直角三角形的边角关系提高性测试卷(含答案)
第2章直角三角形的边角关系 同步提升训练(附答案)2021-2022学年鲁教版九年级数学上册
2021-2022学年鲁教版九年级数学上册《第2章直角三角形的边角关系》同步能力提升训练(附答案)1.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.若Rt△ABC是“好玩三角形”,且∠C=90°,BC≥AC,则tan B=()A.B.C.D.2.以下说法正确的是()①当∠A从0°逐渐增大到90°时,tan A的值逐渐增大,cot A的值逐渐减小;②tan12°•tan78°=1;③在△ABC中,已知∠C=90°,如果tan(90°﹣A)=2,那么cot(90°﹣A)=2;④若∠A为锐角,则0<tan A<1.A.①②B.③④C.①②③D.③④3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.04.在△ABC中,∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°5.如图△ABC中,AB=AC,AD⊥BC于点D.若BC=24,cos B=,则AD的长为()A.12B.10C.6D.56.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT7.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm8.如图已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.若修建的斜坡BE的坡度为3:1,休闲平台DE的长是()米.A.20B.15C.D.9.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米10.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里11.如图,在Rt△ABD中,∠A=90°,点C在AD上,∠ACB=45°,tan∠D=,则=.12.用不等号“>”或“<”连接:sin50°cos50°.13.在Rt△ABC中,若∠C=90°,sin A=,则sin B=.14.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么tan∠BAH 的值是.15.如图,修建的二滩水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i =1:3,斜坡CD的坡度i=1:2.5,则坝底宽AD=m.16.如图是学生用的台灯,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是cm(用含根号的式子表示).17.如图,在△ABC中,∠B为锐角,AB=3,AC=5,sin C=,求BC的长.18.对于同一锐角α有:sin2α+cos2α=1,现锐角A满足sin A+cos A=.试求:(1)sin A•cos A的值;(2)sin A﹣cos A的值.19.如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是;(2)试用含m和α的代数式表示线段CM的长:;α的取值范围是.20.如图△ABC中,∠C=90°,∠A=30°,BC=5cm;△DEF中∠D=90°,∠E=45°,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB 方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A 重合,一直移动至点F与点B重合为止).(1)当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?(2)在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°?如果存在,求出AD的长度;如果不存在,请说明理由.21.如图是某斜拉桥引申出的部分平面图,AE,CD是两条拉索,其中拉索CD与水平桥面BE的夹角为72°,其底端与立柱AB底端的距离BD为4米,两条拉索顶端距离AC为2米,若要使拉索AE与水平桥面的夹角为35°,请计算拉索AE的长.(结果精确到0.1米)(参考数据:sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)22.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)参考答案1.解:如图,∵BC≥AC,∴只有BC边上的中线,满足条件,AD=BC,设CD=BD=a.则AD=2a,CD=a,AD=2CD,∵∠C=90°,∴∠DAC=30°,∴AC=a,∴tan B==.故选:B.2.解:①根据锐角三角函数的增减性,可知正确;②∵tan78°=cot12°,∴tan12°•tan78°=1.正确;③根据同角的正切和余切互为倒数.错误;④如tan60°=>1.错误.故选:A.3.解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.4.解:∵|sin A﹣|+(1﹣tan B)2=0,∴|sin A﹣|=0,(1﹣tan B)2=0,∴sin A=,tan B=1,∴∠A=30°,∠B=45°,∴∠C的度数为:180°﹣30°﹣45°=105°.故选:C.5.解:∵在△ABC中,AB=AC,AD⊥BC于点D,∴BD=BC=12.在直角△ABD中,∵cos B==,∴AB=13,∴AD===5.故选:D.6.解:“SHIET”表示使用该键上方的对应的功能.故选:D.7.解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.8.解:延长DE交BC于H.由题意BH:EH=3:1,在Rt△ABC中,AB=60,∠BAC=45°,∵BC=AC=60,∵AD=DB,DH∥AC,∴BH=CH=30,∴DH=AC=30,∴EH=10,DE=30﹣10=20,故选:A.9.解:过点E作EM⊥AB于点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.10.解:在Rt△P AB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2P A,∵P A=AB•tan60°,∴PC=2×20×=40(海里),故选:D.11.解:在Rt△ABD中,∵tan∠D==,∴设AB=2x,AD=3x,∵∠ACB=45°,∴AC=AB=2x,则CD=AD﹣AC=3x﹣2x=x,∴==,故答案为:.12.解:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.13.解:Rt△ABC中,∠C=90°,sin A=,即=,设CB=2x,则AB=3x,根据勾股定理可得:AC=x.∴sin B===.故答案为:.14.解:设AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,∴tan∠BAH=,故答案为:15.解:∵AB的坡度i=1:3,∴tan A=,∴=,∵BE=23,∴AE=69,∵BC=6,∴EF=6,∵CD的坡度i′=1:2.5,∴tan D==,∴=,∴DF=57.5,∴AD=AE+EF+DF=69+6+57.5=132.5(m).答:坝底宽AD的长是132.5m.故答案为:132.5.16.解:由题意得:AD⊥CE,过点B作BF⊥CE,BG⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CF⊥FB,即三角形CFB为直角三角形,∴sin30°=,∴CF=15cm,在直角三角形ABG中,sin60°=,∴,解得:BG=20,又∠ADC=∠BFD=∠BGD=90°,∴四边形BFDG为矩形,∴FD=BG,∴CE=CF+FD+DE=CF+BG+ED=15+20+2=17+20(cm).答:此时灯罩顶端C到桌面的高度CE是17+20cm.17.解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵AC=5,,∴AD=AC•sin C=3.∴在Rt△ACD中,.∵AB=,∴在Rt△ABD中,.∴BC=BD+CD=7.18.解:(1)∵sin A+cos A=,∴sin2A+cos2A+2sin A cos A=,即1+2sin A cos A=,∴sin A cos A=;(2)∵(sin A﹣cos A)2=sin2A+cos2A﹣2sin A cos A,=1﹣,=,∴sin A﹣cos A=±.19.解:(1)连接CD,OM.根据旋转的性质可得,MC=MD,OC=OD,又OM是公共边,∴△COM≌△DOM,∴∠COM=∠DOM,又∵OC=OD,∴CD⊥OM;(2)由(1)知∠COM=∠DOM,∴∠COM=,在Rt△COM中,CM=OC•tan∠COM=m•tan;因为OD与OM不能重合,且只能在OC右边,故可得α的取值范围是0°<α<90°.20.解:(1)AD=(10﹣3)cm时,BE∥AC.理由如下:连接EB,设EB∥AC,则∠EBD=∠A=30°,∵∠C=90°,∠A=30°,BC=5cm,∴AB=10cm,又∵∠FDE=90°,DE=3cm,∴DB=3cm∴AD=AB﹣BD=(10﹣3)cm,∴AD=(10﹣3)cm时,BE∥AC;(2)在△DEF的移动过程中,当AD=(7﹣3)cm时,使得∠EBD=22.5°.理由如下:假设∠EBD=22.5°.∵在△DEF中,∠D=90°,∠DEF=45°,DE=3cm,∴EF=3cm,∠DEF=∠DFE=45°,DE=DF=3cm.又∵∠DFE=∠FEB+∠FBE=45°,∴∠EBD=∠BEF,∴BF=EF=3,∴AD=AB﹣BF﹣DF=7﹣3(cm).∴在△DEF的移动过程中,当AD=(7﹣3)cm时,使得∠EBD=22.5°.21.解:由题意可得:tan72°===,解得:BC=,则AB=BC+AC=+2=(m),故sin35°===,解得:AE≈26.2,答:拉索AE的长为26.2m.22.解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=100,∠CAO=60°,∴CO=AO•tan60°=100(米).设PE=x米,∵tan∠P AB==,∴AE=2x.在Rt△PCF中,∠CPF=45°,CF=100﹣x,PF=OA+AE=100+2x,∵PF=CF,∴100+2x=100﹣x,解得x=(米).答:电视塔OC高为100米,点P的铅直高度为(米).。
直角三角形的边角关系测试题(含A组答案)
直角三角形的边角关系测试题一、选择题(每小题2分,共计24分):1.在△ABC 中,∠C =90°,下列式子一定能成立的是( ) A .sin a c B = B .cos a b B = C .tan c a B = D .tan a b A =2. 已知△ABC 中,∠A 、∠B 都是锐角,且(cosA-12 )2+|tanB-3 |=0,你认为最确切的判断是( )A.△ABC 是等腰三角形B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是等边三角形 3.已知在Rt △ABC 中,∠C=90°,若tanA=12,则sinB 等于( ) A 、15 B 、15 5 C 、25 5 D 、24. 当锐角A 的cosA >22时,∠A 的值为( )。
A. 小于45° B. 小于30° C. 大于45° D. 大于30°5.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D′处,那么tan ∠BAD′等于( ) A. 22 B.22C. 2D. 16.如图所示,在△ABC 中,AB =AC =5,BC =8,则tan C =( )A .53B .54C .34D .437.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.若AC =4,BC =3,则sin ∠ACD的值为( )A .34 B .43 C .54 D .538.如图,从山顶A 望到地面C ,D 两点,测得它们的俯角分别是45°和30°,已知CD =100m ,点C 在BD 上,则山高AB 等于 ( )A .100 mB .350mC .250mD .50(13+)m9.如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )5题 6题7题 8题A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米10.如图,两条宽度均为40 m 的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( )。
边角关系测试题及答案
边角关系测试题及答案一、选择题1. 在三角形ABC中,如果∠A = 50°,∠B = 70°,那么∠C的度数是多少?A. 40°B. 50°C. 60°D. 70°2. 如果一个三角形的内角和为180°,那么在三角形ABC中,如果∠A = 90°,∠B = 45°,∠C的度数是多少?A. 45°B. 90°C. 135°D. 180°3. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°二、填空题4. 如果三角形的一个角是直角,那么这个三角形的另外两个角的和是______。
5. 在一个三角形中,如果两个内角的度数之和为90°,那么这个三角形被称为______三角形。
三、简答题6. 解释什么是补角,并给出一个补角的例子。
7. 解释什么是邻补角,并给出一个邻补角的例子。
四、计算题8. 在一个三角形中,已知∠A = 120°,求∠B和∠C的度数。
9. 如果一个三角形的三个内角的度数之和为180°,且已知∠A = 60°,∠B = 50°,求∠C的度数。
五、解答题10. 证明在一个三角形中,任意两个内角的和小于180°。
答案:一、选择题1. C2. A3. C二、填空题4. 90°5. 直角三、简答题6. 补角是指两个角的度数之和等于90°,例如,如果一个角是60°,那么它的补角是30°。
7. 邻补角是指两个角共享一条边,且它们的另一条边互为反向延长线,例如,在一个直角三角形中,两个锐角互为邻补角。
四、计算题8. ∠B = ∠C = (180° - 120°) / 2 =30°9. ∠C = 180° - 60° - 50° = 70°五、解答题10. 证明:设三角形ABC中,∠A和∠B为任意两个内角。
北师大版九年级数学下册 第一章 直角三角形的边角关系 测试题 (含答案)
直角三角形的边角关系 测试题一、选择题1.如图,在Rt △ABC 中,∠B =90°,cos A =1213,则tan A 的值为( )A.125B.1312C.1213D.512第1题图 第2题图 第3题图 第4题图2.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A.53 B.255 C.52 D.233.如图,在△ABC 中,点E 在AC 上,点G 在BC 上,连接EG ,AE =EG =5,过点E 作ED ⊥AB ,垂足为D ,过点G 作GF ⊥AC ,垂足为F ,此时恰有DE =GF =4.若BG =25,则sin B 的值为( )A.2510B.510C.255D.55 4.如图,直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,把△AOB 沿直线AB 翻折后得到△AO ′B ,则点O ′的坐标是( )A .(3,3)B .(3,3)C .(2,23)D .(23,4) 5.tan45°的值为( ) A.12 B .1 C.22D.2 6.如图所示,△ABC 的顶点是正方形网格的格点,则sin B 的值为( ) A.12 B.22 C.32D .1第6题图 第7题图7.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .m sin35° B .m cos35° C.m sin35° D.mcos35°8.在△ABC 中,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫33-tan B 2=0,则∠C 的度数为( )A .30°B .60°C .90°D .120° 二、填空题9.运用科学计算器计算:317sin73°52′≈________(结果精确到0.1). 10.计算:cos30°-sin60°=________.11.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1∶1.5,上底宽为6m ,路基高为4m ,则路基的下底宽为________m.12.如图,△ABC 中,∠ACB =90°,tan A =43,AB =15,AC =________.第11题图 第12题图 第13题图 第14 题图13.如图,Rt △ABC 中,∠ACB =90°,CM 为AB 边上的中线,AN ⊥CM ,交BC 于点N .若CM =3,AN =4,则tan ∠CAN 的值为________.14.如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里(结果取整数,参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).三、解答题15.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB (结果保留根号).16.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3.(1)求新坡面的坡角α;(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.17.在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C,利用上述结论可以求解如下题目,如:在△ABC中,若∠A=45°,∠B=30°,a=6,求b的值.解:在△ABC中,∵asin A=bsin B,∴b=a sin Bsin A=6sin30°sin45°=6×1222=3 2.解决问题:如图,甲船以每小时302海里的速度向正北方航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟后到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.(1)判断△A1A2B2的形状,并给出证明;(2)乙船每小时航行多少海里?参考答案与解析1.D2.A3.C 解析:在Rt △ADE 与Rt △EFG 中,⎩⎪⎨⎪⎧AE =EG ,DE =GF , ∴Rt △ADE ≌Rt △EFG (HL),∴∠A =∠GEF .∵∠A +∠AED =90°,∴∠GEF +∠AED=90°,∴∠DEG =90°.过点G 作GH ⊥AB 于点H ,则四边形DEGH 为矩形,∴GH =DE =4.在Rt △BGH 中,sin B =GH BG =425=255.故选C.4.A 解析:过点O ′作O ′C ⊥x 轴于点C .∵直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,∴点A ,B 的坐标分别为(23,0),(0,2),∴tan ∠BAO =OB OA =223=33,∴∠BAO=30°.∵把△AOB 沿直线AB 翻折后得到△AO ′B ,∴O ′A =OA =23,∠O ′AO =60°,∴CA =12O ′A =3,O ′C =O ′A ·sin ∠O ′AC =23×32=3,∴OC =OA -CA =23-3=3,∴点O ′的坐标为(3,3).故选A. 5.B 6.B 7.A 8.D 9.11.9 10.0 11.18 12.913.23 解析:∵∠ACB =90°,CM 为AB 边上的中线,∴AB =2CM =6,CM =BM ,∴∠B =∠MCB .∵AN ⊥CM ,∴∠CAN +∠ACM =90°.又∵∠ACM +∠MCB =90°,∴∠CAN =∠MCB ,∴∠B =∠CAN .又∵∠ACN =∠BCA ,∴△CAN ∽△CBA ,∴CN CA =AN BA =46=23,∴tan ∠CAN =CN AC =23.14.11 解析:过点P 作PC ⊥AB 于点C .依题意可得∠A =30°,∠B =55°.在Rt △P AC 中,∵P A =18海里,∠A =30°,∴PC =12P A =12×18=9(海里).在Rt △PBC 中,∵PC =9海里,∠B =55°,∴PB =PC sin B ≈90.8≈11(海里).15.解:过点C 作CF ⊥AB 于点F ,则BF =CD =4米,CF =BD .设AF =x 米.在Rt △ACF 中,tan ∠ACF =AF CF ,∠ACF =α=30°,则CF =AF tan30°=3x 米.在Rt △ABE 中,AB =AF +BF =(x +4)米,tan ∠AEB =AB BE ,∠AEB =β=60°,则BE =AB tan60°=33(x +4)米.∵CF =BD =DE +BE ,∴3x =3+33(x +4),解得x =33+42.则AB =33+42+4=33+122(米). 答:树高AB 是33+122米.16.解:(1)∵新坡面的坡度为1∶3,∴tan α=13=33,∴α=30°; (2)文化墙PM 不需要拆除.理由如下:过点C 作CD ⊥AB 于点D ,则CD =6米.∵坡面BC 的坡度为1∶1,新坡面AC 的坡度为1∶3,∴BD =CD =6米,AD =3CD =63米,∴AB =AD -BD =(63-6)米<8米,∴文化墙PM 不需要拆除.17.解:(1)△A 1A 2B 2是等边三角形.证明如下:由题意可得A 2B 2=102海里,A 1A 2=302×2060=102(海里),∴A 1A 2=A 2B 2.又∵∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形;(2)由(1)可知△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=102海里,∠A 2A 1B 2=60°,∴∠B 1A 1B 2=105°-60°=45°.由题意可知∠CB 1A 1=180°-105°=75°,∴∠B 2B 1A 1=75°-15°=60°.在△A 1B 2B 1中,由正弦定理得B 1B 2sin45°=A 1B 2sin60°,∴B 1B 2=A 1B 2sin60° ·sin45°=10232×22=2033(海里).乙船的速度为2033÷2060=203(海里/时). 答:乙船每小时航行203海里.。
第一章《直角三角形的边角关系》单元测试题(含答案)
第一章 直角三角形的边角关系一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.在Rt △ABC 中,∠C =90°,AB =2BC ,那么sin A 的值为( )A.12B.22C.32 D .1 2.在△ABC 中,∠C ,∠B 为锐角,且满足⎪⎪⎪⎪sin C -22+(32-cos B )2=0,则∠A 的度数为( )A .100°B .105°C .90°D .60°3.在Rt △ABC 中,∠C =90°,AB =20,cos A =14,则AC 等于( )A .45B .5 C.15 D.1454.在Rt △ABC 中,如果边长都扩大为原来的5倍,那么锐角A 的正弦值、余弦值和正切值( )A .都没有变化B .都扩大为原来的5倍C .都缩小为原来的15D .不能确定5.如图1-Z -1,过点C (-2,5)的直线AB 与坐标轴分别交于A (0,2),B 两点,则tan ∠OAB 的值为( )图1-Z -1A.25B.23C.52D.326.如图1-Z -2①为折叠椅,图②是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长度相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32 cm ,∠DOB =100°,那么椅腿AB 的长应设计为(结果精确到0.1 cm ,参考数据:sin50°=cos40°≈0.77,sin40°=cos50°≈0.64,tan40°≈0.84,tan50°≈1.19)( )图1-Z -2A .38.1 cmB .49.8 cmC .41.6 cmD .45.3 cm 二、填空题(本大题共5小题,每小题4分,共20分) 7.在△ABC 中,∠C =90°,sin A =14,则tan B =________.8.如图1-Z -3,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =________.图1-Z -39.如图1-Z -4,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE =6,sin A =35,则菱形ABCD 的周长是________.图1-Z -410.某校研究性学习小组测量学校旗杆AB 的高度,如图1-Z -5,在教学楼一楼C 处测得旗杆顶部的仰角为60°,在教学楼三楼D 处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为________米.图1-Z -511.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为D ,且满足BD ∶CD =2∶1,则△ABC 的面积为________.三、解答题(本大题共5小题,共56分) 12.(8分)计算:24sin45°+cos 230°-12tan60°+2sin60°.13.(10分)如图1-Z -6,在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43.求:(1)BD 的长; (2)sin B 的值.图1-Z -614.(12分)某大坝修建有以下方案:大坝的横断面为等腰梯形,如图1-Z -7,AD ∥BC ,坝高10米,迎水坡面AB 的坡度i =53,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB 的坡度进行修改,修改后的迎水坡面AE 的坡度i =56.(1)求原方案中此大坝迎水坡AB 的长(结果保留根号);(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC 方向拓宽2.7米,求坝底将会沿AD 方向加宽多少米.图1-Z -715.(12分)“和谐号”高铁列车的小桌板收起时可近似看作与地面垂直,展开小桌板使桌面保持水平,其示意图如图1-Z -8所示.连接OA ,此时OA =75 cm ,CB ⊥AO ,∠AOB =∠ACB =37°,且桌面宽OB 与BC 的长度之和等于OA 的长度.求支架BC 的长度(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).图1-Z -816.(14分)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can).如图1-Z -9①,在△ABC 中,AB =AC ,底角∠B 的邻对记作can B ,这时can B =底边腰=BCAB .容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=________;(2)如图②,已知在△ABC 中,AB =AC ,can B =85,S △ABC =24,求△ABC 的周长.图1-Z -9详解详析1.[解析] A ∵∠C =90°,AB =2BC ,∴sin A =BC AB =12.故选A.2.[解析] B ∵⎪⎪⎪⎪sin C -22+(32-cos B )2=0,∴sin C -22=0,32-cos B =0,则sin C =22,cos B =32,故∠C =45°,∠B =30°,∴∠A =180°-45°-30°=105°.故选B. 3.[答案] B4.[解析] A 三角函数值的大小只与角的大小有关,当角度一定时,其三角函数值不变. 5.[解析] B 方法1:设直线AB 的表达式是y =kx +b .根据题意,得⎩⎨⎧-2k +b =5,b =2,解得⎩⎪⎨⎪⎧k =-32,b =2,则直线AB 的表达式是y =-32x +2.在y =-32x +2中令y =0,解得x =43.则点B 的坐标是(43,0),即OB =43.则tan ∠OAB =OB OA =432=23.故选B.方法2:过点C 作CD ⊥y 轴于点D ,∵C (-2,5), ∴CD =2,OD =5.∵A (0,2),∴OA =2, ∴AD =OD -OA =3.在Rt △ACD 中,tan ∠OAB =tan ∠CAD =CD AD =23.故选B.6.[解析] C 连接BD ,由题意得OA =OB =OC =OD .∵∠DOB =100°,∴∠DAO =∠ADO =50°,∠OBD =∠ODB =40°,∴∠ADB =90°.又∵BD =32 cm ,∴AB =BD sin ∠DAO ≈320.77≈41.6(cm).故选C. 7.[答案] 158.[答案] 12[解析] 过点A 作AD ⊥OB ,垂足为D ,如图,在Rt △AOD 中,AD =1,OD =2,则tan ∠AOB =AD OD =12. 9.[答案] 40[解析] ∵DE ⊥AB ,垂足是E ,∴△AED 为直角三角形,则sin A =DE AD ,即35=6AD ,∴AD =10,∴菱形ABCD 的周长为10×4=40.10.[答案] 9[解析] 过点D 作DE ⊥AB ,垂足为E ,由题意可知,四边形ACDE 为矩形,则AE =CD =6米,AC =DE .设BE =x 米.在Rt △BDE 中,∵∠BED =90°,∠BDE =30°,∴DE =3BE =3x 米,∴AC =DE =3x 米. 在Rt △ABC 中, ∵∠BAC =90°,∠ACB =60°, ∴AB =3AC =3×3x =3x (米). ∵AB -BE =AE ,∴3x -x =6, ∴x =3,∴AB =3×3=9(米), 即旗杆AB 的高度为9米. 11.[答案] 8或24[解析] △ABC 有两种情况:(1)如图①所示,∵BC =6,BD ∶CD =2∶1,∴BD =4.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD=23BD =83,∴S △ABC =12BC ·AD =12×6×83=8;(2)如图②所示,∵BC =6,BD ∶CD =2∶1,∴BD =12.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD =23BD =8,∴S △ABC =12BC ·AD =12×6×8=24.综上所述,△ABC 的面积为8或24.12.解:原式=24×22+(32)2-12×3+2×32 =14+34-36+ 3 =1+5 36.13.[解析] (1)根据在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43,可以求得AD 的长,从而可以求得BD 的长;(2)由(1)中BD 的长和题目中CD 的长可以求得BC 的长,从而可以求得sin B 的值.解:(1)∵在△ABC 中,CD ⊥AB 于点D ,CD =8,tan A =43,∴tan A =CD AD =43,解得AD =6,∴BD =AB -AD =22-6=16.(2)由(1)知BD =16,∵CD ⊥AB ,CD =8, ∴BC =CD 2+BD 2=82+162=8 5,∴sin B =CD BC =88 5=55.14.[解析] (1)过点B 作BF ⊥AD 于点F ,在直角三角形ABF 中求得AF ,AB 的长; (2)过点E 作EG ⊥AD 于点G ,延长EC 至点M ,延长AD 至点N ,连接MN . 由S △ABE =S 梯形CMND 从而求得DN 的长.解:(1)如图,过点B 作BF ⊥AD 于点F . 在Rt △ABF 中,∵i =BF AF =53,且BF =10米,∴AF =6米,∴AB =102+62=2 34(米).答:原方案中此大坝迎水坡AB 的长为2 34米. (2)如图,过点E 作EG ⊥AD 于点G . 在Rt △AEG 中,∵i =EG AG =56,且EG =BF =10米,易得AG =12米,BE =GF =AG -AF =6米. 延长EC 至点M ,延长AD 至点N ,连接MN .∵方案修改前后,修建大坝所需土石方总体积不变, ∴S △ABE =S 梯形CMND , ∴12·BE ·EG =12(MC +ND )·EG , 即BE =MC +ND ,∴ND =BE -MC =6-2.7=3.3(米). 答:坝底将会沿AD 方向加宽3.3米.15.解:延长CB 交AO 于点D ,∴CD ⊥OA . 设BC =x cm ,则OB =(75-x )cm. 在Rt △OBD 中,∵∠DOB =37°, ∴OD =OB ·cos ∠DOB ≈0.8(75-x )=(60-0.8x )cm ,BD =OB ·sin ∠DOB ≈0.6(75-x )=(45-0.6x )cm ,∴DC =BD +BC ≈(0.4+45x )cm.在Rt △ACD 中,∵∠ACD =37°,∴AD =DC ·tan ∠ACD ≈0.75(0.4x +45)=(0.3x +33.75)cm. ∵OA =AD +OD =75 cm ,∴0.3x +33.75+60-0.8x =75, 解得x ≈37.5, ∴BC ≈37.5 cm ,故支架BC 的长度约为37.5 cm. 16.解:(1) 3(2)过点A 作AE ⊥BC 于点E ,∵can B =85,可设BC =8x ,AB =5x ,则BE =12BC =4x ,∴AE =AB 2-BE 2=3x .∵S △ABC =24, ∴12BC ·AE =12x 2=24, 解得x =2(负值已舍去),故AB =AC =5 2,BC =8 2, ∴△ABC 的周长为AB +AC +BC =5 2+5 2+8 2=18 2.。
直角三角形的边角关系练习题及答案
一、选择题(每小题3分,共36分)1.(2022河口模拟)在△ABC中,∠A=90°,∠A,∠B,∠C的对边分别为a,b,c,则下列选项中不正确的是( C )A.sin B=ba B.sin C=caC.cos B=bc D.tan B=bc2.在Rt△ABC中,∠C=90°,AC=4,tan A=12,则AB的长是( C )A.2B.8C.2√5D.4√53.若锐角A满足sin A=√32,则∠A的度数是( C )A.30°B.45°C.60°D.75°4.(2022张店模拟)在Rt△ABC中,∠C=90°,tan A=512,则cos A等于( D )A.512B.125C.513D.12135.在正方形网格中,△ABC的位置如图所示,则cos B的值为( B )第5题图A.12B.√22C.√32D.√336.(2022福山模拟)按如图所示的运算程序,能使输出y 值为12的是( C )第6题图A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°7.在△ABC 中,∠A 和∠B 都是锐角,且sin A=12,cos B=√22,则△ABC 三个内角的大小关系为( D ) A.∠C>∠A>∠B B.∠B>∠C>∠A C.∠A>∠B>∠C D.∠C>∠B>∠A8.一辆小车沿着斜坡向上行驶了100 m,其铅直高度上升了15 m,在用科学计算器求坡角α的度数时,其按键顺序是( A )9.如图所示,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔 60 n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( B )A.60√3 n mileB.60√2 n mileC.30√3 n mileD.30√2 n mile10.如图所示,△ABC,△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角为∠PBE=43°,视线PE与地面BE的夹角为∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE,若A点到B 点的距离AB=1.6 m,则盲区中DE的长度是(参考数据:sin 43°≈0.7,tan 43°≈0.9,sin 20°≈0.3,tan 20°≈0.4)( B )A.2.6 mB.2.8 mC.3.4 mD.4.5 m11.如图所示,在矩形ABCD中,点E在DC上,将矩形沿直线AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( D )A.12B.920C.25D.1312.因为cos 60°=12,cos 240°=-12,所以cos 240°=cos(180°+60°)=-cos 60°;由此猜想、推理知:当α为锐角时有cos(180°+α)=-cos α,由此可知cos 210°的值为( C )A.-12B.-√22C.-√32D.-√3二、填空题(每小题3分,共18分)13.已知在Rt△ACB中,∠C=90°,AB=13,AC=12,则cos B 的值为5.1314.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥,则AD的长度是10 .CD,若sin∠ACB=13第14题图15.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A为54°,∠B为36°,边AB的长为2.1 m,BC边上露出部分BD的长为0.9 m,则铁板BC边被掩埋部分CD的长为0.8 m.(结果精确到0.1 m.参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 54°≈1.38)第15题图16.(2021东营期末)直角三角形纸片ABC的两直角边长分别为6,8,现将△ABC按如图所示方式折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值为7.24第16题图17.如图所示,小明在距离地面30 m 的P 处测得小山山顶A 处的俯角为15°,山脚B 处的俯角为60°.若山坡AB 的坡度为1∶√3,则小山的高度为 10√3 m.(结果保留根号)第17题图18.(2022任城模拟)规定:sin(-x)=-sin x,cos(-x)=cos x, sin(x+y)=sin x ·cos y+cos x ·sin y.据此判断下列等式成立的是 ②③④ .(写出所有正确的序号) ①cos(-60°)=-12;②sin 75°=√6+√24; ③sin 2x=2sin x ·cos x;④sin(x-y)=sin x ·cos y-cos x ·sin y. 三、解答题(共46分) 19.(6分)计算:(1)sin 60°-cos 60°·tan 45°+12√1-2tan30°+tan 230°; (2)sin 245°+cos 230°-tan 260°.解:(1)原式=√32-12×1+12√(1-tan30°)2=√32-12+12×(1-√33) =√33.(2)原式=(√22)2+(√32)2-(√3)2=12+34-3=-74.20.(8分)如图所示,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sin B=13,AD=1.(1)求BC 的长; (2)求tan ∠DAE 的值. 解:(1)∵AD 是BC 边上的高, ∴AD ⊥BC.在Rt △ABD 中,sin B=AD AB =13,AD=1,∴AB=3,∴BD=√AB 2-AD 2=√32-12=2√2. 在Rt △ADC 中,∵∠C=45°,∴CD=AD=1. ∴BC=BD+CD=2√2+1. ∴BC 的长为2√2+1.(2)∵AE 是BC 边上的中线,∴CE=12BC=2√2+12, ∴DE=CE-CD=2√2+12-1=√2-12, ∴tan ∠DAE=DE AD=√2-121=√2-12.21.(10分)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200 m 且横断面为梯形的大坝用土石进行加固.如图所示,加固前大坝背水坡坡面从A 至B 共有30级阶梯,平均每级阶梯高 30 cm,斜坡AB 的坡度为1∶1;加固后,坝顶宽度增加2 m,斜坡EF 的坡度为1∶√5,求BF 的长.(结果保留根号)解:如图所示,过点A作AH⊥BC于点H,过点E作EG⊥BC于点G,则四边形EGHA是矩形.∴EG=AH,GH=AE=2 m.∵斜坡AB的坡度为1∶1,∴AH=BH=30×30=900 cm=9 m.∴BG=BH-HG=9-2=7(m).∵斜坡EF的坡度为1∶√5,∴FG=9√5 m.∴BF=FG-BG=(9√5-7)m.∴BF的长为(9√5-7)m.22.(12分)(2020包头)如图所示,一个人骑自行车由A地到C地途经B地,当他由A地出发时,发现他的北偏东45°方向有一电视塔P.他由A地向正北方向骑行了3√2 km到达B地,发现电视塔P在他北偏东75°方向,然后他由B地向北偏东15°方向骑行了6 km到达C地.(1)求A地与电视塔P的距离;(2)求C地与电视塔P的距离.解:(1)如图所示,过点B 作BD ⊥AP 于点D. 在Rt △ABD 中,∠BAD=45°,AB=3√2 km,∴AD=BD=AB ×sin ∠BAD=3√2×sin 45°=3√2×√22=3(km). ∵∠PBN=75°,∴∠APB=∠PBN-∠PAB=75°-45°=30°. ∴在Rt △BDP 中,PD=BDtan∠APB =3tan30°=√33=3√3(km),PB=2BD=2×3=6(km). ∴AP=AD+PD=(3+3√3)km.∴A 地与电视塔P 的距离为(3+3√3)km. (2)∵∠PBN=75°,∠CBN=15°, ∴∠CBP=60°. ∵BP=BC=6 km, ∴△BPC 为等边三角形. ∴PC=6 km.∴C 地与电视塔P 的距离为6 km.23.(10分)(2022垦利模拟)数学活动课上,小明和小红要测量小河对岸大树BC 的高度,小红在点A 测得大树顶端B 的仰角为45°,小明从A点出发沿斜坡走3√5 m到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1∶2.(1)求小明从点A到点D的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60)解:(1)如图所示,过点D作DH⊥AE于H.在Rt△ADH中,∵DHAH =12,∴AH=2DH.∵AH2+DH2=AD2,∴(2DH)2+DH2=(3√5)2,解得DH=3,故小明从点A到点D的过程中,他上升的高度为3 m.(2)如图所示,延长BD交AE于点G,设BC=x m,由题意得∠G=31°,∴GH=DHtanG ≈30.60=5.∵AH=2DH=6,∴GA=GH+AH=5+6=11.在Rt△BGC中,tan G=BCGC ,∴CG=BCtanG≈x0.60=53x.在Rt△BAC中,∠BAC=45°,∴AC=BC=x.∵GC-AC=AG,∴53x-x=11,解得x=16.5.故大树的高度约为16.5 m.。
(好题)初中数学九年级数学下册第一单元《直角三角形的边角关系》检测卷(含答案解析)
一、选择题1.在Rt ABC ∆中,90C ∠=︒,若5sin 13A =,则cos A 的值为( ) A .512 B .813 C .1312 D .12132.如图,传送带和地面所成斜坡AB 的坡度为1∶2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5米B .5米C .25米D .45米 3.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则cos ∠AEF 的值是( )A .12B .1C .22D .324.在Rt ABC 中,∠C =90º,下列关系式中错误的是( )A .BC =AB•sinAB .BC =AC•tanA C .AC =BC•tanBD .AC =AB•cosB 5.如图,在Rt ABC △中,90ABC ∠=︒,4AB =,8BC =,D ,E 分别为边AB ,BC 上一点,且满足:1:3AD DB =.连接DE ,将ADBE 沿DE 翻折,点B 的对应点F 恰好落在边AC 上,则CF 的长度为( )A .1952055B .275C .52055D .3156.Rt ABC 中,90C ∠=︒,2AC =,1BC =,sin A =( )A .55B .2C .32D .127.如图,直线123////l l l ,ABC 的三个顶点分别落在123,,l l l 上,AC 交2l 于点D ,设1l 与2l 的距离为12,h l 与3l 的距离为2h .若12,:1:2AB BC h h ==,则下列说法正确的是( )A .:2:3ABD ABC S S =B .:1:2ABD ABC S S =△△C .sin :sin 2:3ABD DBC ∠∠=D .sin :sin 1:2ABD DBC ∠∠= 8.在ABC 中,90,13,12C AB BC ∠=︒==,则sin B 的值为( )A .1213B .512 C .513 D .1359.在Rt ABC 中,90C ∠=︒,5AB =,4BC =,则tan A 的值为( ) A .35 B .45 C .34 D .4310.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE CF =;②75AEB ∠=︒;③BE DF EF +=;④正方形对角线:13AC =+,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 11.如图,直线y =-33x +2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO'B',则点B'的坐标是( ) A .(4,23)B .(23,4)C .(3,3)D .(23+2,2) 12.如图,在边长相同的小正方形组成的网格中,点A B C D 、、、都在这些小正方形的顶点上,AB CD 、相交于点P ,则tan APD ∠=( ).A .5B .3C .10D .2二、填空题13.如图,测角仪CD 竖直放在距建筑物AB 底部8m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪CD 的高度是1.5m ,则建筑物AB 的高度约为_____m .(结果精确到个位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)14.如图,在Rt ABC 中,90B ∠=︒,2AB =,1BC =.将ABC 绕点A 按逆时针方向旋转90︒得到''AB C ,连接'B C ,则tan 'ACB ∠=__________.15.如图,在Rt ABC △中,90A ∠=︒,AB AC =,BD 是AC 边上的中线,则tan ADB ∠的值是______.16.如图,点P (m ,1)是反比例函数3y x=图象上的一点,PT ⊥x 轴于点T ,把△PTO 沿直线OP 翻折得到△PT O ',则点T '的坐标为_______________.17.ABC ∆中,67.5A ,8BC =,BE AC ⊥交AC 于E ,CF AB ⊥交AB 于F ,点D 是BC 的中点.以点F 为原点,FD 所在的直线为x 轴构造平面直角坐标系,则点E 的横坐标为________.18.如图,四边形ABCD 中,AB=BC=3,∠A=∠C=90°,∠ABC=120°,点E 是对角线BD 上的一个动点,过点E 分别作AB ,BC ,CD ,AD 的垂线,垂足分别为点F ,H ,I ,G ,连结FG 和HI ,则FG+HI 的最小值为________.19.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.20.在Rt ABC ∆中,90A ∠=︒,3AB =,4BC =则cos B =______.三、解答题21.计算:20210+|﹣3|﹣2sin60°.22.如图,根据道路管理规定,在某笔直的大道AB 上行驶的车辆,限速60千米/时,已知测速站点M 距大道AB 的距离MN 为30米,现有一辆汽车从A 向B 方向匀速行驶,测得此车从A 点行驶到B 点所用时间为6秒,已知60AMN ∠=︒,45BMN ∠=︒.(参考数据:3 1.732≈,2 1.414≈)(1)计算AB 的长度(结果保留整数);(2)试判断此车是否超速,并说明理由.23.图①是一辆登高云梯消防车的实物图,图②是其工作示意图,起重臂AC 是可伸缩的(10m 20m AC ),且起重臂AC 可绕点A 在一定范围内转动,张角为()90150CAE CAE ∠∠︒︒,转动点A 距离地面BD 的高度AE 为3.5m .(1)当起重臂AC 长度为12m ,张角CAE ∠为120︒时,求云梯消防车最高点C 距离地面的高度CF ;(2)某日、一居民家突发险情,该居民家距离地面的高度为18m ,请问该消防车能否实3 1.732≈)24.如图在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象与反比例函数()0m y m x=≠的图象交于第二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为()6,n .线段5OA =,E 为x 轴上一点,且4sin 5AOE ∠=.(1)求该反比例函数和一次函数的解析式;(2)求AOB的面积;25.(1)解方程:22360x x--=(2)计算:12cos301tan602sin30︒--︒+︒26.为了方便市民出行,县政府决定从“七星广场”河堤到对岸修建一座便民桥.为测量河的宽度,在河的对岸取一点A,在广场河边取两点,O B测得点A在点O的北偏东60︒方向,测得点A在点B北偏东45︒方向,量得OB长为50米,求河的宽度AC(结果保留根号)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由三角函数的定义可知sinBCAAB=,可设BC=5k,AB=13k由勾股定理可求得12AC k=,再利用余弦的定义代入计算即可.【详解】解:如图:在Rt ABC 中,sin BC A AB =,可设BC=5k ,AB=13k . 由勾股定理可求得()()222213512AC AB BC k k k =-=-=. 所以,1212cos =1313AC k A AB k ==. 故选:D .【点睛】 本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.2.C解析:C【分析】作BC ⊥底面于点C ,根据坡度的概念、勾股定理列式计算即可;【详解】作BC ⊥底面于点C ,设BC x =,∵传送带和底面所成斜坡AB 的坡度为1∶2,∴2AC x =,由勾股定理得:222AC BC AB +=,即()222210x x +=,解得:25x =,即25BC =.故答案选C .【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,准确计算是解题的关键. 3.C解析:C【分析】连接AF ,根据题意可分别求出BF 、FC 、DE 的长,再利用勾股定理分别求出AF 、AE 、EF 的长,利用勾股定理的逆定理判断出AEF 为等腰直角三角形,再利用三角函数即可求得答案.【详解】如图:连接AF ,四边形ABCD 是矩形∴2,3AB DC AD BC ====∴∠B=∠C=∠D=90°FC=2BF∴BF=1,FC=2E 是CD 的中点∴DE=CE=1∴BF=CE=1在Rt ABF 中22222215AF AB BF =+=+=在Rt EFC 中22222215EF FC CE =+=+=在Rt ADE △中222223110AE AD DE =+=+=∴222AE EF AF =+且AF=EF∴△AEF 为等腰直角三角形∴∠AFE=90°,∠AEF=∠EAF=45°∴cos ∠AEF=cos45°=22故选:C .【点睛】本题考查了矩形的性质,勾股定理及其逆定理的运用,特殊角的三角函数值,解题关键是利用勾股定理逆定理判断出AEF 为等腰直角三角形. 4.D解析:D【分析】根据三角函数的定义即可作出判断.【详解】解:A 、∵sin BC A AB=, ∴sin BC AB A =, 故正确,不符合题意;B 、∵tanA= BC AC, ∴BC=AC•tanA ,故正确,不符合题意;C 、∵tanB=AC BC, ∴AC=BC•tanB , 故正确,不符合题意;D 、∵cos BC B AB=, ∴cos BC AB B =,故错误,符合题意;故选:D .【点睛】本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.A解析:A【分析】如图,过D 作DM AC ⊥于,M 根据已知条件先求解:,,,AD BD AC 再利用A ∠的三角函数求解,,AM DM 由对折得到:,DF 再利用勾股定理求解MF ,从而由CF AC AM MF =--可得答案.【详解】解:如图,过D 作DM AC ⊥于,M4:1:3,AB AD DB ==,13AD DB ∴==,,90ABC ∠=︒,4AB =,8BC =,22224845,AC AB BC ∴=+=+=1,AD DM AC =⊥,sin ,45DM BC A AD AC ∴=== 255DM ∴=, 同理:5cos ,545AM AB A AD AC ==== 55AM ∴=, 由对折可得:3,DF DB == 22222520535MF DF DM ⎛⎫∴=-=-= ⎪ ⎪⎝⎭,520519520545CF AC AM MF -∴=--== 故选:.A【点睛】 本题考查的是轴对称的性质,勾股定理的应用,锐角三角函数的应用,掌握以上知识是解题的关键.6.A解析:A【分析】求出斜边AB ,再求∠A 的正弦值.【详解】解:∵90C ∠=︒,2AC =,1BC =,∴2222215AB AC BC +=+= 5sin 5BC A AB ===, 故选:A .【点睛】本题考查了勾股定理和锐角的正弦函数值的求法,解题关键是求出斜边长,熟知正弦的意义.7.D解析:D【分析】作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,利用三角形面积公式可得到12::1:2ABD BCD S S h h ∆∆==,则可对A 、B 进行判断;利用正弦的定义得到1sin h ABD AB ∠=,2sin h DBC BC∠=,利用AB CB =可对C 、D 进行判断. 【详解】 解:作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,11122ABD S BD AE BD h ∆==,21122BCE S BD CF BD h ∆==, 12::1:2ABD BCD S S h h ∆∆∴==,:1:3ABD ABC S S ∆∆∴=,所以A 、B 选项错误;在Rt ABE ∆中,1sin h AE ABD AB AB ∠==, 在Rt BCF ∆中,2sin h CF DBC BC BC∠==, 而AB CB =,12sin :sin :1:2ABD DBC h h ∴∠∠==,所以C 选项错误,D 选项正确. 故选:D .【点睛】本题考查了考查了解直角三角形,也考查了平行线之间的距离和等腰直角三角形的性质,难度一般.8.C解析:C【分析】先根据勾股定理求得AC ,再根据正弦的定义求解即可;【详解】∵在ABC 中,90C ∠=︒,13AB =,12BC =,∴2213125AC =-=,∴5sin 13AC B AB ==; 故答案选C .【点睛】本题主要考查了勾股定理与解直角三角形,准确理解计算是解题的关键.9.D解析:D【分析】由勾股定理算出AC 的值,然后根据正切函数的定义即可得到解答.【详解】 解:由勾股定理可得:2222543AC AB BC =-=-=,∴tanA=43BC AC =, 故选D .【点睛】 本题考查解直角三角形,熟练掌握勾股定理及三角函数的定义是解题关键.10.A解析:A【分析】证明()Rt ABE Rt ADF HL ≅△△即可证明①正确,由①的结论得到三角形CEF 是等腰直角三角形,即可证明②正确,根据AC 垂直平分EF 可以判断③错误,利用锐角三角函数值求出AC 的长度证明④正确.【详解】解:∵四边形ABCD 是正方形,∴AB AD =,90B D ∠=∠=︒,∵AEF 是等边三角形,∴AE AF =, 在Rt ABE △和Rt ADF 中,AE AF AB AD =⎧⎨=⎩, ∴()Rt ABE Rt ADF HL ≅△△,∴BE DF =,∵BC CD =,∴BC BE CD DF -=-,即CE CF =,故①正确;∵CE CF =,90C ∠=︒,∴45CEF ∠=︒,∵60AEF ∠=︒,∴180604575AEB ∠=︒-︒-︒=︒,故②正确;如图,连接AC ,交EF 于点G ,∵AE AF =,CE CF =,∴AC 是EF 的垂直平分线,∵CAF DAF ∠≠∠,∴DF FG ≠,同理BE EG ≠,∴BE DF EF +≠,故③错误;∵AEF 是边长为2的等边三角形,ACB ACD ∠=∠,∵AC EF ⊥,EG FG =, ∴3sin 6023AG AE =⋅︒==112CG EF ==, ∴13AC AG CG =+=+,故④正确.故选:A .【点睛】本题考查四边形综合题,解题的关键是掌握正方形的性质,等边三角形的性质,解直角三角形的方法.11.B解析:B【分析】根据直线解析式求出点A 、B 的坐标,从而得到OA 、OB 的长度,再求出∠OAB =30°,利用勾股定理列式求出AB ,然后根据旋转角是60°判断出AB′⊥x 轴,再写出点B′的坐标即可.【详解】令y =0,则−3x +2=0,解得x =,令x =0,则y =2,所以,点A (0),B (0,2),所以,OA =OB =2,∵tan ∠OAB =OB OA ==, ∴∠OAB =30°,由勾股定理得,AB 4==, ∵旋转角是60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故选:B .【点睛】本题考查了坐标与图形性质−旋转,一次函数图象上点的坐标特征,勾股定理的应用,三角函数的应用,求出AB′⊥x 轴是解题的关键. 12.B解析:B【分析】设小正方形的边长为1,根据勾股定理可得AD 、AC 的值,进而可得△ADC 是等腰直角三角形,进而可得AD ⊥CD ,根据相似三角形的判定和性质可得PC =2DP ,根据等量代换和线段和差可得AD =CD =3DP ,继而即可求解.【详解】解析 设小正方形的边长为1,由图形可知,2AD DC AC ===,ADC ∴是等腰直角三角形,AD DC ∴⊥.//AC BD ,2AC CP BD DP∴==, 2PC DP ∴=,3AD DC DP ∴==,tan 3AD APD DP∴∠==.故选B.【点睛】本题考查了正方形的性质、等腰直角三角形的判定、勾股定理、相似三角形的判定及其性质以及锐角三角函数.此题难度适中,注意转化思想与数形结合思想的应用.二、填空题13.11【分析】根据题意作辅助线DE⊥AB然后根据锐角三角函数可以得到AE 的长从而可以求得AB的长本题得以解决【详解】解:作DE⊥AB于点E由题意可得DE=CD=8m∵∠ADE=50°∴AE=DE•ta解析:11【分析】根据题意,作辅助线DE⊥AB,然后根据锐角三角函数可以得到AE的长,从而可以求得AB 的长,本题得以解决.【详解】解:作DE⊥AB于点E,由题意可得,DE=CD=8m,∵∠ADE=50°,∴AE=DE•tan50°≈8×1.19=9.52(m),∵BE=CD=1.5m,∴AB=AE+BE=9.52+1.52=11.2≈11(m),故答案为:11.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】如图延长与的延长线交于点证明四边形为正方形再求解过作于利用等面积法求解再利用勾股定理求解从而可得答案【详解】解:如图由题意得:延长与的延长线交于点则四边形为正方形过作于故答案为:【点睛】本题解析:4 3【分析】如图,延长C B''与BC的延长线交于点,G证明四边形ABGB'为正方形,再求解,B C AC ',过A 作AM B C '⊥于M , 利用等面积法求解,AM 再利用勾股定理求解,MC 从而可得答案.【详解】解:如图,由题意得:9090BAB B AB C '''∠=︒∠=∠=︒,, 2AB AB '==, 1BC =,22215,AC ∴=+=延长C B ''与BC 的延长线交于点,G 则90AB G '∠=︒,∴ 四边形ABGB '为正方形, 2211B G BG CG BG BC '∴===-=-=,,90B GB '∠=︒, 22215,B C '∴=+=过A 作AM B C '⊥于M ,11,22AB C S AB AB B C AM '''∴== 54AM =, 4555AM ∴==, ()224355555MC ⎛⎫∴=-= ⎪⎝⎭, 4545tan '.3355AM ACB MC ∴∠=== 故答案为:4.3【点睛】本题考查的是勾股定理的应用,旋转的性质,正方形的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键. 15.2【分析】由题意得到则结合角的正切值即可得到答案【详解】解:∵是边上的中线∴∴∵∴∵在中∴;故答案为:2【点睛】本题考查了求角的正切值三角形中线的性质解题的关键是掌握三角形中线的性质正确得到解析:2【分析】由题意,得到12AD AC =,则2AC AD =,结合角的正切值tan AB ADB AD∠=,即可得到答案.【详解】 解:∵BD 是AC 边上的中线,∴12AD AC =, ∴2AC AD=, ∵AB AC =,∴2AB AD=, ∵在Rt ABD 中,90A ∠=︒, ∴tan 2AB ADB AD ∠==; 故答案为:2.【点睛】本题考查了求角的正切值,三角形中线的性质,解题的关键是掌握三角形中线的性质,正确得到2AB AD=. 16.【分析】连接过点作于点C 先根据反比例函数解析式求出点P 坐标根据的正切值得到它的度数再根据折叠的性质证明是等边三角形再解直角三角形得到OC 和的长即可求出的坐标【详解】解:如图连接过点作于点C ∵点P(m解析:33,2⎛⎫ ⎪ ⎪⎝⎭【分析】连接TT ',过点T '作T C OT '⊥于点C ,先根据反比例函数解析式求出点P 坐标,根据POT ∠的正切值得到它的度数,再根据折叠的性质证明TOT '是等边三角形,再解直角三角形得到OC 和CT '的长,即可求出T '的坐标.【详解】解:如图,连接TT ',过点T '作T C OT '⊥于点C ,∵点P (m ,1)是反比例函数y x =图象上的一点,∴1=m ,∴OT =,1PT =,∵tan 3POT ∠=, ∴30POT ∠=︒,由折叠的性质得:30,POT POT OT OT ∠=∠=︒='='∴60TOT '∠=︒,又∵OT OT '=,∴TOT '是等边三角形,∵T C OT '⊥,∴12OC OT ==,3sin 2CT OT TOT '''=⋅∠==,∴322T ⎛⎫' ⎪ ⎪⎝⎭.故答案为:322⎛⎫ ⎪⎪⎝⎭. 【点睛】本题考查反比例函数与几何,解题的关键是掌握反比例函数的性质,利用锐角三角函数值得到特殊角的度数,然后解直角三角形. 17.【分析】连接DE 过E 作EH ⊥OD 于H 求得∠EDO =45°即可得到Rt △DEH 中求得DH 进而得出OH 即可求解【详解】如图所示连接过作于于于是的中点中点的横坐标是【点睛】本题主要考查了直角三角形斜边上中 解析:4-【分析】连接DE ,过E 作EH ⊥OD 于H ,求得∠EDO =45°,即可得到Rt △DEH 中,求得DH ,进而得出OH ,即可求解.【详解】如图所示,连接DE ,过E 作EH OD ⊥于H ,BE CA ⊥于E ,CF AB ⊥于F ,D 是BC 的中点,142DE DC BC DO DB ∴=====, DCE DEC ∴∠=∠,DBO DOB ∠=∠,67.5A ∴∠=︒,112.5ACB ABC ∴∠+∠=︒,18021802()()CDE BDO DCE DBO ∴∠+∠=︒-∠+︒-∠ 3602()DCE DBO =︒-∠+∠3602112.5=︒-⨯︒135=︒,45EDO ∴∠=︒,Rt DEH ∴∆中,cos 4522DH DE =︒⨯=422OH OD DH ∴=-=-点E 的横坐标是422-【点睛】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.18.3【分析】先证明得到再证明:四边形四边形为矩形得到所以只要求的最小值即可当时最小再利用锐角三角函数可得答案【详解】解:AB=BC=3∠A=∠C=90°由过点E 分别作ABBCCDAD 的垂线垂足分别为点 解析:3【分析】先证明,Rt ABD Rt CBD ≌得到60,30,ABD CBD GDE IDE ∠=∠=︒∠=∠=︒再证明:,FG HI =四边形,AFEG 四边形CHEI 为矩形,得到AE FG =,所以只要求AE 的最小值即可,当AE BD ⊥时,AE 最小,再利用锐角三角函数可得答案.【详解】 解: AB=BC=3,∠A=∠C=90°,,120,BD BD ABC =∠=︒,Rt ABD Rt CBD ∴≌60,30,ABD CBD GDE IDE ∴∠=∠=︒∠=∠=︒由过点E 分别作AB ,BC ,CD ,AD 的垂线,垂足分别为点F ,H ,I ,G ,,,EF EH EG EI ∴== 四边形,AFEG 四边形CHEI 为矩形,90,FEG HEI ∴∠=∠=︒,FEG HEI ∴≌∴ ,FG HI =当FG 最小,则FG HI +最小,四边形AFEG 为矩形,,AE FG ∴=所以:当AE BD ⊥时,AE 最小,3,60,AB ABE =∠=︒sin 60,AE AB ∴︒= 3333,AE ∴=⨯= 所以:FG 的最小值是:33, 所以:FG HI +的最小值是:3323 3.⨯= 故答案为:3 3.【点睛】本题考查的是点到直线的距离垂线段最短,三角形全等的判定与性质,矩形的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.19.10【分析】根据直角三角形的边角间关系先计算再在直角三角形中利用勾股定理即可求出【详解】解:在中∵∴在中故答案为:10【点睛】本题考查了解直角三角形和勾股定理利用直角三角形的边角间关系求出AC 是解决 解析:10【分析】根据直角三角形的边角间关系,先计算AC ,再在直角三角形ACD 中,利用勾股定理即可求出AD .【详解】解:在Rt ABC 中,∵12,sin3ABAB ACBAC=∠==,∴1263AC=÷=.在Rt ADC中,22AD AC CD=+2268=+10=.故答案为:10.【点睛】本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.20.【分析】根据题意画出图形进而得出cosB=求出即可【详解】解:∵∠A=90°AB=3BC=4则cosB==故答案为:【点睛】本题考查了锐角三角函数的定义正确把握锐角三角函数关系是解题的关键解析:3 4【分析】根据题意画出图形,进而得出cosB=ABBC求出即可.【详解】解:∵∠A=90°,AB=3,BC=4,则cosB=ABBC=34.故答案为:34.【点睛】本题考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题的关键.三、解答题21.1【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【详解】解:原式=12×2=1=1.【点睛】本题主要考查了实数的混合运算,结合特殊角三角函数中、零指数幂计算是解题的关键. 22.(1)82米;(2)不超速,见解析【分析】(1)已知MN=30m ,∠AMN=60°,∠BMN=45°求AB 的长度,可以转化为解直角三角形; (2)求得从A 到B 的速度,然后与60千米/时≈16.66米/秒,比较即可确定答案.【详解】解:(1)由题意可得在Rt AMN △中,30MN =米,60AMN ∠=︒, ∴tan AN MN AMN =⋅∠=在Rt BMN 中,∵45BMN ∠=︒,∴30BN MN ==(米). ∴3082AB AN BN =+=≈(米).(2)此车不超速,理由如下:由题意可得,汽车从A 到B 为匀速行驶,用时为6秒,且82AB =米,则汽车的速度为()306513.66÷=≈(米/秒).∵60千米/时≈16.67米/秒,13.6616.67<,∴此车不会超速.【点睛】本题考查了勾股定理以及解直角三角形的应用,解题的关键是从题目中抽象出直角三角形,难度不大.23.(1)9.5m ;(2)可以有效救援.【分析】(1)过点C 作CF ⊥BD ,垂足为F ,过点A 作AG ⊥CF ,垂足为G ,解直角三角形ACG 即可;(2)当起重臂最长,张角最大时,计算远臂点距离地面的最大高度,比较判断即可.【详解】(1)如图1,过点C作CF⊥BD,垂足为F,过点A作AG⊥CF,垂足为G,∵AE⊥BD,∴四边形AEFG是矩形,∴∠EAG=90°,FG=AE=3.5,∴∠CAG=30°,∵AC=12,∴CG=ACsin30°=12×1=6,2∴CF=CG+FG=6+3.5=9.5(米);(2)如图2,过点C作CF⊥BD,垂足为F,过点A作AG⊥CF,垂足为G,∵AE⊥BD,∴四边形AEFG是矩形,∴∠EAG=90°,FG=AE=3.5,∴∠CAG=60°,∵AC=20,∴CG=ACsin60°3,∴CF=CG+FG=17.32+3.5=20.82>18;∴能有效救援.【点睛】本题考查了生活实际问题中的解直角三角形,熟练把生活问题转化数学解直角三角形模型问题是解题的关键.24.(1)12y x =-,223y x =-+;(2)9 【分析】(1)过点A 作AH ⊥x 轴于H 点,由4sin 5AH ACE AO∠==,OA=5,根据正弦的定义可求出AH ,再根据勾股定理得到OH ,即得到A 点坐标(-3,4),把A (-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B (6,n )代入,确定点B 点坐标,然后把A 点和B 点坐标代入y=kx+b (k≠0),求出k 和b .(2)先令y=0,求出C 点坐标,得到OC 的长,然后根据AOB BOC AOC SS S =+计算△AOB 的面积即可.【详解】解:(1)过A 作AH x ⊥轴交x 轴于H ,∴4sin 5AH ACE AO∠==,5OA =, ∴4AH =,∴223OH OA AH ,∴()3,4A -,将()3,4A -代入m y x=,得12=-m , ∴反比例函数的解析式为12y x =-, 将()6,B n 代入12y x=-,得2n =-, ∴()6,2B -, 将()3,4A -和()6,2B -分别代入()0y kx b k =+≠,得3462k b k b -+=⎧⎨+=-⎩,解得232k b ⎧=-⎪⎨⎪=⎩, ∴直线解析式:223y x =-+; (2)在直线223y x =-+中,令0y =,则有2203x -+=,解得3x =, ∴()3,0C ,即3OC =,∴13462AOC S =⨯⨯=△; 同理3BOC S =△,则9AOB BOC AOC S S S =+=△△△.【点睛】本题考查了反比例函数的综合运用.关键是作x 轴的垂线,解直角三角形求A 点坐标,用待定系数法求直线,双曲线的解析式.25.(1)134x +=,234x =;(2)5【分析】(1)用公式法解方程即可;(2)先求特殊角三角函数值,再进行实数计算.【详解】解:(1)22360x x --=, 2a =,3b =-,6c =-∴224(3)42(6)570b ac -=--⨯⨯-=>∴332224b x a -===⨯∴134x =,234x -=(2)原式)1122=-+⨯311=+5=-【点睛】本题考查了一元二次方程的解法和含有特殊角三角函数值的实数计算,解题关键是选择恰当的方法解一元二次方程和熟记特殊角三角函数值并熟练进行计算.26.河的宽度AC 为(25+米【分析】根据点A 在点B 北偏东45°方向,结合方位角的知识可证AC BC =,利用三角函数解直角三角形,列关出方程,解方程即可.【详解】根据题意,有30,45AOC ABC ∠=︒∠=︒, 又90ACB ∠=︒所以BC AC =, 在Rt AOC ∆中,tan AC AOC OC ∠=,即tan 30AC OC ︒= 设AC x =米,则BC x =米,由题意得503x x =+ 解得x =化简得25x =+∴河的宽度AC 为(25+米.【点睛】本题考查了解直角三角形的实际应用,熟记特殊角的三角函数值,灵活运用方位角的知识,规范解直角三角形是解题关键.。
直角三角形的边角关系单元测试题(含答案)
第一章 直角三角形的边角关系检测题一、选择题(每小题3分,共30分) 1.计算:cos 245°+sin 245°=( )A. 错误!未找到引用源。
B.22C.1D.322.在Rt △ABC 中,各边的长度都扩大两倍,那么锐角A 的各三角函数值( )A .都扩大两倍,B .都缩小两倍,C .不变,D .都扩大四倍 3. 如图,在Rt △ABC 中,∠C=Rt ∠,a 、b 、c 分别是∠A ,∠B ,∠C 的对边,下列结论正确的是( )A .a A c =sinB .c B b =cosC .b A a =tanD .abB =tan第3题图 第4题图 第5题图4.如图,在△ABC 中,∠BAC =90゜,AB =AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为( ) A.31错误!未找到引用源。
B.错误!未找到引用源。
-1 C.2-错误!未找到引用源。
D.错误!未找到引用源。
5.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( ) A.2 B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
6.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A.43 B.45 C.54 D.34 7.如图,一个小球由地面沿着坡度错误!未找到引用源。
的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 mB.25 mC.45 mD.310 m第7题图8.如图,在菱形错误!未找到引用源。
中,错误!未找到引用源。
,3cos5A=,错误!未找到引用源。
,则tan∠错误!未找到引用源。
的值是()A.12B.2 C.52D.559.直角三角形两直角边和为7,面积为6,则斜边长为()A. 5B. 错误!未找到引用源。
C. 7D. 错误!未找到引用源。
2020-2021九年级中考数学直角三角形的边角关系解答题压轴题提高专题练习附答案解析
2020-2021九年级中考数学直角三角形的边角关系解答题压轴题提高专题练习附答案解析一、直角三角形的边角关系1.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P , ∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.2.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为1:3,DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF 的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41, 3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B =,即可得出tan A ,在Rt △ADE 中,根据勾股定理可求得DE ,即可得出∠1的正切值,再在Rt △CEF 中,设EF =x ,即可求出x ,从而得出CF 3的长.【详解】解:由题意得,3tan 3B =∵MN ∥AD ,∴∠A =∠B ,∴tan A=33,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=33.在Rt△CEF中,设EF=x,CF=3x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CF=3x≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.3.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
精品试题北师大版九年级数学下册第一章直角三角形的边角关系综合测评试题(含解析)
九年级数学下册第一章直角三角形的边角关系综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知在Rt △ABC 中,∠C =90°,∠A =60°,则 tan B 的值为( )A B .1 C D .22、在Rt ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则下列式子一定成立的是( )A .sin a cB =⋅ B .cos a c B =⋅C .tan a c B =D .sin c a A =⋅3、如图要测量小河两岸相对的两点P ,A 的距离,点P 位于点A 正北方向,点C 位于点A 的北偏西46°,若测得PC =50米,则小河宽PA 为( )A .50sin44°米B .50cos44°C .50tan44°米D .50tan46°米4、tan 45︒的值为( )A .1B .2CD .5、某人沿坡度1:2i =的斜坡向上前进了10米,则他上升的高度为( )A .5米B .C .D .6、如图,在四边形ABCD 中,AD BC ∥,90ABC ∠=︒,O 为对角线BD 的中点,2OA =,5BC =,3CD =,则tan DCB ∠等于( )A .43B .34C .45 D .357、如图,某建筑物AB 在一个坡度为i =1:0.75的山坡BC 上,建筑物底部点B 到山脚点C 的距离BC =20米,在距山脚点C 右侧同一水平面上的点D 处测得建筑物顶部点A 的仰角是42°,在另一坡度为i =1:2.4的山坡DE 上的点E 处测得建筑物顶部点A 的仰角是24°,点E 到山脚点D 的距离DE =26米,若建筑物AB 和山坡BC 、DE 的剖面在同一平面内,则建筑物AB 的高度约为( )(参考数据:sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45,sin 42°≈0.67.cos 42°≈0.74,tan 42°≈0.90)A .36.7米B .26.3 米C .15.4米D .25.6 米8、如图,E 是正方形ABCD 边AB 的中点,连接CE ,过点B 作BH ⊥CE 于F ,交AC 于G ,交AD 于H ,下列说法:①AH HG AB BG =; ②点F 是GB 的中点;③AG AB =;④S △AHG =16S △ABC .其中正确的结论的序号是( )A .①②③B .①③C .②④D .①③④ 9、在△ABC 中,∠C =90°,BC =2,sin A =23,则边AC 的长是( )A B .3 C .43 D 10、如图,在平面直角坐标系xoy 中,直线14y k x =+与y 轴交于点C ,与反比例函数2k y x =在第一象限内的图象交于点B ,连接BO ,若2OBC S ∆=,1tan 5BOC ∠=,则2k 的值是( )A .-20B .20C .-5D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、等腰ABC ,底角是30ABC 的周长是_____________2、如图,矩形ABCD 中,DE ⊥AC 于点E ,∠ADE =α,cosα=35,AB =4,AD 长为_____.3、cos30°的相反数是 _____.4、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图,在Rt△ABC 中,∠C =90°,∠ABC =30°,延长CB 至D ,使BD =AB ,连接AD ,得∠D =15°,所以tan15°AC CD ====2tan22.5°的值为 _____.5、如图, 在 Rt ABC △ 中, 390,tan ,2ACB BAC CD ∠∠== 是斜边 AB 上的中线, 点 E 是直线 AC 左侧一点, 联结 AE CE ED 、、, 若 ,EC CD EAC B ∠∠⊥=, 则 CDEABC SS 的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,平地上两栋建筑物AB 和CD 相距30m ,在建筑物AB 的顶部测得建筑物CD 底部的俯角为26.6°,测得建筑物CD顶部的仰角为45°.求建筑物CD 的高度.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)2、如图,等腰Rt△ABC 中,AB =AC ,D 为线段BC 上的一个动点,E 为线段AB 上的一个动点,使得CD=.连接DE ,以D 点为中心,将线段DE 顺时针旋转90°得到线段DF ,连接线段EF ,过点D 作射线DR ⊥BC 交射线BA 于点R ,连接DR ,RF .(1)依题意补全图形;(2)求证:△BDE ≌△RDF ;(3)若AB =AC =2,P 为射线BA 上一点,连接PF ,请写出一个BP 的值,使得对于任意的点D ,总有∠BPF 为定值,并证明.3、小明周末沿着东西走向的公路徒步游玩,在A 处观察到电视塔在北偏东37度的方向上,5分钟后在B 处观察到电视塔在北偏西53度的方向上.已知电视塔C 距离公路AB 的距离为300米,求小明的徒步速度.(精确到个位,sin370.6︒≈,cos370.8︒≈,sin530.8︒≈,cos530.6︒≈,tan370.75︒≈,tan53 1.3︒≈)4、如图, 在 ABC 中,90,3C AC BC ∠===, 点 D E 、 分别在 AC 边和 AB 边上,沿着直线 DE 翻折 ADE ,点 A 落在 BC 边上,记为点 F ,如果 1CF =,则 BE =_______.5、计算:(1)22390x x +-=;(21016sin 453)2-⎛⎫+- ⎪⎝⎭︒.-参考答案-一、单选题1、A【分析】根据直角三角形的两个锐角互余即可求得30B ∠=︒,根据特殊角的三角函数值即可求解【详解】∵∠C =90°,∠A =60°,∴30B ∠=︒又tan 30︒=故选A【点睛】本题考查了直角三角形的两个锐角互余,求特殊角的三角函数值,理解特殊角的三角函数值是解题的关键.2、B【分析】根据题意,画出直角三角形,再根据锐角三角函数的定义对选项逐个判断即可.【详解】解:由题意可得,如下图:sinaAc=,则sina c A=⋅,A选项错误,不符合题意;cosaBc=,则cosa c B=⋅,B选项正确,符合题意;tanbBa=,则tanacB≠,C选项错误,不符合题意;sinaAc=,则sinacA=,D选项错误,不符合题意;故选B,【点睛】此题考查了锐角三角函数的定义,解题的关键是画出图形,根据锐角三角函数的定义进行求解.3、C【分析】先根据AP⊥PC,可求∠PCA=90°-46°=44°,在Rt△PCA中,利用三角函数AP=tan4450tan44PC︒⨯=︒米即可.【详解】解:∵AP⊥PC,∴∠PCA+∠A=90°,∵∠A=46°,∴∠PCA=90°-46°=44°,在Rt△PCA中,tan∠PCA=APCP,PC=50米,∴AP=tan4450tan44PC︒⨯=︒米.故选C.【点睛】本题考查测量问题,掌握测量问题经常利用三角函数求边,熟悉锐角三角函数定义是解题关键.4、A【分析】直接求解即可.【详解】解:tan45︒=1,故选:A.【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键.5、B【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得BC:AC=1:2,AB=10m,可解出直角边BC,即得到位置升高的高度.【详解】解:由题意得,BC:AC=1:2.∴设BC=x,则AC=2x.∵AB=10,BC2+ AC2=AB2,∴x2+ (2x)2=102,解得:x=.故选:B.【点睛】本题主要考查了坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化.6、A【分析】先根据平行线的性质和直角三角形斜边上的中线等于斜边的一半求出BD ,再根据勾股定理的逆定理判断出∠BDC =90°,由正切定义求解即可.【详解】解:∵AD ∥BC ,∠ABC =90°,∴∠BAD =90°,∵O 为对角线BD 的中点,OA =2,∴BD =2OA =4,∵BC =5,CD =3,∴BD 2+CD 2=BC 2,∴∠BDC =90°,∴tan∠DCB =BD CD =43, 故选:A .【点睛】本题考查平行线的性质、直角三角形的斜边中线性质、勾股定理的逆定理、正切,熟练掌握勾股定理的逆定理是解答的关键.7、D【分析】如图所示,过E 点做CD 平行线交AB 线段为点H ,标AB 线段和CD 线段相交点为G 和H 由坡度为i =1:0.75,BC =20可得BG =16,GC =12,由坡度为 i =1:2.4,DE =26可得DF =24,EF =10,分别在在AGB 中满足tan 42AG GD =︒,在AEH △中满足tan 24AH HE =︒化简联立得AB =25.6.【详解】如图所示,过E 点做CD 平行线交AB 线段为点H ,标AB 线段和CD 线段相交点为G 和H∵在BGC 中BC =20,坡度为i =1:0.75,∴222BG GC BC +=, ∴2223()4BG BG BC +=, ∴222916BG BG BC +=, ∴22252016BG =, ∴22540016BG =, ∴21640025BG =⨯, ∴2256BG =,∴16BG =, ∴3124CG BG ==. 在BGC 中DE =26,坡度为 i =1:2.4,∴222DF EF DE +=, ∴22212()5EF EF DE +=, ∴22214425EF EF DE +=, ∴221692625EF =, ∴225676169EF =⨯,∴2100EF =,∴10EF =, ∴12245DF EF ==, ∴在AGB 中满足tan 42AG GD =︒,在AEH △中满足tan 24AH HE =︒, 即0.9AB BG GC CD +=+,0.45AB BH GC CD DF+=++ 其中BG =16、BG =12、BH =BG -EF =6、DF =24,代入化简得160.9(12)60.45(36)AB CD AB CD +=+⎧⎨+=+⎩①②, 令2②-①有2261620.45360.91220.450.9AB AB CD CD -+⨯-=⨯⨯-⨯+⋅⋅-∴421.6AB -=,∴AB =25.6.故选:D .【点睛】本题考查了解直角三角形的应用,利用三角形的坡度和斜边长通过勾股定理可以求得三角形各边长度,再根据角度列含两个未知数的二元一次方程组,正确的列方程求解是解题的关键.8、D 【分析】①先证明△ABH≌△BCE,得AH=BE,则1122AH AD BC==,即12AHAB=,再根据平行线分线段成比例定理得:12HGBG=即可判断;②设BF=x,CF=2x,则BC,计算FG=23x即可判断;③根据等腰直角三角形得:AC,根据①中得:13AGAC=即可判断;④根据11,22HG AGBG CG==,可得同高三角形面积的比,然后判断即可.【详解】解:①∵四边形ABCD是正方形,∴AB=BC,∠HAB=∠ABC=90°,∵CE⊥BH,∴∠BFC=∠BCF+∠CBF=∠CBF+∠ABH=90°,∴∠BCF=∠ABH,∴△ABH≌△BCE,∴AH=BE,∵E是正方形ABCD边AB的中点,∴BE=12AB,∴1122AH AD BC==,即12AHAB=∵AH//BC,∴12 AH HG BC BG==∴AH HGAB BG=,故①正确;②1 tan tan2AH BF ABH BCFAB CF ∠=∠===设BF=x,CF=2x,则BC,∴AHx∴52 BH x=∴552263x x xFG BH GH BF x BF=--=--=≠,故②不正确;③∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴AC,∵12 AG AH CG BC==∴13 AG AC=∴13AG AC AB==,故③正确;④∵12GH AG BG CG==∴11,22 AHG ABGABG BCGS SS S∆∆∆∆==∴13 ABGABCSS∆∆=∴16AHG ABCS S=,故④正确.故选D.【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键.9、A【分析】先根据BC=2,sin A=23求出AB的长度,再利用勾股定理即可求解.【详解】解:∵sin A=BCAB =23,BC=2,∴AB=3,∴AC故选:A.【点睛】本题考查正弦的定义、勾股定理等知识,是重要考点,难度较小,掌握相关知识是解题关键.10、D【分析】先根据直线解析式求得点C的坐标,然后根据△BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论.【详解】解:∵直线y=k1x+4与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,4),∴OC=4,过B作BD⊥y轴于D,∵S △OBC =2, ∴114222OC BD BD ⋅=⨯⋅=, ∴BD =1,∵tan∠BOC =15, ∴15BD OD =, ∴OD =5,∴点B 的坐标为(1,5), ∵反比例函数2k y x=在第一象限内的图象交于点B , ∴k 2=1×5=5.故选:D .【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形.二、填空题140 【分析】设腰长为x ,则等腰三角形的高为2x ,三角形的面积为122x ⨯=x 的值,进而求出周长2x +的值.【详解】解:设等腰三角形的腰长为x ,高为sin 302x x ︒=,底边长为2cos30x ︒=122x S ∴=⨯=解得x =∴周长为240x =40+. 【点睛】 本题考查了锐角三角函数值,等腰三角形.解题的关键在于利用三角函数值将边长表示出来. 2、163【分析】将已知角度的三角函数转换到所需要的三角形中,得到∠ADE =∠DCE =α,求出AC 的值,再由勾股定理计算即可.【详解】∵∠ADC =∠AED =90°,∠DAE +∠ADE =∠ADE +∠CDE =90°∴∠DAE =∠CDE又∵∠DCE +∠CDE =90°∴∠ADE =∠DCE =α∴cosα=35=CD AC又∵矩形ABCD中AB=CD=4∴AC=20 3在ADC中满足勾股定理有163AD=故答案为:163.【点睛】本题考查了已知余弦长求边长,将已知余弦长转换到所需要的三角形中是解题的关键.3、【分析】先将特殊角的三角函数值代入求解,再求出其相反数.【详解】所以其相反数为故答案为:【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.41##【分析】在等腰直角△ABC 中,∠C =90°,延长CB 至点D ,使得AB =BD ,则∠BAD =∠D .设AC =1,求出CD ,可得结论.【详解】解:如图,在等腰直角△ABC 中,∠C =90°,延长CB 至点D ,使得AB =BD ,则∠BAD =∠D .∵∠ABC =45°,∴45°=∠BAD +∠D =2∠D ,∴∠D =22.5°,设AC =1,则BC =1,AB =∴1CD CB BD CB AB =+=+=∴tan 22.5tan 1AC D CD ︒====.1.【点睛】本题考查解直角三角形,分母有理化,特殊直角三角形的性质,三角函数等知识,解题的关键是学会利用特殊直角三角形解决问题.5、1336【分析】先证明Rt AED Rt CED ≌,则AED CED S S =,进而证明DAE BCA ∽,据3tan 2BAC ∠=求得相似比,根据面积比等于相似比的平方即可求解【详解】解:CD 是Rt ABC 斜边 AB 上的中线, 12CD AB AD ∴== DCA DAC ∴∠=∠ 90ACB ∠=︒90CAB B ∴∠+∠=︒ EAC B ∠=∠90EAC DAC ∴∠+∠=︒ 即90EAD ∠=︒ 又EC CD ⊥90ECD ∴∠=︒EAD ECD ∴∠=∠ Rt AED Rt CED ∴≌ AED CED S S ∴= ,DA DC EA EC == ED AC ∴⊥又90ACB ∠=︒ BC AC ∴⊥//ED BC ∴ADE B ∴∠=∠又90EAD ACB ∠=∠=︒ DAE BCA ∴∽2ADC ABC S AD S BC ⎛⎫∴= ⎪⎝⎭ 3tan 2BAC ∠= 32CB CA ∴= 设3CB k =,则2AC k =AB ∴=12AD AB ∴== AED CED S S =2CDE ADC ABC ABC SS AD S SBC ⎛⎫∴== ⎪⎝⎭2132336k ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭故答案为:1336【点睛】 本题考查了解直角三角形,三角形全等的性质与判定,相似三角形的性质与判定,直角三角形斜边上的中线等于斜边的一半,垂直平分线的性质与判定,正切的定义,证明AED CED SS =是解题的关键. 三、解答题1、建筑物CD 的高度约为45m .【分析】如图所示,过点A 作AE ⊥CD 于E ,先证明AE =CE ,然后证明四边形ABDE 是矩形,则AE =BD =30m ,CE =AE =30m ,tan =30tan26.615m DE AE EAD =⋅︒≈∠,由此即可得到答案.【详解】解:如图所示,过点A作AE⊥CD于E,∴∠AEC=∠AED=90°,∵∠CAE=45°,∴∠C=45°,∴∠C=∠CAE,∴AE=CE,∵AB⊥BD,CD⊥BD,∴∠ABD=∠BDE=90°,∴四边形ABDE是矩形,∴AE=BD=30m,∴CE=AE=30m,tan=30tan26.615m∠,=⋅︒≈DE AE EAD∴CD=CE+DE=45m,答:建筑物CD的高度约为45m.【点睛】本题主要考查了矩形的性质与判定,等腰直角三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线求解.2、(1)见解析;(2)见解析;(3)当4BP=,使得对于任意的点D,总有∠BPF为定值,证明见解析【分析】(1)根据题意作出图形连接,DR RF ;(2)根据BDR EDF ∠=∠可得BDE RDF ∠=∠,证明BRD 是等腰直角三角,可得BD DR =,根据旋转的性质可得ED DR =,进而根据边角边即可证明△BDE ≌△RDF ;(3)当24PB AB ==时,设DE a =,则CD =,分别求得,FR RP ,根据1tan 22RF a BPF RP a ∠===即可求解【详解】(1)如图,(2)DR ⊥BC90RDB ∴∠=︒将线段DE 顺时针旋转90°得到线段DF ,90,EDF ED FD ∴∠=︒=BDR EDF ∴∠=∠即BDE EDR EDR RDF ∠+∠=∠+∠BDE RDF ∴∠=∠ ABC 是等腰直角三角形45B ∴∠=︒90BDR ∠=︒45BRD ∴∠=︒BRD∴是等腰直角三角形∴=BD DR∴△BDE≌△RDF;(2)如图,当24==时,使得对于任意的点D,总有∠BPF为定值,证明如下,PB ABAB AC==ABC是等腰直角三角形,2∴=BCDC==,则CD,设DE a△BDE≌△RDF,==DR BD∴==,FR BR aABC是等腰直角三角形,∴∠=︒45EBD⊥DR BC∴∠=︒BRD45∴是等腰直角三角形,BDR∴==-BR a42()∴=-=--=4422PR BP BR a a△BDE ≌△RDF ,45FRD EBD ∴∠=∠=︒90BRF BRD DRF ∴∠=∠+∠=︒即FR AB ⊥1tan 22RF a BPF RP a ∴∠=== BPF ∴∠为定值【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质,正切的定义,旋转的性质,掌握以上知识是解题的关键.3、126米/分钟【分析】过C 作CD AB ⊥于D ,则300CD =米,由解直角三角形求出AD 和BD 的长度,则求出AB 的长度,即可求出小明的速度.【详解】解:过C 作CD AB ⊥于D ,则300CD =米,∴903753CAD ∠=︒-︒=︒, ∴300tan tan 53 1.3CAD AD∠=︒=≈, ∴231AD ≈,同理:400BD ≈631AB AD BD =+=速度:631÷5≈126(米/分钟).【点睛】本题考查了解直角三角形的应用,以及解直角三角形,解题的关键是正确求出AD 和BD 的长度.4【分析】过点F 作FG AB ⊥于点G ,设BE x =,则AE x =,EG BE BG x =-=EGF △即可求得x ,即BE 的值【详解】解:如图,过点F 作FG AB ⊥于点G在 ABC 中,90,3C AC BC ∠===,AB ∴=tan 1AC B BC ==45A B ∠FGB ∴是等腰直角三角形BG FG ∴==sin FB B ⋅=设BE x =,则AE x =,EG BE BG x =-=沿着直线DE 翻折ADE ,点A 落在BC 边上,记为点F ,EA EF ∴=x在Rt EFG 中,222EF EG FG =+即()(222x x =+解得x =【点睛】本题考查了勾股定理,轴对称的性质,解直角三角形,根据题意构造直角三角形是解题的关键.5、(1)123,32x x ==-;(2)1 【分析】(1)用公式法求解即可;(2)根据特殊角的三角函数值、零指数幂和负整数指数幂、二次根式的性质计算即可.【详解】(1)∵2a =,3b =,9c =-24972810b ac -=+=>,∴x ==∴123,32x x ==-.(2)原式621=-01=+1=. 【点睛】 本题考查了解一元二次方程,特殊角的三角函数值、零指数幂和负整数指数幂、二次根式的性质等知识,熟练掌握并灵活运用这些知识是关键.。
第一章《直角三角形的边角关系》检测(含答案)-
第一章《直角三角形的边角关系》检测一、填空题(每题2分,共24分)1.计算:sin 248°+sin 242°-tan44°·tan45°·tan46°=_______.2.已知角α为锐角,且53sin =α,则αcos = . 3.在△ABC 中,若AC,BC,AB =3,则cos A = . 4.已知A 是锐角,且sin A =13,则cos (90°-A )=___________. 5.在Rt △ABC 中,∠C =90°,已知sin A =35,则cos B =_______. 6.用科学计算器或数学用表求:如图1,有甲、乙两楼,甲楼高AD 是23米,现在想测量乙楼CB 的高度.某人在甲楼的楼底A 和楼顶D ,分别测得乙楼的楼顶B 的仰角为65°13′和45°,处用这些数据可求得乙楼的高度为 米(结果精确到0.01米). 注:用数学用表求解时,可参照下面正切..表的相关部分.7.已知36α∠=︒,若β∠是α∠的余角,则β∠= 度,sin β=____(结果保留四个有效数字).8.如图2青岛位于北纬36°4′,通过计算可以求得:在冬至日正午时分的太阳入射角为A D CB图145° 65°13′(甲楼) (乙楼)图230°30′.因此,在规划建设楼高为20米的小区时,两楼间的距离最小为_____米,才能保证不挡光(sin30°30′=0.5075,tan30°30′=0.5890,结果保留四个有效数字). 9.如图3,河对岸有古塔AB ,小敏在C 处测得塔顶A 的仰角为α,向塔s 米到达D ,在D 处测得塔顶A 的仰角为β,则塔高是__________米.10.在△ABC 中,∠A =90°,设∠B =θ,AC =b ,则AB =________________(用b 和θ的三角比表示).11.某山路坡面坡度i =沿此山路向上前进200米,升高了_______米.12.如图4,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m(精确到0.1m).二、选择题(每题2分,共24分) 13.2sin450的值等于( )A.1D.2, 14.在△ABC 中,∠C =90°,若∠B =2∠A ,则con B 等于()B.3 C.23 D.2115.在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( )A .135 B .1312 C .125 D .51216.已知α为锐角,tan (90°-α),则α的度数为( )图3图4A .30°B .45°C .60°D .75°17.如图5,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m ,眼睛与地面的距离为1.6m ,那么这棵树的高度大约为( ) A .5.2 m B .6.8 m C .9.4 m D .17.2 m18.如图6,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) A.1 B.2 C.22D.22 19.在ΔABC 中,∠C =90°,sin A =35,则cos A 的值是( ) A .45 B .35 C .34 D .4320.如图7,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于( ).A .a ·sinαB .a ·cosαC .a ·tanαD .a ·cotα21.在Rt △ABC 中,∠C =90°,若sin A=2,则的值为( )A ..12D.122.如图8,△ABC 中,∠C =90°,AB =5,BC =3,CA =4,那么sin A 等于( )ACB图8图5图7 a B AC图6A.34 B.43 C.35 D.4523.如图9在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α,AB = 4, 则AD的长为( ) A.3 B.316 C.320 D.51624.某市在“旧城改造”中计划在一块如图10所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ) A.450a 元 B.225a 元 C.150a 元 D.300a 元三、解答题(第25题2分,其余每题5分,共52分)25.计算:︒⋅︒-︒60tan 45cos 30sin 2.26.在△ABC 中,∠A ,∠B 都是锐角,且sin A =12,tan B,AB =10,求△ABC 的面积.A BCDE图9︒15020米30米图1027.如图11,从一块矩形薄板ABCD 上裁下一个工件GEHCPD (阴影部分). 图中EF //BC ,GH //AB ,∠AEG =11°18′,∠PCF =33°42′,AG =2cm ,FC =6cm. 求工件GEHCPD 的面积.(参考数据:322433tan ,518111tan ≈'︒≈'︒)28.如图12将一副三角尺如图摆放在一起,连结AD ,试求ADB ∠的余切值.CABD图12DBAC图11FH29.如图13,沿AC 的方向修建高速公路,为了加快工程进度,要在小山的两边同时施工.在AC 上取一点B ,在AC 外另取一点D ,使∠ABD =130°,BD =480 m ,∠BDE =40°,问开挖点E 离D 多远,才能使A 、C 、E 在一条直线上(sin50°=0.7660,cos50°=0.6428,精确到0.1m ).30.如图14,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16米,坝高 6米,斜坡BC 的坡度3:1 i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB (精确到0.1米).图14D CBA图1331.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图15-①所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h.根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图15-②)的方案:(1)在图15-②中,画出你测量小山高度MN的示意图(标上适当字母);(2)写出你设计的方案.①NM②图1532.如图16,在Rt △ABC 中,∠C =90°,sin B =35,点D 在BC 边上,且∠ADC =45°,DC =6,求∠BAD 正切值.33.如图17,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?ABCD 图16图17图1834.某居民小区有一朝向为正南方向的居民楼(如图18),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米? (结果保留整数,参考数据:53106sin 32,cos32,tan 321001258≈≈≈鞍?35.为申办2010年冬奥会,须改变哈尔滨市的交通状况.在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°.问:距离B 点8米远的保护物是否在危险区内?参考答案一、1.0;2.54; 4.31;5.35;6.42.73;7.54、0.8090;8.33.96或33.95;9.βαcot cot -s;10.b ·cot θ;11.10;12.2.3.二、13,B ;14,C ;15,C ;16,C ,17,A ;18,B ;19,A ;20,C ;21,B ;22,C ;23,B ;24,C . 三、25,4621-;26,3225;27,48; 28,过点A 作DB 的延长线的垂线AE ,垂足为E .cot 1)1DE ADB EA ∠===+ 29, 367.7m;30,∠A =22°1′ AB =37.8米; 31,(1)图略;(2)①在测点A 处安置测倾器,测得此时M 的仰角,∠MCE =α;②在测点A 与小山之间的B 出安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角∠MDE =β;③量出测倾器的高度AC =BD =h ,以及测点A 、B 之间的距离AB =m .根据上述测量数据,即可求出小山的高度MN.;32,过D 点作,交AB 于E 点,所以tan=∠BAD =6515427DE AE =⨯=; 33,过点B 作BM ⊥AH 于M ,∴BM ∥AF .∴∠ABM =∠BAF =30°.在△BAM 中,AM =12,AB =5,BM 过点C 作CN ⊥AH 于N ,交BD 于K .,在Rt △BCK 中,∠CBK =90°-60°=30°,设CK =x ,11 则BKx , Rt △ACN ∠CAN =90°-45°=45°,AN =NC .∴AM +MN =CK +KN .又NM =BK ,BM =KN .即xx .解得x =5.∵5海里>4.8海里,∴渔船没有进入养殖场的危险;34,(1)如图设CE=x 米,则AF =(20-x )米,tan 32,AF EF?即20-x =15tan 32,11x ≈° ∵11>6, ∴居民住房的采光有影响.(2)如图:sin 32,ABBF ?820325BF =⨯=,两楼应相距32米;35,可求出AB = 43米,因为8>43,所以距离B 点8米远的保护物不在危险区内.。
直角三角形的边角关系(习题及答案)
直角三角形的边角关系(习题)➢要点回顾1.默写特殊角的三角函数值:2.三角函数值的大小只与角度的有关,跟所在的三角形放缩(大小)没有关系.3.计算一个角的三角函数值,通常把这个角放在中研究,常利用或两种方式进行处理.➢例题示范例:如图,在△ABC 中,∠B=37°,∠C=67.5°,AB=10,求BC 的长.(结果精确到0.1,参考数据:sin37°≈0.6,cos37°≈0.8,tan67.5°≈2.41)如图,过点A 作AD⊥BC 于点D,由题意AB=10,∠B=37°,∠C=67.5°在Rt△ABD 中,AB=10,∠B=37°,sin B =AD,cos B =BD AB AB∴AD=6,BD=8在Rt△ADC 中,AD=6,∠C=67.5°,tan C =ADCD∴CD=2.49∴BC=BD+CD=8+2.49=10.49≈10.5即BC 的长约为10.5.从下面书写板块的名称中选取合适的内容,写到对应的横线上.①得出结论;②解直角三角形;③准备条件.12➢巩固练习1.在Rt△ABC 中,如果各边长度都扩大为原来的2 倍,那么锐角A 的正弦值()A.扩大2 倍B.缩小2 倍C.没有变化D.不确定2.在Rt△ABC 中,若∠C=90°,AC=3,BC=5,则sin A 的值为()A.35B.45C.5 3434D.3 34343.在△ABC 中,∠A,∠B 均为锐角,且⎛1 ⎫2sin A - + - cos B ⎪⎝⎭= 0 ,则这个三角形是()A.等腰三角形B.直角三角形C.钝角三角形D.等边三角形4.若∠A 为锐角,且cos A 的值大于1,则∠A()2A.大于30°B.小于30°C.大于60°D.小于60°5.已知β为锐角,且3A.30︒≤β≤60︒C.30︒≤β< 60︒≤tan β< ,则β的取值范围是()B.30︒<β≤60︒D.β< 30︒6.如图,在矩形ABCD 中,DE⊥AC,垂足为E,设∠ADE=α,若cosα=3,AB=4,则AD 的长为()5A.3 B.163C.203D.165第6 题图第7 题图7.如图,在菱形ABCD 中,DE⊥AB,若cos A =3,BE=2,则5tan∠DBE= .232338.在Rt△ABC 中,∠C=90°,若AB=6,BC=2,则cos A=.9. 在△ABC 中,∠A=120°,若AB=4,AC=2,则sin B= .10.如图,在△ABC 中,AB=A C,∠A=45°,AC 的垂直平分线分别交AB,AC 于D,E 两点,连接CD.如果AD=1,那么tan∠BCD= .第10 题图第11 题图11.如图,在△ABC 中,若∠C=90°,sin B =3,AD 平分∠CAB,5则sin∠CAD= .12. 如图,在△ABC 中,∠C=75°,∠BAC=60°,AC=2,AD 是BC 边上的高,则△ABC 的面积为,AD 的长为.第12 题图第13 题图13.如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为()A.1214.计算:B. 5C. 0 10D. 255(1)6 tan2 30︒- 3 sin 60︒+ 2 tan 45︒;(2 cos 30︒- sin 45︒;)sin 60︒- cos 45︒312 sin 60︒ 1- 2 tan 60︒+ tan2 60︒ ⎪ ⎛1 ⎫(3)(-2 -1)0 -+;tan 45︒⎝3 ⎭(4)- tan 60︒.15.如图,在△ABC 中,AD 是BC 边上的高,tan B=cos∠DAC.(1)求证:AC=BD;(2)若sin C =12,BC=12,求AD 的长.1316. 如图,在△ABC 中,∠A=26.6°,∠B=45°,AC= 2的长.(参考数据:tan26.6°≈0.50)5 ,求AB434 + 2 3 ( 3 +1) 2 ➢ 思考小结1. 30°,45°,60°,120°,135°,150°都属于我们常用的特殊角,在解直角三角形中经常用到.120°,135°,150°经常使用它们的补角构造直角三角形,如右图 1.2. 解直角三角形的常考形式直角三角形:“一角一边”求其余元素非直角三角形:“两角一边”求其余元素,往往通过构造直角三角形,把已知角度信息放到直角三角形求解,如右图 2 (α,β,m 已知).3. 我们已经知道 30°,45°所在的直角三角形的三边关系之比,借助这个内容,可以推导 15°和 22.5°所在的直角三角形的三边关系之比,如何推导呢?如图 1,通过延长 CB 到 D ,使得 BD =AB ,可以构造 15°角, 根据三边关系填空.(已知 = = 3 +1 )类比上述内容,请你画出研究 22.5°角所在的直角三角形所需图形并填空.tan22.5°= ;tan67.5°= .(可跟随堂测试题目 3 的方法进行对比)54.探索思考下面的结论,尝试在下面两个图形中证明结论:若tanα=1,tanβ=1,则α+β=45︒.(标注信息,简要写2 3出思路)6【参考答案】➢要点回顾1.α30°45°60°正弦sin α122232余弦cos α322212正切tan α331 32.大小3.直角三角形,转移、构造➢巩固练习1. C2. C3. D4. D5. C6. B7. 28. 2 2 39.21 1410. 2 -111.5 512. 3 +23,2 + 6213. B14. (1)52;(2)1;(3)7;(4)-115. (1)证明略;(2)816. 673 3 2 ➢ 思考小结3. 2 - , 2 + , 6 - 2 ; 4-1, +14. 证明略8 2。
中考数学直角三角形的边角关系(大题培优)附详细答案
中考数学直角三角形的边角关系(大题培优)附详细答案一、直角三角形的边角关系1.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②123【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形;(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB ∴''DC DP DB DF = , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示, ∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°,∴tan ∠D BF′=33.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.2.已知:如图,在Rt △ABC 中,∠ACB=90°,点M 是斜边AB 的中点,MD ∥BC ,且MD=CM ,DE ⊥AB 于点E ,连结AD 、CD . (1)求证:△MED ∽△BCA ; (2)求证:△AMD ≌△CMD ;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以2114ACBS MDS AB⎛⎫==⎪⎝⎭V,所以S△MCB=12S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1=25S1,由于1EBDS MES EB=V,从而可知52MEEB=,设ME=5x,EB=2x,从而可求出AB=14x,BC=72,最后根据锐角三角函数的定义即可求出答案.【详解】(1)∵MD∥BC,∴∠DME=∠CBA,∵∠ACB=∠MED=90°,∴△MED∽△BCA;(2)∵∠ACB=90°,点M是斜边AB的中点,∴MB=MC=AM,∴∠MCB=∠MBC,∵∠DMB=∠MBC,∴∠MCB=∠DMB=∠MBC,∵∠AMD=180°﹣∠DMB,∠CMD=180°﹣∠MCB﹣∠MBC+∠DMB=180°﹣∠MBC,∴∠AMD=∠CMD,在△AMD与△CMD中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V , ∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1, ∵1EBDS MES EB=V , ∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.3.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E.设P 是上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.4.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m 【解析】 【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解. 【详解】解:在Rt △AFG 中,tan ∠AFG =3, ∴FG =tan 3AG AFG =∠,在Rt △ACG 中,tan ∠ACG =AGCG, ∴CG =tan AGACG ∠=3AG .又∵CG ﹣FG =24m ,即3AG ﹣3=24m , ∴AG =123m , ∴AB =123+1.6≈22.4m .5.水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(634+305+98)米,面积是1470平方米. 【解析】试题分析:先根据两个坡比求出AE 和BF 的长,然后利用勾股定理求出AD 和BC ,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC ,梯形的面积公式可得出答案. 试题解析:∵迎水坡坡比(DE 与AE 的长度之比)为1:0.6,DE=30m , ∴AE=18米,在RT △ADE 中,AD=22DE AE +=634米 ∵背水坡坡比为1:2, ∴BF=60米,在RT △BCF 中,BC=22CF BF +=305米,∴周长=DC+AD+AE+EF+BF+BC=634+10+305+88=(634+305+98)米, 面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(634+305+98)米,面积是1470平方米.6.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8. (1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y . 【解析】 【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BOPD MO=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ∆=,∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒, ∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC , ∴90POC ∠=︒,OP OC =, ∴90POD EOC ∠+∠=︒, ∴OPD EOC ∠=∠, ∴POD OCE ∆≅∆, ∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒, ∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠, ∴BT TO =, ∵90BTO ∠=︒, ∴90TPO TOP ∠+∠=︒, ∵PO BM ⊥, ∴90BNO ∠=︒, ∴BQT TPO ∠=∠, ∴QTB PTO ∆≅∆, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=︒,∴BPN x ∠=︒, ∵2PMB KPB ∠=∠, ∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠, ∴PO PM =,过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠, tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t =+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==, ∴CM y P 轴,∵90PNM POC ∠=∠=︒, ∴BM OC P ,∴四边形BOCM 是平行四边形, ∴4832BOCM S BO OM =⨯=⨯=Y . 故答案为32. 【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.7.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A ,B 重合),作∠DPQ =60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.(1)用含t 的代数式表示线段DC 的长:_________________; (2)当t =__________时,点Q 与点C 重合时;(3)当线段PQ 的垂直平分线经过△ABC 一边中点时,求出t 的值. 【答案】(1);(2)1;(3)t 的值为或或.【解析】 【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AQ=AC,即可得出结论;(3)分三种情况,利用锐角三角函数,即可得出结论.【详解】(1)∵AP= , AB=4,∠A=30°∴AC= , AD=∴CD=;(2)AQ=2AD=当AQ=AC时,Q与C重合即=∴t=1;(3)①如图,当PQ的垂直平分线过AB的中点F时,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2.∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=②如图,当PQ的垂直平分线过AC的中点N时,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t.在Rt△NMQ中,∵AN+NQ=AQ,∴③如图,当PQ的垂直平分线过BC的中点F时,∴BF=BC=1,PE=PQ=t,∠H=30°.∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.在Rt△PEH中,PH=2PE=2t.∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.8.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.【答案】(1)2,sin∠BEC=35;(2)754【解析】【分析】(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,2,设AE=CE=x,则222-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得S△CDE=S△AED=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,继而可求得答案.【详解】(1)如图,作CF⊥BE于F点,由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,又∵点C是OB中点,∴OC=BC=6,CF=BF=32,设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,解得:x=52,故可得sin∠BEC=35CFCE,AE=52;(2)如图,过点E作EM⊥OA于点M,则S△CDE=S△AED=12AD•EM=12AD×AEsin∠EAM=12AD•AE×sin45°=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,解得:y=152,即AD=152,故S△CDE=S△AED=24AD×AE=754.【点睛】本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.9.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.(1)填空:点的坐标为,抛物线的解析式为;(2)当点在线段上运动时(不与点,重合),①当为何值时,线段最大值,并求出的最大值;②求出使为直角三角形时的值;(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.【答案】(1),;(2)①当时,有最大值是3;②使为直角三角形时的值为3或;(3)点,,,构成的四边形的面积为:6或或.【解析】【分析】(1)把点A坐标代入直线表达式y=,求出a=−3,把点A、B的坐标代入二次函数表达式,即可求解;(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.【详解】解:(1)把点坐标代入直线表达式,解得:,则:直线表达式为:,令,则:,则点坐标为,将点的坐标代入二次函数表达式得:,把点的坐标代入二次函数表达式得:,解得:,故:抛物线的解析式为:,故:答案为:,;(2)①∵在线段上,且轴,∴点,,∴,∵,∴抛物线开口向下,∴当时,有最大值是3,②当时,点的纵坐标为-3,把代入抛物线的表达式得:,解得:或0(舍去),∴;当时,∵,两直线垂直,其值相乘为-1,设:直线的表达式为:,把点的坐标代入上式,解得:,则:直线的表达式为:,将上式与抛物线的表达式联立并解得:或0(舍去),当时,不合题意舍去,故:使为直角三角形时的值为3或;(3)∵,,在中,,则:,,∵轴,∴,若抛物线上有且只有三个点到直线的距离是,则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个.当过点的直线与抛物线有一个交点, 点的坐标为,设:点坐标为:,则:,过点作的平行线,则点所在的直线表达式为:,将点坐标代入,解得:过点直线表达式为:,将拋物线的表达式与上式联立并整理得:,,将代入上式并整理得:,解得:,则点的坐标为, 则:点坐标为,则:,∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,即:过点与平行的直线与抛物线的交点为另外两个点,即:、,直线的表达式为:,将该表达式与二次函数表达式联立并整理得:,解得:, 则点、的横坐标分别为,,作交直线于点,则,作轴,交轴于点,则:,,,则:,同理:,故:点,,,构成的四边形的面积为:6或或.【点睛】本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N 的位置是本题的难点,核心是通过△=0,确定图中N 点的坐标.10.如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20≈)【答案】6.58米【解析】试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.试题解析:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.11.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若CE= 2,cos∠ACD= 45,求tan∠AEC的值及CD的长.【答案】tan∠1212 5【解析】解:在RT△ACD与RT△ABC中∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos∠ABC=cos∠ACD=4 5在RT △ABC 中,45BC AB = 令BC=4k,AB=5k 则AC=3k 由35BE AB = ,BE=3k 则CE=k,且CE=2 则k=2,AC=32 ∴RT △ACE 中,tan ∠AEC=ACEC=3 ∵RT △ACD 中cos ∠ACD=45CD AC = ,,CD=12125.12.如图所示,小华在湖边看到湖中有一棵树AB ,AB 与水面AC 垂直.此时,小华的眼睛所在位置D 到湖面的距离DC 为4米.她测得树梢B 点的仰角为30°,测得树梢B 点在水中的倒影B′点的俯角45°.求树高AB (结果保留根号)【答案】AB=(3)m . 【解析】 【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BEDE即可得出x 的值,进而得到答案, 【详解】如图:过点D 作DE ⊥AB 于点E , 设BE=x ,则BA=x+4,B′E=x+8, ∵∠ADB′=45°, ∴DE=B′E=x+8, ∵∠BDE=30°, ∴tan30°=383BE x DE x ==+ ,解得3, ∴AB=BE+4=(3)m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键。
中考数学提高题专题复习直角三角形的边角关系练习题含详细答案
中考数学提高题专题复习直角三角形的边角关系练习题含详细答案一、直角三角形的边角关系1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3=⨯=米,639∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,NC=NM=BM进而得出结论;(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;(3) 在Rt△ABM和Rt△ANM中,,可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.【详解】(1)证明:∵△ABC是等腰直角三角形,∴∠BAC=∠C=45°,∵AM是∠BAC的平分线,MN⊥AC,∴BM=MN,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.3.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.4.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan∠ABC=,∴,∴,∴,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,∵OB2=BH2+OH2,∴,解得:,当QH=时,∴QD=,∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.考点:1圆;2相似三角形;3三角函数;4直角三角形.5.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tan PH PAH33,∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴3,∵60千米/时=503米/秒,∴时间t=50350503+=3+33≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。
中考数学直角三角形的边角关系(大题培优易错试卷)含详细答案
中考数学直角三角形的边角关系(大题培优易错试卷)含详细答案一、直角三角形的边角关系1.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).【答案】32.4米.【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形,∴CE=AB=12m,在Rt△CBE中,cot∠CBE=BE CE,∴BE=CE•cot30°=12×3=123,在Rt△BDE中,由∠DBE=45°,得DE=BE=123.∴CD=CE+DE=12(3+1)≈32.4.答:楼房CD的高度约为32.4m.考点:解直角三角形的应用——仰角俯角问题.2.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4; (3)①h≤2时,如图4,作MN ⊥y 轴交y 轴于点N ,作MF ⊥DE 交DE 于点F ,∵CD=4,DE=4,AC=h ,AN=NM ,∴CN=4﹣FM ,AN=MN=4+h ﹣FM ,∵△CMN ∽△CED , ∴, ∴, 解得FM=4﹣, ∴S=S △EDC ﹣S △EFM =×4×4﹣(44﹣h )×(4﹣)=﹣h 2+4h+8, ②如图3,当h≥2时,S=S △OBC =OC×OB=(6﹣h )×6=18﹣3h .考点:1、三角形的外角定理;2、相似;3、解直角三角形3.如图,已知,在O e 中,弦AB 与弦CD 相交于点E ,且»»AC BD.(1)求证:AB CD =;(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;(3)如图,在(2)的条件下,点P 在»CG上,连接FP 交AB 于点M ,连接MG ,若AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ∆的面积为2,求O e 的半径的长.【答案】(1)见解析;(2)见解析;(3)O e 10.【解析】【分析】(1) 利用相等的弧所对的弦相等进行证明;(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明AOJ DOQ ∆≅∆得出OJ OQ =,根据角平分线的判定定理可得结论;(3)如图,延长GM 交O e 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,求出22FL =HM n =,则有22LK KG ==,2222FK FL LK n =+=,再证明KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,KG HF FK HM=,再代入LK 和FK 的值可得n=4,再求得FG 10.【详解】 解:(1)证明:∵»»AC BD =,∴»»»»AC CBBD CB +=+,∴»»AB CD =,∴AB CD =.(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,∴90AJO DQO ∠=∠=︒,1122AJ AB CD DQ ===, 又∵AO DO =,∴AOJ DOQ ∆≅∆,∴OJ OQ =,又∵OJ AB ⊥,OQ CD ⊥,∴EO 平分AED ∠.(3)解:∵CD AB ⊥,∴90AED ∠=︒,由(2)知,1452AEF AED ∠=∠=︒, 如图,延长GM 交O e 于点H ,连接HF ,∵FG 为直径,∴90H ∠=︒,122MFG S MG FH ∆=⨯⋅=, ∵2MG =,∴2FH =, 在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,∴45HFL HLF ∠=∠=︒,45KLG HLF ∠=∠=︒,∵FG 为直径,∴90K ∠=︒,∴9045KGL KLG KLG ∠=︒-∠=︒=∠,∴LK KG =,在Rt FHL ∆中,222FL FH HL =+,FL =设HM n =,2HL MG ==,∴GL LM MG HL LM HM n =+=+==,在Rt LGK ∆中,222LG LK KG =+,2LK KG ==,2FK FL LK n =+=, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠, ∵1452AEF AED ∠=∠=︒, ∴45MGF EMG MEF ∠+∠=∠=︒,45MGF KFG HLF ∠+∠=∠=︒,∴KFG EMG HMF ∠=∠=∠,∴tan tan KFG HMF ∠=∠, ∴KG HF FK HM =,∴2n=,4n =, ∴6HG HM MG =+=,在Rt HFG ∆中,222FG FH HG =+,FG =FO =即O e【点睛】考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添加辅助线是解题的关键.4.已知:如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,连接BC 交圆于点D ,过点D 作⊙O 的切线交AC 于E .(1)求证:AE =CE(2)如图,在弧BD 上任取一点F 连接AF ,弦GF 与AB 交于H ,与BC 交于M ,求证:∠FAB +∠FBM =∠EDC .(3)如图,在(2)的条件下,当GH =FH ,HM =MF 时,tan ∠ABC =34,DE =394时,N 为圆上一点,连接FN 交AB 于L ,满足∠NFH +∠CAF =∠AHG ,求LN 的长.【答案】(1)详见解析;(2)详见解析;(3)4013 NL【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=43a,再由相交弦定理得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.【详解】解:(1)证明:如图1中,连接AD.∵AB是直径,∴∠ADB=∠ADC=90°,∵EA、ED是⊙O的切线,∴EA=ED,∴∠EAD=∠EDA,∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,∴ED=EC,∴AE=EC.(2)证明:如图2中,连接AD.∵AC是切线,AB是直径,∴∠BAC=∠ADB=90°,∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,∵∠EDC=∠C,∴∠BAD=∠EDC,∵∠DBF=∠DAF,∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.(3)解:如图3中,由(1)可知,DE=AE=EC,∵DE=394,∴AC=392,∵tan∠ABC=34=ACAB,∴39 32 4AB ,∴AB=26,∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=43a,∵GH•HF=BH•AH,∴4a2=43a(26﹣43a),∴a=6,∴FH=12,BH=8,AH=18,∵GH=HF,∴AB⊥GF,∴∠AHG=90°,∵∠NFH+∠CAF=∠AHG,∴∠NFH+∠CAF=90°,∵∠NFH+∠HLF=90°,∴∠HLF=∠CAF,∵AC∥FG,∴∠CAF=∠AFH,∴∠HLF=∠AFH,∵∠FHL=∠AHF,∴△HFL∽△HAF,∴FH2=HL•HA,∴122=HL•18,∴HL=8,∴AL=10,BL=16,FL=22=413,FH HL∵LN•LF=AL•BL,∴413•LN=10•16,∴LN=4013.13【点睛】本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.5.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32 秒、95- . 【解析】【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可.【详解】解:(1)∵AB =6cm ,AD =8cm ,∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm ,∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm , ∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒; ②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36,∴(6﹣245)2+(2x+185)2=36,解得:x=6695-,x=6695--(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+185,A′M=NB=245,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣245)2+(2x+185)2解得:x=32.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.6.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=3,tan∠PDA=34,求OE的长.【答案】(1)见解析;(2.【解析】【分析】(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=34,可求出CD=2,进而求得OC=32,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.【详解】(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,∵DE⊥PO,∴∠PAO=∠E=90°,∵∠AOP=∠EOD,∴∠APO=∠EDO,∴∠EPD=∠EDO.(2)连接OC,∴PA=PC=3,∵tan∠PDA=34,∴在Rt△PAD中,AD=4,,∴CD=PD-PC=5-3=2,∵tan∠PDA=34,∴在Rt△OCD中,OC=32,52,∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,∴PDDO =PEDE=DEOE=2,∴DE=2OE,在Rt△OED中,OE2+DE2=OD2,即5OE2=252⎛⎫⎪⎝⎭=254,∴.【点睛】本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan∠PDA=34,得线段的长是解题关键.7.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.(1)求证:四边形ACED是矩形;(2)若AC=4,BC=3,求sin∠ABD的值.【答案】(1)证明见解析(2)613 65【解析】【分析】(1)根据▱ABCD中,AC⊥BC,而△ABC≌△AEC,不难证明;(2)依据已知条件,在△ABD或△AOC作垂线AF或OF,求出相应边的长度,即可求出∠ABD的正弦值.【详解】(1)证明:∵将△ABC沿AC翻折得到△AEC,∴BC=CE,AC⊥CE,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形,∵AC⊥CE,∴四边形ACED是矩形.(2)解:方法一、如图1所示,过点A作AF⊥BD于点F,∵BE=2BC=2×3=6,DE=AC=4,∴在Rt△BDE中,2222BD BE DE 64213=+=+=∵S △BDE =12×DE•AD=12AF•BD , ∴AF =61313213=, ∵Rt △ABC 中,AB =2234+=5, ∴Rt △ABF 中,sin ∠ABF =sin ∠ABD =6136135AF AB ==方法二、如图2所示,过点O 作OF ⊥AB 于点F , 同理可得,OB =1132BD =, ∵S △AOB =11OF AB OA BC 22⋅=⋅, ∴OF =23655⨯=, ∵在Rt △BOF 中,sin ∠FBO =061365513F OB ==, ∴sin ∠ABD =61365.【点睛】本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .8.如图,在ABC △中,10AC BC ==,3cos5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e 与边BC 相切时,求P e 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q e 与P e 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409;(2))25880010x x x y x -+=<<;(3)105- 【解析】 【分析】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45,即可求解; (2)PD ∥BE ,则EB PD =BFPF,即:2248805x x x y x--+-=,即可求解;(3)证明四边形PDBE 为平行四边形,则AG=GP=BD ,即:5求解. 【详解】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=35, sinC=HP CP =R 10R -=45,解得:R=409; (2)在△ABC 中,AC=BC=10,cosC=35, 设AP=PD=x ,∠A=∠ABC=β,过点B 作BH ⊥AC ,则BH=ACsinC=8, 同理可得:CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=25x ,则BD=45-25x ,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5,EB=BDcosβ=(45-25x)×5=4-25x,∴PD∥BE,∴EBPD=BFPF,即:2248805x x x yx y--+-=,整理得:y=()25x x8x800x10-+<<;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴5设圆的半径为r,在△ADG中,55AG=2r,5551+,则:55相交所得的公共弦的长为5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.9.已知抛物线y=﹣16x2﹣23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】(1) y=13x+2;(2) 点M坐标为(﹣2,53)时,四边形AOCP的面积最大,此时|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(35-,195).【解析】【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.【详解】(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k13=,则:直线AC的表达式为:y13=x+2;(2)如图,过点P作x轴的垂线交AC于点H.四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设点P坐标为(m,16-m223-m+2),则点G坐标为(m,13m+2),S△ACP12=PG•OA12=•(16-m223-m+213-m﹣2)•612=-m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,52).连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,直线OP的表达式为:y56=-x,当x=﹣2时,y53=,即:点M坐标为(﹣2,5 3),|PM﹣OM|的最大值为:2222555(32)()2()233-++--+=61.(3)存在.∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=DC2+MD2,即:(6﹣a)2=22+a2,解得:a83=,则:MC103=,过点D作x轴的垂线交x轴于点N,交EC于点H.在Rt△DMC中,12DH•MC12=MD•DC,即:DH10833⨯=⨯2,则:DH85=,HC2265DC DH=-=,即:点D的坐标为(61855-,);设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(﹣61010,D′坐标为(618551010,-++),而点E坐标为(﹣6,2),则2''A D =22618(6)()55-++=36,2'A E =22()(2)1010+-=2410m -+,2'ED =22248()()551010+++=2128510m ++.若△A ′ED ′为直角三角形,分三种情况讨论: ①当2''A D +2'A E=2'ED 时,36+2410m -+=2128510m ++,解得:m =210,此时D ′(618551010,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+2128510m ++=2410m -+,解得:m =810-,此时D ′(618551010,-++)为(-6,2);③当2'A E +2'ED =2''A D 时,2410m -++2128510m ++=36,解得:m =810-或m =10,此时D ′(618551010,-++)为(-6,2)或(35-,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(35-,195). 【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.10.在Rt △ABC 中,∠ACB =90°,CD 是AB 边的中线,DE ⊥BC 于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合) (1)如果∠A =30°,①如图1,∠DCB 等于多少度;②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且∠A =α(0°<α<90°),连结DP ,将线段DP 绕点逆时针旋转 2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明)【答案】(1)①∠DCB =60°.②结论:CP =BF .理由见解析;(2)结论:BF ﹣BP =2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A =30°,只要证明△CDB 是等边三角形即可;②根据全等三角形的判定推出△DCP ≌△DBF ,根据全等的性质得出CP =BF ,(2)求出DC =DB =AD ,DE ∥AC ,求出∠FDB =∠CDP =2α+∠PDB ,DP =DF ,根据全等三角形的判定得出△DCP ≌△DBF ,求出CP =BF ,推出BF ﹣BP =BC ,解直角三角形求出CE =DEtanα即可.【详解】(1)①∵∠A =30°,∠ACB =90°,∴∠B =60°,∵AD =DB ,∴CD =AD =DB ,∴△CDB 是等边三角形,∴∠DCB =60°.②如图1,结论:CP =BF .理由如下:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠DCB =60°,∴△CDB 为等边三角形.∴∠CDB =60°∵线段DP 绕点D 逆时针旋转60°得到线段DF ,∵∠PDF =60°,DP =DF ,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CEDE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.11.如图,在航线l 的两侧分别有观测点A 和B ,点B 到航线l 的距离BD 为4km ,点A 位于点B 北偏西60°方向且与B 相距20km 处.现有一艘轮船从位于点A 南偏东74°方向的C 处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BD o=8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF , ∴AE BD AF BF, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.12.在平面直角坐标系中,O 为坐标原点,点A (0,1),点C (1,0),正方形AOCD 的两条对角线的交点为B ,延长BD 至点G ,使DG=BD ,延长BC 至点E ,使CE=BC ,以BG ,BE 为邻边作正方形BEFG .(Ⅰ)如图①,求OD 的长及AB BG的值; (Ⅱ)如图②,正方形AOCD 固定,将正方形BEFG 绕点B 逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).【答案】(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A 、B 、F′在一条直线上时,AF′的长最大,最大值为22+2,此时α=315°,F′(122,122)【解析】【分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=12ABBG,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.。
直角三角形的边角关系单元测试卷及答案
直角三角形的边角关系单元测试卷一、选择题:1.如下左图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .sin A =B .1tan 2A =C.cos B = D.tan B =2. 在Rt△ABC 中,若各边的长度都扩大2倍,那么锐角A 的各锐角三角函数( )A 、都扩大2倍B 、没有变化C 、缩小2倍D 、不能确定3.菱形OABC在平面直角坐标系中的位置如上中图所示,45AOC OC ∠==°,,则点B 的坐标为( ) A.B.C.11),D.1)4.如上右图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确的个数为( )①DE=3cm ; ②EB=1cm ; ③2ABCD 15S cm =菱形.A .3个B .2个C .1个D .0个5.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米B.C.3D.3米6.如图,长方体的长为15,宽为10,高为2 0,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( ) A. 215 B. 255 D. 357.在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A 、C 两地的距离为( ) A.km 3310 B.km 335 C.km 25 D.km 35 8.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25B. C.3D.25+二、填空题:9.计算:sin600·cos300-21=_______. 10.已知∠A 为锐角,sinA =53,则tanA =__________。
第一章《直角三角形的边角关系》单元检测卷(含答案)
第一章《直角三角形的边角关系》单元检测卷(全卷满分100分 限时90分钟)一、选择题:(每小题3分 共36分) 1.0)30(tan o 的值是( )A B .0 C .1 D 2.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .sin35m ︒ B .cos35m ︒ C .sin 35m ︒ D .cos35m︒(第2题) (第3题) (第4题)3.如图,△ABC 的三个顶点在正方形网格的格点上,则tan ∠A 的值是( )A .65 B . 56C D4.一艘轮船由海平面上A 地出发向南偏西40°的方向行驶40海里到达B 地,再由B 地向北偏西20°的方向行驶40海里到达C 地,则A 、C 两地相距( )A .30海里B .40海里C .50海里D .60海里 5.小明沿着坡角为30°的坡面向下走了2米,那么他下降( )A .1米B 米C .米D .3米 6.在Rt ABC ∆中,已知90C ∠=︒,40A ∠=︒,3BC =,则AC =( ) A .3sin 40︒ B .3sin50︒ C .3tan 40︒ D .3tan50︒ 7.sin 30°+tan 45°-cos 60°的值等于( )A B .0 C .1 D8.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为A .米B .米C .D . 24米(第8题) (第10题) (第11题)9在∆ABC 中,若∣sin A -12∣+(cos B 2=0则∠C =( )A. 300B. 600 C . 900 D. 120010.轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔A 的距离是( )海里.A .B .C .50D .2511.如图,某人站在楼顶观测对面的笔直的旗杆A B .已知观测点C 到旗杆的距离CE =8m ,测得旗杆的顶部A 的仰角∠ECA =30°,旗杆底部B 的俯角∠ECB =45°,那么,旗杆AB 的高度是( )A .m ;B .(m ;C .()m ;D .(m 12.如图1,在△ABC 中,∠ACB =90°,∠CAB =30°, △ABD 是等边三角形,E 是AB 的中点,连结CE 并延长交AD 于F ,如图2,现将四边形ACBD 折叠,使D 与C 重合,HK 为折痕,则sin ∠ACH 的值为( )AB .71C .61D二.填空题:(每小题3分共12分) 13.若sinα=12,α是锐角,则α= 度. 14.如图,在四边形ABCD 中,对角线AC 、BD 交于点E ,点E 为BD 的中点,∠BAC +∠BDC =180°,若AB =CD =5,tan ∠ACB =21,则AD =_________.(第14题) (第15题)15.如图,在四边形ABCD 中,∠ABC =∠ADC =90°,对角线AC 、BD 交于点P ,且AB =BD ,AP =4PC =4,则cos ∠ACB 的值是 .16.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC的费马点(Fermat point ),已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC =∠BPC =120°时,P 就是△ABC 的费马点,若P 就是△ABC的费马点,若点P 的等腰直角三角形DEF 的费马点,则PD +PE +PF = . 三.解答题:(共52分)17.(6分)计算:sin30cos45tan 601︒⨯︒-︒+18.(8分)如图,205国道旁的马鞍山南部承接产业示范园区里某幢大楼顶部有广告牌C D.习老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(计算结果保留根号)(1)求这幢大楼的高DH;(2)求这块广告牌CD的高度.19.(7分)如图所示,为了躲避海盗,一轮船由西向东航行,早上8点,在A处测得小岛P 在北偏东75°的方向上,以每小时20海里的速度继续向东航行,10点到达B处,并测得小岛P在北偏东60°的方向上,已知小岛周围22海里内有暗礁,若轮船仍向前航行,有无触礁的危险?20.(7分)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)21.(7分)如图,港口A在观测站O的正东方向,OA=40海里,某船从港口A出发,沿北偏东15°方向航行半小时后到达B处,此时从观测站O处测得该船位于北偏东60°的方向.求该船航行的速度.22.(8分)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732=1.732=1.414)23.(9分)在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B 在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A 位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?解析与答案1.C 【解析】试题分析:任何非零实数的零次幂都为1. 2.A. 【解析】试题分析:根据锐角三角函数定义可得sinA =mBCAB BC =,所以BC =sin35m ︒,故选A. 3.A 【解析】试题分析:利用三角函数的定义可知tan ∠A =65. 故选A .4.B. 【解析】试题解析:由题意得∠ABC =60°,AB =BC ∴△ABC 是等边三角形 ∴AC =AB =40海里. 故选B . 5.A 【解析】试题分析:首先画出符合题意的直角△ABC ,再根据坡角的定义可知∠A =30°,然后利用正弦函数的定义即可求解.解:如图,∵直角△ABC 中,∠C =90°,∠A =30°,AB =2米, ∴他下降的高度BC =AB •sin 30°=1米.6.D . 【解析】试题分析:如图所示:∵40A ∠=︒,∴50B ∠=︒,根据三角函数的定义可知tan ACB BC=,tan503AC︒=,所以AC =3tan50︒.故选D . 7.C . 【解析】 试题解析:原式=12+1-12=1. 故选C . 8.B . 【解析】试题解析:在Rt △ABC 中, ∵i =12BC AC =,AC =12米, ∴BC =6米, 根据勾股定理得:AB =故选B . 9.D 【解析】试题分析:根据非负数的性质可知:sinA -12=0,cosB =0,然后根据特殊角的三角函数值计算可得:∠A =30°,∠B =30°,再根据三角形的内角和可求得∠C =180°-30°-30°=120°. 故选:D 10.D.试题分析:根据题意,∠1=∠2=30°,∵∠ACD =60°,∴∠ACB =30°+60°=90°,∴∠CBA =75°﹣30°=45°,∴∠A =45°,∴AB =AC.∵BC =50×0.5=25,∴AC =BC =25(海里).故选D .11.D 【解析】试题分析:利用∠ECA 的正切值可求得AE ;利用∠ECB 的正切值可求得BE ,有AB =AE +BE . 解:在△EBC 中,有BE =EC ×tan 45°=8,在△AEC 中,有AE =EC ×tan 30°∴AB (米). 故选D . 12.B . 【解析】试题分析:∵∠BAD =60°,∠CAB =30°,∴∠CAH =90°,在Rt △ABC 中,∠CAB =30°,设BC =a ,∴AB =2BC =2a ,∴AD =AB =2a ,设AH =x ,则HC =HD =AD ﹣AH =2a ﹣x ,在Rt △ABC中,2222(2)3AC a a a =-=,在Rt △ACH 中,222AH AC HC +=,即2223(2)x a a x +=-,解得14x a =,即AH =14a ,∴HC =2a ﹣x =2a ﹣14a =74a ,∴sin ∠ACH =17AH HC =,故选B .二.填空题:(每小题3分共12分) 13.30° 【解析】试题分析:根据特殊角的三角函数值解答. 解:∵sinα=12,α是锐角, ∴α=30°. 14.210. 【解析】试题分析: 过点B 作BM ⊥CA ,过点D 作DN ⊥CA ,证△AMB ≌△CDN ,,得∠BAM =∠DCN ,而∠BAC +∠BDC =180°,得到CE =DE ,再根据点E 为BD 的中点,得BE =CE =DE , △BCD 是直角三角形.依据∠EBC =∠ECB , tan ∠ACB =21,DC =5得BC =10,在△BCM 中,根据tan ∠ACB =21得BM =,DN =,CM =,在△AMB 中,AM =,所以CN AN =△AND 是等腰直角三角形,根据勾股定理求得斜边AD =.15.33. 【解析】试题分析:如图:作BE ⊥AD 于E ,交AC 于O ,则BE ∥CD ,由AB =BD 得E 是AD 的中点,因此OE 是△ACD 的一条中位线,从而O 是AC 的中点,以O 为圆心,OA 为半径作圆,则由∠ABC =∠ADC =90°可知该圆经过A 、B 、C 、D 四点,易知 AP =4,PC =1,AC =AP +PC =5,因此,OA =OC =2.5.OP =OC ﹣PC =1.5,由BE ∥CD 得,BP :PD =OP :PC =1.5,因此BP =1.5PD ,从而 AB =BD =BP +PD =2.5PD ,由相交弦定理得 BP •PD =AP •PC =4,即 1.5PD 2=4,因此 PD 2=83,从而 AB 2=(2.5PD )2=6.25PD 2=503,由勾股定理得BC 2=AC 2﹣AB 2=52﹣503=253,因此 BC =3,∴cos ∠ACB =BC :AC =3.161.【解析】试题分析:如图:等腰Rt △DEF 中,DE =DF ,过点D 作DM ⊥EF 于点M ,过E 、F分别作∠MEP =∠MFP =30°,则EM =DM =1,故cos 30°=EMEP ,解得:PE =PF 3,则PM 故DP =1则PD +PE +PF +11.1.三.解答题:(共52分)17 1.- 【解析】试题分析:根据特殊角的三角函数值,和绝对值的性质可直接代入求值.试题解析:sin30cos45tan 601︒⨯︒-︒+112=-1.=- 18.(1)153+1.6(2)31﹣153 【解析】试题分析:根据题意构造直角三角形Rt △DME 与Rt △CNE ;应利用ME -NE =AB =14构造方程关系式,进而可解即可求出答案.试题解析:(1)在Rt △DME 中,ME =AH =45米;由tan 30DEME=,得DE =45×3又因为EH =MA =1.6米,因而大楼DH =DE +EH =(153+1.6)米;(2)又在Rt △CNE 中,NE =45﹣14=31米, 由tan 45CENE=,得CE =NE =31米; 因而广告牌CD =CE ﹣DE =(31﹣153)米;答:楼高DH 为(153+1.6)米,广告牌CD 的高度为(31﹣153)米. 19.无触礁危险 【解析】试题分析:过P 作AB 的垂线PD ,在直角△BPD 中可以求的∠P AD 的度数是30度,即可证明△APB 是等腰三角形,即可求得BP 的长,进而在直角△BPD 中,利用30度的锐角所对的直角边等于斜边的一半,从而求得PD 的长,即可确定继续向东航行是否有触礁的危险,确定是否能一直向东航行.试题解析:过点P 作PC ⊥AB 于点C ,∠P AB =15°,∠APB =15°, ∴BA =BP =2×20=40海里。
第二章直角三角形边角关系测试题提升篇附答案
第二章直角三角形边角关系测试题(提高篇)附答案九年级数学上册直角三角形的边角关系1.以下列图 1 一艘轮船由海平面上 A 地出发向南偏西 40o 的方向行驶 40 海里抵达 B 地,再由 B 地向北偏西 10o 的方向行驶 40 海里抵达 C地,则 A、C两地相距().(A)30 海里( B) 40 海里(C)50 海里(D)60 海里2. 以下列图 2,为了丈量河的宽度,王芳同学在河岸边相距200m的M和N两点分别测定对岸一棵树 P 的地点, P 在 M 的正北方向,在 N 的北偏西 30的方向,则河的宽度是()A. 200 3 m B.200 3m C. 100 3 m D.100 m 3C北PA北BMN3.王师傅在楼顶上的点 A 处测得楼前一棵树 CD的顶端 C 的俯角为 60 o,又知水平距离 BD=10m,楼高 AB,则树高 CD为()=24 mA. 24 10 3 m B .2410 3m C . 24 5 3 m D . 9m 34.某人想沿着梯子爬上高 4 米的房顶,梯子的倾斜角(梯子与地面的夹角)不可以大于60°,不然就有危险,那么梯子的长起码为()A.8 米B. 8 3 米C.8 3米D.4 3米335.一架 5 米长的梯子斜靠在墙上,测得它与地面的夹角是40,则梯子底端到墙的距离为()°A.5sin 40°B.5cos 40°C.5D.5tan 40°cos40°6.如图,小明为了丈量其所在地点 A 点到河对岸 B 点之间的距离,沿着与AB 垂直的方向走了 m 米,抵达点 C,测得∠ ACB=,那么 AB等于()(A)m· sin米(B)m·tan 米(C)m米(D)m米· costanA m CB7.小明沿着坡度为1 : 2的山坡向上走了1000m,则他高升了()A. 200 5m B.500m C.500 3m D .1000 m8.如图是某商场一楼与二楼之间的手扶电梯表示图.此中AB、 CD分别表示一楼、二楼地面的水平线,∠ABC=150°, BC的长是 8m,则乘电梯从点 B 到点 C上涨的高度h 是()A.83 m C D3B BB.4 m C.4 3 m D .8 m150°hA B C A A65oO9.河堤横断面如上图 2 所示,堤高 BC=5米,迎水坡 AB的坡比是 1: 3(坡比是坡面的铅直高度BC与水平宽度 AC之比),则 AC的长是()A. 5 3米B.10米C.15米D.10 3米10.如图,为丈量一幢大楼的高度,在地面上距离楼底O 点 20 m 的点 A 处,测得楼顶 B 点的仰角∠ OAB=65°,则这幢大楼的高度为(结果保存 3 个有效数字)()(A)42.8 m(B)42.80 m(C)42.9 m(D)42.90 m二、填空题11.以下列图 1,AB是伸缩式的遮阳篷, CD是窗户.要想在夏至的正中午刻阳光恰好不可以射入窗户,则 AB的长度是米.(假定夏至的正中午刻阳光与地平面夹角为60 )A B1 米AA B C阳光2 米F 30°·NC B45°D E DD·CM第12 题12. 将一副三角尺以下图叠放在一同,若2 AB =14cm,则暗影部分的面积是_________cm.13.如上图 3,是一张宽m的矩形台球桌ABCD,一球从点M(点M在长边CD上)出发沿虚线MN 射向边 BC ,而后反弹到边AB 上的 P 点.假如MC n ,CMN. 那么P点与B点的距离为.14.如图,某河流要建筑一座公路桥,要求桥面离地面高度AC为3米,引桥的坡角∠ ABC为°,则引桥的A15水平距离 BC的长是米( 精准到米) .BC15. 以下列图 1,河岸 AD 、 BC 相互平行,桥 AB 垂直于两岸,从 C 处看桥的两头 A 、 B ,夹角∠BCA =60 ,测得 BC = ,则桥长 AB = m (结果精准到 )7m 1mA DBC16. 如上图 3 所示 , 小明在家里楼顶上的点 A 处,丈量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点 A 处看电梯楼顶部点 B 处的仰角为 60°,在点 A 处看这栋电梯楼底部点 C 处的俯角为 °,两栋楼之间的距离为 ,则电梯楼的高 BC 为 米(精准到 ) . 45 30m(参照数据: 2 ≈3 ≈)17. 如上图 2,水管的外面需要包扎 , 包扎时用带子环绕在管道外面 . 若要使带子所有包住管道且不重叠(不考虑管道两头的状况) , 需计算带子的环绕角度 ( 指环绕中将部分带子拉成图中所示的平面 ABCD 时的∠ ABC 此中 AB 为管道侧面母线的一部分) . 若带子宽度为1, 水管直径为 2,则 的,余弦值为.18. 课外活动小组丈量学校旗杆的高度.如图,当太阳光芒与地面成30°角时,测得旗杆 AB 在地面上的投影 BC 长为 24 米,则旗杆 AB 的高度约是米.(结果保存 3 个有效数字, 3 ≈ )AASO60° 60B北BD30°30°45东BC西A ′A南MC19. 如上图 2,一艘船向正北航行,在 A 处看到灯塔 S 在船的北偏东 30°的方向上,航行 12 海里到达 B 点.在 B 处看到灯塔 S 在船的北偏东 60°的方向上.此船持续沿正北方向航行过程中距灯塔S 的近来距离是海里(不作近似计算).20. 如上图 3,一副三角板拼在一同, O 为 AD 的中点, AB= a .将△ ABO 沿 BO 对折于△ A ′ BO ,M为 BC 上一动点,则 A ′ M 的最小值为.三、应用题21.某商场为缓解我市“泊车难”问题,拟建筑地下泊车库,下列图是该地下泊车库坡道进口的设计表示图,此中, AB⊥ BD,∠ BAD= 18o, C 在 BD上, BC=.依据规定,地下泊车库坡道进口上方要张贴限高标记,以便见告驾驶员所驾车辆可否安全驶入.小明以为 CD的长就是所限制的高度,而小亮以为应当以 CE 的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精准到)22.水务部门为增强防汛工作,决定对程家山川库大坝进行加固 . 原大坝的横断面是梯形ABCD,如图( 9)所示,已知迎水面AB 的长为 10 米,,背水面DC的长度为 10 3 米,加固后大B 60°坝的横断面为梯形 ABED .若 CE 的长为5米.(1)已知需加固的大坝长为100 米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度 . (计算结果保存根号)........23.据交管部门统计,高速公路超速行驶是引起交通事故的主要原由.我县某校数学课外小组的几个同学想试试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80 千米(即最高时速不超出 80 千米),如图,他们将观察点设在到公路l 的距离为千米的P处.这时,一测得此车从A处行驶到B地方用的时间为3秒(注:3秒=11200小时),并测得∠ APO=59°,∠ BPO=45° . 试计算 AB并判断此车能否超速?(精准到0.001 ).(参照数据: sin59 °≈ 0.8572 , cos59°≈ 0.5150 , tan59 °≈ 1.6643 ).25. 以下图,城关少儿园为增强安全管理,决定将园内的滑滑板的倾斜角由 45°降为 30°,已知原滑滑板 AB的长为 4 米,点 D、B、C在同一水平面上.(1)改良后滑滑板会加长多少米?(2)若滑滑板的正前面能有 3 米长的空地就能保证安全,原滑滑板的前面有样改造能否可行?请说明原由.(参照数据:, 3 1.732 ,,以上结果均保存到小数点后两位.)6 米长的空地,像这24. 如图,热气球的探测器显示,从热气球A 看一栋大楼顶部B的俯角为,看这栋大楼底部C30°的俯角为,热气球A 的高度为 240 米,求这栋大楼的高度 .60°AB26.某乡镇中学数学活动小组,为丈量教课楼后边的山高AB ,用了以下的方法.以下图,在教学楼底 C 处测得山顶 A 的仰角为 60 ,在教课楼顶 D 处,测得山顶 A 的仰角为 45 .已知教课楼高CD 12 米,求山高 AB .(参照数据, 2 ,精准到 0.1 米,化简后再代参照数据运算)答案 ;一、选择题第1 题答案 .B ;第 2 题答案 .A ;第 3 题答案 .A ;第 4 题答案 .C ;第 5 题答案 .B第6 题答案 .B ;第 7 题答案 .A ;第 8 题答案 .B ;第 9 题答案 .A ;第 10 题答案 .C;二、填空题第 11 题答案 . 3 ;第 12 题答案 . 49;第 13 题答案 .m n tan;第 14 题答案 .11.2 ;2tan第 15 题答案 .12 ;第 16 题答案 .82.0 ;第 17 题答案 .1;第 18 题答案 ;2第 19 题答案 . 6 3 ;第 20 题答案 .62a ;4三、应用题第 21 题答案 .解:在△ ABD 中,∠ ABD =90 ,∠ BAD = 18 ,BA =10;∴ tan ∠ BAD= BD BA∴BD =10×tan 18 ;∴ CD =BD ―BC =10×tan 18 ―在△ ABD 中,∠ CDE =90 ―∠ BAD =72 ;∵ CE ⊥ ED ;∴ sin ∠CDE = CE CDCE CDE ×CD ×( 10×tan 18 ―0.5 )≈ 2.6 ( m )答: CE∴ =sin ∠ =sin72 为第 22 题答案 .解:( 1)分别过 A 、 D 作 AF BC 、 DG BC ,垂足分别为 F 、 G ,如图( 1)所示,在 Rt △ ABF 中, AB 10 米, B60° . ∴ sin BAF,即 sin 60°AF,AB10AF 103 5 35 3,∴ DG21 1 55 25 ,因此 S△DCECE DG33222∴需要填方 100253 12503 (立方米) .2( )在 Rt △ DGC 中,DC 10 3GC =2222,因此 DC DG 10 35 3 15 ,2因此 GEGCCE 155 20. ;∴背水面 DE 的坡度 i =DG5 33 .GE204答:( 1)需要土石方 1250 3 立方米;新大坝背水面 DE 的坡度 i3 .4第 23 题答案 . 解:设该轿车的速度为每小时 x 千米∵ AB AO BO , BPO 45∴ BO PO千米;又 AO OP tan59∴ ABAO0.06643 ; 即 AB ≈ 0.066 千米;而 3 秒=1小时;∴ x0.06643 1200 ≈ 79.716 千米∕时∵<80 1200第24 题答案 .解:过点 A 作直线BC 的垂线,垂足为点 D .则CDA90°CAD 60°BAD30° CD=240 米.,,,在 Rt △ ACD 中, tan CAD CD ,AD CD24080 3.AD tan 60°3在 Rt △ ABD 中, tan BAD BD, BD AD·tan30 ° 803380 . AD3BC CD BD24080=160. 答:这栋大楼的高为160 米 .第25 题答案 .解:( 1)在 Rt△ABC中,∠ABC=45°∴ AC=BC=AB· sin45 °=42 2 22在 Rt△ADC中,∠ ADC=30°∴AD=AC2 214 2 sin 30o2∴AD-AB=24;∴ 改良后滑滑板会加长约米.4∴该轿车没有超速 .DABC(2)这样改造能行,原由以下:∵AC2 23 CD3 tan 30o∴ BD CD BC 2 6 2 2 2.07 ;∴ 6-2.07 ≈ 3.93 > 3∴这样改造能行 .第26 题答案 .解:过 D 作 DE AB 于 E ,则 DE ∥ BC设 AB h 米,在 Rt △ ABC 中, BC h· cot 60h? tan 30在 Rt △ AED 中, AE DE tan 45BC tan 453h ;又 AB AE BE CD 12 3h 3 h12 ;h1233636(33)18 6 3 18633361318(米)答:山高 AB 是 28.4 米。
直角三角形的边角关系提高性测试卷(含答案)
直角三角形的边角关系提高题一、选择题1.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.若AC =4,BC =3,则sin ∠ACD 的值为( )A.34 B .43 C .54 D .53 2.已知∠A +∠B =90°且cos A =51,则cos B 的值为( )A .51B .54C .562D .523.已知tan a =32,则锐角a 满足( )A .0°<a <30°B .30°<a <45°C .45°<a <60°D .60°<a <90° 4.如图所示,在△ABC 中,AB =AC =5,BC =8,则tan C =( )A .53B .54C .34D .435.如图,从山顶A 望到地面C ,D 两点,测得它们的俯角分别是45°和30°,已知CD =100m ,点C 在BD 上,则山高AB 等于 ( ) A .100 m B .350m C .250m D .50(13+)m6.已知楼房AB 高50 m ,如图,铁塔塔基距楼房房基间的水平距离BD =50 m ,塔高DC为31(350150+)m ,下列结论中,正确的是 ( ) A .由楼顶望塔顶仰角为60° B .由楼顶望塔基俯角为60° C .由楼顶望塔顶仰角为30° D .由楼顶望塔基俯角为30°7.如图,水库大坝的横断面积为梯形,坝顶宽6米、坝高24米、斜坡AB 的坡角为45°,斜坡CD 的坡度i =1∶2,则坝底AD 的长为 ( )A .42米B .(32430+)米C .78米D .(3830+)米二、填空题2.将cos21°、cos37°、sin41°、cos46°的值按由小到大的顺序排列是 . 6.如图,太阳光线与地面成60角,一棵倾斜的大树与地面成30角,这时测得大树在地面上的影长为10m ,则大树的长约为 m .(保留2位有数字)(第6题图) (第7题图)A BCD· ·MNα(第15题)1. (2011武汉市)如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A .12秒.B .16秒.C .20秒.D .24秒.3. (2011山东济宁,15,3分)如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .4、(2011•淮安)如图,在Rt △ABC 中,∠ABC=90°,∠ACB=30°,将△ABC 绕点A 按逆时针方向旋转15°后得到△AB 1C 1,B 1C 1交AC 于点D ,如果AD=2,则△ABC 的周长等于 3+.7(2011•辽宁省沈阳).小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O 距离地面的高OO ′=2米.当吊臂顶端由A 点抬升至A ′点(吊臂长度不变)时,地面B 处的重物(大小忽略不计)被吊至B ′处,紧绷着的吊缆A ′B ′=AB .AB 垂直地面O ′B 于点B ,A ′B ′垂直地面O ′B 于点C ,吊臂长度OA ′=OA =10米,且cosA =35,sinA ′=12.⑴求此重物在水平方向移动的距离BC ;⑵求此重物在竖直方向移动的距离B ′C .(结果保留根号)ABO O ′ B ′A ′C第22题图CB图12A15°30°6. (2011威海,)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°, ∠E =45°,∠A =60°,A C=10,试求CD 的长.9(★★).如图3,为了测量河对岸A 、B 两地的距离,先在河对岸定一条基线CD ,测得CD=100 m , ∠ACB=30°,∠ADC=45°,∠ACD=∠CDB=90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形的边角关系提高题
一、选择题
1.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.若AC =4,BC =3,则sin ∠ACD 的值为( )
A .
34 B .43 C .54 D .5
3 2.已知∠A +∠B =90°且cos A =51
,则cos B 的值为( )
A .51
B .54
C .562
D .5
2
3.已知tan a =3
2
,则锐角a 满足( )
A .0°<a <30°
B .30°<a <45°
C .45°<a <60°
D .60°<a <90° 4.如图所示,在△ABC 中,AB =AC =5,BC =8,则tan C =( )
A .53
B .54
C .34
D .4
3
5.如图,从山顶A 望到地面C ,D 两点,测得它们的俯角分别是45°和30°,已知CD =100m ,点C 在BD 上,则山高AB 等于 ( ) A .100 m B .350m C .250m D .50(13+)m
6.已知楼房AB 高50 m ,如图,铁塔塔基距楼房房基间的水平距离BD =50 m ,塔高DC
为3
1
(350150+)m ,下列结论中,正确的是 ( ) A .由楼顶望塔顶仰角为60° B .由楼顶望塔基俯角为60° C .由楼顶望塔顶仰角为30° D .由楼顶望塔基俯角为30°
7.如图,水库大坝的横断面积为梯形,坝顶宽6米、坝高24米、斜坡AB 的坡角为45°,
斜坡CD 的坡度i =1∶2,则坝底AD 的长为 ( )
A .42米
B .(32430+)米
C .78米
D .(3830+)米
二、填空题
2.将cos21°、cos37°、sin41°、cos46°的值按由小到大的顺序排列是 . 6.如图,太阳光线与地面成60 角,一棵倾斜的大树与地面成30 角,这时测得
大树在地面上的影长为10m ,则大树的长约为 m .(保留2位有数字)
A
(第15题)
1. (2011武汉市)如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A
处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶
时,A 处受噪音影响的时间为
A .12秒.
B .16秒.
C .20秒.
D .24秒.
3. (2011山东济宁,15,3分)如图,是一张宽m 的矩形台球
桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .
4、(2011•淮安)如图,在Rt △ABC 中,∠ABC=90°,∠ACB=30°,将△ABC 绕点A 按逆时针方向旋转15°后得到△AB 1C 1,B 1C 1交AC 于点D ,如果AD=2错误!未找到引用源。
,则△ABC 的周长等于 3错误!未找到引用源。
+错误!未找到引用源。
.
7(2011•辽宁省沈阳).小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O 距离地面的高
OO ′=2米.当吊臂顶端由A 点抬升至A ′点(吊臂长度不变)时,
地面B 处的重物(大小忽略不计)被吊至B ′处,紧绷着的吊缆A ′
B ′=AB .AB 垂直地面O ′B 于点B ,A ′B ′垂直地面O ′B 于点
C ,吊
臂长度OA ′=OA =10米,且cosA =35,sinA ′=12
.
⑴求此重物在水平方向移动的距离BC ;
⑵求此重物在竖直方向移动的距离B ′C .(结果保留根号)
第22题图
D
图
12
6. (2011威海,)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°, ∠E =45°,∠A =60°,A C=10,试求CD 的长.
9(★★).如图3,为了测量河对岸A 、B 两地的距离,先在河对岸定一条基线CD ,测得CD=100 m , ∠ACB=30°,∠ADC=45°,∠ACD=∠CDB=90°。
求A 、B 两地间的距离。
10(★★★).如图5,客轮在海上以30 km/h 的速度由B 向C 航行,在B 处测得灯塔A 的方位角为北偏东80°,测得C 处的方位角为南偏东25°,航行1小时后到达C 处,在C 处测得A 的方位角为北偏东20°,则C 到A 的距离是( )
A.615km
B.215km
C.)26(15+km
D.)236(5+km
11.(★★★)如图12,在小山的东侧A 处有一热气球,以每分钟28米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方有一处着火点B ,5分钟
后,在D 处测得着火点B 的俯角是15°,
则热气球升空点A 与着火点B 的距离为( ) A.
︒
15tan 980
米 B.)30cos 15(tan 980︒-︒米 C. )30cos 15tan 1(
980︒-︒米 D. )30cos 15tan 30cos (980︒-︒
︒
米 12(★★★).如图7,现在要为一个面向正南的窗户设计安装一个遮阳棚,已知该地区冬天
正午的阳光最低时,光线与水平线的夹角为34°;夏天正午太阳最高时,光线与水平线的夹角为76°,把图7画成图7—1,其中AB 表示窗户的高,BCD 表示直角形遮阳篷。
(1)遮阳棚BCD 怎样设计,才能正好在冬天正午太阳最低时光线最大限度的射入室内,而夏天正午太阳最高时光线刚好不射入室内?请你在图7—2中画出来。
(2)已知AB=150 cm ,从最省料角度考虑,在(1)的条件下,求出BC ,CD 的长.
图3
C
D
B
A
图5 B
80°
C
A
25°
20°
图7—1
图7—2 图7—3
25.已知:如图,在山脚的C 处测得山顶A 的仰角为45°,沿着坡度为30°的斜坡前进400
米到D 处(即∠
,
米),测得A 的仰角为 60,求山的高度AB .
19.(2011•东莞市)19.如图,直角梯形纸片ABCD 中,AD//BC ,∠A=90º,∠C=30º. 折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且BF=CF=8.求AB 的长.
17(2011•抚顺)23. 如图,在斜坡AB 上有一棵树BD ,由于受台风影响而倾斜,恰好与坡面垂直,在地面上C 点处测得树顶部D 的仰角为60°,测得坡角∠BAE =30°,AB =6米,AC =4米.求树高BD 的长是多少米?(结果保留根号)
19. (2011江苏无锡,24,9分)(本题满分9分)如图,一架飞机由A 向B 沿水平直线方向
飞行,在航线AB 的正下方有两个山头C 、D 。
飞机在A 处时,测得山头C 、D 在飞机前方,俯角分别为60°和30°。
飞机飞行了6千米到B 处时,往后测得山头C 的俯角为30°,而山头D 恰好在飞机的正下方。
求山头C 、D 之间的距离。
A
B
C
D。