ;y x x =++、2、()x φ=三、 设2(1)231g x x x -=-- (1) 试确定,,a b c 的值使2(1)(1)(1)g x a x b x c -=-+-+ ;(2) 求(1)g x +的表达式 .四、 求2()(1)sgn f x x x =+的反函数1()f x -.五、 求极限:1、2221lim (1)n n n n →∞++- ; 2、3x → ; 3、2lim(1)xx x →+ ; 4、1lim (1)xx x e →∞- ;5、当0x ≠时,limcoscos ........cos 242n n x x x→∞; 6、21sinlimx x六、 设有函数sin ,1()(1)1,1ax x f x a x x <⎧=⎨--≥⎩试确定a的值使()f x 在1x =连续 .七、 讨论函数1arctan1()sin 2x x f x xπ-=的连续性,并判断其间断点的类型 . 八、 证明奇次多项式:2120121()n n n P x a x a x a ++=+++ 0(0)a ≠至少存在一个实根 .第二章 导数与微分一、 选择题:1、函数()f x 在点0x 的导数0()f x '定义为( )(A )00()()f x x f x x+∆-∆;(B )000()()limx x f x x f x x →+∆-∆;(C )00()()limx x f x f x x→-∆;(D )000()()limx x f x f x x x →--;2、若函数()y f x =在点0x 处的导数0()0f x '=,则 曲线()y f x =在点(00,()x f x )处的法线( ) (A )与x 轴相平行;(B )与x 轴垂直; (C )与y 轴相垂直;(D )与x 轴即不平行也不垂直:3、若函数()f x 在点0x 不连续,则()f x 在0x ( ) (A )必不可导; (B )必定可导; (C )不一定可导; (D )必无定义.4、如果()f x =( ),那么()0f x '=. (A) arcsin 2arccos x x +; (B) 22sec tan x x +; (C) 22sin cos (1)x x +-;(D) arctan x +arc cot x .5、如果2,0()(1),0ax e x f x b x x ⎧≤⎪=⎨->⎪⎩处处可导,那末( ) (A )1a b ==; (B )2,1a b =-=-; (C )1,0a b ==; (D )0,1a b ==. 6、已知函数()f x 具有任意阶导数,且 []2()()f x f x '=,则当n 为大于2的正整数时, ()f x 的n 阶导数()()n f x 是( ) (A )1![()]n n f x +; (B ) 1[()]n n f x +;(C ) 2[()]nf x ; (D )2![()]nn f x .7、若函数()x x t =,()y y t =对t 可导且()0x t '≠,又()x x t =的反函数存在且可导,则dydx=( ) (A )()()y t x t '; (B )()()y t x t '-'; (C )()()y t x t ''; (D )()()y t x t '. 8、若函数()f x 为可微函数,则dy ( ) (A )与x ∆无关;(B )为x ∆的线性函数;(C )当0x ∆→时为x ∆的高阶无穷小; (D )与x ∆为等价无穷小.9、设函数()y f x =在点0x 处可导,当自变量x 由0x 增加到0x x +∆时,记y ∆为()f x 的增量,dy 为()f x 的微分,0limx y dyx∆→∆-∆等于( )(A )-1; (B )0; (C )1; (D )∞.10、设函数()y f x =在点0x 处可导,且0()0f x '≠,则 0lim x y dyx∆→∆-∆等于( ).(A )0; (B )-1; (C )1; (D )∞ . 二、求下列函数的导数:1、2sin ln y x x =;2、cosh x y a = (0a >);3、2sec (1)x y x =+ ;4、2ln[cos(103)]y x =+;5、设y 为x的函数是由方程arctany x=确 定的;6、设2x y y =+,322()u x x =+,求dydu.三、证明sin tx e t =,cos ty e t =满足方程222()2()d y dyx y x y dx dx+=- . 四、已知()cos ,0(),0g x xx f x xa x -⎧≠⎪=⎨⎪=⎩其中()g x 有二阶连续导数,且(0)1g =,1、确定a 的值,使()f x 在0X =点连续;2、求()f x '五、设ln ,y x x =求()(1)n f ..七、一人走过一桥之速率为4公里/小时,同时一船在此人底下以8公里/小时之速率划过,此桥比船高200米,问3分钟后人与船相离之速率为多少?第三章 微分中值定理一、 选择题:1、 一元函数微分学的三个中值定理的结论都有一个共同点,即( ) (A ) 它们都给出了ξ点的求法 . (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法。
高等数学题库-第1章 含参考答案
第一章 函数与极限题库一、选择题1. 下列函数相同的是(D ).A 、2(),()f x x g x ==B 、()()f x g x x ==C 、2()ln ,()2ln f x x g x x == D 、2()ln ,()2ln f x x g x x ==2. 设函数22,0,,0,()()2,0,,0,x x x x g x f x x x x x -≤⎧<⎧==⎨⎨+>-≥⎩⎩则[()]g f x =( D ).A 、22,0,2,0.x x x x ⎧+<⎨-≥⎩B 、222,0,2,0.x x x x ⎧-<⎨+≥⎩ C 、22,0,2,0.x x x x ⎧-<⎨-≥⎩ D 、22,0,2,0.x x x x ⎧+<⎨+≥⎩3. 函数1ln y x=的自然定义域为( C ).A 、 {|0x x <<B 、 {|0x x ≤≤C 、{|0x x <≤D 、 {|0x x ≤<4. 设(),()f x g x 是[,]l l -上的偶函数,()h x 是[,]l l -上的奇函数,则 中所给的函数必为奇函数。
( D )A 、()()f x g x +;B 、()()f x h x +;C 、()[()()]f x g x h x +;D 、()()()f x g x h x 。
5. 数列{}n x 有界是数列{}n x 收敛的( B )条件.A 、充分非必要B 、必要非充分C 、充分且必要D 、既非充分又非必要 6. 关于数列110n ⎧⎫⎨⎬⎩⎭的说法正确的是( D ) A 、极限不存在 B 、极限存在且为1 C 、极限情况无法确定 D 、极限存在且为0 7.()f x 在0x 的某一去心邻域内有界是0lim ()x x f x →存在的( C )A 、充分必要条件;B 、充分条件;C 、必要条件;D 、既不充分也不必要条件. 8. 函数在一点的极限存在和函数在该点的左右极限的关系是( A )A 、若左右极限都存在且相等,则函数在该点极限存在B 、若函数在该点极限存在,则左极限不一定存在C 、若函数在该点极限存在,则右极限不一定存在D 、若函数在一点极限不存在,则左右极限中至少有一个不存在9. 1()1xx xα-=+,()1x β=-1x →时有 。
大学高等数学第一册考试试题答案详解
大学高等数学第一册考试试题答案详解【大学高等数学第一册考试试题答案详解】一、选择题:1. 答:B解析:首先应用导数求解微分方程,得到特解y=e^x。
再将y=e^x 代入$x^2y''+xy'-y=0$式中,可以得到等式左边为0,故选项B正确。
2. 答:D解析:根据导数的定义得出,当x=1时,函数f(x)的导数为0,由此可推知f(x)在x=1处取极值。
又根据极值点的判定条件,当导数变号时,极值达到。
从而得出答案为选项D。
3. 答:C解析:由公式算得h(t)=1−0.2t,比较上下限得到兴趣区间为(0,5],同时根据积分的定义算得兴趣总量为1.2。
4. 答:A解析:利用二重积分计算可以得出此立体体积为选项A中的数字。
5. 答:D解析:根据函数与其导函数的关系,对f(-3)进行积分,可以得到选项D的答案。
二、填空题:1. 答:$-1/4$解析:利用分部积分法计算,并带入上下限,得到此结果。
2. 答:2解析:根据积分的性质计算得到积分结果为2。
3. 答:27解析:由多重积分公式计算得积分结果为27。
4. 答:0.5解析:利用积分求解二次方程得出结果为0.5。
5. 答:$\arcsin(2/3)+C$解析:通过求导验证可得到该结果。
三、解答题:1. 答:解释二重积分与定积分的关系。
解析:二重积分是定积分的推广,用于计算平面区域上的面积,其中积分的上下限分别为该区域的y轴边界函数和x轴边界函数。
定积分则是对一个区间上的函数进行求和,其中积分的上下限为该区间的起点和终点。
2. 答:证明洛必达法则在极限存在的条件下成立。
解析:洛必达法则用于解决极限存在但无法直接求解的情况。
在证明洛必达法则成立时,可以通过应用导数定义以及泰勒级数展开等方法进行推导,最终得到洛必达法则的条件以及成立的证明过程。
四、应用题:1. 答:$\frac{1}{6}\pi^3$解析:根据旋转体体积的计算公式,可以得到此结果。
高等数学第一章试题答案
高等数学(I) 第一章 试题1. 设()()2493lg 1x x x f -+-=,则()x f 的定义域 37<≤-x 且 2≠x ; 。
2. 设()⎩⎨⎧≥<+=0101x x x x f ,则()[]x f f =⎩⎨⎧-≥-<+1112x x x。
3.⎪⎪⎭⎫+ ⎝⎛→x x x x o x sin 11sin lim = 1 。
4、x x x x sin 1sinlim220→的值为 0 5设()1111+-=x xe e xf 则=x 是()x f 的第 1 类中的跳跃 间断点。
.0 0 , s i n0 , )( . 62 b a b a x x x bx x bx a x f ==⎪⎩⎪⎨⎧>≤+=应满足的关系与处连续,则常数在设 7.设=⎪⎭⎫⎝⎛+-→12112lim x xx x x ____________. 答案: e x x x x x x xx x x x xx =⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫⎝⎛+-+++⋅-+→-→12111121111lim 111lim8.极限).cos1(lim 2nn n π-∞→= _______________.答案: 21)2(2lim12sin 2lim)cos 1(lim 222)4(222ππππ===-∞→∞→∞→n n n n nn n n n 9.若6)311(lim e x kxx =+-∞→,则=k ―6 .解:=+-+-=+-=+----∞→∞→∞→kx x k x x kx x x x x x ])311()311[(lim ])311[(lim )311(lim 33 6331])311(lim ])311[(lim e e x x k kx k x x =⋅=+-⋅+-=--∞→---∞→,得6-=k . 10.设()nxnx n e e x x x f ++=∞→1lim2,则()x f 的连续区间为____),(∞+∞-_______________。
成人高考《高等数学一》章节练习题答案及解析
成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。
求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。
21.函数f(x) =x 2 +1x−3的间断点是()。
22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。
4lnx在点(1,0)处的切线方程和法线方程。
5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。
高数第一章自测题答案
第一章单元自测题答案一、填空题1.x ; 2.1-; 3.6e -; 4.32; 5.23-; 6.()+∞∞-,.二、选择题1.A ; 2.A ; 3.C ; 4.B ; 5.C ; 6.C.三、计算下列各题1.解 由1e e +=x xy 可得 x x e e y =+)1(即 y y e x=-)1( 于是有 yy x -=1ln改变变量的记号,即得所求反函数为 xxy -=1ln,定义域()1,0=D . 2.解 ()11lim --+∞→n n nn 111112lim112lim=-++=-++=∞→∞→nn n n nn n3.解 因为12122112122222++++<++++++<++++n nn n n n n n n n ,又 ∞→n l i m nn n n n n n n ++=++++∞→222)1(lim 21 =21,∞→n lim 1212++++n n =21 根据夹挤定理得,原式=21.4.解 1)1)(1()2)(1(lim 12lim 1311lim 2132131=++-+-=--+=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x x x x x x . 5.解 因为 8)1()21(lim 2lim 32===-+=⎪⎭⎫ ⎝⎛-+-∞→∞→a a a xxx xx e e e xa x a a x a x , 于是有 2ln 38ln 3==a ,即得2ln =a .6.解 ()()()222122tan 31ln 0tan 31ln 012lim lim tan 31lim xxx x x x x ee xx +→+→→==+,因为当0→x 时,2223~tan 3~)tan 31ln(x x x +,于是有33lim )tan 31ln(lim 220220==+→→xx x x x x ,从而()()3tan 31ln 0120222lim tan 31lim e ex xxx x x ==++→→.7.解:函数在1,1,0-===x x x 处没有定义,因此1,1,0-===x x x 是间断点,因为+→0lim x ()()1122--x x x x =+→0lim x ()()()∞=+=--+→11lim 11022x x x x x x x , 所以0=x 为第二类间断点; 因为1lim→x ()()1122--x x x x =1lim→x ()12+x x x =21,所以1=x 为第一类间断点; 因为1lim-→x ()()1122--x x x x ∞=,所以1-=x 为第二类间断点.四、证明题 1. 证明 )1(211n n n x x x +=+11221=⋅⋅≥nn x x ,从而1≥n x , 021221)1(2121≤-=-=-+=-+nn n n n n n n n x x x x x x x x x , 即n n x x ≤+1,所以数列{}n x 单调减少,于是211=≤≤x x n ,即数列{}n x 有界, 从而{}n x 单调有界,因此n n x ∞→lim 存在.设a x n n =∞→lim ,因为)1(211nn n x x x +=+,两端取极限得 )1(21aa a +=, 解得1=a 或1-=a (舍),所以1lim =∞→n n x .2. 证明 令()()x x f x F -=,由于()x f 在[]b a ,上连续,根据连续函数的四则运算性质可知,)(x F 在[]b a ,上连续.且由于()b x f a <<可知,()()0>-=a x f a F ,F ()()0<-=b b f b , 从而根据零点定理,至少存在一点()b a ,∈ξ,使得()0=ξF ,即()ξξ=f .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学第一章测试题
一、单项选择题
1.0
.
(),()x x x x x x βα→→当时,都是无穷小,则当时(,)不一定是无穷小
()()()x A x αβ+
()
22()()x B x αβ+
()ln[1()()]x C x αβ+⋅
()2
()()
x x D αβ
答案:D
2
0()
(),()1,.
()
lim x x x x x x x ααββ→===解析:当时
2
1
2.(
)0,,,1
lim x x ax b x a b a b →∞
+--=+则常数的值所组成的数组()为()设
10011111A B C D -()(,)()(,)()(,)()(,)
答案:D 解析:
0)1
1(2
lim
=--++∞
→b ax x x x 1
)
1)((1)11(
2
2
lim lim +++-+=--++∞
→∞
→x x b ax x b ax x x x x 01
1)()1(2
lim =+-++--=∞
→x b x b a x a x
10,0,a a b -=+=则分子的二次项和一次项系数为零:
即1,1-==b a
22
1)32
3(x f x x x -=-+、已知函数,
下列说法正确的是( )。
2(A)f(x)有个无穷间断点
())1(1B f x 有个可去间断点,个无穷间断点 ()2()C f x 有个第一类间断点
()111()f D x 有个可去间断点,个无穷间断点,个跳跃间断 答案:B
221(1)(1)1
()32(2)(1)2
x x x x f x x x x x x --++===
-+---解析:
212320,1,2x x x x -+===令得
2.1x x ==是可去间断点,是无穷间断点
4、
是 。
A.奇函数 B.周期函数 C.有界函数 D.单调函数 答案:A
()()f x f x -=-解析:
1()11115.
f x x
=
+
+、函数的定义域为____
A.
0,≠∈x R x 但
1
,10
.x R B x
∈+≠ 1,0,1,.2x x C R ∈≠--
0.,,1x R x D ∈≠- x ∈R,但x ≠0,−1
答案:C 解析:略.
6、
答案:C
|sin |
()cos x f x x xe -=()x -∞<<+∞的值为
, 极限)00()1(lim 0≠≠+→b a a x
x b
x 答( ) . . a
be D e C a b B A a b
)
()(ln )(1)(
00
(1)(1)lim lim b a
b b x x a
a
x x x x e a a ⋅→→+=+=解析:
()li 7m x x f x →存在的充分必要条件是()
、极限
0.()f x A 存在
()()lim l m .i x x x x f x f x B +-
→→与至少有一个存在
()().lim lim x x x x f x f x C +-→→与都存在
()()lim .lim x x x x f x f x D +-→→与都存在且相等
答案:D 解析:略.
1
1(2),1,
()1,8()
1
x x x f x x a x +⎧⎪+≠==-⎨⎪=-⎩、要使函数在处连续,则常数应为
A.1
B.e
C. e 1
D. ∞
答案:B
1
11
1
1
1
(2)
[1(1)]
lim lim x x x x x x e
++→-→-+=++=解析:
9、下列极限存在的是()
.x A →+∞
2(21)
.lim x x x B x →∞
+ 11
lim .x
x e
C →+∞
-2ln(1)
.lim x x D →∞
+
答案:
C
:.,x x A A →+∞
→+∞
+∞解析:对选项应该排除
对选项B:
2)1
2()12()12(lim lim lim
2
2
=+=+=++∞
→+∞
→+∞
→x
x x x x x x x x x 2)1
2()12()12(lim
lim lim 2
2
-=--=+-=++∞
→-∞
→-∞
→x
x x x x x x x x x 于是极限不存在,排除B.
:0x x C e →-∞→对选项因时,,所以
111101.lim x
x C e →-∞
==---,所以应选 2
l (.
n 1):lim x x D D →∞
+=+∞,极限不存在,排除对选项很明显
10、函数
⎩⎨
⎧≥+<≤-=1
,2,10,1)(2
x x x x x f 在1=x 处间断是因为()
(1).f A 无定义
1()lim .x f x B -
→不存在
1()lim .x f x C +
→不存在
1
()lim .x f x D →不存在
答案:D
1
11()0,() 3.().
lim lim lim x x x f x f x f x -
+=
→→→==解析:所以不存在。