处理恒成立问题基本方法
恒成立能成立问题总结(详细)

恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:例1 若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范 围。
解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。
由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。
小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。
练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。
(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。
(答案:或)(二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。
对于二次函数)0(0)(2≠>++=a c bx ax x f 有:(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a(3)当0>a 时,若],[0)(βα在>x f 上恒成立⇔若],[0)(βα在<x f 上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(4)当0<a 时,若],[0)(βα在>x f 上恒成立⎩⎨⎧>>⇔0)(0)(βαf f若],[0)(βα在<x f 上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 例2若关于x 的二次不等式:01)1(2<-+-+a x a ax 的解集为R ,求a 的取值范围.解:由题意知,要使原不等式的解集为R ,即对一切实数x 原不等式都成立。
恒成立问题常见类型及其解法

设 f x x 3 x 7
可求得 f x 10
lg x 3 x 7 lg10 1
a 1
三. 变换主元法:
例5.对任意a [-1,1],不等式x 2 (a - 4) x 4 - 2a 0 恒成立,求 的取值范围 x . 解:原问题转化为对任 a [-1,1], 意
m - 2 0 0 (5) 4m ,解得1 m 2 2( m - 2) 0 f ( 0) 0 y
y
m - 2 0 (6) ,无解 f (0) 0
综上所述, a 3 1
O
x
x
4.已知函数f ( x) (m - 2) x 2 - 4mx 2m - 6的图像与 x轴的负半轴有交点,求 实数m的取值范围 .
不等式( x - 2)a x - 4 x 4 0恒成立
2
令f (a) ( x - 2)a x - 4 x 4
2
f (1) 0 解得x 1或x 3. f (-1) 0
x的取值范围为 ,1) (3,). (-
数形结合法 4.数形结合法
解:因为ax2 1 1,所以- 1 - x ax2 1 - x (1)当x 0时, 0 1恒成立. -1
1 1 a- 2 1 1 1 1 x x (2)当x (0,1]时, 2 - a 2 - , 即 在(0, ,1]上恒成立. x x x x a 1 - 1 x2 x 1 令t 1, x 1 1 1 1 - 2 - 化为关于t的函数u -t 2 - t -(t ) 2 ,u max -2 x x 2 4 1 1 1 2 1 2 - 化为关于t的函数v t - t (t - ) - ,vmin 0 2 x x 2 4 要是不等式恒成立,应 u max a vmin,故 - 1 a 0 有 综上所述,如果 [0,1]时, ( x) 1恒成立,则- 2 a 0 x f
处理恒成立问题基本方法汇总

处理有关“恒成立”的思路方法乐山市井研县马踏中学廖德俊与“恒成立”有关的问题一直是中学数学的重要内容,它是函数,数列,不等式,三角等内容交汇处的一个非常活跃的知识点,特别是导数的引入,成为我们更广泛更深入的研究函数,不等式的有利工具,更为我们研究恒成立问题提供了保障。
对恒成立问题的考察不仅涉及到函数,不等式等有关的传统知识和方法,而且考察极限,导数等新增内容的掌握和灵活运用。
它常与数学思想方法紧密结合,体现了能力立意的原则。
恒成立问题涉及到一次函数,二次函数的性质,图象渗透和换元,化归,数形结合,函数与方程等思想方法,有利于考察学生的综合解题能力,培养学生思维的灵活性,创造性,所以是历年高考的热点。
一.恒成立问题的基本类型按区间分类可分为:①在给定区间某关系的恒成立问题;②在全体实数集上某关系的恒成立问题。
二.处理恒成立问题的基本思路处理与恒成立有关的问题大致可分以下两种方法①变量分离思路处理;②利用函数的性质,图象思路处理。
若不等式中出现两个变量,其中一个变量的范围已知,另一个的范围为所求,且容易通过恒等变形将两个变量分别置于不等号的两边,则可将恒成立问题转化为函数的最值问题求解。
在不等式的恒成立问题中,以下充要条件应细心思考,甄别差异,性质使用。
≥∈--∈∴≥=--=+∴≥-21例2:若不等式x2+ax+10对一切x (0,]成立,则a 的取值范围为( )25A. 0B. -2C. -D.-32111解析:由于x (0,],a 21115()在(0,]上单调递增,在x=取得最小值2225,故选2方法2:利用函数的性质,图象其主要体现在:1,利用一次函数的图象性质 x x x x f x x x a C≠≥≤≥≥∈⇔≥≤≤∈⇔≤若原题可化为一次函数类型,则由数形结合给定一次函数f(x)=ax+b (a 0).若y=f(x)在[m,n]内恒有f(x)0(或f(x)0),则 根据函数的图象可得:f(m)0f(x)0,x [m,n]恒成立{f(n)0f(m)0f(x)0,x [m,n]恒成立{f(n)02,利用二次函数的图象性质:>≠⇔∆<≤∈220若 f(x)=ax +bx+c (a 0)大于0恒成立{若二次函数在给定区间上恒成立则可利用根的分布和韦达 定理求解。
恒成立问题常见求解技巧

恒成立问题常见求解技巧“恒成立”问题是数学中常见的问题,涉及到一次函数、二次函数、指数函数、对数函数的性质、图象,渗透着换主元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用.因此也成为历年高考的一个热点。
恒成立问题在解题过程中解法通常有:①变量分离法;②构造函数法;③变换主元法;④数形结合法(图像法).一、构造函数法:(一)一次函数法给定一次函数()(0)f x kx b k =+≠,若在在区间[],m n 上恒有()0f x >,则()0()0f m f n >⎧⎨>⎩; 若在在区间[],m n 上恒有()0f x <,则()0()0f m f n <⎧⎨<⎩. 例. 若不等式221(1)x m x ->-对[]2,2m ∈-恒成立,求实数x 的取值范围。
(二)二次函数法1. 20(0)ax bx c a ++>≠对x R ∈恒成立00a >⎧⇔⎨∆<⎩;20(0)ax bx c a ++<≠对x R ∈恒成立00a <⎧⇔⎨∆<⎩; 2. 若是二次函数在指定区间上的恒成立问题,还可以利用二次函数的图像求解。
例. 已知函数y =R ,求实数m 的取值范围.例. 不等式212x px p x ++>-对(1,)x ∈+∞恒成立,求实数p 的取值范围。
二.变量分离法若在等式或者不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,切容易通过恒等变形将两个变量分别置于等号或者不等号两边,则可将恒成立问题转化为函数的最值问题求解。
理论依据是:()a f x >恒成立max ()a f x ⇔>;()a f x <恒成立min ()a f x ⇔<.例. 当(1,2)x ∈时,不等式240x mx ++<恒成立,求实数m 的取值范围。
求解恒成立问题的常见方法

教学实践新课程NEW CURRICULUM一、一元二次不等式中的恒成立问题例1.已知函数f (x )=x 2+ax +3对任意x ∈R 时恒有f (x )≥a 成立,求a 的取值范围。
解:∵f (x )≥a 对x ∈R 恒成立,∴x 2+ax +3-a ≥0对x ∈R 恒成立∵x ∈R ,∴Δ≥0,即a 2-4(3-a )≥0∴a ≤-6或a ≥2例2.已知函数y =lg (mx 2-6mx +m +8)的定义域为R ,求m 的取值范围。
解:由已知得mx 2-6mx +m +8>0对任意x ∈R 恒成立①当m =0时显然成立②当m ≠0时有m >0(6m )2+4m (m +8)<0{∴0<m <1综上可知0<m <1方法归纳:令f (x )=ax 2+bx+c ,若f (x )>0(或f (x )≥0)对任意x ∈R 恒成立,则有a >0Δ<0{(或a >0Δ≤0{),若f (x )<0(或f (x )≤0)对任意x ∈R 恒成立,则有a <0Δ<0{(或a <0Δ≤0{)等价转化即可。
二、在给定区间上恒成立问题例3.已知函数f (x )=x 2+ax +4x(x ≠0)在(4,+∞)上恒大于0,求a 的取值范围。
解:令f (x )=0则x 2+ax +4x >0,∴a >-(x +4x)令g (x )=x +4x ,易知g (x )在(4,+∞)上为增函数,∴g (x )min =g(4)=5∴g (x )>5∴-(x +4x )<-5∴a ≥-5例4.已知函数f (x )=x 2+2x +a ln x ,在区间(0,1]上为单调函数,求实数a 的取值范围。
分析:求f ′(x )→由题意转化为恒成立问题→求最值→求得a 的取值范围解:易知f ′(x )=2x +2+a x ,∵f ′(x )在f ′(x )上单调∴f ′(x )≥0或f ′(x )<0在(0,1]上恒成立,即2x 2+2x+a ≥0或2x 2+2x+a ≤0恒成立∴a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1]上恒成立又-(2x 2+2x )=-2(x +12)2+12∈[-4,0)∴a ≥0或a ≤-4方法归纳:解决此类恒成立问题通常分离参变量通过等价变形,将参数a 从整体中分离出来,转化为a >(或<,≥,≤)f (x )恒成立问题。
高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。
学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。
本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。
1. 方法一:代数法我们来介绍代数法。
这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。
代数法通常包括加减变形、乘除变形以及平方去根等技巧。
以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。
代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。
2. 方法二:图像法我们介绍图像法。
图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。
对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。
图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。
3. 方法三:参数法我们介绍参数法。
参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。
参数法的典型应用包括辅助角法、二次函数法等。
以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。
参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。
总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。
代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。
个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。
21-22版:微专题2 恒成立、能成立问题的解决方法(步步高)

解决不等式恒成立、能成立问题常用的方法主要有分离变量法、变 换主元法、数形结合法、判别式法、均值不等式法、利用函数的性质、 利用代数式的几何意义等,方法灵活多样,主要锻炼横向、逆向和创造 性思维.
一、分离参数法解决恒成立问题
例1 设函数y=mx2-mx-1,1≤x≤3,若y<-m+5恒成立,求m的取值 范围.
-2x-1+x2-3x+2>0, 只需3x-1+x2-3x+2>0, 解得 x>4 或 x<-1. ∴实数x的取值范围是(-∞,-1)∪(4,+∞).
反思 感悟
适当变换主元法的题型特征是:题目有两个变量,且已知取值 范围的变量只有一次项,就可以将不等式转化为一次函数求解.
三、判别式法解决恒成立问题
例3 若不等式ax2+2ax-4<2x2+4x,对于任意x∈R均成立,则实数a
的取值范围是 A.(-2,2) C.(-∞,-2)∪(2,+∞)
√B.(-2,2]
D.(-∞,-2]
解析 由题意得(a-2)x2+(2a-4)x-4<0,对任意x∈R均成立. a-2<0,
∴Δ=2a-42+16a-2<0 或 a-2=0(此时不等式-4<0).
反思 感悟
能成立问题实际上就是存在性问题,要注意同恒成立问题的区 别.能成立问题可以转化为m>ymin或m<ymax的形式,从而求y的 最大值与最小值,从而求得参数的取值范围.
本课结束
更多精彩内容请登录:
解 y<-m+5恒成立,即m(x2-x+1)-6<0恒成立,
∵x2-x+1=x-122+34>0,
又m(x2-x+1)-6<0,∴m<x2-6x+1. ∵x2-6x+1=x-2162+34在 1≤x≤上的最小值为67, ∴只需 m<67即可. ∴m 的取值范围为-∞,67.
恒成立问题常见类型及解法

【解析】令 f (m) =( x2 1)m -2 x +1,则上述问题即可转化为关于 m 的
一次函数 y f (m) 在区间[-2,2]内函数值小于 0 恒成立的问题。考察区
间端点,只要
f f
(2)<0,解得 (2)<0
7 1<x< 2
3 1, 2
即 x 的取值范围是( 7 1 , 3 1 ).
范围是______.
【解题提示】将恒成立问题转化为最值问题.
【解析】因为x>0 ,所以 x 1 2(当且仅当x=1时取等
x
号),所以有
x2
x 3x
1
x
1 1
3
2
1
3
1 5
,即
x x2 3x 1
的最大值为 1,故a≥1 .
x
5
5
【方法技巧】不等式恒成立问题的解题方法 1.不等式的恒成立问题与函数最值有密切的关系,解决不等 式恒成立问题,通常先分离参数,再转化为最值问题来解: c≥f(x)恒成立 c≥f(x)max; c≤f(x)恒成立 c≤f(x)min. 2.高次函数或非基本初等函数的最值问题,通常采用导数法 解决.
x
恒成立, 2k , 4k k Z ,所以 k 不可能为 6。
2
五、 把不等式恒成立问题转化为函数图象问题
【理论阐释】 若把不等式进行合理的变形后,能非常容易地画出不等
号两边对应函数的图象,这样就把一个很难解决的不等式的 问题转化为利用函数图象解决的问题,然后从图象中寻找条 件,就能解决问题。
典例5
若不等式
loga
x
sin
2x
(a
0且a
1)
对于任意
x
∈
(0,
不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。
在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。
1. 直接法直接法是解决不等式的恒成立问题最直接的方法。
通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。
这种方法通常适用于简单的不等式,能够快速得到结果。
2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。
当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。
这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。
3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。
通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。
这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。
4. 代入法代入法是一种通过代入特定的数值进行验证的方法。
通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。
这种方法通常适用于验证不等式的特定性质或条件。
5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。
通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。
这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。
6. 几何法几何法是一种通过几何形象进行分析的方法。
通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。
这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。
7. 递推法递推法是一种通过递归关系进行推导的方法。
通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。
这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。
8. 极限法极限法是一种通过极限的性质进行分析的方法。
解决恒成立问题的方法

恒成立问题不等式恒成立问题是高中数学中的一类重要题型,它散见于许多知识版块中,载体较多,而且不少情况下题意较为隐含,由于其设计内容较广、表现形式多样、思维层次较高,因而备受命题者的青睐. 解题的一般原理是利用等价转化思想将其转化为函数的最值或值域问题,常用的方法主要有三种:必要探路法、分离参数法、直接讨论法(不分离参数).一.必要探路法:指对一类函数恒成立问题,可以通过取函数定义域中某一个数,缩小参数的讨论范围,之后在此范围内继续讨论进而解决问题,这样的好处是降低思考的成本,缩小讨论的范围.(有效点缩小参数范围是关键点)范例:若不等式)1(ln 2+<+-x a x x x 对),0(+∞∈x 恒成立,求实数a 的取值范围. 解:令1=x ,则不等式)1(ln 2+<+-x a x x x 即为02>a ,得0>a .当0,0>>a x 时,x x x x x x x a -+->-+-+22ln ln )1(,要证0ln )1(2>-+-+x x x x a ,即证0ln 2≥-+-x x x ,由熟悉的不等式1ln -≤x x 得0)1(1ln 222≥-=-+-≥-+-x x x x x x x , 因此),0(+∞∈a .二.分离参数法:将参数从表达式中分离出来,将会使问题变得明朗,便于建立关于参数的不等式(组),从而顺利求出参数的取值范围,就可以把参数问题转化为求函数值域问题.三.直接讨论法:指恒成立问题中的函数结构并不是很复杂,可以通过求导得到极值点,再对极值点直接讨论的办法,其关键是求得极值点的过程,常用手段为因式分解法、求根公式法以及观察法;如果无法求出极值点,可以利用函数零点存在性定理讨论,进而研究原函数的单调性.范例:若不等式x a a e e x x 2)(≥-恒成立,求实数a 的取值范围. 解:设x a ae ex f x x 22)(--=,则))(2(2)(22a e a e a ae e x f x x x x -+=--=',当0=a 时,0)(2>=x e x f 恒成立,当0>a 时,由0)(='x f 得:a x ln =,∴)(x f 在)ln ,(a -∞单调递减,在),(ln +∞a 单调递增,∴0ln )(ln )(2min ≥-==a a a f x f ,解得10≤<a ;当0<a 时,由0)(='x f 得:⎪⎭⎫ ⎝⎛-=2ln a x ,∴)(x f 在)2ln ,(⎪⎭⎫ ⎝⎛--∞a 单调递减,在),2(ln +∞⎪⎭⎫ ⎝⎛-a 单调递增,∴02ln 43)2(ln )(2min ≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-=a a a f x f ,解得0243<≤-a e ;综上,⎥⎦⎤⎢⎣⎡-∈1,243e a .尝试用多种方法求解下列题:1. 已知)1ln(4)(2--=x ax x f ,若对一切]1,2[+∈e x ,1)(≤x f 恒成立,求实数a 的取值范围.2. 设函数)()(,)(2d cx e x g b ax x x f x +=++=,若曲线)(x f y =和曲线)(x g y =都过点)2,0(P ,且在点P 处有相同的切线24+=x y .(1)求实数d c b a ,,,的值;(2)若当2-≥x 时,)()(x kg x f ≤恒成立,求实数k 的取值范围.3. 关于x 的不等式a x x ax x x +->22ln 4ln 2在),1[+∞上恒成立,求实数a 的取值范围.。
八种解法解决不等式恒成立问题

八种解法解决不等式恒成立问题1最值法例1.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.(I )试确定b a ,的值;(II )讨论函数)(x f 的单调区间;(III )若对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2min 2)(c x f -≥解:(I )(过程略)3,12-==b a .(II )(过程略)函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. (III )由(II )可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥(0>x )恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(min ;a x f ≤)(恒成立a x f ≤⇔)(max .2分离参数法例2.已知函数x x x x f +-+=1)1(ln )(22(I )求函数)(x f 的单调区间;(II )若不等式e n a n ≤++)11(对于任意*∈N n 都成立(其中e 是自然对数的底数),求a 的最大值.分析:对于(II )不等式e na n ≤++)11(中只有指数含有a ,故可以将函数进行分离考虑. 解:(I )(过程略)函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞(II )不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n ,知1)11ln()(≤++na n n n a -+≤⇔)11ln(1;设x x x g 1)1ln(1)(-+= ]1,0(∈x ,则221)1(ln )1(1)(x x x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由(I )知,01)1(ln 22≤+-+x x x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g ]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g . 所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,则实数a 的取值范围是___.直角坐标系内作出函数2)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在(∈x 图象(如右),从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或部分点重合,就必须满足12log ≥a ,即21≤<a .故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法. 4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,则实数x 的取值范围是___.分析:若审题不清,按习惯以x 为主元,则求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,则谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,则原问题转化为0)(>a f 恒成立的问题. 故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x . 所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a (*∈N n ).(I )证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I )递推式可以化归为31)3(32311+-=--n n nn a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-n n a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n (*∈N k )时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=(*∈N k )时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a . 故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法. 6分段讨论法例6.已知2)(--=a x x x f ,若当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:(i )当0x =时,显然()f x <0成立,此时,a R ∈(ii )当(]0,1x ∈时,由()f x <0,可得2x x -<a <2+x x , 令 (](]22(),(0,1);()(0,1)g x x x h x x x x x=-∈=+∈ 则221)(xx g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==- 221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h == 此时a 的范围是(—1,3)综合i 、ii 得:a 的范围是(—1,3) .例7.若不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围. 解:(只考虑与本案有关的一种方法)解:对x 进行分段讨论,当0=x 时,不等式恒成立,所以,此时R a ∈; 当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ; 当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ; 由于对上面x 的三个范围要求同时满足,则所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(- 说明:这里对变量x 进行分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,若不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,则实数a 的取值范围是___.解:设210x x <<,则112>x x ,有0)(12<x x f .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x x f x f x f x x f x f x x x f x f x f ,则)()(12x f x f <,函数)(x f 在),0(+∞为减函数. 因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xy a y x ≥+22xy y x a 22+≤⇔;而2222=≥+xy xyxy y x (当且仅当y x =时取等号),又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式012>++ax ax 对于任意R x ∈恒成立.则实数a 的取值范围是___. 分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意R x ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立; 当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax xx x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,x x x x f 256)(2++-=,223225622562)(x x x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,则就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f (5=x 时取等号),即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
“恒成立”的几种常用的解法

“恒成立”的几种常用的解法已知不等式恒成立,求参数范围的问题,涉及函数、方程、不等式,综合性强,在高考中常常涉及,许多学生对此类问题不知从何着手,本文结合实例,谈谈这类问题常见的几种方法。
一.判别式法此方法适用于二次函数的情况,利用)0(02>>++a c bx ax的解集是R 0<∆⇔;)0(02<<++a c bx ax的解集是R 0<∆⇔,这类问题的特点是二次函数在R 上恒成立。
例1.已知函数3)(2++=ax x x f ,当时,a x f ≥)(恒成立,求a 的取值范围。
解:要使03x)(2≥-++≥a ax a x f 恒成立,即恒成立,必须且只需26,0124a 0)3(4a 22≤≤-∴≤-+≤--∆a a a 即=二.图象法此方法主要用于二次函数,指数对数函数,三角函数等,由其函数图象确定值域,进而解之。
类型1:作一个函数的图像:例2.已知函数3)(2++=ax x x f ,若]2,2[-∈x 时,a x f ≥)(恒成立,求a 的取值范围。
解:43)2(3)(222aa x ax x x f -++=++=(1) 当7,-2a f(-2)f(x)4a ,22min+==>-<-时,即a由Φ∈∴≤≥+a ,37a a 72a 得-(2) 当,4a-3f(x )4a 4,2222min=≤-≤≤-≤-时,即a由24,2a 6a 4a-32≤≤-∴≤-≤≥a 得(3) 当7,2a f(2)f(x)4a ,22min+==-<>-时,即a由47,7a a 72a -<≤-∴-≥≥+a 得 综上得]2,7[-∈a类型2:作两个函数的图像: 1.当时10≤≤x ,不等式kx x≥2sin π恒成立,则实数k 的取值范围是_______________.【答案】k ≤1【解析】作出2sin 1xy π=与kx y =2的图象,要使不等式kx x≥2sinπ成立,由图可知须k≤1。
“恒成立问题”解决的基本策略

“恒成立问题”解决的基本策略一、恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
因此也成为历年高考的一个热点。
恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。
二、恒成立问题解决的基本策略 (一)两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m≥⇔∈≥上恒成立在思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x )的最值。
这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。
(二)、赋值型——利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= (x+1)4+b 1(x+1)3+ b 2(x+1)2+b 3(x+1)+b 4 定义映射f :(a 1,a 2,a 3,a 4)→b 1+b 2+b 3+b 4,则f :(4,3,2,1) → ( )A.10B.7C.-1D.0略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,所以b 1+b 2+b 3+b 4 =0 ,故选D例2.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π-对称,那么a=( ). A .1 B .-1 C .2 D . -2.略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,故选B. 此法体现了数学中从一般到特殊的转化思想.(三)分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于)(0)(>>n f m f 同理,若在[m,n]内恒有f(x)<0, 则有)(0)(<<n f m f例2.对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x 2-2x+1>0在|a|≤2时恒成立,设f(a)= (x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x ∈(-∞,-1)∪(3,+∞)此类题本质上是利用了一次函数在区间[m,n]上的图象是一线段,故只需保证该线段两端点均在x 轴上方(或下方)即可.2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用。
不等式“恒成立”问题的解法

不等式“恒成立”问题的解法在微积分学中,不等式“恒成立”问题是一个解决方法的重要组成部分。
这个问题的主要目的是研究在某一条件下,某个变量的取值范围如何受到不等式的限制。
解决“恒成立”问题,主要分为以下几步:1.首先,确定不等式恒成立的变量,并对变量进行分类。
2.其次,通过数学归纳法,确定不等式恒成立时变量的取值范围。
3.接着,把不等式恒成立的变量分别带入不同的条件,根据不同的条件,分别研究变量取值范围如何受到不等式的限制。
4.最后,总结所有的条件下变量的取值范围,得出不等式恒成立的结果。
上述就是不等式“恒成立”问题的常规解法,但也有一些特殊情况,则需要用到更多的数学工具,如变量变换、隐函数等,来解决不等式“恒成立”问题。
例如,假设有不等式$x^2+2x-3>0$,并且$x \in \mathbb{R}$,要求求解不等式恒成立的解。
这时,先将不等式左边进行变换,即$x^2+2x-3=(x+3)(x-1)>0$,然后分别把变量$x+3$、$x-1$的正负性考虑进去。
由此得出,不等式恒成立的解为 $x>1$ 或 $x<-3$ 。
以上就是不等式“恒成立”问题解决的具体步骤,由此可见,要解决不等式“恒成立”问题,需要通过多种数学工具来求解,能够用文字清晰表达出来,从而解决这类问题。
另外,在解决不等式“恒成立”问题时,还可以使用一些特殊的数学工具,从而达到更好的解决效果。
例如,在解决不等式 $x^2+2x-3>0$,并且$x \in\mathbb{R}$ 的问题时,可以使用隐函数的方法处理。
即,通过将该不等式变换为$y=x^2+2x-3$,将该不等式变换为一个隐函数,然后由该隐函数求解其在实数范围内的正负性变化,最后得到不等式恒成立的解。
同样,对于更加复杂的不等式,也可以采用类似的思路,将不等式变换为若干个隐函数,然后逐个求解,从而得到不等式恒成立的解。
总而言之,解决不等式“恒成立”问题,既可以采取常规解法,也可以使用特殊的数学工具,如变量变换、隐函数,从而精准求解出不等式恒成立的解,从而达到有效解决不等式“恒成立”问题的目的。
不等式“恒成立”问题的解法

不等式“恒成立”问题的解法
解决不等式“恒成立”的问题需要采用不等式的性质和规则进行推导和证明。
首先,可以使用分析法来解决不等式“恒成立”的问题。
分析法要求对不等式进行分析和推导,找出其中的规律和特点,从而得出结论。
其次,可以运用数学归纳法来解决不等式“恒成立”的问题。
数学归纳法是通过给出一些特例,然后从其中推导出结论的方法。
另外,可以使用反证法来证明不等式“恒成立”。
反证法是指假设不等式不成立,然后通过推导出矛盾的结论,证明假设的不等式是错误的,从而得出不等式“恒成立”的结论。
最后,可以使用代数法来解决不等式“恒成立”的问题。
代数法是通过对不等式进行变形,转化为“等式”的形式来解决问题。
例如,可以将一个不等式两边分别加上或减去相同的数,或者将不等式两边同时乘以或除以一个正数,从而得出不等式“恒成立”的结论。
处理“含参不等式恒成立问题”的基本方法

处理“含参不等式恒成立问题”的基本方法
发表时间:2012-09-27T17:39:29.390Z 来源:《学习方法报·语数教研周刊》2012年第47期供稿作者:叶成儒[导读] “含参不等式恒成立问题”具有覆盖知识点多,综合性强,解法灵活等特点.湖北罗田骆驼坳中学叶成儒
“含参不等式恒成立问题”具有覆盖知识点多,综合性强,解法灵活等特点.“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想也能在这类问题中得到考察,故这类问题是高考的一个常见题型.本文就结合实例谈谈解决这类问题的基本方法.
一、最值法
将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:
*
由上可见,含参不等式恒成立问题因其覆盖知识点多,方法也多种多样,但其核心思想还是等价转化,抓住了这点,才能以“不变应万变”,当然这需要我们不断地去领悟、体会和总结.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
处理有关“恒成立”的思路方法乐山市井研县马踏中学廖德俊与“恒成立”有关的问题一直是中学数学的重要内容,它是函数,数列,不等式,三角等内容交汇处的一个非常活跃的知识点,特别是导数的引入,成为我们更广泛更深入的研究函数,不等式的有利工具,更为我们研究恒成立问题提供了保障。
对恒成立问题的考察不仅涉及到函数,不等式等有关的传统知识和方法,而且考察极限,导数等新增内容的掌握和灵活运用。
它常与数学思想方法紧密结合,体现了能力立意的原则。
恒成立问题涉及到一次函数,二次函数的性质,图象渗透和换元,化归,数形结合,函数与方程等思想方法,有利于考察学生的综合解题能力,培养学生思维的灵活性,创造性,所以是历年高考的热点。
一.恒成立问题的基本类型按区间分类可分为:①在给定区间某关系的恒成立问题;②在全体实数集上某关系的恒成立问题。
二.处理恒成立问题的基本思路处理与恒成立有关的问题大致可分以下两种方法①变量分离思路处理;②利用函数的性质,图象思路处理。
若不等式中出现两个变量,其中一个变量的范围已知,另一个的范围为所求,且容易通过恒等变形将两个变量分别置于不等号的两边,则可将恒成立问题转化为函数的最值问题求解。
在不等式的恒成立问题中,以下充要条件应细心思考,甄别差异,性质使用。
≥∈--∈∴≥=--=+∴≥-21例2:若不等式x2+ax+10对一切x (0,]成立,则a 的取值范围为( )25A. 0B. -2C. -D.-32111解析:由于x (0,],a 21115()在(0,]上单调递增,在x=取得最小值2225,故选2方法2:利用函数的性质,图象 其主要体现在:1,利用一次函数的图象性质 x x x x f x x x a C≠≥≤≥≥∈⇔≥≤≤∈⇔≤若原题可化为一次函数类型,则由数形结合给定一次函数f(x)=ax+b (a 0).若y=f(x)在[m,n]内恒有f(x)0(或f(x)0),则 根据函数的图象可得:f(m)0f(x)0,x [m,n]恒成立{f(n)0f(m)0f(x)0,x [m,n]恒成立{f(n)02,利用二次函数的图象性质:>≠⇔∆<≤∈220若 f(x)=ax +bx+c (a 0)大于0恒成立{若二次函数在给定区间上恒成立则可利用根的分布和韦达 定理求解。
例1: 函数f(x)是奇函数,且在[-1,1]单调递增,又f(-1)=-1,若 f(x)t -2at+1对所有的a [-1,1]都成立,求t 的取值范围 解析: 不等式中有三个变元,通过逐步消元a ≤∈⇔≥∈≥∈⇔≥22max22法处理。
首先选 定主元x ,()在[-1,1]递增f(x)t -2at+1a [-1,1]恒成立t -2at+1(x )[-1,1]即t -2at+11,a [-1,1]上恒成立t -2at 0f x f x≥⇔≥∈∈≤⇔≤∈≥⇔≥∈max min min 1.不等式m f(x)在区间D 上恒成立m f(x),x D 或f(x)的上确界(若f(x)在x D 的值域为[a,b],则a 称 为f(x)的上确界,b 称为f(x)的下确界)2.不等式m f(x)在区间D 上恒成立m f(x),x D 或f(x)的下确界注释: 1.不等式m f(x)在区间D 上有解m f(x),x D 或f(x)的下确界≤⇔≤∈≥≥max 2.不等式m f(x)在区间D 上有解m f(x),x D 或f(x)的上确界那么,如何求函数g(x)在区间D 上的最大值(上确界)或最小值(下确界)呢?通常可以采取利用函数的单调性,图象,二次函数在区间上的最值,判别式法,三角函数的有解性,均值定理,函数求导例1:若函数f(x)=(x+1)ln(x+1),对所有的x 0都有f(x)成立, 求实数a 的取值ax ≥≥∈≤∞2范围解析:由f(x)=(x+1)ln(x+1),对所有的x 0恒成立可得: (1) 当x=0时,a R(x+1)ln(x+1)(x+1)ln(x+1)(2) 当x>0时,a ,设g(x) =则问题转化为求该函数在开区间(0,+)的最小值(下确界),又x-ln(x+1)g?(x) = ,要想求出g?(x) = 0困难重重,可换元令h(x)=x-ln(x+1),ax x xx>>+∞>>∞=1h'(x)=1-,0,故h'(x)0,则函数h(x)1在(0,+)为增函数,即h(x)h(0)=0,从而g'(x)0,则函数g(x)在(0,+)也为增函数,故g(x)无最小值.此时,由于g(0)无意义,g(x)的下确界一时也难确定,但运用极限的知识可得g(x)>limg(x),然而求此极(x+1)ln(x+1)限又超出了所学范围,事实上采用洛比达法则可得limg(x) =x x x+=>>≤∞lim[ln(x+1)1]1,故0时,()1,因而1。
综合(1)(2)知a 的取值范围为(-,1]x g x a{}∈≥≥≥⇔⇔≥≥⇒∈-∞-+∞222a [-1,1]恒成立,即g(a)=-2at+t 0,[-1,1]恒成立g(-1)0-2t+t 0{{g(1)0-2t+t 0 (,2]0[2,)t-+-++≥∈-+-+≥+-=-=⇒+≠-+-+22222。
222例2:若函数R,求实数a 的取值范围.2解析:该题就转化为被开方数(1)(1)10在R 上恒成立,注意对二次系数的讨论。
解:依题意,当x R 时,2(1)(1)0恒成立,1101 当10时,即当{时a=1,此时102(1)(1)a x a x a a x a x a a a a a x a x ≥∴+->-≠∆≤>⇒⇒<≤-+>∈2。
2220a=1成立1102当10时,即当{1{191090综上可得,()的定义域为时,[1,9] 方法三:直接根据函数图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等式或不等式两边函数的图象,则可以通过画图直接判断得出结果a a a a a a a f x R a∈12例:设x (0,4],恒成立,求a 的取值范围解析:若设y ,设y =ax 为过原点且斜率为a 的直线.在同一坐标系中作出函数 图象,如下右依题意,半圆恒在直线上时,只有 a<0,即其取值范围为a<0++++>+++222222222三.在恒成立问题中,主要是求函数的取值范围问题,其处理方法 有以下几种1.换元处理法例:对于所有实数x,不等式 4(1)2(1)x log 2log log 0恒成立,求14的取值范围.22解析:因为log 的值随a 的变化而变化,t=log ,则11上述问题实质是当t 取何值时,不等式(3-t)x +2tx-2t>0恒成立它等价于,求解关于t a a a x a aa aa aa a ->⇒<∆<<⇒<<+230的不等式组{0,2即log 0011t t aa a∈2.选定主元法例:a,不等式(a-3)x<4a-2 都成立,求实数的取值范围.解析:按常规理解,要解以x 为主元,为a 常数的一元一次不等式,但 比较烦琐,若选a 为主变元,则可利用函数的性质解出x 的取 值范围.:0<a<5设f(a)=(x-4)a-(3x-2),则由题意知,对任意的a (0,5),都≤≤≤≤++++-+≥∈∞∈∞++++-+>(0)0有f(a)<0恒成立,由一次函数的性质得{(5)02解之得 933.构造法123(1)例:设f(x)=lg其中a 为实数,为任意给定的自然数且n 2,若x (-,1]时有意义,求a 的取值 范围.解析:本题即为对于x (-,1],123(1)0恒成立先x x x x x x x x x x f f x n n an nn n a -≥∈-∞-≥-∞=-∈-∞-∞x xx x x x x121变量分离得:对a>-[()+()++()], (n 2)对于(,1]恒成立121 构造函数g(x)=-[()+()++()], (n 2) 则问题转化为求该函数在(,1]上的值域.由于函数u(x)=-()(1,21),(,1]上是单调递增的,则g(x)在(,1]n n nnx n n n nk k n x n1为单调递增函数,于是g(x)的最大值为g(1)=-(n-1),21从而可知:a>-(n-1),2-++≥>-++≥⇔∆≤>⇒⇒<≤-+≤≤≤224.分类讨论例:若函数R,则的 取值范围是( )由题意6(8)0恒成立 (1).若,符合题意(2).若,6(8)0恒成立{00{013624(8)0综上可得: 01在处理恒成立kx kx k k kx kx k k k k k k k 问题时,并非单一的使用某一种思路方法,而是各种思路方法相互渗透,解决这类问题是各种思路和方法的综合运用,且要求较高难度较大.正所谓"万变不离其中",只要我们在平时的学习中把基本思路和方法理解,掌握透彻,一切问题都会 迎刃而解.“恒成立问题”解决的基本策略一、恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等… 恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
因此也成为历年高考的一个热点。
恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。
二、恒成立问题解决的基本策略(一)两个基本思想解决“恒成立问题” 思路1、max)]([)(x f m D x x f m ≥⇔∈≥上恒成立在思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x )的最值。
这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。
(二)、赋值型——利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x4+a1x3+a2x2+a3x+a4= (x+1)4+b1(x+1)3+ b2(x+1)2+b3(x+1)+b4 定义映射f :(a1,a2,a3,a4)→b1+b2+b3+b4,则f :(4,3,2,1) → ( ) A.10 B.7 C.-1 D.0略解:取x=0,则 a4=1+b1+b2+b3+b4,又 a4=1,所以b1+b2+b3+b4 =0 , 故选D例2.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π-对称,那么a=( ).A.1B.-1 C .2 D. -2.略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,故选B.此法体现了数学中从一般到特殊的转化思想.(三)分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于0)(0)(>>n f m f 同理,若在[m,n]内恒有f(x)<0, 则有 0)(0)(<<n f m f例2.对于满足|a|≤2的所有实数a,求使不等式x2+ax+1>2a+x 恒成立的x 的取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x2-2x+1>0在|a|≤2时恒成立, 设f(a)= (x-1)a+x2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3. 即x ∈(-∞,-1)∪(3,+∞)此类题本质上是利用了一次函数在区间[m,n]上的图象是一线段,故只需保证该线段两端点均在x 轴上方(或下方)即可.2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用。