高考一轮复习 等差数列 知识点+例题+练习
高三数学一轮复习5.2等差数列部分 重点、考点知识、高考真题讲解及练习
项起是等差数列;
11)若数列
{an
}
是等差数列,前
n
项和为
S
n
,则
{
Sn n
}
也是等差数列,其首项和
{an
}
的首
1 项相同,公差是{an} 公差的 2 ;
12)若三个数成等差数列,则通常可设这三个数分别为 x d , x, x d ;若四个数成等差数
列,则通常可设这四个数分别为 x 3d , x d , x d , x 3d ;
A. B. C. D.
【解答】解:∵等差数列{an}的前 n 项和为 Sn,a5=5,S8=36,
t
∴
t
,
解得 a1=1,d=1,
∴an=1+(n﹣1)×1=n,
∴
=
=
,
∴数列
的前 n 项和为:
Sn= 故选:B.
=1﹣
.
13.(2018•齐齐哈尔一模)已知等差数列{an}的前 n 项和为 Sn,若 a3=3,S4=14.则 {an}的公差为( ) A.1 B.﹣1 C.2 D.﹣2 【解答】解:设等差数列{an}的公差为 d,∵a3=3,S4=14. ∴a1+2d=3,4a1+ d=14,
∴数列{an}是首项为 24,公差为 2 的等差数列,
∴Sn=24n+
=﹣n2+25n=﹣(n﹣ )2+ .
∴要使此数列的前 n 项和 Sn 最大,则 n 的值为 12 或 13.
故选:C.
12.(2018•宣城二模)已知等差数列{an}的前 n 项和为 Sn,a5=5,S8=36,则数列 的前 n 项和为( )
A.20 B.35 C.45 D.90 【解答】解:由等差数列的性质得,a1+a9=a2+a8=10,S9=
高考数学一轮复习专题:等差数列及其前n项和(教案及同步练习)
1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列.(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × )(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( )A .-1B .0C .1D .6答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.2.(教材改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34 答案 B解析 由已知可得⎩⎪⎨⎪⎧ a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧ a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( )A .100B .99C .98D .97答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1, ∴a 100=a 10+90d =98,故选C.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( )A .14B .21C .28D .35答案 C∴a 1+a 2+…+a 7=7a 4=28.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案 (1)C (2)6解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)∵a 3+a 5=2a 4=0,∴a 4=0.又a 1=6,∴a 4=a 1+3d =0,∴d =-2.∴S 6=6×6+6×(6-1)2×(-2)=6. 思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .63(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20∴S 7=7(a 1+a 7)2=49. (2)设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7. 设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1,即a n +1n +1-a n n=1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析 由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n . (2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.①设b n =a n +1-a n ,证明{b n }是等差数列;②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2,得a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2.又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列.②解 由①得b n =1+2(n -1)=2n -1,即a n +1-a n =2n -1.于是∑n k =1 (a k +1-a k )=∑nk =1(2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.题型三 等差数列性质的应用命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21.命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________.(2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( ) A .-2 018B .-2 016C .-2 019D .-2 017 答案 (1)114 (2)A解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3.又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114.(2)由题意知,数列{S n n}为等差数列,其公差为1, ∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1.∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( )A .58B .88C .143D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.3828C.3929D.4030答案 (1)B (2)A解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13 =3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现.题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( )A .45B .60C .75D .90 (2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的首项为a 1,公差为d ,则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. 答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或n =13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( )A .9B .22C .24D .32 答案 C解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱D.43钱 答案 D解析 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ 2a 1+d =3a 1+9d ,2a 1+d =52,⎩⎨⎧ a 1=43,d =-16,故选D.3.(2017·佛山调研)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11答案 C解析 由S n -S n -3=51,得a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10. 4.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于( ) A .24B .48C .66D .132 答案 D解析 方法一 由a 1+8d =12(a 1+11d )+6,得a 1+5d =12,∴a 1=12-5d .又S 11=11a 1+11×102d =11a 1+55d =11(12-5d )+55d =132.方法二 由a 9=12a 12+6,得2a 9-a 12=12. 由等差数列的性质得,a 6+a 12-a 12=12,a 6=12,S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( )A .7B .8C .7或8D .8或9答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C.*6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121 答案 D解析 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d , 化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2, 所以S n +10a 2n =(n +10)2(2n -1)2=(n +102n -1)2 =⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12 =14⎝⎛⎭⎫1+212n -12≤121, 故选D.7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.答案 27解析 由题意知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4,故a 10=14.9.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.10.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 9b 5+b 7+a 3b 8+b 4=1941. 11.在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.12.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.*13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0, 解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a2n-2a n+1=a2n-1,也即(a n-1)2=a2n-1,因此a n-1=a n-1或a n-1=-a n-1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}是首项为3,公差为1的等差数列.(2)解由(1)知a1=3,d=1,所以数列{a n}的通项公式a n=3+(n-1)×1=n+2,即a n=n+2.第2讲 等差数列及其前n 项和一、选择题1. {a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析 由S 10=S 11得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20. 答案 B2.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ).A .6B .7C .8D .9解析 由a 4+a 6=a 1+a 9=-11+a 9=-6,得a 9=5,从而d =2,所以S n =-11n +n (n -1)=n 2-12n =(n -6)2-36,因此当S n 取得最小值时,n =6. 答案 A3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( ). A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C. 答案 C5.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ).A .8B .7C .6D .5解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数的个数是( ). A .2B .3C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 69.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤325,又n ∈N *,前6项均为负值, 所以S n 的最小值为-293. 答案 -29310.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析 设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围. 解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S n n +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2.∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。
等差数列题目100道
等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差数列知识点、例题。练习
等差数列知识点、例题。
练习数列的概念和性质(一)练习一、定义:按一定次序排成的一列数叫做数列.:1. 从函数的角度看,数列可以是定义域为N*(或它的有限子集)的函数,当自变量从小到大依次取值时对应的一列函数值;2. 如果两个数列的数完全相同而顺序不同,则它们不是相同的数列;3. 在同一个数列中,一个数可以重复出现;4. 数列中的每一个数叫做这个数列的项,各项依次叫做第1项,第2项。
. 二、数列的表示:通项公式:an f(n)1.解析法递推公式:an 1 f(an)一、巩固提高1. 数列1,3,6,10,15,。
的通项an可以等于( ) (A)n2 (n 1) (B)n(n 1)n(n+1)2(C) (D) n 2n+2 222. 数列-1,0,-13,0,-25,0,-37,0,。
的通项an可以等于( )nn(-1)1(-1)1(6n 5) (B)(6n 5) (A)22nn(-1)1(-1)1(6n 5) (D) (6n 5) (C)223..巳知数列{an}的首项a1=1,an 1 2an 1(n 2),则a5为( )(A) 7 (B)15 (C)30 (D)31 二、能力提升5. 根据数列的前几项,写出数列{an}的一个通项公式: (1)__,,,,,。
; 3__4,,,。
; __(2)2,-6,12,-20,30,。
; (3)一、巩固提高数列的概念和性质(二)练习1.若数列{an}的前n项和Sn 2n 1,则a1与a5的值依次为( )2(A) 2,14 (B)2,18 (C)3,4 (D)3,18 2.若数列{an}的前n项和Sn 4n2 n 2,则该数列的通项公式为( ) (A)an 8n 5 (n N*) (B) an 8n 5(n N*)(n 1) 5(C)an 8n 5(n 2) (D)an *8n 5(n 2,n N)5.已知数列{an}满足a1=1,当n 2时,恒有a1a2。
高三一轮复习等差数列(一)
变式训练
变题:在等差数列 {an }中,已知a1 24 ,前 n项和为sn ,且s10 s15 , 判断 sn 能否取得最值,并说明理由.
拓展思考:
在等差数列 {an }中,已知 a1 24 ,前 n项和为sn ,且s10 s15 , (1)求数列{ an } 的前20项和 T20 , (2)求数列{ an } 的前n项和 Tn .
高三一轮复习
等差数列(一)
执教人:南通市第三中学 沈春华
1.等差数列的定义:
1.等差数列的定义:
如果一个数列从 第二项 起,每一项源自减去 它的前一项所得的差都等于同一个常数,那么 这个数列就叫做等差数列,这个常数叫做等差 数列的 公差 ,公差通常用 d 表示.
1.等差数列的定义:
如果一个数列从第二项起,每一项减去它 的前一项所得的差都等于同一个常数,那么这 个数列就叫做等差数列,这个常数叫做等差数 列的公差,公差通常用 d 表示. 关系式:an 1 an d (常数)
已知S8 100 ,S16 392 ,则S24
.
用函数的观点看等差数列
通项公式
an f (n) dn (a1 d )
前n项和公式
一次型函数
n( n 1) Sn na1 d 2
d 2 d f ( n ) n ( a1 )n 2 2
二次型函数
例题讲解
2
4.等差数列的前n项和公式
(首项为 a1,公差为d ):
n(a1 a n ) sn 2 n( n 1) na1 d 2
基础训练 1.在数列{an } 中,若 a1 1, an 1 an 2 ,则该 数列的通项 a n . 2.(必修5 第36 页 例2)在等差数列 an 中,已 知 a3 10, a9 28,则 a12 . 3. 在等差数列{ an} 中,已知 a11 a15 8 ,则 a4 a22 . 4.(必修5 第44 页习题3(3))在等差数列{an }中, 2 已知 a1 2, d , S n 20 ,则 n = . 3 5.(必修5 第41 页 练习4)已知等差数列{an }中,
高考数学一轮复习《数列的综合运用》练习题(含答案)
高考数学一轮复习《数列的综合运用》练习题(含答案)一、单选题1.某银行设立了教育助学低息贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果小新同学贷款10000元,一年还清,假设月利率为0.25%,那么小新同学每月应还的钱约为( )(1.002512≈1.03) A .833B .858C .883D .9022.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( ) A .()()5111a γγ++-万元 B .()()55111a γγγ++-万元C .()()54111a γγγ++-万元 D .()51a γγ+万元3.一种预防新冠病毒的疫苗计划投产两月后,使成本降64%,那么平均每月应降低成本( ) A .20%B .32%C .40%D .50%4.今年元旦,市民小王向朋友小李借款100万元用于购房,双方约定年利率为5%,按复利计算(即本年利息计入次年本金生息),借款分三次等额归还,从明年的元旦开始,连续三年都是在元旦还款,则每次的还款额约是( )万元.(四舍五入,精确到整数) (参考数据:()21.05 1.1025=,()31.05 1.1576=,()41.05 1.2155=) A .36B .37C .38D .395.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月B .2023年2月C .2023年4月D .2023年6月6.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为0.4%,设张华第n 个月的还款金额为n a 元,则n a =( )A .2192B .39128n -C .39208n -D .39288n -7.高阶等差数列是数列逐项差数之差或高次差相等的数列,中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.如南宋数学家杨辉在《详解九章算法.商功》一书中记载的三角垛、方垛、刍甍垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有1个小球,第二层有3个,第三层有6个,第四层有10个,则第30层小球的个数为( )A .464B .465C .466D .4958.某单位用分期付款方式为职工购买40套住房,总房价1150万元.约定:2021年7月1日先付款150万元,以后每月1日都交付50万元,并加付此前欠款利息,月利率1%,当付清全部房款时,各次付款的总和为( ) A .1205万元B .1255万元C .1305万元D .1360万元9.小李在2022年1月1日采用分期付款的方式贷款购买一台价值a 元的家电,在购买1个月后的2月1日第一次还款,且以后每月的1日等额还款一次,一年内还清全部贷款(2022年12月1日最后一次还款),月利率为r .按复利计算,则小李每个月应还( ) A .()()1111111ar r r ++-元 B .()()1212111ar r r ++-元C .()11111a r +元D .()12111a r +元10.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( ) A .35B .42C .49D .5611.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元B .40000元C .42500元D .50000元12.某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高28万元,第七实验室比第四实验室的改建费用高112万元,并要求每个实验室改建费用不能超过1100万元.则该研究所改建这十个实验室投入的总费用最多需要( ) A .2806万元B .2906万元C .3106万元D .3206万元二、填空题13.小李向银行贷款14760元,并与银行约定:每年还一次款,分4次还清所有的欠款,且每年还款的钱数都相等,贷款的年利率为0.25,则小李每年所要还款的钱数是___________元.14.从2017年到2020年期间,某人每年6月1日都到银行存入1万元的一年定期储蓄.若年利率为20%保持不变,且每年到期的存款本息均自动转为新的一年定期储蓄,到2020年6月1日,该人去银行不再存款,而是将所有存款的本息全部取回,则取回的金额为_______万元.15.银行一年定期储蓄存款年息为r ,三年定期储蓄存款年息为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于______.16.今年“五一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…,按照这种规律进行下去,到上午11时30分公园内的人数是____.三、解答题17.一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比. (1)求()*n n N ∈分钟后的水温n t ;(2)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:lg 20.3≈)18.某优秀大学生毕业团队响应国家号召,毕业后自主创业,通过银行贷款等方式筹措资金,投资72万元生产并经营共享单车,第一年维护费用为12万元,以后每年都增加4万元,每年收入租金50万元.(1)若扣除投资和维护费用,则从第几年开始获取纯利润?(2)若年平均获利最大时,该团队计划投资其它项目,问应在第几年转投其它项目?19.去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.记从今年起每年生活垃圾的总量(单位:万吨)构成数列{}n a ,每年以环保方式处理的垃圾量(单位:万吨)构成数列{}n b . (1)求数列{}n a 和数列{}n b 的通项公式;(2)为了确定处理生活垃圾的预算,请求出从今年起n 年内通过填埋方式处理的垃圾总量的计算公式,并计算从今年起5年内通过填埋方式处理的垃圾总量(精确到0.1万吨).(参考数据41.05 1.215≈,51.05 1.276≈,61.05 1.340≈)20.2020年是充满挑战的一年,但同时也是充满机遇、蓄势待发的一年.突如其来的疫情给世界带来了巨大的冲击与改变,也在客观上使得人们更加重视科技的力量和潜能.某公司一下属企业从事某种高科技产品的生产.假设该企业第一年年初有资金5000万元,并将其全部投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年相同.公司要求企业从第一年开始,每年年底上缴资金(2500)t t ≤万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (1)写出1n a +与n a 的关系式,并判断{}2n a t -是否为等比数列;(2)若企业每年年底上缴资金1500t =,第*()m m N ∈年年底企业的剩余资金超过21000万元,求m 的最小值.21.流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月()*1929,k k k +≤≤∈N 日起每天的新感染者比前一天的新感染者减少20人. (1)若9k =,求11月1日至11月10日新感染者总人数;(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.22.教育储蓄是指个人按国家有关规定在指定银行开户、存入规定数额资金、用于教育目的的专项储蓄,是一种专门为学生支付非义务教育所需教育金的专项储蓄,储蓄存款享受免征利息税的政策.若你的父母在你12岁生日当天向你的银行教育储蓄账户存入1000元,并且每年在你生日当天存入1000元,连续存6年,在你十八岁生日当天一次性取出,假设教育储蓄存款的年利率为10%.(1)在你十八岁生日当天时,一次性取出的金额总数为多少?(参考数据:71.1 1.95≈) (2)当你取出存款后,你就有了第一笔启动资金,你可以用你的这笔资金做理财投资.如果现在有三种投资理财的方案: ①方案一:每天回报40元;②方案二:第一天回报10元,以后每天比前一天多回报10元; ③方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 你会选择哪种方案?请说明你的理由.23.已知数集{}()1212,,1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .(Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由; (Ⅱ)证明:11a =,且1211112nn na a a a a a a ---+++=+++; (Ⅲ)证明:当5n =时,成等比数列。
高考数学一轮复习《等差数列》练习题(含答案)
高考数学一轮复习《等差数列》练习题(含答案)一、单选题1.若3与13的等差中项是4与m 的等比中项,则m =( ) A .12B .16C .8D .202.在等差数列{}n a 中,49a =,且2410,,a a a 构成等比数列,则公差d 等于( ) A .3-B .0C .3D .0或33.已知等差数列{}n a 的前n 项和为n S ,若7614,10S a ==,则{}n a 的公差为( ) A .4B .3C .2D .14.已知数列{}n a ,{}n b 均为等差数列,且125a =,175b =,22120a b +=,则3737a b +的值为( ) A .760B .820C .780D .8605.在等差数列{an }中,若a 2+2a 6+a 10=120,则a 3+a 9等于( ) A .30B .40C .60D .806.在明朝程大位《算法统宗》中有首依筹算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”题意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、己、庚三人共261钱,求各人钱数.”根据上题的已知条件,戊有( ) A .107钱B .102钱C .101钱D .94钱7.已知数列{an }是首项为1a ,公差为d 的等差数列,前n 项和为Sn ,满足4325a a =+,则S 9=( ) A .35B .40C .45D .50 8.正项等比数列{}n a 中,5a ,34a ,42a -成等差数列,若212a =,则17a a =( ) A .4B .8C .32D .649.已知{}n a 是公差不为零的等差数列,2414a a +=,且126,,a a a 成等比数列,则公差为( ) A .1B .2C .3D .410.设等差数列{}n a 的公差为d ,10a >,则“50a >”是“0d >”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.设等差数列 {}n a 的前n 项和为n S ,若3710a a += ,则9S = ( ) A .22.5B .45C .67.5D .9012.在等差数列{}n a 中n S 为前n 项和,7624a a =- ,则9S =( ) A .28 B .30C .32D .36二、填空题13.记n S 为等差数列{n a }的前n 项和,若24a =,420S =,则9a =_________.14.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若4a ,5S ,{}750S ∈-,,则n S 的最小值为__________.15.已知数列{}n a 中,11a =,()1121n n n n a a n a na ++⋅=+-,则通项公式n a =______. 16.等差数列{}n a 的前n 项和为n S ,若30a =,636S S =+,则7S =_____. 三、解答题17.已知等差数列{}n a 满足32a =,前4项和47S =. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,415b a =,数列{}n b 的通项公式.18.已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .19.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.20.已知在n的展开式中,前3项的系数成等差数列,求:(1)展开式中二项式系数最大项的项; (2)展开式中系数最大的项; (3)展开式中所有有理项.21.设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤---恒成立,求实数λ的最小值.22.这三个条件中任选一个,补充在下面题目条件中,并解答.①25a =,()11232,n n n S S S n n *+--+=≥∈N ;②25a =,()111322,n n n n S S S a n n *+--=--≥∈N ;③()132,12n n S S n n n n *--=≥∈-N . 问题:已知数列{}n a 的前n 项和为n S ,12a =,且___________.(1)求数列{}n a 的通项公式;(2)已知n b 是n a 、1n a +的等比中项,求数列21n b ⎧⎫⎨⎬⎩⎭的前n 项和n T参考答案1.B2.D3.A4.B5.C7.C8.D9.C10.B11.B12.D 13.18 14.6- 15.21nn - 16.717.(1)设等差数列{}n a 首项为1a ,公差为d .∵3427a S =⎧⎨=⎩∴()1122441472a d a d +=⎧⎪⎨⨯-+=⎪⎩解得:1112a d =⎧⎪⎨=⎪⎩∴等差数列{}n a 通项公式()11111222n a n n =+-⨯=+(2)设等比数列{}n b 首项为1b ,公比为q∵2341528b a b a ==⎧⎨==⎩∴13128b q b q ⋅=⎧⎨⋅=⎩ 解得:24q =即112b q =⎧⎨=⎩或112b q =-⎧⎨=-⎩ ∴等比数列{}n b 通项公式12n n b -=或()12n n b -=--18.(1)根据题意得,13331log 15log 10log 42a =-+333331533log log log log 2log 211022⎛⎫=+=+=⨯= ⎪⎝⎭,因为数列{}n a 是等差数列,设公差为d ,则由3718a a +=,得112618a d a d +++=,解得2d =,所以()11221n a n n =+-⨯=-.(2)由(1)可得1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭11122121nn n ⎛⎫=-=⎪++⎝⎭. 19.(1)因为221nn S n a n +=+,即222n n S n na n+=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. (2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-. [方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,即有1123210,0a a a a <<<<=.则当12n =或13n =时,()min 78n S =-. 20.(1)n展开式的通项公式为1C kn kk k nT -+=⋅3561C 2n kk n k x -=,依题意得122112C 1C 22n n ⋅⋅=+⋅,即2C 4(1)n n =-,得8n =,所以8的展开式有9项,二项式系数最大的项为5项,所以22433584135C 28T x x ==. (2)由(1)知,2456181C 2kk k k T x -+=,设展开式中系数最大的项为第1k +项,则1881188111C C 2211C C 22k k k k k k k k --++⎧≥⎪⎪⎨⎪≥⎪⎩,即()()()()()()8!8!2!8!1!9!8!8!2!8!1!7!k k k k k k k k ⎧≥⋅⎪⋅--⋅-⎪⎨⎪⋅≥⎪⋅-+⋅-⎩,即92228k k k k -≥⎧⎨+≥-⎩,解得23k ≤≤,所以2k =或3k =, 所以展开式中系数最大的项为737x 和327x . (3)由2456181C 2kk k k T x -+=(0,1,2,3,4,5,6,7,8)k =为有理项知,2456k -为整数,得0k =,6.所以展开式中所有有理项为4x 和716x. 21.(1)设等差数列{}n a 的公差为d , 由535S =得151035a d +=, 因为4a 是1a 与13a 的等比中项,所以()()2111312a d a a d +=+.化简得172a d =-且2123a d d =,解方程组得17,0a d ==或13,2a d==.故{}n a 的通项公式为7n a =或21n a n =+(其中N n *∈);因为245n T n n =+,所以214(1)5(1)n T n n -=-+-,(2)n ≥,所以22145[4(1)5(1)]81n n n b T T n n n n n -=-=+--+-=+,因为119b T ==,满足上式,所以()81N n b n n *=+∈;(2)因为14a <,所以21n a n =+, 所以(2)n S n n =+,所以221114488141n n S b n n n n ==-+---,所以22211221111114442141(2)1n n S b S b S b n +++=+++------1111335(21)(21)n n =+++⨯⨯-+111111123352121n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭, 易见111221n ⎛⎫- ⎪+⎝⎭随n 的增大而增大,从而11112212n ⎛⎫-< ⎪+⎝⎭恒成立, 所以12λ≥,故λ的最小值为12.22.(1)解:选条件①时,25a =,1123n n n S S S +--+=,整理得()()113n n n n S S S S +----=,故13n n a a +-=(常数),且213a a -=, 所以数列{}n a 是以2为首项,3为公差的等差数列.故()13131n a a n n =+-=-;选条件②时,25a =,()*111322,n n n n S S S a n n +--=--≥∈N ,整理得()1112n n n n n S S S S a +---=--,故112n n n a a a +-+=,故数列{}n a 是等差数列,公差213d a a =-=,故()13131n a a n n =+-=-; 选条件③时,()*132,12n n S S n n n n --=≥∈-N ,且121S =, 所以数列n S n ⎧⎫⎨⎬⎩⎭是以2为首项,32为公差的等差数列,则()33121222n S n n n =+-=+,所以23122n S n n =+,则2n ≥时,131n n n a S S n -=-=-.又112311a S ===⨯-满足31n a n =-,所以31n a n =-,*n ∈N . (2)解:由(1)得:31n a n =-,由于n b 是n a 、1n a +的等比中项,所以()()213132n n n b a a n n +==-+⋅,则()()211111313233132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 故()11111111113255831323232232n nT n n n n ⎛⎫⎛⎫=⨯-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭。
一轮复习课时训练§5.2: 等差数列及其前n项和
第五章§2:等差数列及其前n 项和(与一轮复习课件对应的课时训练)满分100,训练时间45钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于A .-2B .-12 C.12 D .22.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于A .14B .21C .28D .363.若向量a n =(cos2nθ,sinnθ),b n =(1,2sinnθ),数列{x n }满足x n =(a n ·b n )2-1,则{x n }是A .等差数列B .等比数列C .既是等差数列,又是等比数列D .既不是等差数列,又不是等比数列4.数列{a n }满足a 1=1,a 2=23,且1a n -1+1a n +1=2a n(n ≥2),则a 5等于A.13 B .3 C .4 D .145.已知数列{a n }满足a 1=8,a 2=0,a 3=-7,且数列{a n +1-a n }为等差数列,则a n 的最小值为A .-30B .-29C .-28D .-27二、填空题:本大题共3小题,每小题8分,共24分.6.若数列{a n }满足a n +a n +2=2a n +1,且S 9=27.则a 2+a 8=______.7.设等差数列{a n }的前n 项和为S n ,若S 3=a 6=12,则{a n }的通项公式为______. 8.已知数列{a n }满足递推关系式a n +1=2a n +2n -1(n ∈N *),且{a n +λ2n}为等差数列,则λ的值是________.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分,(1)小问8分,(2)小问10分)已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.10.(本小题满分18分,(1)小问8分,(2)小问10分)已知数列{a n }的前n 项和为S n ,a 1=1,nS n +1-(n +1)S n =n 2+cn(c ∈R ,n =1,2,3,…),且S 1,S 22,S 33成等差数列.(1)求c 的值;(2)求数列{a n }的通项公式.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:a 7-2a 4=a 3+4d -2(a 3+d)=-a 3+2d =2d =-1,∴d =-12.答案:B2.解析:∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=7(a 1+a 7)2=7a 4=28.答案:C3.解析:a n ·b n =cos2nθ+2sin 2nθ=1,x n =0,{x n }是等差数列.答案:A4.解析:因为1a n -1+1a n +1=2a n ,所以1a n +1-1a n =1a n -1a n -1,所以{1a n }为等差数列,d =1a 2-1a 1=12,1a n =1+12(n -1)=n +12,1a 5=5+12=3,所以a 5=13. 答案:A5.解析:由已知a 2-a 1=-8,a 3-a 2=-7.又∵{a n +1-a n }为等差数列,∴a n +1-a n =n -9.a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =8-8-7+…+(n -10)=8+(n -18)(n -1)2=n 22-192n +17. ∴当n =9或10时a n 取最小值为-28. 答案:C二、填空题:本大题共3小题,每小题8分,共24分.6.解析:由a n +a n +2=2a n +1得{a n }为等差数列.∵S 9=27,∴9(a 1+a 9)2=27.∴a 1+a 9=6,∴a 2+a 8=6. 答案:67.解析:设公差为d ,则⎩⎪⎨⎪⎧3a 1+3d =12a 1+5d =12,∴⎩⎪⎨⎪⎧a 1=2d =2,∴a n =2n. 答案:a n =2n8.解析:由a n +1=2a n +2n -1可得a n +12n +1=a n 2n +12-12n +1,则a n +1+λ2n +1-a n +λ2n =a n +12n +1-a n 2n -λ2n +1=12-12n +1-λ2n +1=12-λ+12n +1,当λ的值是-1时,数列{a n -12n }是公差为12的等差数列. 答案:-1三、解答题:本大题共2小题,共36分.9.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)设{a n }的公差为d ,由已知条件,有⎩⎪⎨⎪⎧a 1+d =1a 1+4d =-5,解出a 1=3,d =-2.所以a n =a 1+(n -1)d =-2n +5. (2)S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2. 所以n =2时,S n 取到最大值4.10.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)∵nS n +1-(n +1)S n =n 2+cn(n =1,2,3,…), ∴S n +1n +1-S n n =n 2+cnn (n +1)(n =1,2,3,…). ∵S 1,S 22,S 33成等差数列,∴S 22-S 11=S 33-S 22.∴1+c 2=4+2c 6, ∴c =1. (2)由(1)得S n +1n +1-S n n =1(n =1,2,3,…).∴数列{S n n }是首项为S 11,公差为1的等差数列.∴S n n =S 11+(n -1)·1=n. ∴S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 当n =1时,上式也成立,∴{a n }的通项公式是a n =2n -1(n =1,2,3,…).。
高三数学第一轮复习——数列(知识点很全)
高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n=.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n)1(1-+=,1a 为首项,d为公差.⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法 ⑴定义法:d a a n n =-+1(+∈N n ,d是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. 等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n nq a a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q时,1na S n =②当1≠q 时,qqa a q q a S n n n --=--=11)1(11. 3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G ⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n q a a m n m n⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a. 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) 4、等差数列{}n a ,{}nb 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。
高考一轮复习等差数列
等差数列1、在等差数列{a n}中,已知a3+a4=10,aa—3+a n-2=30,前n项之和是100,则项数a为() ﻫA、9B、10C、11D。
122、在等差数列{a n}中,a3+a6+a9=54,设数列{a n}的前n项和为S n,则S11=( )A、18B、99C。
198D。
2973。
设{an}是等差数列,下列结论中正确的是()A。
若a1a2>0,则a2a3>0B、若a1a3<0,则a1a2<0ﻫC。
若a1<a2,则a22<a1a3D。
若a1≥a2,则a22≥a1a34、已知等差数列数列{an}满足a n+1+a n=4a,则a1=( )A。
—1B、1C。
2D、35、在等差数列{a n}中,已知a1=3,a9=11则前9项和S9=( )A、63B、65C、72D、626、已知等差数列{aa}满足a1=—4,a4+a6=16,则它的前10项和S10=( )A。
138B、95C。
23D、1357、已知等差数列{an}的前n项和为S n,公差为d,若a1<0,S12=S6,下列说法正确的是()A。
a<0B。
S19〈0C。
当n=9时S n取最小值D、S10>08。
在等差数列{a n}中,已知a5+a10=12,则3a7+a9等于()A、30B、24C、18D、129、已知S n是等差数列{a n}的前n项和,且S6=3,S11=18,则a9等于( ) ﻫA。
3B、5C。
8D、1510、在等差数列{a n}中,a9=a12+6,a2=4,设数列{a n}的前n项和为Sa,则数列{}的前10项和为( ) ﻫA、B、C、D、11。
在等差数列{a n}中,已知a2+a3=13,a1=2,则a4+a5+a6= ______ 、12。
在公差大于1的等差数列{a n}中,已知a12=64,a2+a3+a10=36,则数列{|a n|}的前20项和为______ 。
13、已知{a n}为等差数列,S n为其前n项和、若a1=6,a3+a5=0,则S6= ______ 、14。
等差数列综合复习(教案+例题+习题)
一、等差数列1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
例1.根据数列前4项,写出它的通项公式: (1)1,3,5,7……;(2)2212-,2313-,2414-,2515-;(3)11*2-,12*3,13*4-,14*5。
解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1)n n n -+。
点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。
如(1)已知*2()156n na n N n =∈+,则在数列{}n a 的最大项为__ ;(2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___;(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;2、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
例2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列 答案:B ; 解法一:a n =⎩⎨⎧≥-==⇒⎩⎨⎧≥-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n∴a n =2n -1(n ∈N )又a n +1-a n =2为常数,12121-+=+n n a a n n ≠常数 ∴{a n }是等差数列,但不是等比数列.解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。
新高考一轮复习人教版 等差数列 作业
7.2等差数列基础篇固本夯基考点一等差数列及其前n项和1.(2022届辽宁渤海大学附中月考二)在等差数列{a n}中,若a2+a3+a4=6,a6=4,则公差d=()A.1B.2C.13D. 2 3答案D2.(2019课标Ⅰ理,9,5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5B.a n=3n-10C.S n=2n2-8nD.S n=12n2-2n答案A3.(2021重庆二模,4)已知公差不为0的等差数列{a n}中,a2+a4=a6,a9=a62,则a10=()A.52B.5C.10D.40答案A4.(2022届福建南平10月联考,14)设等差数列{a n}的前n项和为S n,已知a2+2a4+a10=32,则S9=. 答案725.(2020课标Ⅱ文,14,5分)记S n为等差数列{a n}的前n项和.若a1=-2,a2+a6=2,则S10=.答案256.(2020新高考Ⅰ,14,5分)将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为.答案3n2-2n7.(2019课标Ⅲ理,14,5分)记S n为等差数列{a n}的前n项和,若a1≠0,a2=3a1,则S10S5=.答案 48.(2022届海南东方琼西中学月考,17)等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50. (1)求通项公式a n ; (2)若S n =242,求n.解析 (1)设等差数列{a n }的公差为d,依题意有{a 10=a 1+9d =30,a 20=a 1+19d =50,解得{a 1=12,d =2,所以a n =2n+10(n ∈N *). (2)由(1)可得S n =12n+n(n−1)2×2=n 2+11n,令n 2+11n=242,解得n=-22(舍)或n=11,故n=11. 9.(2022届广东肇庆统一检测一)在等差数列{a n }中,a 1=10,公差d>0,其前四项中删去某一项后(按原来的顺序)恰好是等比数列{b n }的前三项. (1)求d 的值;(2)设{a n }中不包含{b n }的项按从小到大的顺序构成新数列{c n },记{c n }的前n 项和为S n ,求S 100. 解析 (1)由a 1=10,公差为d,得a 2=10+d,a 3=10+2d,a 4=10+3d. ①若删去第1项,则(10+2d)2=(10+d)(10+3d),解得d=0,不符合题意; ②若删去第2项,则(10+2d)2=10×(10+3d),解得d=0或d=-52,不符合题意; ③若删去第3项,则(10+d)2=10×(10+3d),解得d=0(舍去)或d=10; ④若删去第4项,则(10+d)2=10×(10+2d),解得d=0,不符合题意. 综上可知,d=10.(2)由(1)可知,a n =10+(n-1)×10=10n,等比数列{b n }的前三项分别为10,20,40,所以数列{b n }是以10为首项,2为公比的等比数列,所以b n =10·2n-1, 所以b 7=640,b 8=1280,又a 107=1070,所以可知{a n }的前107项中有7项被删除,即c 100=a 107.设数列{a n }的前n 项和为H n ,数列{b n }的前n 项和为T n ,则S 100=H 107-T 7=107×(10+1 070)2-10×(1−27)1−2=56510.10.(2021新高考Ⅱ,17,10分)记S n 为公差不为零的等差数列{a n }的前n 项和,若a 3=S 5,a 2·a 4=S 4. (1)求{a n }的通项公式;(2)求使得S n >a n 成立的n 的最小值.解析 (1)a 3=S 5⇒a 1+2d=5a 1+10d ⇒4a 1+8d=0⇒a 1+2d=0⇒a 1=-2d,① a 2·a 4=S 4⇒(a 1+d)(a 1+3d)=4a 1+6d,② 将①代入②得-d 2=-2d ⇒d=0(舍)或d=2, ∴a 1=-2d=-4,∴a n =-4+(n-1)×2=2n-6. (2)由(1)知a n =2n-6, S n =na 1+n(n−1)2d=-4n+n(n-1)=n 2-5n. S n >a n ⇔n 2-5n>2n-6⇔n 2-7n+6>0⇔(n-1)(n-6)>0, 解得n<1(舍)或n>6,∴n 的最小值为7.11.(2019课标Ⅰ文,18,12分)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解析 (1)设{a n }的公差为d.由S 9=-a 5得a 1+4d=0.由a 3=4得a 1+2d=4. 于是a 1=8,d=-2.因此{a n }的通项公式为a n =10-2n. (2)由(1)得a 1=-4d,故a n =(n-5)d,S n =n(n−9)d2.由a 1>0知d<0,故S n ≥a n 等价于n 2-11n+10≤0,解得1≤n ≤10.所以n 的取值范围是{n|1≤n ≤10,n ∈N *}.考点二等差数列的性质1.(2022届山东学情10月联考,6)已知等差数列{a n}、{b n}的前n项和分别为S n、T n,且a4b6=13,则S7T11=()A.7 33B.13C.1433D.711答案A2.(2021广州月考)设等差数列{a n}的前n项和为S n,若S3=6,S6=3,则S12等于()A.-3B.-12C.-21D.-30答案D3.(2020浙江高中发展共同体期末)已知{a n}是公差为d的等差数列,前n项和是S n,若S9<S8<S10,则()A.d>0,S17>0B.d<0,S17<0C.d>0,S18<0D.d>0,S18>0答案D4.(2020浙江,7,4分)已知等差数列{a n}的前n项和为S n,公差d≠0,且a1d≤1.记b1=S2,b n+1=S2n+2-S2n,n∈N*,下列等式不可能...成立的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b8答案D5.(2020北京,8,4分)在等差数列{a n}中,a1=-9,a5=-1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项答案B6.(2019江苏,8,5分)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 . 答案 167.(2021广东韶关一模,14)设S n 为等差数列{a n }的前n 项和,a 6+a 7=1,则S 12= ,若a 7<0,则使得不等式S n <0成立的最小整数n= . 答案 6;13综合篇 知能转换A 组考法一 等差数列的判定1.(2021山东聊城二模,8)已知数列{a n },a n =1f(n),其中f(n)为最接近√n 的整数,若{a n }的前m 项和为20,则m=( )A.15B.30C.60D.110 答案 D2.(2022届江苏泰州中学检测,20)已知数列{a n }满足a 1=6,a n-1a n -6a n-1+9=0,n ∈N *且n ≥2. (1)求证:数列{1a n −3}为等差数列; (2)求数列{a n }的通项公式; (3)设b n =a n(n+1)2,求数列{b n }的前n 项和T n .解析 (1)证明:当n ≥2时,a n-1a n -6a n-1+9=0⇒a n =6a n−1−9a n−1,∴1a n −3-1a n−1−3=a n−13a n−1−9-1a n−1−3=a n−1−33(a n−1−3)=13.又∵1a 1−3=13,∴数列{1a n −3}是以13为首项,13为公差的等差数列. (2)由(1)得1a n −3=13+(n-1)·13=n 3,∴a n =3(n+1)n.(3)∵b n=a n(n+1)2=3n(n+1)=3(1n−1n+1),∴T n=b1+b2+…+b n=3(1−12)+(12−13)+(13−14)+…+(1n−1n+1)=3(1−1n+1)=3n n+1.3.(2022届江苏苏州调研)已知数列{a n}的前n项和为S n,且S n=2a n-2n+1+2(n∈N*).(1)求{a n}的通项公式;(2)设b n=a n4n,若T n=b1+b2+b3+…+b n,求T n.解析(1)当n=1时,a1=S1=2a1-2,解得a1=2,当n≥2时,a n=S n-S n-1=2a n-2a n-1-2n,化简得a n=2a n-1+2n,即a n 2n -a n−12n−1=1,因此,数列{a n2n}是首项和公差均为1的等差数列,所以a n2n=n,a n=n·2n(n∈N*).(2)由(1)可得b n=n2n =n+12n−1-n+22n,则T n=220-321+321-422+…+n+12n−1-n+22n=2-n+22n.4.(2022届江苏百校联考一,17)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)若{a n}为等差数列,求S10.解析(1)证明:由a n a n+1=λS n-1可得a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1,因为a n+1≠0,所以a n+2-a n=λ.(2)由S1=a1=1,a1a2=λS1-1,可得a2=λ-1,由(1)知a3=λ+1,因为{a n}为等差数列,所以2a2=a1+a3,即2(λ-1)=1+λ+1,解得λ=4,故a n+2-a n=4,所以数列{a2n-1}是首项为1,公差为4的等差数列,可得a2n-1=4n-3=2(2n-1)-1,数列{a2n}是首项为3,公差为4的等差数列,可得a2n=4n-1=2·2n-1,所以a n=2n-1(n∈N*),所以S10=10×(1+19)2=100.5.(2022届广东开学考,17)已知数列{a n}中,a1=1,且满足a n+1=a n-2n,b n=a n+n2(n∈N*).(1)证明:数列{b n}是等差数列,并求数列{b n}的通项公式;(2)设S n为数列{1b n·b n+1}的前n项和,求满足S n≥512的n的最小值.解析 (1)因为b n+1-b n =a n+1+(n+1)2-(a n +n 2)=a n+1-a n +2n+1=1,b 1=a 1+12=2,所以数列{b n }是首项为2,公差为1的等差数列.所以b n =2+(n-1)=n+1. (2)因为1b n ·b n+1=1(n+1)(n+2)=1n+1-1n+2,所以S n =12-13+13-14+…+1n+1-1n+2=12-1n+2=n 2(n+2),由n 2(n+2)≥512解得n ≥10,所以满足S n ≥512的n 的最小值为10.6.(2021新高考Ⅰ,17,10分)已知数列{a n }满足a 1=1,a n+1={a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.解析 (1)由题意得a 2n+1=a 2n +2,a 2n+2=a 2n+1+1, 所以a 2n+2=a 2n +3,即b n+1=b n +3,且b 1=a 2=a 1+1=2, 所以数列{b n }是以2为首项,3为公差的等差数列, 所以b 1=2,b 2=5,b n =2+(n-1)×3=3n-1. (2)当n 为奇数时,a n =a n+1-1. 设数列{a n }的前n 项和为S n , 则S 20=a 1+a 2+…+a 20=(a 1+a 3+…+a 19)+(a 2+a 4+…+a 20)=[(a 2-1)+(a 4-1)+…+(a 20-1)]+(a 2+a 4+…+a 20) =2(a 2+a 4+…+a 20)-10,由(1)可知a 2+a 4+…+a 20=b 1+b 2+…+b 10=10×2+10×92×3=155, 故S 20=2×155-10=300,即{a n }的前20项和为300.7.(2021全国甲理,18,12分)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.解析选①②作为条件,证明③.证明:设等差数列{a n}的公差为d,因为{√S n}是等差数列,所以2√S2=√S1+√S3,即2√2a1+d=√a1+√3a1+3d,两边平方,得4(2a1+d)=a1+3a1+3d+2√a1(3a1+3d),整理得4a1+d=2√a1(3a1+3d),两边平方,得16a12+8a1d+d2=4(3a12+3a1d),化简得4a12-4a1d+d2=0,即(2a1−d)2=0,所以d=2a1,则a2=a1+d=3a1.选①③作为条件,证明②.证明:设等差数列{a n}的公差为d.因为a2=3a1,即a1+d=3a1,所以d=2a1.所以等差数列{a n}的前n项和S n=na1+n(n−1)2d=na1+n(n−1)2·2a1=n2a1.又a1>0,所以√S n=n√a1.则√S n+1-√S n=(n+1)√a1-n√a1=√a1,所以数列{√S n}是公差为√a1的等差数列.选②③作为条件,证明①.证明:设等差数列{√S n}的公差为d,因为√S1=√a1,√S2=√a1+a2=√a1+3a1=2√a1,所以d=√S2-√S1=2√a1-√a1=√a1,则等差数列{√S n}的通项公式为√S n=√a1+(n-1)√a1=n√a1,所以S n=n2a1,当n≥2时,a n=S n-S n-1=n2a1-(n-1)2a1=(2n-1)a1,且当n=1时,上式也成立,所以数列{a n}的通项公式为a n=(2n-1)a1,n∈N*,则a n+1-a n=(2n+1)a1-(2n-1)a1=2a1,所以数列{a n}是公差为2a1的等差数列.8.(2022届广东阶段测,17)已知数列{a n}满足a1=1,a n+a n-1=2n(n≥2,n∈N*).(1)记b n=a2n,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.解析(1)依题意得,a2+a1=4,又a1=1,故b1=a2=3.因为a2n+2+a2n+1=4n+4,a2n+1+a2n=4n+2,所以b n+1-b n =a 2n+2-a 2n =(a 2n+2+a 2n+1)-(a 2n+1+a 2n )=(4n+4)-(4n+2)=2. 因此,{b n }是首项为3,公差为2的等差数列,通项公式为b n =2n+1. (2)解法一:因为a 2n +a 2n-1=4n,所以由(1)知a 2n-1=4n-a 2n =2n-1.当n=2k(k ∈N *)时,S n =(a 1+a 3+…+a 2k-1)+(a 2+a 4+…+a 2k )=(1+3+…+2k-1)+(3+5+…+2k+1)=(1+2k−1)·k 2+(3+2k+1)·k 2=k(2k+2)=n(n+2)2. 当n=2k-1(k ∈N *)时,S n =S n+1-a n+1=(n+1)(n+3)2-(n+2)=n(n+2)−12. 因此,S n ={n(n+2)−12,n 为奇数,n(n+2)2,n 为偶数.解法二:当n=2k(k ∈N *)时,S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k-1+a 2k )=4+8+…+4k=(4+4k)·k 2=k(2k+2)=n(n+2)2. 当n=2k+1(k ∈N *)时,S n =a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2k +a 2k+1)=1+6+10+…+(4k+2) =1+(6+4k+2)·k 2=k(2k+4)+1=(n−1)(n+3)2+1=n(n+2)−12,S 1=a 1=1=1×3−12也满足上式. 故S n ={n(n+2)−12,n 为奇数,n(n+2)2,n 为偶数.9.(2021全国乙理,19,12分)记S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2S n +1b n=2. (1)证明:数列{b n }是等差数列; (2)求{a n }的通项公式.解析 (1)证明:由b n =S 1·S 2·…·S n 可得,S n ={b 1,n =1,b nb n−1,n ≥2.由2S n +1b n=2知,当n=1时,2S 1+1b 1=2,即2b 1+1b 1=2,所以b 1=S 1=32,当n ≥2时,2b n b n−1+1b n =2,即2b n =2b n-1+1,即b n -b n-1=12,故数列{b n }是首项为32,公差为12的等差数列.(2)由(1)知,b n =32+(n-1)×12=n+22,故当n ≥2时,S n =b n b n−1=n+2n+1,S 1也符合该式, 即S n =n+2n+1(n ∈N *),从而a 1=S 1=32, 当n ≥2时,a n =S n -S n-1=n+2n+1-n+1n =-1n(n+1),a 1不符合该式,所以a n ={32,n =1,−1n(n+1),n ≥2. 考法二 等差数列前n 项和的最值问题1.(多选)(2022届石家庄二中开学考试,11)设数列{a n }是等差数列,S n 是其前n 项和,a 1>0且S 6=S 9,则( ) A.d>0 B.a 8=0C.S 7或S 8为S n 的最大值D.S 5>S 6 答案 BC2.(多选)(2022届广东珠海二中10月月考,11)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则( ) A.a 5=0B.{a n }的前n 项和中S 5最小C.nS n 的最小值为-49D.S n n的最大值为0 答案 BC3.(2022届湖南天壹名校联盟摸底,3)已知等差数列{a n }的通项公式为a n =9-2n,则其前n 项和S n 的最大值为( )A.15B.16C.17D.18 答案 B4.(2021上海松江一模)记S n 为数列{a n }的前n 项和,已知点(n,a n )在直线y=10-2x 上,若有且只有两个正整数n 满足S n ≥k,则实数k 的取值范围是( )A.(8,14]B.(14,18]C.(18,20]D.(18,814] 答案 C 5.(多选)(2022届江苏苏州调研,10)设S n 是公差为d(d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题正确的是( )A.若d<0,则数列{S n }有最大值B.若数列{S n }有最大项,则d<0C.若对任意的n ∈N *,S n+1>S n 恒成立,则S n >0D.若对任意的n ∈N *,均有S n >0,则S n+1>S n 恒成立答案 ABD6.(2021湖南百校联考,17)在①a n+1a n =-12,②a n+1-a n =-16,③a n+1=a n +n-8这三个条件中任选一个,补充在下面的问题中,若问题中的S n 存在最大值,则求出最大值;若问题中的S n 不存在最大值,请说明理由. 问题:设S n 是数列{a n }的前n 项和,且a 1=4, ,求{a n }的通项公式,并判断S n 是否存在最大值. 注:如果选择多个条件分别解答,那么按第一个解答计分.解析 方案一:选①.因为a n+1a n =-12,a 1=4,所以{a n }是首项为4,公比为-12的等比数列.所以a n =4×(−12)n−1=(−12)n−3, 当n 为奇数时,S n =4[1−(−12)n]1+12=83(1+12n ), 因为S n =83(1+12n )随着n 的增大而减小,所以S n 的最大值为S 1=4. 当n 为偶数时,S n =83(1−12n ),且S n =83(1−12n )<83<4.综上,S n 存在最大值,且最大值为4. 方案二:选②.因为a n+1-a n =-16,a 1=4,所以{a n }是首项为4,公差为-16的等差数列,所以a n =4+(n-1)(−16)=-16n+256,由-16n+256≥0,得n ≤25, 所以S n 存在最大值,且最大值为S 25(或S 24),因为S 25=25×4+25×242×(−16)=50,所以S n 的最大值为50.方案三:选③.因为a n+1=a n +n-8,所以a n+1-a n =n-8,所以a 2-a 1=-7,a 3-a 2=-6,……,a n -a n-1=n-9(n ≥2),则a n -a 1=a 2-a 1+a 3-a 2+…+a n -a n-1=(−7+n−9)(n−1)2=n 2−17n+162,又a 1=4,所以a n =n 2−17n+242, 当n ≥16时,a n >0恒成立,故S n 不存在最大值.7.(2018课标Ⅱ,17,12分)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.解析 (1)设{a n }的公差为d,由题意得3a 1+3d=-15.由a 1=-7得d=2.所以{a n }的通项公式为a n =2n-9.(2)由(1)得S n =n 2-8n=(n-4)2-16.所以当n=4时,S n 取得最小值,最小值为-16.8.(2022届湖南湘潭模拟,17)已知S n 为数列{a n }的前n 项和,且a n+1=a n +d(n ∈N *,d 为常数),若S 3=12,a 3a 5+2a 3-5a 5-10=0.求:(1)数列{a n }的通项公式;(2)S n 的最值.解析 (1)由a n+1=a n +d(d 为常数)知数列{a n }是等差数列,且d 为公差.由S 3=a 1+a 2+a 3=3a 2=12得a 2=4, 由a 3a 5+2a 3-5a 5-10=0得(a 3-5)(a 5+2)=0,所以a 3=5或a 5=-2,由{a 2=4,a 3=5得a 1=3,d=1,此时a n =n+2. 由{a 2=4,a 5=−2得a 1=6,d=-2,此时a n =-2n+8.所以a n =n+2或a n =-2n+8.(2)当a n =n+2时,S n =n 2+5n 2,因为S n =n 2+5n 2是关于正整数n 的增函数,所以S 1=3为S n 的最小值,S n 无最大值;当a n =-2n+8时,S n =-n 2+7n=-(n −72)2+494,因为n 为正整数,所以当n=3或n=4时,S n 取最大值S 3=S 4=12,S n 无最小值.B 组1.(多选)(2022届河北大联考)若直线3x+4y+n=0(n ∈N *)与圆C:(x-2)2+y 2=a n 2(a n >0)相切,则() A.a 1=65B.数列{a n }为等差数列C.圆C 可能经过坐标原点D.数列{a n }的前10项和为23答案 BCD2.(多选)(2022届鄂东南联考)已知数列{a n }的前n 项和为S n ,下列说法正确的是( )A.若S n =n 2-11n+1,则a n =2n-12B.若a n =-2n+11,则数列{|a n |}的前10项和为49C.若a n =-2n+11,则S n 的最大值为25D.若数列{a n }为等差数列,且a 1011<0,a 1011+a 1012>0,则当S n <0时,n 的最大值为2021 答案 CD。
高三一轮复习-数列(带答案)
个性化辅导授课教案学员姓名 : 辅导类型(1对1、小班): 年 级: 辅 导 科 目 : 学 科 教 师 : 课 题课 型 □ 预习课 □ 同步课 □ 复习课 □ 习题课 授课日期及时段年 月 日 时间段教 学 内 容数列一、数列的概念及其表示【重点知识梳理】 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类分类原则类型 满足条件 按项数分类有穷数列项数有限无穷数列项数无限 按项与项间 的大小关系分类 递增数列 a n +1>a n其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n按其他标准分类有界数列存在正数M ,使|a n |≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).法四 同法二得d =-18a 1<0,又S 5=S 12,得a 6+a 7+a 8+a 9+a 10+a 11+a 12=0, ∴7a 9=0,∴a 9=0,∴当n =8或9时,S n 有最大值.(2)设数列{}n a 的前n 项和2n S n =,则______10=a规律方法 求等差数列前n 项和的最值,常用的方法: (1)利用等差数列的单调性,求出其正负转折项; (2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值. 【变式探究】 (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( )A .5B .6C .7D .8(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( ) A .5 B .6 C .5或6 D .11 3.等差数列的判定方法(1)定义法:若d a a d a a n n n n =-=-+-11或(常数+∈N n )⇔{}n a 是等差数列 (2)等差中项法:数列{}n a 是等差数列⇔)2(211>+=+-n a a a n n n ⇔212+++=n n n a a a (3)数列{}n a 是等差数列⇔b kn a n +=(其中k,b 是常数) (4)数列{}n a 是等差数列⇔Bn An S n +=2(其中A,B 是常数) 4.等差数列的证明方法(1)定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2)等差中项法:),2(211++-∈≥+=N n n a a a n n n例题:【例2】若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.规律方法 证明数列{a n }是等比数列常用的方法:一是定义法,证明a na n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.5.等比数列及其前n 项和性质(1)当1≠q 时,①等比数列通项公式n nn n B A q qa q a a ⋅===-111(0≠⋅B A )是关于n 的带有系数的类指数函数,底数为公比q .②前n 项和()''1111111A B A B A A q qaq a q q a S n n n n n -=⋅-=---=--=,系数和常数项是互为相反数的类指数函数,公比为q .(2)对任何+∈N n m ,,在等比数列中有m n m n q a a -=.注:当q=1时就得到了等比数列的通项公式,因此这个公式更具有一般性.(3)若q p n m +=+()+∈N q p n m ,,,,则q p n m a a a a ⋅=⋅.特别地,当p n m 2=+时,得2q n m a a a =⋅.注:1121a a a a a a n n n ⋅==⋅=⋅- (4)数列{}{}n n b a ,为等比数列,则数列{}{}{}⎭⎬⎫⎩⎨⎧⋅⋅⋅⎭⎬⎫⎩⎨⎧n n n n n n n b a b a k a a k a k ,,,,2(k 为非零常数)均为等比数列. (5)数列{}n a 为等比数列,每个k (+∈N k )项取出一项( k m k m k m m a a a a 32,,,+++)仍为等比数列. (6)如果{}n a 是各项均为正的等比数列,则数列{}n a a log 是等差数列.【例题】 (1)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( ) A .4 B .5 C .6 D .7(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.【解析】(1)法一 由等比中项的性质得a 3a 11=a 27=16,又数列{a n }各项为正,所以a 7=4.所以a 10=a 7×q 3=32.所以log 2a 10=5.规律方法 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【变式探究】 (1)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3(2)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( ) A .5 2 B .7 C .6 D .4 2(7)若{}n a 为等比数列,则数列 ,,,232m m m m m S S S S S --成等比数列.(8)若{}n a 为等比数列,则数列n a a a ⋅⋅⋅ 21,n n n a a a 221⋅⋅⋅++ ,n n n a a a 32212⋅⋅⋅++ 成等比数列. (9)①当q>1时,{}{}为递减数列则为递增数列则n n a a a a ,0;,011<>. ② 当0<q<1时,{}{}为递增数列则为递减数列则n n a a a a ,0;,011<>. ③当q=1时,该数列为常数列(此时数列也为等差数列) ④当q<0时,该数列为摆动数列.(10)在等比数列{}n a 中,当项数为2n (+∈N n )时,qS S 1=偶奇,其中pqt -=1,再利用换元法转化为等比数列求解。
高考数学一轮总复习练习数列小题综合练 (2)
1.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .92.在等比数列{a n }中,a 5a 7=6,a 2+a 10=5,则a 18a 10等于( )A .-23或-32B.23C.32D.23或323.已知等差数列{a n }(n ∈N *)的公差为d ,前n 项和为S n ,若a 1>0,d <0,S 3=S 9,则当S n 取得最大值时,n 等于( ) A .4 B .5 C .6 D .74.(2020·绍兴柯桥区调研)已知等比数列{a n }中有a 3a 11=4a 7,数列{b n }是等差数列,且a 7=b 7,则b 5+b 9等于( )A .2B .4C .8D .165.已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,(n +1)S n =(6n +18)T n .若a nb n ∈Z ,则n的取值集合为( ) A .{1,2,3} B .{1,2,3,4} C .{1,2,3,5}D .{1,2,3,6}6.设等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 99·a 100-1>0,a 99-1a 100-1<0.给出下列结论:①0<q <1;②a 99·a 101-1>0;③T 100的值是T n 中最大的;④使T n >1成立的最大自然数n 等于198.其中正确的结论是( ) A .①③ B .①④ C .②③ D .②④7.(2019·杭州期末)等差数列{a n }的前n 项和为S n ,且a 1>0,S 50=0.设b n =a n a n +1a n +2(n ∈N *),则当数列{b n }的前n 项和T n 取得最大值时,n 的值为( ) A .23 B .25 C .23或24D .23或258.已知数列{a n }满足a 1=1,a 2n =a 2n -1+(-1)n ,a 2n +1=a 2n +3n (n ∈N *),则数列{a n }的前2 017项的和为( ) A .31 003-2 005 B .32 016-2 017 C .31 008-2 017D .31 009-2 0189.记数列{a n }的前n 项和为S n ,若S n =3a n +2n -3,则数列{a n }的通项公式为a n =________. 10.(2019·舟山期末)设数列{a n }的前n 项和为S n ,若S 2=5,a n +1=3S n +1,n ∈N *,则a 2=________,S 4=______.11.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中正数的个数是( )A .25B .50C .75D .10012.已知a n =f (0)+f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫2n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),又函数F (x )=f ⎝⎛⎭⎫x +12-1是R 上的奇函数,则数列{a n }的通项公式为( ) A .a n =n B .a n =2n C .a n =n +1D .a n =n 2-2n +313.已知函数f (x )=x 2+2x (x >0),若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N *,则f 2 019(x )在[1,2]上的最大值是( ) A .42 018-1 B .42 019-1 C .92 019-1D .322 019-114.(2020·杭州市学军中学质检)已知数列{a n }满足a 1=-12,a n +1=a 2n +3a n +1,若b n =1a n +2,设数列{b n }的前n 项和为S n ,则使得|S 2 019-k |最小的整数k 的值为( ) A .0 B .1 C .2 D .315.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起到了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233,….即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *),此数列在现代物理、准晶体结构及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新的数列{b n },又记数列{c n }满足c 1=b 1,c 2=b 2,c n =b n -b n -1(n ≥3,n ∈N *),则c 1+c 2+c 3+…+c 2 019的值为______.16.已知数列{a n }的前n 项和为S n ,首项a 1=1且a n +1-2a n -1=0,若(-1)n λ≤S n +2n 对任意n ∈N *恒成立,则实数λ的取值范围是__________.答案精析1.A 2.D 3.C 4.C 5.D 6.B 7.D 8.D 9.2-⎝⎛⎭⎫32n10.4 8511.D [由于f (n )=sin n π25的周期T =50,由正弦函数的图象可知a 1,a 2,…,a 24>0,a 25=0,a 26,a 27,…,a 49<0,a 50=0, 且sin 26π25=-sin π25,Sin 27π25=-sin 2π25,….但是f (n )=1n 单调递减,a 26,…,a 49都为负数,但是|a 26|<a 1,|a 27|<a 2,…,|a 49|<a 24.∴S 1,S 2,…,S 25都为正,且S 26,S 27,…,S 50都为正, 同理S 1,S 2,…,S 75都为正,且S 75,…,S 100都为正, 即正数个数为100.]12.C [F (x )=f ⎝⎛⎭⎫x +12-1在R 上为奇函数, 故F (-x )=-F (x ),代入得f ⎝⎛⎭⎫12-x +f ⎝⎛⎭⎫12+x =2,x ∈R , 当x =0时,f ⎝⎛⎭⎫12=1,令t =12-x , 则12+x =1-t ,上式即为f (t )+f (1-t )=2, 当n 为偶数时,a n =f (0)+f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫2n +…+f ⎝⎛⎭⎫n -1n +f (1) =[f (0)+f (1)]+⎣⎡⎦⎤f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n +…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12n -1n +f ⎝ ⎛⎭⎪⎫12n +1n +f ⎝⎛⎭⎫12 =2×n2+1=n +1,当n 为奇数时,a n =f (0)+f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫2n +…+f ⎝⎛⎭⎫n -1n +f (1)=[f (0)+f (1)]+⎣⎡⎦⎤f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n +…+⎣⎢⎢⎡⎦⎥⎥⎤f ⎝ ⎛⎭⎪⎪⎫n -12n +f ⎝ ⎛⎭⎪⎪⎫n +12n=2×n +12=n +1,综上所述,a n =n +1.]13.D [∵f (x )=x 2+2x =(x +1)2-1在(0,+∞)上为增函数,且f (x )>0, ∴f 1(x )=f (x )=x 2+2x 在[1,2]上为增函数, 即f 1(x )max =8=32-1,且f 1(x )>0,同理f 2(x )max =f (f 1(x )max )=f (32-1+1)2-1=34-1=322-1,且f 2(x )>0, 同理f 3(x )max =f (f 2(x )max )=f (34-1+1)2-1=38-1=323-1,且f 3(x )>0, 依此类推f 2 019(x )max =f (f 2 018(x )max )=322 019-1.] 14.C [因为a n +1=a 2n +3a n +1,所以a n +1-a n =a 2n +2a n +1=(a n+1)2≥0, 所以{a n }为递增数列,而a n +1+1=a 2n +3a n +2 =(a n +1)(a n +2),所以1a n +1+1=1(a n +1)(a n +2)=1a n +1-1a n +2, 所以b n =1a n +2=1a n +1-1a n +1+1,因为数列{b n }的前n 项和为S n ,a 1=-12,所以S 2 019=1a 1+1-1a 2+1+1a 2+1-1a 3+1+…+1a 2 019+1-1a 2 020+1=2-1a 2 020+1.而a 2+1=(a 1+1)(a 1+2)=34,a 3+1=(a 2+1)(a 2+2)=2116,所以a 2 020+1>a 3+1=2116,从而得到2-1a 2 020+1∈⎝⎛⎭⎫2621,2, 所以|S 2 019-k |要取最小,k 的整数值为2.] 15.3解析 记“兔子数列”为{a n },则数列{a n }每个数被4整除后的余数构成一个新的数列{b n }为1,1,2,3,1,0,1,1,2,3,1,0,…,可得数列{b n }构成一个周期为6的数列,由题意得数列{c n }为1,1,1,1,-2,-1,1,0,1,1,-2,-1,1,0,1,1,-2,-1,…,观察数列{c n }可知该数列从第三项开始后面所有的数列构成一个周期为6的数列,且每一个周期的所有项的和为0,所以c 1+c 2+c 3+…+c 2 019=(c 1+c 2)+(c 3+…+c 2 018)+c 2 019=1+1+1=3. 16.[-3,8]解析 因为a n +1-2a n -1=0, 所以a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,公比为2的等比数列, 所以a n +1=2n ,a n =2n -1. 因此S n =2(1-2n )1-2-n =2n +1-2-n .所以(-1)n λ≤S n +2n 对任意n ∈N *恒成立,可化为(-1)n λ≤2n +1+n -2对任意n ∈N *恒成立. 当n 为奇数时,-λ≤(2n +1+n -2)min , 所以 -λ≤3,即λ≥-3;当n 为偶数时,λ≤(2n +1+n -2)min , 解得λ≤8.综上,实数λ的取值范围是[-3,8].。
新高考一轮复习人教版 等差数列 作业1
7.2 等差数列一、选择题1.(2022届广西北海模拟,10)已知递增等差数列{a n }的前n 项和为S n ,若S 4=10,且a 1,a 2,a 3+1成等比数列,则公差d=( )A.1B.2C.3D.4答案 A ∵S 4=10,∴4a 1+4×32d=10,即2a 1+3d=5①, ∵a 1,a 2,a 3+1成等比数列,∴(a 1+d)2=a 1(a 1+2d+1),即a 12+2a 1d+d 2=a 12+2a 1d+a 1,也即d 2=a 1②,联立①②解得{d =1,a 1=1或{d =-52,a 1=254(舍去). 2.(2021皖北协作体模拟,4)等差数列{a n }的公差为d,当首项a 1与d 变化时,a 2+a 10+a 21是一个定值,则下列选项中一定为定值的是( )A.a 10B.a 11C.a 12D.a 13答案 B ∵等差数列{a n }的公差为d,∴a 2+a 10+a 21=a 1+d+a 1+9d+a 1+20d=3(a 1+10d)=3a 11.∵当a 1与d 变化时,a 2+a 10+a 21是一个定值,∴3a 11是定值,即a 11是一个定值.故选B.3.(2021陕西宝鸡一模,3)在1和2两数之间插入n(n ∈N *)个数,使它们与1,2组成一个等差数列,则当n=10时,该数列的所有项的和为( )A.15B.16C.17D.18答案 D 设在1和2两数之间插入n(n ∈N *)个数,使它们与1,2组成一个等差数列{a n },a 1=1,当n=10时,可得a 12=2,所以数列的所有项的和为12(a 1+a 12)2=12×(1+2)2=18.故选D. 4.(2022届河南三市联考,4)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A.5B.7C.9D.11答案 A 由等差数列{a n }的性质及a 1+a 3+a 5=3,得3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5.故选A. 5.(2020呼和浩特一模,3)在等差数列{a n }中,若a 1+a 2=5,a 3+a 4=15,则a 5+a 6=( )A.10B.20C.25D.30答案 C 设{a n }的公差为d.由题意得4d=10,则a 5+a 6=a 1+4d+a 2+4d=5+20=25.故选C.6.(2021陕西宝鸡二模,5)已知{a n }是等差数列,满足3(a 1+a 5)+2(a 3+a 6+a 9)=18,则该数列的前8项和为( )A.36B.24C.16D.12答案 D 由等差数列的性质可得a 1+a 5=2a 3,a 3+a 6+a 9=3a 6,所以3×2a 3+2×3a 6=18,即a 3+a 6=3,所以S 8=8(a 1+a 8)2=8(a 3+a 6)2=12.故选D. 7. (2021河南安阳模拟,5)已知数列{a n },{b n },{c n }均为等差数列,且a 1+b 1+c 1=1,a 2+b 2+c 2=3,则a 2020+b 2020+ c 2020=( )A.4037B.4039C.4041D.4043答案 B 因为数列{a n },{b n },{c n }均为等差数列,所以数列{a n +b n +c n }也是等差数列,且首项为a 1+b 1+c 1=1,公差d=(a 2+b 2+c 2)-(a 1+b 1+c 1)=3-1=2,所以a 2020+b 2020+c 2020=1+(2020-1)×2=4039.故选B. 思路分析 根据等差数列的性质得出数列{a n +b n +c n }也是等差数列,利用等差数列通项公式可求相应项.8.(2021吉林丰满月考,4)在数列{a n }中,a 1=0,a n+1-a n =2,S n 为其前n 项和,则S 10=( )A.200B.100C.90D.80答案 C 因为数列{a n }中,a 1=0,a n+1-a n =2,所以数列{a n }是以0为首项,2为公差的等差数列,则S 10=10×92×2=90. 9.(2021安徽马鞍山质监,11)在等差数列{a n }中,a 8a 7<-1,且它的前n 项和S n 有最小值,当S n <0时,n 的最大值为( )A.7B.8C.13D.14答案 C 因为等差数列{a n }的前n 项和S n 有最小值,所以d>0,又a 8a 7<-1,所以a 7<0,a 8>0,所以a 7+a 8>0, 又S 13=13(a 1+a 13)2=13a 7<0, S 14=14(a 1+a 14)2=7(a 7+a 8)>0, 所以当S n <0时,n 的最大值为13.方法总结 利用等差数列的性质,可将前n 项和与项建立关系:S 2n+1=(2n+1)a n+1,S 2n =n(a n +a n+1).10.(2021宁夏吴忠一模,7)数列{a n }是等差数列,S n 为其前n 项和,且a 1<0,a 2020+a 2021<0,a 2020·a 2021<0,则使S n <0成立的最大正整数n 是( )A.2020B.2021C.4040D.4041答案 C 设数列{a n }的公差为d,由a 1<0,a 2020+a 2021<0,a 2020·a 2021<0,可知a 2020<0,a 2021>0,所以d>0,数列{a n }为递增数列,S 4041=4041(a 1+a 4041)2=4041a 2021>0,S 4040=2020(a 1+a 4040)=2020(a 2020+a 2021)<0,所以可知n 的最大值为4040.故选C.11.(2021山西吕梁一模,3)等差数列{a n }的前n 项和为S n ,已知a 5=2,S 4=28,则S n <0时,n 的最小值为( )A.10B.11C.12D.13答案 C 设等差数列{a n }的公差为d,因为a 5=2,S 4=28,故a 1+4d=2,4(a 1+a 4)2=28,即2a 1+3d=14,解得a 1=10,d=-2,故S n =n×10+12n(n-1)×(-2)=-n 2+11n=-n(n-11),n ∈N *,令S n =-n(n-11)<0,得n>11,且n ∈N *,故n 的最小值为12.故选C.12.(2022届西南名校联考,6)设等差数列{a n }的前n 项和是S n ,若a 2<-a 11<a 1,则( )A.S 11>0且S 12<0B.S 11<0且S 12<0C.S 11>0且S 12>0D.S 11<0且S 12>0答案 A 由题意知,a 1+a 11>0,a 2+a 11=a 1+a 12<0,得S 11=11(a 1+a 11)2>0,S 12=12(a 1+a 12)2<0.故选A. 13.(2022届陕西宝鸡期末,10)设等差数列{a n }的前n 项和为S n ,公差为d.已知a 3=12,S 10>0,a 6<0,则下列选项不正确的是( )A.数列{S n a n}的最小项为第6项 B.-245<d<-4 C.a 5>0D.S n >0时,n 的最大值为5答案 D S 10=102(a 1+a 10)=5(a 5+a 6)>0,又a 6<0,所以a 5>0,故选项C 正确;由a 3=12,且a 5>0,a 6<0,a 5+a 6>0,得{a 5=12+2d >0,a 6=12+3d <0,a 5+a 6=24+5d >0,解得-245<d<-4,选项B 正确;由上分析知,当1≤n ≤5时,a n >0,当n ≥6时,a n <0,所以S 11=11a 6<0,又S 10>0,故S n >0时,n 的最大值为10,故选项D 错误;由于d<0,因此数列{a n }是递减数列,由上述分析知当1≤n ≤5时,S n a n >0,当6≤n ≤10时,S n a n <0,当n ≥11时,S n a n >0,故数列{S n a n}中最小的项为第6项,选项A 正确.故选D.14.(多选)(2021山东济宁鱼台一中月考,11)设{a n }是等差数列,S n 为其前n 项和,且S 7<S 8,S 8=S 9>S 10,则下列结论正确的是( )A.公差d<0B.a 9=0C.S 11>S 7D.S 8、S 9均为S n 的最大值答案ABD 由S 7<S 8得a 1+a 2+a 3+…+a 7<a 1+a 2+…+a 7+a 8,即a 8>0,又∵S 8=S 9,∴a 1+a 2+…+a 8=a 1+a 2+…+a 8+a 9,∴a 9=0,故B 中结论正确;同理由S 9>S 10得a 10<0,∴公差d=a 10-a 9<0,故A 中结论正确;对于C,若S 11>S 7,则a 8+a 9+a 10+a 11>0,可得2(a 9+a 10)>0,由结论a 9=0,a 10<0,知a 9+a 10<0,矛盾,故C 中结论错误;∵S 7<S 8,S 8=S 9>S 10,d<0,∴S 8与S 9均为S n 的最大值,故D 中结论正确.故选ABD.二、填空题15.(2022届豫南名校联考(二),15)已知S n 为数列{a n }的前n 项和,数列{S n n}是等差数列,若a 2=2a 1,S 12=468,则a 1= .答案 6解析 设等差数列{S n n }的公差为d,则d=S 22-S 11=a 1+a 22-a 1=3a 12-a 1=a 12,所以S n n =a 1+(n-1)×a 12=na 12+a 12,所以S n =n 2a 12+na 12,由S 12=122a 12+12a 12=468,可得a 1=6. 16.(2021吉林顶级名校月考,14)记S n 分别为等差数列{a n }的前n 项和,若a n =21-2n,则S 10= . 答案 100解析 由a n =21-2n 得a 1=19,a 10=1,所以前10项的和S 10=19+12×10=100. 17.(2021广东深圳外国语学校模拟,13)已知等差数列{a n }的前n 项和S n =225,其前三项和为6,后三项和为39,则该数列有 项.答案 30解析 设等差数列{a n }共有n 项(n ≥3),其前三项和为6,即a 1+a 2+a 3=6,则有3a 2=6,解得a 2=2.后三项和为39,即a n-2+a n-1+a n =39,则有3a n-1=39,解得a n-1=13.等差数列{a n }的前n 项和S n =225,即S n =(a 1+a n )×n 2=(a 2+a n -1)×n 2=15n 2=225,解得n=30.故该数列有30项. 思路分析 设等差数列{a n }共有n 项(n ≥3),由等差数列的性质求出a 2、a n-1,由等差数列的前n 项和的公式可得S n =(a 1+a n )×n 2=(a 2+a n -1)×n 2=225,解方程可得n 的值. 18.(2022届四川绵阳第一次诊断,13)设S n 是等差数列{a n }的前n 项和,若a 1=2,S 7=35,则a 6= . 答案 7解析 由等差数列性质知S 7=7(a 1+a 7)2=7a 4=35,故a 4=5.又∵a 1=2,∴公差d=1.∴a n =n+1,则a 6=7. 19.(2022届广西模拟,15)在等差数列{a n }中,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是 .答案 20解析 因为a 1+a 3+a 5=3a 3=105,a 2+a 4+a 6=3a 4=99,所以a 3=35,a 4=33,从而公差d=-2,则a 1=39,S n =39n+12n(n-1)(-2)=-n 2+40n=-(n-20)2+400,所以当n=20时,S n 取最大值. 三、解答题20.(2022届吉林一调,17)已知数列{a n }是等差数列,S n 是{a n }的前n 项和,a 4=-10,S 8=S 9.(1)求数列{a n }的通项公式;(2)求S n .解析 (1)设等差数列{a n }的公差为d,可知{a 1+8d =0,a 1+3d =-10,解得{a 1=-16,d =2.从而a n =-16+2(n-1)=2n-18(n ∈N *). (2)由(1)知,a 1=-16,d=2,则S n =-16n+n(n -1)2×2=n 2-17n(n ∈N *). 21.(2022届河南调研,18)已知数列{a n }满足a 1=4,a n+1=2a n +2n+1(n ∈N *),设数列{a n }的前n 项和为S n .(1)证明:数列{a n 2n }是等差数列. (2)求S n .解析 (1)证明:由a n+1=2a n +2n+1,得a n+12n+1-a n 2n =1. 因为a 121=2,所以数列{a n 2n }是以2为首项,1为公差的等差数列. (2)由(1)得a n 2n =2+(n-1)×1=n+1,所以a n =(n+1)·2n ,所以S n =2×21+3×22+…+n×2n-1+(n+1)×2n ①,2S n =2×22+3×23+…+n×2n +(n+1)×2n+1②,①-②得-S n =2×21+22+…+2n -(n+1)×2n+1=-n ·2n+1,所以S n =n ·2n+1.22.(2022届陕西宝鸡月考,18)已知正项数列{a n }的前n 项和为S n ,且S n =14(a n +1)2(n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等差数列.解析 (1)在S n =14(a n +1)2(n ∈N *)中,令n=1,可得a 1=S 1=(a 1+1)24,∴a 1=1. 令n=2,可得1+a 2=(a 2+1)24,得a 2=3或-1(舍去). (2)证明:∵a 1=1,S n =14(a n +1)2(n ∈N *),∴当n ≥2时,S n-1=14(a n-1+1)2,∴S n -S n-1=a n =14(a n +1)2-14(a n-1+1)2=(a n -a n -1)(a n +a n -1+2)4,化简得(a n +a n-1)·(a n -a n-1-2)=0. ∵a n >0,∴a n -a n-1=2(n ≥2),∴{a n }是以1为首项,2为公差的等差数列.23.(2022届哈尔滨期中,20)在数列{a n }中,a 1=4,na n+1-(n+1)a n =2n 2+2n.(1)求证:数列{a n n}是等差数列; (2)求数列{1a n}的前n 项和S n . 解析 (1)证明:na n+1-(n+1)a n =2n 2+2n 的两边同除以n(n+1),得a n+1n+1-a n n=2. 又a 11=4,所以数列{a n n }是首项为4,公差为2的等差数列. (2)由(1)得a n n =4+2(n-1),即a n n =2n+2,所以a n =2n 2+2n,故1a n =12n 2+2n =12(1n -1n+1), 所以S n =12(1-12)+(12-13)+…+(1n -1n+1)=12·(1-1n+1)=n 2(n+1). 24.(2021石景山一模,17)已知有限数列{a n }共有30项,其中前20项成公差为d 的等差数列,后11项成公比为q 的等比数列.记数列的前n 项和为S n .从条件①、条件②、条件③这三个条件中选择一个作为已知.求:(1)d,q 的值;(2)数列{a n }中的最大项.条件①:a 2=4,S 5=30,a 21=20;条件②:S 3=0,a 20=-36,a 22=-9;条件③:S 1=48,a 21=20,a 24=160.注:如果选择多个条件分别解答,按第一个解答计分.解析 选择条件①:a 2=4,S 5=30,a 21=20.(1)因为{a n }的前20项成等差数列,a 2=4,S 5=30,所以{a 1+d =4,5a 1+5×42d =30,解得{a 1=2,d =2.所以a 20=2+19×2=40.因为数列{a n }的后11项成公比为q 的等比数列,所以q=a 21a 20=12. 综上,d=2,q=12. (2){a n }的前20项成等差数列,d>0,所以前20项逐项递增,即前20项中的最大项为a 20=40.数列{a n }的后11项成等比数列,a 20=40,q=12,所以后11项逐项递减,即后11项中的最大项为a 20=40. 综上,数列{a n }的最大项为第20项,其值为40.选择条件②:S 3=0,a 20=-36,a 22=-9.(1)因为{a n }的前20项为等差数列,S 3=0,a 20=-36,所以{3a 1+3d =0,a 1+19d =-36,所以{a 1=2,d =-2. 因为数列{a n }的后11项成公比为q 的等比数列,a 20=-36,a 22=-9,所以q 2=a 22a 20=14,所以q=±12. 综上,d=-2,q=±12. (2){a n }的前20项成等差数列,d<0,所以前20项逐项递减,即前20项中的最大项为a 1=2.i.当q=12时,a n =-36(12)n -20(20≤n ≤30且n ∈N *). 所以当20≤n ≤30时,a n <0.所以数列{a n }的最大项为第1项,其值为2.ii.当q=-12时,a n =-36(-12)n -20(20≤n ≤30且n ∈N *).后11项中的最大项为a 21=18. 故数列{a n }的最大项为第21项,其值为18.综上,当q=12时,数列{a n }的最大项为第1项,其值为2. 当q=-12时,数列{a n }的最大项为第21项,其值为18. 选择条件③:S 1=48,a 21=20,a 24=160.(1)因为数列{a n }的后11项成公比为q 的等比数列,a 21=20,a 24=160,所以q 3=a 24a 21=8,解得q=2.所以a 20=a 21q=10. 又因为{a n }的前20项成等差数列,S 1=a 1=48,所以d=a 20-a 120-1=-2. 综上,d=-2,q=2.(2)数列{a n }的前20项成等差数列,d<0,所以前20项逐项递减,即前20项中的最大项为a 1=48.数列{a n }的后11项成等比数列,a 20=10,q=2.所以a n =10·2n-20(20≤n ≤30且n ∈N *).所以后11项逐项递增.后11项中的最大项为a 30=10240.综上,数列{a n }的最大项为第30项,其值为10240.25.(2020朝阳二模,16)已知{a n }是公差为d 的等差数列,其前n 项和为S n ,且a 5=1, .若存在正整数n,使得S n 有最小值.(1)求{a n }的通项公式;(2)求S n 的最小值.从①a 3=-1,②d=2,③d=-2这三个条件中选择符合题意的一个条件,补充在填空线上并作答. 解析 选择①.(1)因为a 5=1,a 3=-1,所以d=1.所以a n =1+(n-5)×1=n -4.(2)由(1)可知a 1=-3.所以S n =n(a 1+a n )2=12n(n-7)=12(n -72)2-498. 因为n ∈N *, 所以当n=3或4时,S n 取得最小值,最小值为-6. 故存在正整数n=3或4,使得S n 有最小值,最小值为-6. 选择②.(1)因为a 5=1,d=2,所以a n =1+(n-5)×2=2n -9.(2)由(1)可知a 1=-7.所以S n =n(a 1+a n )2=n 2-8n=(n-4)2-16,所以当n=4时,S n 取得最小值,最小值为-16. 故存在正整数n=4,使得S n 有最小值,最小值为-16. (不可以选择③)。
高三数学等差数列选择题专项训练知识点及练习题附解析(1)
一、等差数列选择题1.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a += B .560a a +=C .670a a +=D .890a a +=解析:B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B.2.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 解析:C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+ 故选:C3.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107C .109D .105解析:B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B.4.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4 B .6C .7D .8解析:A 【分析】由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A5.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .45解析:D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D6.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m B .21m +C .22m +D .23m +解析:C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C. 【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 7.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7 B .10C .13D .16解析:C 【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C8.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .9解析:C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C9.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S B .5SC . 6SD . 7S解析:B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S .10.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .675解析:A 【分析】先利用公式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式, 2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.11.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4C .a 5=2D .a 6=2解析:C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C12.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14C .15D .16解析:A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A13.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100C .90D .80解析:C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C14.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155C .141D .139解析:B 【分析】画出图形分析即可列出式子求解.【详解】所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107y x y -=⎧⎨-=⎩ ,解得15548x y =⎧⎨=⎩.故选:B.15.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .2解析:B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==, 所以33810371178b b b b b b b ===. 故选:B.二、等差数列多选题16.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4,∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题17.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.18.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列 C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列 解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.19.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >解析:BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n na n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.20.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】 由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 21.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.解析:ABD【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <,所以50a >,60a <,故A 正确;对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >,所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >,所以8870a S S =->,即87S S >,故D 正确,故选:ABD【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.22.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( )A .1055a =B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=解析:AC【分析】由该数列的性质,逐项判断即可得解.【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误.故选:AC.【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.23.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( )A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥ 解析:BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误;故选:BC24.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥B .当数列{}n a 为等差数列时,20210S ≤C .当数列{}n a 为等比数列时,20210T >D .当数列{}n a 为等比数列时,20210T <解析:AC【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111xx x x x e f x f x e e e e --+=+-=+-=++++, 所以()1112x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥; 当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题25.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <解析:AD【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确; 10345678910770S S a a a a a a a a -=++++++=>, 所以310S S ≠,故选项C 不正确; 当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.。
高三第一轮复习数列基础练习题
/ 8 高三第一轮复习数列基础练习题 敕章知识点小结 等差数列 1相关公式: (1) 定义:),1(1为常数dndaann(2)通项公式:dnaan)1(1 (3)前n项和公式:dnnnaaanSnn2)1(2)(11(4)通项公式推广:dmnaamn)( 2.等差数列}{na的一些性质 (1)对于任意正整数n,都有121aaaann (2)}{na的通项公式)2()(2112aanaaan (3)对于任意的整数srqp,,,,如果srqp,那么srqpaaaa (4)对于任意的正整数rqp,,,如果qrp2,则qrpaaa2 (5)对于任意的正整数n>1,有112nnnaaa (6)对于任意的非零实数b,数列}{nba是等差数列,则}{na是等差数列 (7)已知}{nb是等差数列,则}{nnba也是等差数列 (8)}{},{},{},{},{23133122nnnnnaaaaa等都是等差数列 (9)nS是等差数列na的前n项和,则kkkkkSSSSS232,, 仍成等差数列,即)(323mmmSSS (10)若)(nmSSnm,则0nnS(11)若pSqSqp,,则)(qpSqp (12)bnanSn2,反之也成立 、等比数列 1相关公式: (1)定义:)0,1(1qnqaann (2)通项公式:11nnqaa (3)前n项和公式:1q 1)1(1q 11qqanaSnn (4)通项公式推广:mnmnqaa 2.等比数列}{na的一些性质
职业高中高考数学一轮复习专题:等差数列求和
职业高中数学专题《等差数列求和》4一、选择题:6/⨯81.设Sn 是等差数列{n a }的前n 项和,若S 10=120,则56a a +=…………………………( ) A.12 B.24 C.36 D.482.一个等差数列的第5项为10,前3项之和为3,则首项与公差分别为………………( ) A.2-、3 B.2、3- C.3-、2 D.3、2-3.设Sn 是等差数列{n a }的前n 项和,若OB=2a ⋅OA+199a ⋅OC ,且A 、B 、C 三点共线,且直线不过点O ,则S 200=……………………………………………………………………( ) A.200 B.201 C.100 D.1014.设Sn 是等差数列{n a }的前n 项和,若S 12=8S 4,则1:a d =…………………………( ) A.2:3 B.2:1 C.10:9 D.9:105.在等差数列{n a }中,前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( ) A.130 B.170 C.210 D.2606.设Sn 是等差数列{n a }的前n 项和,若22n S n n m =-+,则m 的值为…………………( ) A.0 B.1 C.1- D.任意实数7.在项数为2n+1的等差数列{n a }中,若所有奇数项之和为165,所有偶数项之和为150,则这个数列的项数为…………………………………………………………………………( ) A.9 B.19 C.10 D.218.数列:1,12,12,13,13,13,14,14,14,14,15,…的前100项之和为………( ) A.131114 B.13914 C.14314 D.14114二、填空题:6/⨯49.设Sn 是公差为1的等差数列{n a }的前n 项和,若S 100=100,则135a a a +++…99a += 10.在等差数列{n a }中,若13:a a =1:3,S 5=45,则4a =11.设An 、Bn 分别是两个等差数列{n a }、{n b }的前n 项和,若An:Bn=(2n+3):(3n-1),则 99:a b =12.将正偶数排序:(2),(4、6),(8、10、12),(14、16、18、20),…,则2014在 第 个括号中 三、解答题:14/⨯213.设Sn 是等差数列{n a }的前n 项和,若S 10=110,S 20= 420。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自主梳理
1.等差数列的有关定义
(1)一般地,如果一个数列从第一项起,每一项与它的前一项的—等于同一个常数,那么这个数列就叫做等差数列.符号表示为(n£N*,d为常数).
(2)数列a,A,b成等差数列的充要条件是,其中A叫做a,b的
2.等差数列的有关公式
(1)通项公式:a n=,a n=a m+(m,n W N*).
(2)前n项和公式:S n==.
3.等差数列的前n项和公式与函数的关系
S n=dn2+
数列U{a n}是等差数列的充要条件是其前n项和公式S n=
4.等差数列的性质
(1)若m+n=p+q(m,n,p,q W N*),则有,特别地,当m+n=2p时,.
(2)等差数列中,S m,S2m-S m,S3y m—S2m成等差数列.
(3)等差数列的单调性:若公差d>0,则数列为;若d<0,则数列为;若d=0,则数列为.
自我检测
1.已知等差数列{a n}中,a5+a9—a7=10,记S n=a1+a2H\-a n,贝U S13的值为
.
2.等差数列U{a n}的前n项和为S n,且S3=6,a3=4,则公差d=.
3.设等差数列U{a n}的前n项和为S n.若S9=72,则a2+a4+a9=.
4.若等差数列U{a n}的前5项之和S5=25,且a2=3,则a7=.
5.设是等差数列{4的前〃项和,若^=9,则19=.
il 后练习区一逍题精,现"答尊
探究点一等差数列的基本量运算
例1等差数列{a }的前n 项和记为S .已知a 10
=30,a 20=50,
⑴求通项an ;nn (2)若S n =2彳2,求n .
变式迁移1设等差数列U {a }的公差为d (d W 0),它的前10项和S 10=110,且a 1,a 2,a 4成等比数列,求公差d 和通项公式an.
探究点二等差数列的判定
31一 例2已知数列{a n }中,a 1=5,a n =2-(n 三2,n —t
(n £N *).
(1)求证:数列出}是等差数列; (2)求数列{a /中的最大值和最小值,并说明理由. 变式迁移2已知数列{%}中,a 1=5且a n =2a n _^+2n —1(n 三2且n £*).
(1)求a 2,a 3的值.
(2)是否存在实数口,使得数列{吟}为等差数列?若存在,求出口的值;若不存在,说明理由.
N *),数列U{b }满足b =一nn a 一1 n
探究点三等差数列性质的应用
例3若一个等差数列的前5项之和为34,最后5项之和为146,且所有项的和为360,求这个数列的项数.
变式迁移3已知数列{a n}是等差数列.
⑴前四项和为21,末四项和为67,且前n项和为286,求n;
(2)若S=20,S2=38,求S3;
(3)若项数为奇数,且奇数项和为44,偶数项和为33,求数列的中间项和项数.
探究点四等差数列的综合应用
例4已知数列{%}满足2%+I=%+%+2(〃£N*),它的前〃项和为S”,且%=10,S6=72.若勾=2a n—30,求数歹U{勾}的前n项和的最小值.
变式迁移4在等差数歹U{a}中,a16+a17+a18=a9=—36,其前n项和为S.
⑴求S n的最小值,并求出S n取最小值时n的值."
(2)求T n=1a j+l a2H——H a n if
1.等差数列的判断方法有:
(1)定义法:a n+1-a n=d(d是常数)。
{a n}是等差数列.
(2)中项公式:2a n+1=a n+a n+2(n£N*)Q{a n}是等差数列.
⑶通项公式:a n=pn+q(p,q为常数)。
{a n}是等差数列.
(4)前n项和公式:S n=An2+Bn(A、B为常数)0{a n}是等差数列.
2.对于等差数列有关计算问题主要围绕着通项公式和前n项和公式,在两个公式中共五个量a1、dn、a n、S n,已知其中三个量可求出剩余的量,而a与d是最基本的,它可以确定等差数列的通项公式和前n项和公式.
3.要注意等差数列通项公式和前n项和公式的灵活应用,如a n=a m+(n-m)d,S2n_1
二(2〃-1),等.
,a+d,a+2d,,®a-d,a,a
4.在遇到三个数成等差数列问题时,可设三个数为
①+d;③a-d,a+d,。
+3d等可视具体情况而定.
il后练司暖_g题暗,现"答题
一、填空题
1.已知{a n}为等差数列,a3+a8=22,a6=7,则a5=.
2.如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2H+a7=.
3.已知{a n}是等差数列,a1=—9,S3=S7,那么使其前n项和S n最小的n是.
4.在等差数列{a}中,若a4+a6+a8+a+a=120,则a9—aa11的值为.
n46810129j11
5.等差数列U{a}的前n项和满足S20=S40,下列结论中正确的序号是.
①S30是S中的最大值;
②S30是S n中的最小值;
③S30=0;
④S60=0.
6.设S n为等差数歹U{a n}的前n项和,若S3=3,S6=24,则a9=.
7.等差数列{a n}的前n项和为S n,已知a m—1+a m「今=0,S2m—1=38,则m=.
8.在数列也a n}中,若点(n,a n)在经过点(5,3)的定直线l上,则数歹打a n}的前9项和S9
二、解答题
9.设{a n}是一个公差为d(d W0)的等差数列,它的前10项和S10=110,且a2=a1a4.
(1)证明:a1=d;
(2)求公差d的值和数列{a}的通项公式.
10.已知等差数歹U{%}满足:a3=7,a5+a7=26,{a j的前n项和为S n.
⑴求an及S;nnn
(2)令b=」^(n£N*),求数歹lj{b}的前n项和T.n a2-1nn
n
11.在数列{a n}中,a1=1,3a n a n_1+a n一a n_1=0(n三2).
⑴证明数列{:}是等差数列;
a
n
(2)求数歹U{a n}的通项;
(3)若a+—三对任意n三2的整数恒成立,求实数的取值范围.n a
n+1。