混凝土本构-Abaqus

合集下载

abaquscdp本构原理

abaquscdp本构原理

abaquscdp本构原理
ABAQUS的CDP(Concrete Damaged Plasticity)模型是一种混凝土本
构关系模型,用于描述混凝土的非弹性行为。

该模型通过将各向同性下损伤弹性与拉伸和压缩塑性相结合的方式来描述混凝土的非弹性行为,适用于模拟混凝土在任意荷载作用下的受力情况。

CDP模型考虑了由于拉、压塑性
应变导致的弹性刚度的退化以及循环荷载作用下刚度的恢复,具有较好的收敛性。

CDP模型采用混凝土在单轴受力状态下的应力和非弹性应变,这里的非弹
性应变是根据混凝土的单轴应力-应变关系(混凝土本构关系)换算出来的。

混凝土本构关系有3种:GB《混凝土结构设计规范》欧洲规范、Kent-Park 模型。

CDP模型中,混凝土材料的弹性模量E c 可通过结构试验进行实测,也可以查表,也可以根据下式进行计算:E c = 10^5 × + ( / f cu , k)。

其中,fcu,k为混凝土的峰值抗压强度。

此外,CDP模型本构曲线末尾段的选取,对滞回曲线下降段的影响较大。

为了验证所编子程序的合理性与正确性,可以选用具体的有限元模型进行验证。

以上内容仅供参考,如需更多信息,建议查阅ABAQUS软件相关书籍或咨询软件专家。

abaqus与混凝土结构课程教学大纲

abaqus与混凝土结构课程教学大纲

abaqus与混凝土结构课程教学大纲《Abaqus与混凝土结构》课程大纲课程概述:《Abaqus与混凝土结构》是一门旨在培养学生掌握先进数值模拟技术并将其应用于混凝土结构分析的课程。

本课程将介绍Abaqus软件的基本原理、操作方法和应用技巧,并结合混凝土结构设计原理,使学生能够独立完成混凝土结构的有限元分析。

课程目标:1. 掌握Abaqus软件的基本原理和操作方法;2. 了解混凝土结构设计的基本原理;3. 掌握混凝土结构有限元分析的流程和方法;4. 能够进行混凝土结构的静力、动力、热力等复杂问题的有限元分析;5. 培养学生的实际操作和创新能力,提高解决实际工程问题的能力。

课程内容:1. Abaqus软件基础Abaqus软件简介与安装Abaqus的基本操作界面与文件类型Abaqus的常用命令与功能2. 混凝土结构设计原理混凝土材料的物理性质与力学性能混凝土结构设计的基本原则与方法混凝土结构的构造措施与设计要点3. 混凝土结构有限元分析有限元法的基本原理与步骤混凝土结构模型的建立与前处理边界条件与载荷的施加求解与结果后处理4. 案例分析与实践实际工程案例的分析与模拟学生自主选题与实际操作训练5. Abaqus的高级应用技巧材料模型的自定义与修改复杂模型的创建与网格划分技术多物理场耦合分析的实现方法6. 课程总结与答疑课程内容的回顾与总结学生疑问的解答与指导教学方法:本课程采用理论与实践相结合的教学方法。

教师在课堂上进行理论讲解和操作演示,学生通过实际操作掌握Abaqus软件的使用方法和混凝土结构有限元分析的流程。

同时,结合案例分析与实践,培养学生的实际操作能力和创新思维。

评估方式:本课程的评估主要包括以下几个方面:1. 出勤率及课堂表现;2. 作业完成情况及质量;3. 期末考试成绩;4. 实际操作能力与创新思维表现。

基于ABAQUS的混凝土材料非线性本构模型的研究

基于ABAQUS的混凝土材料非线性本构模型的研究

457.2mm
钢筋
均布线荷载 17.5kN/mm 229mm

152mm t1 t2
从而导致迭代时的不收敛以致分析失败。 而这些问题都有待于 我们在今后更加深入的研究和学习。
t1=38.1mm t2=31mm 图 1 钢筋混凝土单向板 混凝土材料参数 (GPa ) E 29 ε 0.1 v 0.18 / kg · m- 3 ) ρ( 2400 ) σc( 0 MPa 24.1 σu/MPa 2.45
基于 ABAQUS 的混凝土材料非线性本构模型的研究
关 虓, 冯仲奇
(西安建筑科技大学, 理学院, 陕西 西安 710055 )
摘 要:主要讨论了利用大型通用非线性有限元分析软件 ABAQUS 对 钢筋混凝土构件进行非线性有限元分析,重点对 ABAQUS 提供的混凝 土本构模型、 破坏准则、 钢筋的本构关系以及如何在 ABAQUS 中处理钢 筋与混凝土的粘结滑移效应进行深入研究, 并针对混凝土受拉区的非线 将 性行为提出了固定弥散裂缝模型进行模拟。最后通过一个算例分析, 实验结果与数值模拟结果进行分析比较,证明了运用 ABAQUS 对钢筋 混凝土构件进行分析有较好的精度。 关键词: ABAQUS; 混凝土材料; 非线性; 本构模型 中图分类号: TU528.01 文章编号: 1007- 7359(2010)01- 0089- 02 文献标识码: A
其中, c0 为参数,可以通过混凝土单轴和双轴受压行为定
c0=9
ε bc
3 rbcε 姨 3 - a0 + a0- 姨 2 rbcε rbcε a0- 姨 3 + c
c
c
c
c
-4a0
c
c
c c 2姨3
c

ABQUS中的三种混凝土本构模型

ABQUS中的三种混凝土本构模型

.ABQUS中的三种混凝土本构模型ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。

低压力混凝土的本构关系包括:Concrete Smeared cracking model (ABAQUS/Standard)Concrete Brittle cracking model (ABAQUS/Explicit)Concrete Damage plasticity model高压力混凝土的本构关系:Cap model1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为在进行参数定义式的Keywords:*CONCRETE*TENSION STIFFENING*SHEAR RETENTION*FAILURE RATIOS2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。

在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,*BRITTLE SHEAR3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性在进行参数定义式的Keywords:*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE1 / 1'.。

c50混凝土abaqus参数

c50混凝土abaqus参数

c50混凝土abaqus参数C50混凝土Abaqus参数一、引言C50混凝土是一种常用的建筑材料,具有较高的强度和耐久性。

在使用C50混凝土进行结构分析时,可以使用ABAQUS软件来模拟其力学性能。

本文将介绍C50混凝土在ABAQUS中的参数设定和模拟方法。

二、C50混凝土的力学性能C50混凝土是指标号为C50的混凝土,其抗压强度为50MPa。

除了抗压强度外,C50混凝土还具有一系列力学性能,如抗拉强度、弹性模量、剪切强度等。

在ABAQUS中,我们可以通过设置一些参数来模拟C50混凝土的这些力学性能。

三、材料模型选择在ABAQUS中,我们可以选择不同的材料模型来模拟C50混凝土的力学行为。

常用的材料模型有弹性模型、各向同性塑性模型、本构模型等。

对于C50混凝土,通常采用本构模型来模拟其非线性行为。

ABAQUS中的本构模型包括弹塑性本构模型、本构弹塑性模型等,具体选择哪种模型需要根据具体问题和实验数据来决定。

四、材料参数设定在使用ABAQUS模拟C50混凝土之前,需要设置一些材料参数。

这些参数包括抗压强度、抗拉强度、弹性模量、泊松比、剪切强度等。

这些参数的设定需要参考实验数据或标准规范,确保模拟结果的准确性和可靠性。

五、加载方式设定在进行C50混凝土的力学性能模拟时,需要设定加载方式。

常见的加载方式有静态加载、动态加载等。

对于静态加载,可以设定加载速率和加载路径。

对于动态加载,可以设定加载频率和加载振幅等。

根据具体问题的要求,选择合适的加载方式和参数。

六、边界条件设定在进行C50混凝土的力学性能模拟时,需要设定边界条件。

边界条件包括约束条件和加载条件。

约束条件用于限制模型的位移和旋转,加载条件用于施加外部载荷。

根据具体问题的要求,设定合适的边界条件,确保模拟结果的准确性。

七、模拟结果分析在完成C50混凝土的力学性能模拟后,可以对模拟结果进行分析。

分析可以包括应力分布、应变分布、位移响应等。

通过分析模拟结果,可以评估C50混凝土的力学性能和结构的安全性,为实际工程提供参考依据。

ABAQUS显式分析梁单元的混凝土、钢筋本构模型共3篇

ABAQUS显式分析梁单元的混凝土、钢筋本构模型共3篇

ABAQUS显式分析梁单元的混凝土、钢筋本构模型共3篇ABAQUS显式分析梁单元的混凝土、钢筋本构模型1在ABAQUS中,梁单元是一种经常用于模拟混凝土和钢筋梁的元素。

它使用线性或非线性混凝土本构模型和钢筋本构模型来描述材料的行为,并考虑梁单元在三个方向上的应力和应变。

混凝土本构模型:ABAQUS提供了多个混凝土本构模型,它们可以用于描述混凝土的本构行为。

其中一个常用的模型是Mander本构模型,它考虑了混凝土的三个不同阶段的行为:1. 压缩阶段: 混凝土在受到压缩时会逐渐变硬,所以Mander模型使用一个非线性的应力-应变关系来描述混凝土的压缩行为。

该模型使用三个参数来描述混凝土在不同应变范围内的硬化行为。

2. 弯曲-拉伸阶段: 当混凝土受到弯曲或拉伸时,会发生一些微小的裂缝,导致其变得更容易受到破坏。

因此,Mander模型采用一个渐进应力-应变关系来描述混凝土的弯曲和拉伸行为。

该模型也使用三个参数来描述不同应变范围内的弯曲和拉伸行为。

3. 破坏阶段: 当混凝土受到极大应力时,会发生破坏。

为了模拟破坏行为,Mander模型使用两个参数来描述混凝土的弹性模量和极限应变。

当混凝土受到超过极限应变的应变时,该模型将输出一个非常大的应力值,这意味着梁单元已经破坏。

钢筋本构模型:ABAQUS也提供了多个钢筋本构模型。

其中一个常用的模型是多屈服弹塑性模型,它考虑了钢筋的应力-应变关系的多个拐点:1. 弹性阶段: 在应力小于屈服强度时,钢筋的行为是弹性的。

因此,多屈服弹塑性模型使用一个线性应力-应变关系来描述弹性阶段的行为。

2. 屈服阶段: 当钢筋的应力达到屈服强度时,它的行为将开始变得非线性。

因此,多屈服弹塑性模型使用一个拐点来描述屈服后的应力-应变关系。

该模型使用一组参数来描述每个拐点的应力和应变差。

3. 再次弹性阶段: 当钢筋的应变超过屈服点后,它的应变-应力关系将再次变得线性。

多屈服弹塑性模型也考虑了这个阶段的行为。

c30混凝土abaqus参数

c30混凝土abaqus参数

c30混凝土abaqus参数C30混凝土Abaqus参数一、引言C30混凝土是一种常用的建筑材料,具有较高的强度和耐久性。

在使用C30混凝土进行结构分析和模拟时,可以使用ABAQUS软件进行参数设置。

本文将介绍C30混凝土在ABAQUS中的相关参数设置。

二、材料模型选择在ABAQUS中,可以选择不同的材料模型来模拟C30混凝土的力学行为。

常见的材料模型包括线性弹性模型、塑性模型和本构模型等。

对于C30混凝土,可以使用弹塑性模型来描述其力学行为。

其中,弹性部分可以使用线性弹性模型,塑性部分可以使用本构模型来描述。

三、材料参数设置1. 弹性模量(E):弹性模量是材料刚度的衡量指标,表示材料在受力后产生的应力与应变之间的关系。

C30混凝土的弹性模量通常在30-40 GPa之间。

2. 泊松比(ν):泊松比是材料在受力后产生的纵向应变与横向应变之间的比值。

C30混凝土的泊松比通常在0.2-0.3之间。

3. 屈服强度(σy):屈服强度是材料在受力后开始产生塑性变形的应力值。

C30混凝土的屈服强度通常在20-30 MPa之间。

4. 应力-应变曲线:应力-应变曲线是描述材料力学行为的重要参数。

对于C30混凝土,可以根据实验数据或经验公式得到应力-应变曲线,然后在ABAQUS中进行参数设置。

四、材料本构模型在ABAQUS中,可以选择不同的本构模型来描述C30混凝土的力学行为。

常见的本构模型包括弹塑性本构模型、本构模型、弹塑性本构模型等。

对于C30混凝土,可以选择Drucker-Prager本构模型来描述其力学行为。

五、其他参数设置除了上述提到的材料参数外,还需要设置其他一些参数来完善模拟。

例如,可以设置材料的密度、热膨胀系数、摩擦系数等。

这些参数的设置可以根据实际情况和需要进行调整。

六、模拟结果分析在完成参数设置后,可以使用ABAQUS进行C30混凝土的结构分析和模拟。

模拟结果可以包括应力分布、应变分布、变形分布等。

abaqus中混凝土cdp计算程序

abaqus中混凝土cdp计算程序

在Abaqus中,可以使用Concrete Damage Plasticity(CDP)模型来进行混凝土的计算。

CDP模型是一种用于分析混凝土材料的非线性行为的计算模型,它考虑了混凝土的损伤和塑性行为。

以下是一个简单的Abaqus中使用CDP模型进行混凝土计算的示例程序:1. 首先,定义材料属性:```*Material, name=Concrete*Density2300,,*Elastic15000, 0.15,*Plastic0.0, 0.0, 0.0, 0.0, 0.0, 0.0```2. 定义混凝土的本构模型:```*Damage Evolution, type=DISPLACEMENT1.0, 0.0, 1.0, 0.0, 0.0, 0.0*Plastic, hardening=ISOTROPIC0.0, 0.0, 0.0```3. 定义混凝土的截面积:```*Solid Section, elset=ConcreteSection, material=Concrete```4. 创建一个模型:```*Part, name=ConcretePart*End Part```5. 定义一个实例:```*Instance, name=ConcreteInstance, part=ConcretePart```6. 创建一个节点集合:```*Nset, nset=ConstrainedNodes1, 0, 0```7. 创建一个固定约束条件:```*BoundaryConstrainedNodes, 1, 3```8. 创建一个荷载:```*Step*Static0.1, 1.0, 1.0e-05, 0.1```9. 创建一个加载条件:```*CloadConstrainedNodes, 2, -10.0```10. 定义分析类型和输出请求:```*End Step*Output, field, variable=PRESELECT*End Assembly```11. 运行计算:```*Job, name=ConcreteAnalysis*Submit```以上是一个简单的Abaqus中使用CDP模型进行混凝土计算的示例程序,具体情况可能需要根据你的具体问题进行调整和修改。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档