2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)数列的概念与简单表示法(含解析)

合集下载

2014届高考一轮复习数学基础知识数列(新人教A版)Word版

2014届高考一轮复习数学基础知识数列(新人教A版)Word版

高中数学第三章数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题.§03. 数列知识要点1. ⑴等差、等比数列:⑵看数列是不是等差数列有以下三种方法:①②2()③(为常数).⑶看数列是不是等比数列有以下四种方法:①②(,)①注①:i. ,是a、b、c成等比的双非条件,即a、b、c等比数列.ii. (ac>0)→为a、b、c等比数列的充分不必要.iii. →为a、b、c等比数列的必要不充分.iv. 且→为a、b、c等比数列的充要.注意:任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.③(为非零常数).④正数列{}成等比的充要条件是数列{}()成等比数列.⑷数列{}的前项和与通项的关系:[注]:①(可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若不为0,则是等差数列充分条件).②等差{}前n项和→可以为零也可不为零→为等差的充要条件→若为零,则是等差数列的充分条件;若不为零,则是等差数列的充分条件.③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)2. ①等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍;②若等差数列的项数为2,则;③若等差数列的项数为,则,且,.3. 常用公式:①1+2+3 …+n =②③[注]:熟悉常用通项:9,99,999,…;5,55,555,….4. 等比数列的前项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为. 其中第年产量为,且过年后总产量为:⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元. 因此,第二年年初可存款: =.⑶分期付款应用题:为分期付款方式贷款为a 元;m 为m 个月将款全部付清;为年利率. ()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m mm mm m mr r ar x r r x r a x r x r x r x r a 5. 数列常见的几种形式:⑴(p 、q 为二阶常数)用特证根方法求解.具体步骤:①写出特征方程(对应,x 对应),并设二根②若可设,若可设;③由初始值确定. ⑵(P 、r 为常数)用①转化等差,等比数列;②逐项选代;③消去常数n 转化为的形式,再用特征根方法求;④(公式法),由确定. ①转化等差,等比:. ②选代法: .③用特征方程求解:. ④由选代法推导结果:. 6. 几种常见的数列的思想方法:⑴等差数列的前项和为,在时,有最大值. 如何确定使取最大值时的值,有两种方法: 一是求使,成立的值;二是由利用二次函数的性质求的值.⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前项和可依照等比数列前项和的推倒导方法:错位相减求和. 例如:⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证为同一常数。

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)5.2等差数列课件 新人教A版

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)5.2等差数列课件 新人教A版

解析:(1)设两等差数列组成的和数列为{cn},由题意知新数 列仍为等差数列且 c1=7, 3=21, c5=2c3-c1=2×21-7 c 则 =35.
(2)∵S10,S20-S10,S30-S20 成等差数列, ∴2(S20-S10)=S10+S30-S20, 即 40=10+S30-30,∴S30=60.
[例1]
在数列{an}中,a1=-3,an=2an-1+2n
+3(n≥2,且n∈N*).
(1)求a2,a3的值;
an+3 (2)设 bn= n (n∈N*),证明:{bn}是等差数列. 2
[自主解答]
(1)∵a1=-3,an=2an-1+2n+3(n≥2,
且n∈N*),∴a2=2a1+22+3=1,a3=2a2+23+3=13.
解析:设{an}的公差为 d, 由 S2=a3 知,a1+a2=a3,即 2a1+d=a1+2d, 1 1 又 a1= ,所以 d= ,故 a2=a1+d=1, 2 2 1 1 1 2 1 Sn=na1+ n(n-1)d= n+ (n -n)× 2 2 2 2 1 2 1 = n + n. 4 4
1 2 1 答案:1 n + n 4 4
[答案] n
1.上述解法计算量较大,很容易出错,若采用特殊值 计算很简单,因{an}为等差数列且 a1=1,只要求出公差 d, S2 便可得出 an,若令 n=1,则有 =3,即可求出公差 d. S1
2.特殊值法在解一些选择题和填空题中经常用到, 就是通过取一些特殊值、特殊点、特殊函数、特殊数列、
A.66 C.144
B.99 D.297
(2)(2013· 天津模拟)设等差数列{an}的前 n 项和 Sn, 若 S4=8, 8=20, a11+a12+a13+a14= S 则 ( )

2014届高考数学(苏教版)一轮复习教学案第6章数列6.1数列的概念与简单表示法

2014届高考数学(苏教版)一轮复习教学案第6章数列6.1数列的概念与简单表示法

第6章 数列6.1 数列的概念与简单表示法考纲要求1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式). 2.了解数列是自变量为正整数的一类函数.1.数列的定义按照__________排列的一列数称为数列,数列中的每个数都叫做这个数列的项.从函数观点看,数列可以看成是以__________________________为定义域的函数a n =f (n ),当自变量按照从小到大的顺序依次取值时,所对应的一列函数值.反过来,对于函数y =f (x ),如果f (i )(i =1,2,3,…)有意义,那么可以得到一个数列________________________.4.数列的表示法数列有三种表示法,它们分别是__________、__________和__________. 5.数列的通项公式如果数列{a n }的第n 项a n 与__________之间的关系可以用一个公式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.6.已知S n ,则a n =⎩⎪⎨⎪⎧,n =1,,n ≥2.数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥ ,a n ≥ .若a n 最小,则⎩⎪⎨⎪⎧a n ≤ ,a n ≤ .1.已知数列{a n }中,a n +1=2a n 2+a n且a 7=12,则a 5=__________.2.(2012北京海淀高三模拟考试(2))若数列{a n }中,a 1=13,且对任意的正整数p ,q 都有a p +q =a p a q ,则a n =__________.3.(2012江苏南通高三第一学期期末测试)已知数列{a n }的前n 项和S n =-2n 2+3n ,则数列{a n }的通项公式为__________.4.(2012安徽合肥市质检)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则a 10=__________.5.数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n <12,2a n -1,12≤a n <1,若a 1=67,则a 2 012的值为__________.1.数列的项与项数是同一个概念吗?提示:不是.数列的项与项数是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列的前n 项和S n 与通项a n 的关系是什么?提示:a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.3.数列与函数有什么关系?提示:数列是特殊的函数,它的特殊性主要体现在定义域为正整数集N *(或它的有限子集{1,2,…,n }n ∈N *).一、由数列的前几项归纳数列的通项公式【例1】 写出下列数列的一个通项公式,使它的前几项分别是下列各数: (1)23,415,635,863,1099,…; (2)12,-2,92,-8,252,…. 方法提炼(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征: ①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征;④各项符号特征等,并对此进行归纳、联想.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n +1来调整.请做针对训练1二、利用a n 与S n 的关系求通项公式【例2】 已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,求a n . 方法提炼已知a n 求S n 时,方法多种多样,但已知S n 求a n 的方法却是高度统一,化简关系式用S n表示出a n 是关键.当n ≥2时,若由a n =S n -S n -1求出的a n 对n =1也成立,则a n =S n -S n -1,否则就分段表示.请做针对训练2三、由递推关系式求数列的通项公式【例3】 (1)在数列{a n }中,a 1=-1,a n +1=a n +2n ,求a n ;(2)在数列{a n }中,a 1=12,a n =n -1n +1·a n -1(n ≥2),求a n .方法提炼(1)对于形如a n +1-a n =f (n )的数列递推关系式,若f (1)+f (2)+…+f (n )的和是可求的,可用多式相加法求得a n ,也称这种方法为叠加法.(2)对于形如a n +1a n=f (n )的数列的递推关系式,若f (1)·f (2)·…·f (n )的积是可求的,可用多式相乘法求得a n ,也称这种方法为叠乘法.请做针对训练3四、数列的性质【例4】已知数列{a n }的前n 项和S n =-n 2+24n (n ∈N *). (1)求{a n }的通项公式;(2)当n 为何值时,S n 达到最大?最大值是多少? 方法提炼(1)因为数列可以看作是一类特殊的函数,因而数列也具备一般函数应具备的性质.(2)求数列的最大(小)项,一般可以先研究数列的单调性,可以用⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1或⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1,也可以转化为函数最值问题或利用数形结合. 请做针对训练4从近三年江苏试题统计情况看,主要考查数列的项、项数、通项公式的求法,结合函数的性质来研究数列的性质.这些内容是高考考查的重点和热点.1.根据规律写出下列各数列中的x 值:(1)在数列1,2,4,8,16,32,x,128,256,…中,x =__________. (2)在数列1,1,2,3,5,8,x,21,34,55中,x =__________. (3)在数列1,3,6,10,15,21,x,36,45,…中,x =__________.2.已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n +1,求数列的通项公式. 3.根据下列条件,确定数列{a n }的通项公式. (1)a 1=1,a n +1=3a n +2;(2)a 1=1,a n =n -1n a n -1(n ≥2);(3)已知数列{a n }满足a n +1=a n +3n +2,且a 1=2,求a n . 4.已知数列{a n }的通项公式为a n =n 2-5n +4. (1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值.参考答案基础梳理自测 知识梳理 1.一定次序2.有限 无限 > <3.正整数集N *(或它的有限子集{1,2,…,k }) f (1),f (2),f (3),…,f (n ),… 4.列表法 图象法 解析法 5.序号n6.S 1 S n -S n -1 a n -1 a n +1 a n -1 a n +1 基础自测1.1 解析:由a 7=2a 62+a 6=12,得a 6=23.由a 6=2a 52+a 5=23,得a 5=1.2.13n 解析:由条件可得a n =a 1a n -1=a 21a n -2=a 31a n -3=…=a n 1=13n . 3.a n =5-4n 解析:a n =⎩⎪⎨⎪⎧ S 1,n =1,S n -S n -1,n ≥2.∴a n =⎩⎪⎨⎪⎧1,n =1,5-4n ,n ≥2. ∴a n =5-4n .4.32 解析:由题知a n +1·a n =2n ,则a n +2·a n +1=2n +1, 故a n +2a n=2. 又a 1=1,可得a 2=2, 故a 10=25=32. 5.57 解析:根据数列的周期性,可得a 2=57,a 5=57,a 8=57,…,a 2 012=57. 考点探究突破【例1】解:(1)原数列可化为222-1,2×242-1,2×362-1,2×482-1,2×5102-1,…,∴a n =2n (2n )2-1=2n4n 2-1. (2)原数列可化为12,-42,92,-162,252,…,∴a n =(-1)n +1·n 22.【例2】解:由2S n =a n +1,得S n =⎝⎛⎭⎫a n +122,当n =1时,a 1=S 1=⎝⎛⎭⎫a 1+122,得a 1=1;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫a n +122-⎝⎛⎭⎫a n -1+122. 整理,得(a n +a n -1)(a n -a n -1-2)=0, ∵数列{a n }各项为正,∴a n +a n -1>0. ∴a n -a n -1-2=0,即a n -a n -1=2.∴数列{a n }是首项为1,公差为2的等差数列. ∴a n =a 1+(n -1)×2=2n -1.【例3】 解:(1)由a n +1=a n +2n ,得a n +1-a n =2n , 所以a 2-a 1=2×1,a 3-a 2=2×2, ……a n -a n -1=2(n -1).以上n -1个式子相加得a n -a 1=2(1+2+…+n -1),所以a n =a 1+2×(n -1)(1+n -1)2=-1+n (n -1)=n 2-n -1.当n =1时,a 1=12-1-1=-1,与已知a 1=-1相吻合,所以数列{a n }的通项公式为a n=n 2-n -1.(2)由a n =n -1n +1·a n -1(n ≥2),得a n a n -1=n -1n +1,所以a 2a 1=13,a 3a 2=24,…,a n -1a n -2=n -2n ,a n a n -1=n -1n +1.将以上n -1个式子相乘,得a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n -1n +1·n -2n ·…·24·13,即a n a 1=1n +1×1n ×2×1,所以a n =1n (n +1).当n =1时,a 1=11×2=12,与已知a 1=12相吻合,所以数列{a n }的通项公式为a n =1n (n +1).【例4】解:(1)n =1时,a 1=S 1=23.n ≥2时,a n =S n -S n -1=-n 2+24n +(n -1)2-24(n -1)=-2n +25. 经验证,a 1=23符合a n =-2n +25, ∴a n =-2n +25(n ∈N *).(2)方法一:∵S n =-n 2+24n , ∴n =12时,S n 最大且S n =144. 方法二:∵a n =-2n +25,∴令a n =-2n +25>0,有n <252.∴a 12>0,a 13<0,故S 12最大,最大值为144. 演练巩固提升 针对训练1.(1)64 (2)13 (3)28 解析:(1)通过观察易知所给数列的通项公式a n =2n -1,从而x =64.(2)通过观察易知所给数列的前面两项之和等于后面一项,所以x =5+8=13.(3)通过观察可知,所给数列{a n }的项满足关系式:a n -a n -1=n (n ≥2),所以x =21+7=28.2.解:由log 2(1+S n )=n +1,得S n =2n +1-1, 当n =1时,a 1=S 1=22-1=3;当n ≥2时,a n =S n -S n -1=2n +1-2n =2n . 又n =1时,a n =21=2≠a 1,∴a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.3.解:(1)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1). ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3. 又∵a 1+1=2,∴a n +1=2·3n -1.∴a n =2·3n -1-1.(2)∵a n =n -1n a n -1,∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘,得a n =a 1·12·23·…·n -1n =a 1n =1n.(3)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2).∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=12×(3×1+1)=2,符合公式,∴a n =32n 2+n 2.4.解:(1)由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.(2)∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94的对称轴方程为n =52, 又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.。

2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)不等关系与不等式(含解析)

2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)不等关系与不等式(含解析)

第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0B .等于0C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若a -c >b -d ,c >d , 则a >b .但c >d ,a >b ⇒/ a -c >b -d .如a =2,b =1,c =-1,d =-3时,a -c <b -d . 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③1.使用不等式性质时应注意的问题:在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.典题导入[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.若本例中“q >0”改为“q <0”,试比较它们的大小. 解:由例题解法知当 q ≠1时,S 3a 3-S 5a 5=-q -1q 4.当-1<q <0时,S 3a 3-S 5a 5<0,即S 3a 3<S 5a 5;当q =-1时,S 3a 3-S 5a 5=0, 即S 3a 3=S 5a 5;当q <-1时,S 3a 3-S 5a 5>0,即S 3a 3>S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a .典题导入[例2] (1)(2011·大纲全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3(2)(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[自主解答] (1)由a >b +1得a >b +1>b ,即a >b ;且由a >b 不能得出a >b +1.因此,使a >b 成立的充分不必要条件是a >b +1.(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. [答案] (1)A (2)C由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确.典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3. ∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B 由题意得M -N =a 1a 2-a 1-a 2+1=(a 1-1)·(a 2-1)>0,故M >N . 2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.“1≤x ≤4”是“1≤x 2≤16”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由1≤x ≤4可得1≤x 2≤16,但由1≤x 2≤16可得1≤x ≤4或-4≤x ≤-1,所以“1≤x ≤4”是“1≤x 2≤16”的充分不必要条件.4.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b ,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .不能确定解析:选A ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.5.若1a <1b <0,则下列结论不.正确的是( ) A .a 2<b 2 B .ab <b 2 C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.6.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b解析:选C 当a <0时,a 2<b 2不一定成立,故A 错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故B 错. 因为1ab 2-1a 2b =a -b a 2b 2<0,所以1ab 2<1a 2b ,故C 正确.D 项中b a 与ab的大小不能确定.7.若1<α<3,-4<β <2,则α-|β|的取值范围是________. 解析:∵-4<β <2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)8.(2012·深圳模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b . 已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c=________.(结果用a ,b ,c 表示)解析:∵log 30.3<0<0.33<1<30.3,∴c <b <a , ∴(a *b )*c =b *c =c . 答案:c9.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.解析:a b 2+ba 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )⎝⎛⎭⎫1b 2-1a 2 =(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0, ∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b . 答案:a b 2+b a 2≥1a +1b10.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e (b -d )2. 11.已知b >a >0,x >y >0,求证:x x +a >y y +b .证明:x x +a -yy +b =x (y +b )-y (x +a )(x +a )(y +b )=bx -ay(x +a )(y +b ).∵b >a >0,x >y >0, ∴bx >ay ,x +a >0,y +b >0, ∴bx -ay(x +a )(y +b )>0,∴x x +a >y y +b. 12.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,求ca 的取值范围.解:∵f (1)=0,∴a +b +c =0, ∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且a >0,c <0, ∴1>-a +c a >c a ,即1>-1-c a >ca.∴⎩⎨⎧2ca<-1,ca >-2,解得-2<c a <-12.1.已知a 、b 为实数,则“a >b >1”是“1a -1<1b -1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 由a >b >1⇒a -1>b -1>0⇒1a -1<1b -1,当a =0,b =2时,1a -1<1b -1,∴1a -1<1b -1⇒/ a >b >1,故选A. 2.(2012·洛阳模拟)若-1<a <b <1,-2<c <3则(a -b )·c 的取值范围是________. 解析:∵-1<a <b <1,∴-2<a -b <0,∴2>-(a -b )>0. 当-2<c <0时,2>-c >0, ∴4>(-c )[-(a -b )]>0, 即4>c ·(a -b )>0; 当c =0时,(a -b )·c =0;当0<c <3时,0<c ·[-(a -b )]<6, ∴-6<(a -b )·c <0.综上得,当-2<c <3时,-6<(a -b )·c <4. 答案:(-6,4)3.某企业去年年底给全部的800名员工共发放2 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过3万元? (2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人? 解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元. 则y =2 000+60x 800+ax (a ∈N *,1≤x ≤10).假设会超过3万元,则2 000+60x800+10x >3,解得x >403>10.所以,10年内该企业的人均年终奖不会超过3万元. (2)设1≤x 1<x 2≤10, 则f (x 2)-f (x 1)=2 000+60x 2800+ax 2-2 000+60x 1800+ax 1=(60×800-2 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以60×800-2 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.1.已知0<a <b ,且a +b =1,下列不等式成立的是( ) A .log 2a >0 B .2a -b >1C .2ab >2D .log 2(ab )<-2解析:选D 由已知,0<a <1,0<b <1,a -b <0,0<ab <14,log 2(ab )<-2.2.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b解析:选A 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,可得,a -1a >b -1b ⇒a +1b >b +1a.3.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则 ( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定解析:选B 设甲用时间为T ,乙用时间为2t ,步行速度为a ,跑步速度为b ,距离为s ,则T =s 2a +s2b =s 2a +s 2b =s (a +b )2ab ,ta +tb =s ⇒2t =2s a +b,T -2t =s (a +b )2ab -2s a +b =s ×(a +b )2-4ab 2ab (a +b )=s (a -b )22ab (a +b )>0,即乙先到教室.4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确.又∵a y =3-3=-1,b x =2-2=-1, ∴a y =b x,因此⑤不正确. 由不等式的性质可推出 ②④成立.答案:②④。

高三数学大一轮复习 6.1数列的概念及简单表示法教案 理 新人教A版

高三数学大一轮复习 6.1数列的概念及简单表示法教案 理 新人教A版

§6.1 数列的概念及简单表示法2014高考会这样考 1.以数列前几项为背景写数列的通项;2.考查由数列的通项公式或递推关系,求数列的某一项;3.考查已知数列的递推关系或前n 项和S n 求通项a n .复习备考要这样做 1.在通项公式的求解中,要注意归纳、推理思想的应用,寻求数列的项的规律;2.通过S n 求a n ,要对n =1和n ≥2两种情况进行讨论;3.灵活掌握由递推关系求通项公式的基本方法. 1. 数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2. 数列的分类分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限按项与项间 的大小关系 分类递增数列 a n +1__>__a n 其中n ∈N *递减数列 a n +1__<__a n 常数列 a n +1=a n按其他 标准分类有界数列存在正数M ,使|a n |≤M 摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3. 数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4. 数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个公式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.5. 已知S n ,则a n =⎩⎪⎨⎪⎧S 1n =1S n -S n -1 n ≥2.[难点正本 疑点清源] 1. 对数列概念的理解(1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.(2)数列的项与项数:数列的项与项数是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. 2. 数列的函数特征数列是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应的函数解析式,即f (n )=a n (n ∈N *).1. 已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为__________.答案 a n =2n -1 (n ∈N *)解析 ∵1,3,7,15分别加上1,则为2,4,8,16,易知a n =2n-1. 2. 数列{a n }满足a 1=0,a n +1=a n +2n ,则{a n }的通项公式a n =________.答案 n (n -1)解析 由已知,得a n +1-a n =2n ,故a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =0+2+4+…+2(n -1)=n (n -1).3. 若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =__________;数列{na n }中数值最小的项是第________项. 答案 2n -11 3解析 当n ≥2时,S n -S n -1=2n -11,n =1时也符合,则a n =2n -11,∴na n =2n 2-11n=2⎝⎛⎭⎪⎫n -1142-1218,且n ∈N *,故n =3时,na n 最小.4. 设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64答案 A解析 ∵S n =n 2,∴a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. ∴a n =2n -1,∴a 8=2×8-1=15.5. (2011·江西)已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于( )A .1B .9C .10D .55答案 A解析 ∵S n +S m =S n +m ,a 1=1,∴S 1=1. 可令m =1,得S n +1=S n +1,∴S n +1-S n =1. 即当n ≥1时,a n +1=1,∴a 10=1. 题型一 由数列的前几项求数列的通项 例1 写出下面各数列的一个通项公式:(1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….思维启迪:先观察各项的特点,然后归纳出其通项公式,要注意项与项数之间的关系,项与前后项之间的关系.解 (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+-1nn.也可写为a n=⎩⎪⎨⎪⎧-1n,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…, 所以a n =13(10n-1).探究提高 (1)据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征;④各项符号特征等,并对此进行归纳、联想.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n或(-1)n +1来调整.根据数列的前几项,写出数列的一个通项公式:(1)12,14,-58,1316,-2932,6164,…; (2)32,1,710,917,…; (3)0,1,0,1,….解 (1)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,原数列可化为-21-321,22-322,-23-323,24-324,…,因此a n =(-1)n·2n-32n .(2)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为c n =n 2+1, 因此可得它的一个通项公式为a n =2n +1n 2+1.(3)a n =⎩⎪⎨⎪⎧n 为奇数1 n 为偶数或a n =1+-1n2或a n =1+cos n π2.题型二 由数列的递推关系求通项公式 例2 (1)已知a 1=1,a n +1=2a n +1,求a n ;(2)已知a 1=2,a n +1=a n +n ,求a n .思维启迪:(1)可构造等比数列求解;(2)可使用累加法. 解 (1)∵a n +1=2a n +1,令a n +1+a =2(a n +a ), 与a n +1=2a n +1比较可知a =1, 又a 1=1,∴a 1+a =2.故{a n +1}是首项为2,公比为2的等比数列, ∴a n +1=2·2n -1=2n ,故a n =2n-1.(2)当n 取1,2,3,…,n -1时,可得n -1个等式.即a n -a n -1=n -1,a n -1-a n -2=n -2,…,a 2-a 1=1,将其两边分别相加,得a n -a 1=1+2+3+…+(n -1), ∴a n =a 1+1+n -1n -12=2+n n -12.探究提高 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解. 根据下列条件,确定数列{a n }的通项公式:(1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n =n -1na n -1 (n ≥2);(3)已知数列{a n }满足a n +1=a n +3n +2,且a 1=2,求a n . 解 (1)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.(2)∵a n =n -1na n -1 (n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n.(3)∵a n +1-a n =3n +2,∴a n -a n -1=3n -1 (n ≥2), ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.题型三 由数列的前n 项和求通项公式例3 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式:(1)S n =2n 2-3n ; (2)S n =3n+b .思维启迪:当n =1时,由a 1=S 1,求a 1;当n ≥2时,由a n =S n -S n -1消去S n ,得a n +1与a n 的关系.转化成由递推关系求通项. 解 (1)a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n+b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式.∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b , n =1,2·3n -1, n ≥2.探究提高 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.答案 a n =⎩⎪⎨⎪⎧2,n =16n -5,n ≥2解析 当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.用函数的观点解决数列问题典例:(12分)已知数列{a n }.(1)若a n =n 2-5n +4, ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n .求实数k 的取值范围.审题视角 (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性. 规范解答解 (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.[4分]②∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N *,∴当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.[8分](2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.[12分]温馨提醒 (1)本题给出的数列通项公式可以看做是一个定义在正整数集N *上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.(2)在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. (3)易错分析:本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 方法与技巧1. 求数列通项或指定项.通常用观察法(对于交错数列一般用(-1)n或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2. 强调a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1 n =1S n -S n -1 n ≥2.3. 已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有三种常见思路:(1)算出前几项,再归纳、猜想;(2)“a n +1=pa n +q ”这种形式通常转化为a n +1+λ=p (a n +λ),由待定系数法求出λ,再化为等比数列;(3)利用累加或累乘法可求数列的通项公式. 失误与防范1. 数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的. 2. 数列的通项公式不一定唯一.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 已知数列1,3,5,7,…,2n -1,则35是它的( )A .第22项B .第23项C .第24项D .第28项答案 B解析 观察知已知数列的通项公式是a n =2n -1, 令a n =2n -1=35=45,得n =23.2. (2011·四川)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( ) A .3×44B .3×44+1 C .45D .45+1答案 A解析 当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第二项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1n =1,3×4n -2n ≥2.∴当n =6时,a 6=3×46-2=3×44.3. 对于数列{a n },“a n +1>|a n | (n =1,2,…)”是“{a n }为递增数列”的( )A .必要不充分条件B .充分不必要条件C .必要条件D .既不充分也不必要条件答案 B解析 当a n +1>|a n | (n =1,2,…)时,∵|a n |≥a n ,∴a n +1>a n ,∴{a n }为递增数列.当{a n }为递增数列时,若该数列为-2,0,1,,则a 2>|a 1|不成立,即知:a n +1>|a n | (n =1,2,…)不一定成立.故综上知,“a n +1>|a n | (n =1,2,…)”是“{a n }为递增数列”的充分不必要条件.4. 如果数列{a n }的前n 项和S n =32a n -3,那么这个数列的通项公式是( )A .a n =2(n 2+n +1) B .a n =3·2nC .a n =3n +1D .a n =2·3n答案 D解析 由已知可得:a 1=6,a 2=18,由此可排除A 、B 、C. 二、填空题(每小题5分,共15分)5. 已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=19,a 36=________.答案 4解析 ∵a p +q =a p +a q ,∴a 36=a 32+a 4=2a 16+a 4=4a 8+a 4 =8a 4+a 4=18a 2=36a 1=4.6. 已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,且1<S k <9 (k ∈N *),则a 1的值为________,k 的值为________.答案 -1 4解析 当n =1时,a 1=23a 1-13,∴a 1=-1.当n ≥2时,a n =S n -S n -1=23a n -13-⎝ ⎛⎭⎪⎫23a n -1-13=23a n -23a n -1,∴a na n -1=-2, ∴数列{a n }是首项为-1,公比为-2的等比数列, ∴a n =-(-2)n -1,S n =-23×(-2)n -1-13.由1<-23×(-2)k -1-13<9,得-14<(-2)k -1<-2,又k ∈N *,∴k =4.7. 已知a 1=2,a n +1-a n =2n +1 (n ∈N *),则a n =________.答案 n 2+1解析 由a n +1-a n =2n +1 (n ∈N *),得a n -a n -1=2n -1,a n -1-a n -2=2n -3,…,a 3-a 2=5,a 2-a 1=3,将以上各式相加,得a n -a 1=3+5+…+(2n -3)+(2n -1),即a n=1+1+3+5+…+(2n -1)=1+1+2n -1n 2=n 2+1.三、解答题(共22分)8. (10分)数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). 故数列从第7项起各项都是正数.9. (12分)已知函数f (x )=2x -2-x,数列{a n }满足f (log 2a n )=-2n .(1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列.(1)解 ∵f (x )=2x-2-x,f (log 2a n )=-2n , ∴2log 2a n -2-log 2a n =-2n ,∴a n -1a n=-2n ,∴a 2n +2na n -1=0,解得a n =-n ±n 2+1.∵a n >0,∴a n =n 2+1-n .(2)证明 a n +1a n=n +12+1-n +1n 2+1-n=n 2+1+n n +12+1+n +1<1.∵a n >0,∴a n +1<a n , ∴数列{a n }是递减数列.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则a 1·a 2·…·a 2 013的值为( ) A .-3 B .1 C .2 D .3答案 C解析 a 1=2,a 2=1+a 11-a 1=-3,a 3=1-31+3=-12,a 4=1-121+12=13,a 5=1+131-13=2,…,故4是数列{a n }的周期,a 1·a 2·a 3·…·a 2 013 =(a 1a 2a 3a 4)503·a 2 013=(a 1a 2a 3a 4)·a 1=2.2. 数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5B .72C .92D .132答案 B解析 ∵a n +a n +1=12(n ∈N *),∴a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,故a 2n =2,a 2n -1=12-2.∴S 21=10×12+a 1=5+12-2=72.3. 在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( )A .103B.8658C.8258 D .108 答案 D 解析 ∵a n =-2⎝ ⎛⎭⎪⎫n -2942+2×29216+3, ∴n =7时,a n 最大.a 7=-2×72+29×7+3=108.二、填空题(每小题5分,共15分)4. 已知数列{a n }中,a 1=12,a n +1=1-1a n(n ≥2),则a 16=________. 答案 12解析 由题意知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,∴此数列是以3为周期的周期数列,a 16=a 3×5+1=a 1=12. 5. 数列53,108,17a +b ,a -b 24,…中,有序数对(a ,b )是______________. 答案 ⎝ ⎛⎭⎪⎫412,-112 解析 根号里的数比分母大2,可得⎩⎪⎨⎪⎧ a +b =15a -b =26,解得⎩⎪⎨⎪⎧ a =412b =-112. 6. (2011·浙江)若数列⎩⎨⎧⎭⎬⎫nn +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________. 答案 4 解析 由题意知⎩⎪⎨⎪⎧ k k +4⎝ ⎛⎭⎪⎫23k ≥k -1k +3⎝ ⎛⎭⎪⎫23k -1,kk +4⎝ ⎛⎭⎪⎫23k ≥k +1k +5⎝ ⎛⎭⎪⎫23k +1, 解得10≤k ≤1+10.∵k ∈N *,∴k =4.三、解答题 7. (13分)设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), ∴{S n -3n }是等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *① (2)由①知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时, a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2 =2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9, 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).。

2014届福州高考数学一轮复习教学案(基础知识+高频考点+解题训练)数学归纳法(理)(含解析)

2014届福州高考数学一轮复习教学案(基础知识+高频考点+解题训练)数学归纳法(理)(含解析)

第七节数学归纳法(理)[知识能否忆起]数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.[小题能否全取]1.用数学归纳法证明3n ≥n 3(n ∈N ,n ≥3),第一步应验证( ) A .n =1 B .n =2 C .n =3D .n =4答案:C2.(教材习题改编)已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立解析:选B 因为n 为偶数,故假设n =k 成立后,再证n =k +2时等式成立. 3.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:选D 由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+14.4.用数学归纳法证明1+2+22+…+2n +1=2n +2-1(n ∈N *)的过程中,在验证n =1时,左端计算所得的项为________.答案:1+2+225.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是________.解析:当n =k 时,不等式为1+12+13+…+12k -1<k .则n =k +1时,左边应为:1+12+13+…+12k -1+12k +12k +1+…+12k +1-1 则增加的项数为2k +1-1-2k +1=2k .答案:2k数学归纳法的应用(1)数学归纳法是一种只适用于与正整数有关的命题的证明方法,它们的表述严格而且规范,两个步骤缺一不可.第一步是递推的基础,第二步是递推的依据,第二步中,归纳假设起着“已知条件”的作用,在n =k +1时一定要运用它,否则就不是数学归纳法.第二步的关键是“一凑假设,二凑结论”.(2)在用数学归纳法证明问题的过程中,要注意从k 到k +1时命题中的项与项数的变化,防止对项数估算错误.典题导入[例1] 设f (n )=1+12+13+…+1n(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *). [自主解答] (1)当n =2时,左边=f (1)=1, 右边=2⎝⎛⎭⎫1+12-1=1, 左边=右边,等式成立.(2)假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k=(k +1)⎣⎡⎦⎤f (k +1)-1k +1-k=(k +1)f (k +1)-(k +1) =(k +1)[f (k +1)-1],∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).由题悟法用数学归纳法证明等式的规则(1)数学归纳法证明等式要充分利用定义,其中两个步骤缺一不可,缺第一步,则失去了递推基础,缺第二步,则失去了递推依据.(2)证明等式时要注意等式两边的构成规律,两边各有多少项,并注意初始值n 0是多少,同时第二步由n =k 到n =k +1时要充分利用假设,不利用n =k 时的假设去证明,就不是数学归纳法.以题试法1.用数学归纳法证明:对任意的n ∈N *,11×3+13×5+…+1(2n -1)(2n +1)=n 2n +1. 证明:(1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边,所以等式成立.(2)假设当n =k (k ∈N *且k ≥1)时等式成立,即有 11×3+13×5+…+1(2k -1)(2k +1)=k2k +1, 则当n =k +1时,11×3+13×5+…+1(2k -1)(2k +1)+1(2k +1)(2k +3) =k 2k +1+1(2k +1)(2k +3)=k (2k +3)+1(2k +1)(2k +3)=2k 2+3k +1(2k +1)(2k +3)=k +12k +3=k +12(k +1)+1, 所以当n =k +1时,等式也成立. 由(1)(2)可知,对一切n ∈N *等式都成立.典题导入[例2] 等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. [自主解答] (1)由题意,S n =b n +r , 当n ≥2时,S n -1=b n -1+r .所以a n =S n -S n -1=b n -1(b -1).由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1),∴a 2a 1=b ,即b (b -1)b +r =b ,解得r =-1. (2)证明:由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2,左式>右式,所以结论成立.②假设n =k (k ≥1,k ∈N *)时结论成立,即2+12·4+14·…·2k +12k >k +1,则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2.即证2k +32≥(k +1)(k +2),由基本不等式知2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立,故2k +32k +1≥k +2成立,所以,当n =k +1时,结论成立.由①②可知,n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立.由题悟法应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.以题试法2.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).证明:(1)当n =2时,1+122=54<2-12=32,命题成立.(2)假设n =k 时命题成立,即1+122+132+…+1k 2<2-1k.当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k -1k +1=2-1k +1命题成立.由(1)(2)知原不等式在n ∈N *,n ≥2时均成立.典题导入[例3] (2012·天津模拟)如图,P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )(0<y 1<y 2<…<y n )是曲线C :y 2=3x (y ≥0)上的n 个点,点A i (a i,0)(i =1,2,3,…,n )在x 轴的正半轴上,且△A i -1A i P i 是正三角形(A 0是坐标原点).(1)写出a 1、a 2、a 3;(2)求出点A n (a n,0)(n ∈N *)的横坐标a n 关于n 的表达式并证明.[自主解答] (1)a 1=2,a 2=6,a 3=12.(2)依题意,得x n =a n -1+a n 2,y n =3·a n -a n -12,由此及y 2n =3·x n 得⎝⎛⎭⎫3·a n -a a -122=32(a n +a n -1),即(a n -a n -1)2=2(a n -1+a n ).由(1)可猜想:a n =n (n +1)(n ∈N *). 下面用数学归纳法予以证明: ①当n =1时,命题显然成立;②假定当n =k 时命题成立,即有a k =k (k +1),则当n =k +1时,由归纳假设及(a k +1-a k )2=2(a k +a k +1),得[a k +1-k (k +1)]2=2[k (k +1)+a k +1],即a 2k +1-2(k 2+k +1)a k +1+[k (k -1)]·[(k +1)(k +2)]=0,解之得,a k +1=(k +1)(k +2)(a k +1=k (k -1)<a k 不合题意,舍去),即当n =k +1时成立.由①②知,命题成立.由题悟法“归纳——猜想——证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式.其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明.这种方法在解决探索性问题、存在性问题或与正整数有关的命题中有着广泛的应用.其关键是归纳、猜想出公式.以题试法3.(2012·北京海淀模拟)数列{a n }满足S n =2n -a n (n ∈N *) (1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)用数学归纳法证明(1)中的猜想. 解:(1)当n =1时,a 1=S 1=2-a 1, ∴a 1=1.当n =2时,a 1+a 2=S 2=2×2-a 2, ∴a 2=32.当n =3时,a 1+a 2+a 3=S 3=2×3-a 3, ∴a 3=74.当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4, ∴a 4=158.由此猜想a n =2n -12n -1(n ∈N *).(2)证明:①当n =1时,a 1=1,结论成立.②假设n =k (k ≥1且k ∈N *)时,结论成立,即a k =2k -12k -1,那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1, ∴2a k +1=2+a k ,∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k ,这表明n =k +1时,结论成立, 由①②知猜想a n =2n -12n -1成立.1.如果命题p (n )对n =k (k ∈N *)成立,则它对n =k +2也成立.若p (n )对n =2也成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立解析:选B 由题意n =k 成立,则n =k +2也成立,又n =2时成立,则p (n )对所有正偶数都成立.2.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值最小应取( )A .7B .8C .9D .10解析:选B 可逐个验证,n =8成立.3.(2013·海南三亚二模)用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N *)”的过程中,第二步n =k 时等式成立,则当n =k +1时,应得到( )A .1+2+22+…+2k -2+2k -1=2k +1-1B .1+2+22+…+2k +2k +1=2k -1+2k +1C .1+2+22+…+2k -1+2k +1=2k +1-1D .1+2+22+…+2k -1+2k =2k +1-1解析:选D 由条件知,左边是从20,21一直到2n-1都是连续的,因此当n =k +1时,左边应为1+2+22+…+2k -1+2k ,而右边应为2k +1-1.4.凸n 多边形有f (n )条对角线,则凸(n +1)边形的对角线的条数f (n +1)为( ) A .f (n )+n +1 B .f (n )+n C .f (n )+n -1D .f (n )+n -2解析:选C 边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n -1条.5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1) B.12n (2n +1) C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)解析:选C 由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1(2n -1)(2n +1).6.下列代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k )解析:选D (1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立. 由(1)(2)可知,命题对任何k ∈N *都成立.7.(2012·徐州模拟)用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.解析:n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立. 答案:2k +18.(2012·济南模拟)用数学归纳法证明1+2+3+…+n 2=n 4+ n 22,则当n =k +1时左端应在n =k 的基础上加上的项为________.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2,则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2. 答案:(k 2+1)+(k 2+2)+…+(k +1)29.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________.解析:由(S 1-1)2=S 21得:S 1=12; 由(S 2-1)2=(S 2-S 1)S 2得:S 2=23;由(S 3-1)2=(S 3-S 2)S 3得:S 3=34.猜想S n =nn +1.答案:n n +110.用数学归纳法证明:12+32+52+…+(2n -1)2 =13n (4n 2-1). 证明:(1)当n =1时,左边=12=1,右边= 13×1×(4-1)=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+32+52+…+(2k -1)2=13k (4k 2-1).则当n =k +1时,12+32+52+…+(2k -1)2+(2k +1)2=13k (4k 2-1)+(2k +1)2=13k (4k 2-1)+4k 2+4k +1=13k [4(k +1)2-1]-13k ·4(2k +1)+4k 2+4k +1 =13k [4(k +1)2-1]+13(12k 2+12k +3-8k 2-4k ) =13k [4(k +1)2-1]+13[4(k +1)2-1] =13(k +1) [4(k +1)2-1]. 即当n =k +1时等式也成立.由(1),(2)可知,对一切n ∈N *,等式都成立.11.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n(n ∈N *),且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. 解:(1)由题意得a 1=1,b 1=-1,b 2=-11-4×1=13,a 2=1×13=13,∴P 2⎝⎛⎭⎫13,13. ∴直线l 的方程为y +113+1=x -113-1,即2x +y =1.(2)①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ≥1且k ∈N *)时,2a k +b k =1成立. 则2a k +1+b k +1=2a k ·b k +1+b k +1=b k1-4a 2k ·(2a k +1)=b k1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,2a k +1+b k +1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.12.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3……. (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出严格的证明.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1, 于是(a 1-1)2-a 1(a 1-1)-a 1=0, 解得a 1=12.当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.(2)由题设(S n -1)2-a n (S n -1)-a n =0, 即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1, 代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3….下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立, 即S k =k k +1, 当n =k +1时,由①得S k +1=12-S k, 即S k +1=k +1k +2,故n =k +1时结论也成立.综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.1.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2)…(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1), 则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).2.对大于或等于2的自然数 m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19. 根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.解析:∵依题意得 n 2=10×(1+19)2=100, ∴n =10. 易知 m 3=21m +m (m -1)2×2, 整理得(m -5)(m +4)=0, 又 m ∈N *, 所以 m =5, 所以m +n =15.答案:153.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明.解:(1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1); 当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立. ②假设当n =k (k ≥3,k ∈N *)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2,那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3, 因为12(k +1)2-⎣⎡⎦⎤12k 2-1(k +1)3=k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1).由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.1.用数学归纳法证明a n +1+(a +1)2n -1(n ∈N *)能被a 2+a +1整除.证明: (1)当n =1时,a 2+(a +1)=a 2+a +1可被a 2+a +1整除. (2)假设n =k (k ≥1,k ∈N *)时, a k +1+(a +1)2k-1能被a 2+a +1整除,则当n =k +1时,a k +2+(a +1)2k +1=a ·a k +1+(a +1)2(a +1)2k -1=a ·a k +1+a ·(a +1)2k -1+(a 2+a +1)(a +1)2k -1=a [a k +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1由假设可知a [a k +1+(a +1)2k -1]能被a 2+a +1整除,(a 2+a +1)(a +1)2k-1也能被a 2+a+1整除,∴a k +2+(a +1)2k+1也能被a 2+a +1整除,即n =k +1时命题也成立,由(1)(2)知,对任意n ∈N *原命题成立.2.在数列{a n }中,a 1=1,a n +1=ca n +c n +1(2n +1),n ∈N *,其中c ≠0.求数列{a n }的通项公式.解:由a 1=1,a 2=ca 1+c 2·3=3c 2+c =(22-1)c 2+c ,a 3=ca 2+c 3·5=8c 3+c 2=(32-1)c 3+c 2, a 4=ca 3+c 4·7=15c 4+c 3=(42-1)c 4+c 3,猜测a n =(n 2-1)c n +c n -1,n ∈N *.下面用数学归纳法证明. 当n =1时,等式成立; 假设当n =k 时,等式成立,即a k =(k 2-1)c k +c k -1,则当n =k +1时,a k +1=ca k +c k +1(2k +1)=c [(k 2-1)c k +c k -1]+c k +1(2k +1)=(k 2+2k )c k +1+c k =[(k +1)2-1]c k +1+c k ,综上,a n =(n 2-1)c n +c n -1对任何n ∈N *都成立.不等式、推理与证明一、选择题(本题共12小题,每小题5分,共60分) 1.不等式x -2x +1≤0的解集是( )A .(-∞,-1)∪(-1,2]B .(-1,2]C .(-∞,-1)∪[2,+∞)D .[-1,2]解析:选B ∵x -2x +1≤0,∴-1<x ≤2.2.把下面在平面内成立的结论类比推广到空间,结论还正确的是( ) A .如果一条直线与两条平行线中的一条相交,则也与另一条相交 B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直 C .如果两条直线没有公共点,则这两条直线平行D .如果两条直线同时与第三条直线垂直,则这两条直线平行 解析:选B 由空间立体几何的知识可知B 正确.3.(2012·保定模拟)已知a >b ,则下列不等式成立的是( ) A .a 2-b 2≥0 B .ac >bc C .ac 2>bc 2D .2a >2b解析:选D A 中,若a =-1,b =-2,则a 2-b 2≥0不成立;当c =0时,B 、C 不成立.由a >b 知2a >2b 成立.4.若规定⎪⎪⎪⎪a b c d =ad -bc ,则不等式0<⎪⎪⎪⎪x 11 x <1的解集是( ) A .(-1,1)B .(-1,0) ∪(0,1)C .(-2,-1) ∪(1,2)D .(1,2)解析:选C 由题意可知0<x 2-1<1⇔1<x 2<2⇔1<|x |<2⇔-2<x <-1或1<x < 2.5.(2012·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,x -1≤0,则目标函数z =3x -2y的最小值为( )A .-5B .-4C .-2D .3解析:选B 不等式表示的平面区域是如图所示的阴影部分,作辅助线l 0:3x -2y =0,结合图形可知,当直线3x -2y =z 平移到过点(0,2)时,z =3x -2y 的值最小,最小值为-4.6.设a ∈R ,则“a -1a 2-a +1<0”是“|a |<1” 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件解析:选C 因为a 2-a +1=⎝⎛⎫a -122+34≥34>0,所以由a -1a 2-a +1<0得a <1,不能得知|a |<1;反过来,由|a |<1得-1<a <1,所以a -1a 2-a +1<0,因此,“a -1a 2-a +1<0”是“|a |<1”成立的必要不充分条件.7.设M =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1,且a +b +c =1(a ,b ,c 均为正数),由综合法得M 的取值范围是( )A.⎣⎡⎦⎤0,18 B.⎣⎡⎭⎫18,1 C. [1,8]D .[8,+∞)解析:选D 由a +b +c =1,M =⎝⎛⎭⎫b a +c a ⎝⎛⎭⎫a b +c b ⎝⎛⎭⎫a c +bc ≥8(当且仅当a =b =c 时取等号).8.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( ) A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0解析:选C 由题意知c <0,a >0,则A 一定正确;B 一定正确;D 一定正确;当b =0时C 不正确.9.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,x 2,x <0,,则f (f (x ))≥1的充要条件是( )A .x ∈(-∞,- 2 ]B .x ∈[42,+∞)C .x ∈(-∞,-1]∪[42,+∞)D .x ∈(-∞,-2]∪[4,+∞)解析:选D 当x ≥0时,f (f (x ))=x 4≥1,所以x ≥4;当x <0时,f (f (x ))=x 22≥1,所以x 2≥2,解得x ≥2(舍去)或x ≤-2,因此f (f (x ))≥1的充要条件是x ∈(-∞,-2]∪[4,+∞).10.(2012·山西省四校联考)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z=abx +y (a >0,b >0)的最大值为13,则a +b 的最小值为( )A .2B .4C .6D .8解析:选C 在坐标平面内画出题中的不等式组表示的平面区域及直线abx +y =0,平移该直线,当平移到经过该平面区域内的点(1,4)时,相应直线在y 轴上的截距达到最大,此时目标函数z =abx +y (a >0,b >0)取得最大值,依题意有ab ×1+4=13,即ab =9,其中a >0,b >0,a +b ≥2ab =29=6,当且仅当a =b =3时取等号,因此a +b 的最小值为6.11.已知M 是△ABC 内的一点,且AB ·AC=23,∠BAC =30°,若△MBC 、△MCA和△MAB 的面积分别是12、x 、y ,则1x +4y的最小值是( )A .9B .18C .16D .20解析:选B AB ·AC =|AB ||AC|cos 30°=23,∴|AB ||AC |=4,∴S △ABC =12×4×sin 30°=1,∴12+x +y =1,即2(x +y )=1, ∴1x +4y =⎝⎛⎭⎫1x +4y ·2(x +y )=2⎝⎛⎭⎫5+y x +4xy ≥2⎝⎛⎭⎫5+2 y x ·4x y =2×(5+4)=18,当且仅当y =2x ,即x =16,y =13时等号成立.12.(2012·湖南高考)设a >b >1,c <0,给出下列三个结论: ①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( ) A .① B .①② C .②③D .①②③解析:选D 由a >b >1,c <0得,1a <1b ,c a >cb ;幂函数y =xc (c <0)是减函数,所以a c <b c ;因为a -c >b -c ,所以log b (a -c )>log a (a -c )>log a (b -c ),①②③均正确.二、填空题(本题共4个小题,每小题5分,共20分)13.(文)若不等式-4<2x -3<4与不等式x 2+px +q <0的解集相同,则pq =________.解析:由-4<2x -3<4 得-12<x <72,由题意得72-12=-p ,⎝⎛⎭⎫-12×72=q , 即p =-3,q =-74,∴p q =127.答案:12713.(理)若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析:∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案:f (k +1)=f (k )+(2k +1)2+(2k +2)214.(2012·福州模拟)如图,一个类似杨辉三角的递推式,则第n 行的首尾两个数均为________,第n 行的第2个数为________.解析:每行的第一个数可构成数列1,3,5,7,9,…,是以1为首项,以2为公差的等差数列,故第n 行第一个数为1+2(n -1)=2n -1.从第2行起,每行的第2个数可构成数列3,6,11,18,…,可得a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2n -3.(其中n 为行数),以上各式两边分别相加,可得a n =[3+5+7+…+(2n -3)]+a 2=(n -2)[3+(2n -3)]2+3=n 2-2n +3.答案:2n -1 n 2-2n +315.(2012·浙江调研)已知实数x ,y 满足⎩⎪⎨⎪⎧x +y +1≥0,2x -y +2≥0,若(-1,0)是使ax +y 取得最大值的可行解,则实数a 的取值范围是________.解析:题中不等式组表示的平面区域如图中阴影所示,令z =ax +y ,则y =-ax +z ,因为(-1,0)是使ax +y 取得最大值的可行解,所以结合图形可知-a ≥2,即a ≤-2.答案:(-∞,-2]16.(2012· 北京西城模拟)设λ>0,不等式组⎩⎪⎨⎪⎧x ≤2,λx -y ≥0,x +2λy ≥0所表示的平面区域是W .给出下列三个结论:①当λ=1时,W 的面积为3; ②∃λ>0,使W 是直角三角形区域; ③设点P (x ,y ),∀P ∈W 有x +yλ≤4.其中,所有正确结论的序号是________.解析:当λ=1时,不等式组变成⎩⎪⎨⎪⎧x ≤2,x -y ≥0,x +2y ≥0,其表示以点(0,0),(2,2),(2,-1)为顶点的三角形区域,易得W 的面积为3,①正确;∵直线λx -y =0的斜率为λ,直线x +2λy =0的斜率为-12λ,λ×⎝⎛⎭⎫-12λ=-12≠-1,且直线x =2垂直于x 轴,∴W 不可能成为直角三角形区域,②错误;显然,不等式组⎩⎪⎨⎪⎧x ≤2,λx -y ≥0,x +2λy ≥0表示的区域是以点(0,0),(2,2λ),⎝⎛⎭⎫2,-1λ为顶点的三角形区域,令z =x +y λ,则其在三个点处的值依次为:0,4,2-1λ2,∴z =x +yλ的最大值z max =4,③正确.答案:①③三、解答题(本题共6小题,共70分)17.(本小题满分10分)已知集合A ={x |x 2<4},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪1<4x +3. (1)求集合A ∩B ;(2)若不等式2x 2+ax +b <0的解集为B ,求a 、b 的值. 解:(1)A ={x |-2<x <2}, ∵4x +3>1⇒4x +3-1>0⇒x -1x +3<0⇒-3<x <1, ∴B ={x |-3<x <1}. ∴A ∩B ={x |-2<x <1}.(2)由(1)及题意知,不等式2x 2+ax +b <0的解集为(-3,1), ∴-3+1=- a 2,-3×1=b 2,∴a =4,b =-6.18.(本小题满分12分)已知x >0,y >0,且2x +8y -xy =0, 求:(1)xy 的最小值; (2)x +y 的最小值.解:x >0,y >0,2x +8y -xy =0, (1)xy =2x +8y ≥216xy , ∴xy ≥8, ∴xy ≥64.故xy 的最小值为64.(2)由2x +8y =xy ,得2y +8x =1,则x +y =(x +y )·1=(x +y )⎝⎛⎭⎫2y +8x =10+2x y +8yx ≥10+8=18.故x +y 的最小值为18.19.(本小题满分12分)已知函数f (x )=x 2+ax +b ,a ,b ∈R .(1)若对任意的实数x ,都有f (x )≥2x +a ,求b 的取值范围; (2)当x ∈[-1,1]时,f (x )的最大值为M ,求证:M ≥b +1.解:(1)对任意的x ∈R ,都有f (x )≥2x +a ⇔对任意的x ∈R ,x 2+(a -2)x +(b -a )≥0⇔Δ=(a -2)2-4(b -a )≤0⇔b ≥1+a 24⇔b ≥1.∵a ∈R ,∴b ∈[1,+∞),即b 的取值范围为[1,+∞). (2)证明∵f (1)=1+a +b ≤M ,f (-1)=1-a +b ≤M , ∴2M ≥2b +2,即M ≥b +1.20.(本小题满分12分) 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求1S 2,1S 3,1S 4,…,并求1S n (不需证明);(2)求数列{a n }的通项公式.解:(1)当n ≥2时,由a n =S n -S n -1和S 2n =a n ⎝⎛⎭⎫S n -12, 得S 22=(S 2-S 1)⎝⎛⎭⎫S 2-12, 得1S 2=1+2S 1S 1=2+11=3, 由S 23=(S 3-S 2)⎝⎛⎭⎫S 3-12, 得1S 3=2+1S 2=5, 由S 24=(S 4-S 3)⎝⎛⎭⎫S 4-12, 得1S 4=2+1S 3=7, …由S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12得 1S n =2+1S n -1=2n -1. (2)由(1)知,S n =12n -1,当n ≥2时,a n =S n -S n -1=12n -1-12n -3=-2(2n -1)(2n -3), 显然,a 1=1不符合上述表达式, 所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2. 21.(本小题满分12分)(2012·福州质检)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5万套, 此时每套丛书的供货价格为30+105=32元,书商所获得的总利润为5×(100-32)=340万元.(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,得0<x <150,由题意,单套丛书利润P =x -⎝⎛⎭⎫30+1015-0.1x =x -100150-x -30.∵0<x <150, ∴150-x >0,P =- ⎣⎡⎦⎤(150-x )+100150-x +120. ∵(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x ,即x =140时等号成立,∴此时,P max =-20+120=100.每套丛书售价定为100元时,书商所获得的总利润为340万;每套丛书售价定为140元时,单套丛书的利润取得最大值.22.(本小题满分12分)(2012·江西模拟)设集合W 是满足下列两个条件的无穷数列{a n }的集合:①a n +a n +22≤a n +1;②a n ≤M ,其中n ∈N *,M 是与n 无关的常数. (1)若{a n }是等差数列,S n 是其前n 项的和,a 3=4,S 3=18,试探究{S n }与集合W 之间的关系;,中小学直线提分,就选福州五佳教育(2)设数列{b n }的通项为b n =5n -2n ,且{b n }∈W ,M 的最小值为m ,求m 的值;(3)在(2)的条件下,设C n =15[b n +(m -5)n ]+2, 求证:数列{C n }中任意不同的三项都不能成为等比数列.解:(1)∵a 3=4,S 3=18,∴a 1=8,d =-2,∴S n =-n 2+9n ,S n +S n +22<S n +1满足条件①,∴S n =-⎝⎛⎭⎫n -922+814,当n =4或5时,S n 取最大值20. ∴S n ≤20满足条件②,∴{S n }∈W .(2)b n +1-b n =5-2n 可知{b n }中最大项是b 3=7,∴M ≥7,M 的最小值为7.(3)证明:由(2)知C n =n +2,假设{C n }中存在三项c p 、c q 、c r (p 、q 、r 互不相等)成等比数列,则c 2q =c p ·c r , ∴(q +2)2=(p +2)(r +2),∴(q 2-pr )+(2q -p -r )2=0.∵p 、q 、r ∈N *,∴⎩⎪⎨⎪⎧q 2=pr ,2q -p -r =0, 消去q 得(p -r )2=0,∴p =r ,与p ≠r 矛盾.∴{C n }中任意不同的三项都不能成为等比数列.文章来源:福州五佳教育网(中小学直线提分,就上福州五佳教育)。

高考一轮数列复习教案

高考一轮数列复习教案

高考一轮数列复习教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五章数列第一节数列的概念与简单表示法(一)教学目标1、知识与技能:了解数列的概念和几种简单的表示方法(列表、图象、通项公式);了解数列是一种特殊的函数;2、过程与方法:通过三角形数与正方形数引入数列的概念;通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);3、情态与价值:体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。

(二)教学重、难点重点:理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种间单的表示法(列表、图象、通项公式);难点:了解数列是一种特殊的函数;发现数列规律找出可能的通项公式。

(三)教学过程1.数列的定义、分类与通项公式(1)数列的定义:①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类:分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n(3)如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n}的首项(或前几项),且任一项a n与它的前一项a n-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[试一试]1.已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为________. 答案:a n =2n -1(n ∈N *)2.已知数列{a n }的通项公式是a n =⎩⎨⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 4·a 3=________.解析:a 4·a 3=2×33·(2×3-5)=54. 答案:541.辨明数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.2.明确a n 与S n 的关系 a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).[练一练]1.若数列{a n }的前n 项和S =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =________. 答案:2n -112.已知数列{a n }的通项公式为a n =pn +q n ,且a 2=32,a 4=32,则a 8=________.解析:由已知得⎩⎪⎨⎪⎧2p +q 2=32,4p +q 4=32,解得⎩⎪⎨⎪⎧p =14,q =2.则a n =14n +2n ,故a 8=94.答案:94考点一由数列的前几项求数列的通项公式n A .a n =1 B .a n =(-1)n +12C .a n =2-||sin n π2D .a n =(-1)n -1+32解析:选C 由a n =2-||sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)-11×2,12×3,-13×4,14×5,…;(3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N *).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎨⎧a ,n 为奇数,b ,n 为偶数.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.[类题通法]用观察法求数列的通项公式的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n +1来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.考点二由a n 与S n 的关系求通项a n[典例n n n (1)S n =2n 2-3n ;(2)S n =3n +b .[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎨⎧3+b ,n =1,2·3n -1,n ≥2.[类题通法]已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[针对训练]已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2, 由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)·(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n =3n -1.考点三由递推关系式求数列的通项公式角度一 形如a n +1=a n f (n ),求a n1.(2012·大纲全国卷)已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的命题角度有:(1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .(2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1.即a na n -1=n +1n -1. ∴a n =a 1·a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n -2a n -3·a n -1a n -2·a n a n -1=1·31·42·53·64·…·n -1n -3·n n -2·n +1n -1=n (n +1)2(n ≥2) 当n =1时,a 1=1.综上可知,{a n }的通项公式a n =n (n +1)2. 角度二 形如a n +1=a n +f (n ),求a n 2.已知a 1=2,a n +1=a n +3n +2,求a n . 解:∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2). 当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.角度三 形如a n +1=Aa n +B (A ≠0且A ≠1),求a n 3.已知数列{a n }满足a 1=1,a n +1=3a n +2,求a n . 解:∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1. [类题通法]由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,(如角度二),注意:有的问题也可利用构造法,即通过对递推式的等价变形,(如角度三)转化为特殊数列求通项.[课堂练通考点]1.数列1,23,35,47,59,…的一个通项公式a n 是( )A.n2n +1B.n2n -1C.n2n -3 D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n2n -1.2.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =( ) A .2n -1 B .n 2 C.(n +1)2n 2D.n 2(n -1)2解析:选D 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2.3.已知数列{a n }满足a st =a s a t (s ,t ∈N *),且a 2=2,则a 8=________. 解析:令s =t =2,则a 4=a 2×a 2=4,令s =2,t =4,则a 8=a 2×a 4=8. 答案:84.(2013·温州适应性测试)已知数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }前n 项的和,则S 2 013=________.解析:由a 1=1,a n +1=(-1)n (a n +1)可得该数列是周期为4的数列,且a 1=1,a 2=-2,a 3=-1,a 4=0.所以S 2 013=503(a 1+a 2+a 3+a 4)+a 2 013=503×(-2)+1=-1 005.答案:-1 0055.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式.解:∵当n ≥2时,a n =S n -S n -1=(2n 2+2n )-[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4也适合, ∴{a n }的通项公式是a n =4n (n ∈N *).∵T n =2-b n ,∴当n =1时,b 1=2-b 1,b 1=1. 当n ≥2时,b n =T n -T n -1=(2-b n )-(2-b n -1), ∴2b n =b n -1.∴数列{b n }是公比为12,首项为1的等比数列.∴b n =()12n -1.∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎨⎧a k ≥0,a k +1≤0,k ∈N *,∴⎩⎨⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223, ∵k ∈N *,∴k =7. ∴满足条件的n 的值为7.6.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第____________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0. (四)作业 (五)教学反思第二节等差数列及其前n 项和(一)教学目标1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;掌握等差数列前N 项公式;能在具体的问题情境中, 发现数列的等差关系并能用有关知识解决相应的问题; 体会等差数列与一 次函数的关系。

2014届高考一轮复习数学6.1数列的概念及简单的表示法

2014届高考一轮复习数学6.1数列的概念及简单的表示法

(5)0,1,0,1,…. 先观察各项的特点,然后归纳出通项公式.
目录 退出
【解】 (1)符号用(-1)n 或(-1)n+1 表示,题中数列各项的绝对值的排列规律 为:后面的数的绝对值总比前面数的绝对值大 6.故该数列的通项公式为 an=(-1)n(6n-5). (2)将数列变形为 (1-0.1), (1-0.01), (1-0.001),…,从而可知其通项公式 为 a n=
1+(-1) a n= 2
������
2������+1 . ������2 +1 1+cos������π . 2
或 an=
目录
退出
(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下 几方面的特征: ①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征; ④各项符号特征等,并对此进行归纳、联想. (2)根据数列的前几项写出该数列的一个通项公式是不完全归纳法,它 蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注 意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1 来调整.
1.了解数列的概念和 几种简单的表示方法 (列表、图象、通项公 式). 2.了解数列是自变量 为正整数的一类特殊 函数.
目录
退出
目录
退出
1.数列的定义 按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个 数列的项.
目录
退出
2.数列的分类
分类原则 类型 有穷 数列 无穷 数列 按项与项间 的大小关系 分类 项数有限 项数无限 an+1>an an+1<an an+1=an 存在正数 M,使|an|≤M 从第 2 项起,有些项大于它的前一项, 有些项小于它的前一项的数列,如 1,-1,1,-1,…

高考数学(文科,大纲)一轮复习配套课件:3.1数列的概念

高考数学(文科,大纲)一轮复习配套课件:3.1数列的概念

第三章数列2014高考导航考纲解读1 •理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2•理解等差数列的概念,掌握等差数列的通项公式与前〃项和公式,并能解决简单的实际问题.3.理解等比数列的概念,掌握等比数列的通项公式与前〃项和公式,并能解决简单的实际问题.§3.1数列的概念本节目录知能演练轻松闯关考向瞭望把脉高考 考点探究讲练互动 教材回顾夯实双基基础梳理1.数列的概念按一定次序排列的一列数叫做数列.数列中的每一个数叫做这个数列的项.数列可以看作一个定义域为正整数集N*(或它的有限子集{123,…,〃})的函数,当自变量从小到大依次取值时对应的一列函数值.它的图象是一一群孤立的点.数歹的第兀项知与项数〃的关系若能用一个公式知=加)给出,则这个公式叫做这个数列的通项公式•3.数列的前〃项和数列的前〃项和S“=ai+a2 ----------- 5,且下列关系成立Si (n = l)a tl=^S n~S n^i (/i M2).4.递推公式如果已知数列仏啲第1项(或前几项),且任一项心与它的前一项给-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.思考探究1.{〜}与a“有何关系?提示:{心与◎是两个不同的概念,{a“}表示数列%a v …,a”,…,而知只表示数列{〜}中的第〃项.2.一个数列的通项公式是否唯一?提示:不一定,有的数列通项公式唯一,有的数列有多个通项公式,有的数列没有通项公式.课前热身3 8 151•(教材改编)数列务节, A.n2—1 ""—nB.(n +1)2— 1a,~ n + 1C.(W+1/+2”"l(T)n + 1D.(n n(W+l)2_ 1 "l(T)n + 1答案:C¥,…的一个通项公式是()2.已知«o=l,如=3,怎一%w“+i=(-1)"仗WN*),则如等于() A・ 33 B. 21C 17 D. 10答案:A3. (2011•高考江西卷)已知数列《}的前兀项和S”满足:S“+S = ^n+m9且"1 = 1,B. 9那么"10 = ()A. 1C. 10D. 55解析:*/ S n+S m=S n+m,且幻=1,・・・S1 = 1・可令加=1,得s“+]=s” + i,s“+i _s“=i・即当必1时9知+i = l, .\a10=l.4.如果数列仏J的前孔项和为S n=2n2+19贝!|妁=答案:3 (n = l)4H—2 (〃$2)5.在数列仏}中, 项之和为________ 答案:-1005=1,尤一冷+1 — 1=0,则此数列的前2 014考点1由数列的前几项写数列的通项公式据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等,并对此进行归纳、联想.根据数列的前几项,写出下列各数列的一个通项公式:(1) 0.8,0・8&0.888,(4)0丄….【思路分析】(1)循环数借助于1—命来解决.5_ 2932 6164917710 13-2^ XI/3 1一* 2⑵正负号交叉用(一1)"或(一1严1来调节,这是因为H和«+1 奇偶交错.(3)分式形式的数列,分子找通项,分母找通项,要充分借助分子、分母的关系.(4)对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法解决.【解】⑴将数列变形为尹一0.1)勺(1—0.01),尹一0.001),…,・• a n—^(1 — ]0") •⑵各项的分母分别为亍夕,,,…,易看出第2,3,4项的分子2 —3分别比分母少3.因此把第1项变为一二一,至此原数列已化为21-3 22-3 23-3 24-322,一a“=(—1)"宁.IT ‘~ir ‘ …'3 5 7 9(3)将数列统_为㊁,丁,帀p,…,对于分子3,5,7,9,…是序号的2倍加1,可得分子的通项公式为b n =2n+l f 对于分母2,5,1047,…联想到数列1A016,…,即数列{/}, 可得分母的通项公式为c“ = /+l,2n±ln 2+r/° (〃为奇数)又0=1_1 1=丄+丄11 s 为偶数)’又 2 2, 1—2+2,.••也可为。

2014高考数学(理)一轮复习总教案:6.1 数列的概念与简单表示法

2014高考数学(理)一轮复习总教案:6.1 数列的概念与简单表示法

第六章数列高考导航考试要求重难点击命题展望1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);(2)了解数列是自变量为正整数的一类函数。

2.等差数列、等比数列(1)理解等差数列、等比数列的概念;(2)掌握等差数列、等比数列的通项公式与前n项和公式;(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;(4)了解等差数列与一次函数、等比数列与指数函数本章重点:1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;2。

注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系。

本章难点:1。

数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生的关系.的运用。

活的联系,使数列应用题也倍受欢迎.知识网络6。

1 数列的概念与简单表示法典例精析题型一归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式:(1)7,77,777,7 777,…(2)错误!,-错误!,错误!,-错误!,…(3)1,3,3,5,5,7,7,9,9,…【解析】(1)将数列变形为错误!·(10-1),错误!(102-1),错误!(103-1),…,错误!(10n -1),故an =错误!(10n -1).(2)分开观察,正负号由(-1)n +1确定,分子是偶数2n,分母是1×3,3×5,5×7, …,(2n -1)(2n +1),故数列的通项公式可写成an =(-1)n +1)12)(12(2+-n n n.(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….故数列的通项公式为an =n +2)1(1n-+。

2014届高三数学第一轮复习计划

2014届高三数学第一轮复习计划

2014-2015高三数学第一轮复习计划一.指导思想高三数学已进入第一轮复习,为了2014届高考取得好成绩,第一轮复习达到理想效果,根据《两纲》,紧扣教材,结合我校实际,特制订第一轮复习计划二.复习要求1.在第一轮复习中,指导学生对双基进行梳理,使之到达系统化,结构化。

通过对基础题的系统规范训练,使学生理解掌握每一个概念,每一个知识点。

对各种题型注重通性,通法的讲解。

2.第一轮复习要面向全体学生,降低复习起点,在夯实“双基”的前提下,注重培养学生的能力。

根据学生实际,计划要细而实,避免出现“前紧后松,或前松后紧”的现象。

3.在抓双基复习的同时,重视数学思想方法的复习,使学生解题能力上一个新台阶。

4.强化运算能力、表达能力、,理解能力的训练,课堂教学时安排适量时间让学生进行完整的规范的解题训练,从而减少非智力失分。

三.具体措施1.资料的选用,学生统一用一本资料即《金太阳》,老师拥有两种以上资料,在教学过程中,根据学生实际,对资料进行具有针对性选择,改编和重组,使复习效果达到最佳。

2.学习研究《两纲》,研究学习2014年数学学科《考试说明》,对2013年高考试题全国卷和部分省市试卷进行细致分析,学习考试中心对2013年高考试题的评价报告,提高自身业务能力和复习的针对性。

3.提高集体备课效率和作用:利用每周两次集体备课时间,认真总结上周复习效果,训练落实情况,制订好下周复习计划,训练安排。

同时对各章节的重点、难点进行探讨,使复习时重点突出,难点突破。

从而使复习,训练效果最佳。

复习课力求做到:①系统性:滚动复习,知识前后衔接,梳理归纳成串;②综合性:纵横联系,知识内外交叉,多角度,多层次;③基础性:着眼双基,中档为主,面向多数;④重点性:突出主干知识,详略得当;⑤发展性:传授方法,知识迁移,学会自学;⑥启迪性:深挖教材,发散思维,多角度考虑问题。

4.考练结合。

每周一次单元检测;每章一次综合测试;每月一次月考;每次认真批改、评讲,要及时分析总结,发现问题,查漏补缺。

高三数学一轮复习精品教案1:6.1 数列的概念教学设计

高三数学一轮复习精品教案1:6.1 数列的概念教学设计

6.1数列的概念与简单表示法1.数列的定义、分类与通项公式 (1)数列的定义:①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类:分类标准 类型 满足条件 项数有穷数列 项数有限无穷数列项数无限 项与项间的大小关系递增数列a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列a n +1=a n(3)数列的通项公式:如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.1.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.『试一试』1.已知数列{a n }的前4项为1,3,7,15,写出数列{a n }的一个通项公式为________. 『答案』a n =2n -1(n ∈N *)2.已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2·3n -1n 为偶数,2n -5n 为奇数,则a 4·a 3=________.『解析』a 4·a 3=2×33·(2×3-5)=54. 『答案』541.辨明数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.2.明确a n 与S n 的关系a n =⎩⎪⎨⎪⎧S 1 n =1,S n -S n -1n ≥2.『练一练』1.(2013·南京、淮安二模)已知数列{a n }的通项为a n =7n +2,数列{b n }的通项为b n =n 2.若将数列{a n },{b n }中相同的项按从小到大的顺序排列后记作数列{c n },则c 9的值是________. 『解析』法一:由a n =7n +2,b n =n 2列出部分项得⎩⎪⎨⎪⎧ a 1=9,b 3=9,⎩⎪⎨⎪⎧a 2=16,b 4=16,⎩⎪⎨⎪⎧a 14=100,b 10=100,⎩⎪⎨⎪⎧a 17=121,b 11=121,⎩⎪⎨⎪⎧a 41=289,b 17=289,⎩⎪⎨⎪⎧a 46=324,b 18=324,易发现在数列{b n }中符合条件的数呈周期变化,且周期为7.每个周期内第3,4个数符合题意,故c 9在第5个周期的第3个数,即c 9=(4×7+3)2=312=961.法二:令a n =b m ,则7n +2=m 2,即7(n -1)=(m -3)(m +3).易知m +3或m -3是7的整数倍,所以当m =3,4,10,11,17,18,24,25,31,32,…时满足等式,故c 9=312=961. 『答案』9612.(2014·苏锡常镇调研)设u (n )表示正整数n 的个位数,a n =u (n 2)-u (n ),则数列{a n }的前2 014项和等于________.『解析』因为n 与n +10的个位数字相同且周期为10,又a 1=0,a 2=4-2=2,a 3=9-3=6,a 4=6-4=2,a 5=5-5=0,a 6=6-6=0,a 7=9-7=2,a 8=4-8=-4,a 9=1-9=-8,a 10=0,所以a 1+a 2+…+a 10=0,即a 1+a 2+…+a 2 014=a 1+a 2+a 3+a 4=10. 『答案』10考点一由数列的前几项求数列的通项公式1.(2014·南通二模)将正偶数按如下所示的规律排列:2 4 6 8 10 12 14 16 18 20 …则第n (n ≥4)行从左向右的第4个数为________.『解析』从数表可知,所有的数是由偶数组成的,第n 行有n 个偶数,从而前n -1行有1+2+…+(n -1)=(1)2n n -个偶数,第(n ≥4)行从左向右的第4个数是第(1)2n n -+4个偶数,所以是n 2-n +8. 『答案』n 2-n +82.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N *).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n n +1.(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.『备课札记』 『类题通法』用观察法求数列的通项公式的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n+1来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.考点二由a n 与S n 的关系求通项a n『典例』 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b .『解』 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-『2(n -1)2-3(n -1)』=4n -5,由于a 1也适合此等式,∴a n =4n -5.(2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式.当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.『备课札记』 『类题通法』已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写. 『针对训练』已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)·(a n +2),得a n +1-a n -3=0或a n +1=-a n .因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n =3n -1.考点三由递推关系式求数列的通项公式递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,归纳起来常见的命题角度有:1形如a n +1=a n f (n ),求a n ; 2形如a n +1=a n +f (n ),求a n ; 3形如a n +1=Aa n +B A ≠0且A ≠1,求a n .角度一 形如a n +1=a n f (n ),求a n1.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1.即a n a n -1=n +1n -1. ∴a n =a 1·a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n -2a n -3·a n -1a n -2·a n a n -1=1·31·42·53·64·…·n -1n -3·n n -2·n +1n -1=n n +12(n ≥2) 当n =1时,a 1=1.综上可知,{a n }的通项公式a n =nn +12. 角度二 形如a n +1=a n +f (n ),求a n 2.已知a 1=2,a n +1=a n +3n +2,求a n .解:∵a n +1-a n =3n +2,∴a n -a n -1=3n -1(n ≥2), ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n3n +12(n ≥2). 当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n2.角度三 形如a n +1=Aa n +B (A ≠0且A ≠1),求a n 3.已知数列{a n }满足a 1=1,a n +1=3a n +2,求a n . 解:∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.『备课札记』 『类题通法』由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,(如角度二),注意:有的问题也可利用构造法,即通过对递推式的等价变形,(如角度三)转化为特殊数列求通项.『课堂练通考点』1.(2014·苏北四市质检)在数列{a n }中,已知a 1=2,a 2=3,当n ≥2时,a n +1是a n ·a n -1的个位数,则a 2 014=________.『解析』由题意,该数列除前2项外,从第3项往后是周期为6的周期数列,故a 2 014=a 4=8. 『答案』82.(2013·盐城三调)已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6, x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________. 『解析』由题意可知⎩⎪⎨⎪⎧3-a >0,a >1,f 8>f 7,解得a ∈(2,3).答案(2,3)3.已知数列{a n }满足a st =a s a t (s ,t ∈N *),且a 2=2,则a 8=________. 『解析』令s =t =2,则a 4=a 2×a 2=4,令s =2,t =4,则a 8=a 2×a 4=8. 『答案』84.已知数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }前n 项的和,则S 2 013=____________.『解析』由a 1=1,a n +1=(-1)n (a n +1)可得该数列是周期为4的数列,且a 1=1,a 2=-2,a 3=-1,a 4=0.所以S 2 013=503(a 1+a 2+a 3+a 4)+a 2 013=503×(-2)+1=-1 005. 『答案』-1 0055.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式.解:∵当n ≥2时,a n =S n -S n -1=(2n 2+2n )-『2(n -1)2+2(n -1)』=4n , 当n =1时,a 1=S 1=4也适合,∴{a n }的通项公式是a n =4n (n ∈N *).∵T n =2-b n ,∴当n =1时,b 1=2-b 1,b 1=1.当n ≥2时,b n =T n -T n -1=(2-b n )-(2-b n -1), ∴2b n =b n -1.∴数列{b n }是公比为12,首项为1的等比数列.∴b n =⎝⎛⎭⎫12n -1.。

2014年高考数学一轮复习精品学案(人教版A版)――数列概念及等差数列

2014年高考数学一轮复习精品学案(人教版A版)――数列概念及等差数列

2014年高考数学一轮复习精品学案(人教版A 版)数列概念及等差数列一.【课标要求】1.数列的概念和简单表示法;通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;2.通过实例,理解等差数列的概念,探索并掌握等差数列的通项公式与前n 项和的公式;3.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题。

体会等差数列与一次函数的关系.二.【命题走向】数列在历年高考都占有很重要的地位,一般情况下都是一至二个客观性题目和一个解答题。

对于本将来讲,客观性题目主要考察数列、等差数列的概念、性质、通项公式、前n 项和公式等基本知识和基本性质的灵活应用,对基本的计算技能要求比较高.预测2014年高考:1.题型既有灵活考察基础知识的选择、填空,又有关于数列推导能力或解决生产、生活中的实际问题的解答题;2.知识交汇的题目一般是数列与函数、不等式、解析几何、应用问题联系的综合题,还可能涉及部分考察证明的推理题.三.【要点精讲】1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ;数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.例如,数列①的通项公式是n a = n (n ≤7,n N +∈),数列②的通项公式是n a = 1n(n N +∈)。

说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。

例如,n a =(1)n -=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩; ③不是每个数列都有通项公式。

【创新方案】2014届高考数学一轮复习 5.1数列的概念及简单表示法讲解与练习 理 新人教A版

【创新方案】2014届高考数学一轮复习 5.1数列的概念及简单表示法讲解与练习 理 新人教A版

第一节数列的概念与简单表示法[备考方向要明了]考什么怎么考1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.数列的概念在高考试题中常与其他知识综合进行考查,主要有:(1)以考查通项公式为主,同时考查S n与a n的关系,如2012年某某T16等.(2)以递推关系为载体,考查数列的各项的求法,如2012年新课标全国T16等.[归纳·知识整合]1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫做首项).2.数列的分类分类原则类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第2项起有些项大于它的前一项,有些项小于它的前一项.3.数列的表示法数列的表示方法有列表法、图象法、公式法.4.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.[探究] 1.数列的通项公式唯一吗?是否每个数列都有通项公式?提示:不唯一,如数列-1,1,-1,1,…的通项公式可以为a n =(-1)n或a n =⎩⎪⎨⎪⎧-1,n 为奇数,1,n 为偶数.有的数列没有通项公式.5.数列的递推公式若一个数列{a n }的首项a 1确定,其余各项用a n 与a n -1的关系式表示(如a n =2a n -1+1,n >1),则这个关系式就称为数列的递推公式.[探究] 2.通项公式和递推公式有何异同点? 提示:[自测·牛刀小试]1.(教材习题改编)已知数列{a n }的前4项分别为2,0,2,0,…,则下列各式不可以作为数列{a n }的通项公式的一项是( )A .a n =1+(-1)n +1B .a n =2sinn π2C .a n =1-cos n π D.a =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数解析:选B 若a n =2sinn π2,则a 1=2sin π2=2,a 2=2sin π=0,a 3=2sin 3π2=-2,a 4=2sin 2π=0.2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:选D 令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.3.(教材习题改编)在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 5=( )A.32B.53C.74D.85解析:选D 由题意知,a 1=1,a 2=2,a 3=32,a 4=53,a 5=85.4.(教材改编题)已知数列2,5,22,…,根据数列的规律,25应该是该数列的第________项.解析:由于2=3×1-1,5=3×2-1,8=3×3-1,… 故可知该数列的通项公式为a n =3n -1 由25=3n -1,得n =7. 答案:75.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =________;数列{na n }中数值最小的项是第________项.解析:∵当n ≥2时,a n =S n -S n -1=(n 2-10n )-[(n -1)2-10(n -1)]=2n -11; 当n =1时,a 1=S 1=-9也满足a n =2n -11, ∴a n =2n -11.∴na n =2n 2-11n =2⎝ ⎛⎭⎪⎫n 2-112n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -1142-12116=2⎝⎛⎭⎪⎫n -1142-1218.又∵n ∈N *,∴当n =3时,na n 取最小值. 答案:2n -11 3已知数列的前几项求通项公式[例1] 根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)12,34,78,1516,3132,…; (3)12,14,-58,1316,-2932,6164,…. [自主解答] (1)各数都是偶数,且最小为4,所以通项a n =2(n +1)(n ∈N *). (2)注意到分母分别是21,22,23,24,25,…,而分子比分母少1, 所以其通项a n =2n-12n (n ∈N *).(3)分母规律明显,而第2,3,4项的绝对值的分子比分母少3,因此可考虑把第1项变为-2-32,这样原数列可化为-21-321,22-322,-23-323,24-324,-25-325,26-326,…所以其通项a n =(-1)n 2n-32n (n ∈N *).——————————————————— 用观察法求数列的通项公式的技巧用观察归纳法求数列的通项公式,关键是找出各项的共同规律及项与项数n 的关系.当项与项之间的关系不明显时,可采用适当变形或分解,以凸显规律,便于归纳.当各项是分数时,可分别考虑分子、分母的变化规律及联系,正负相间出现时,可用(-1)n 或(-1)n +1调节.1.写出下列数列的一个通项公式,使它的前几项分别是下列各数: (1)23,415,635,863,1099,…; (2)-1,13,-935,1763,-3399,…;(3)9,99,999,9 999,….解:(1)分子是连续的偶数,且第1个数是2,所以用2n 表示;分母是22-1,42-1,62-1,82-1,102-1,所以用(2n )2-1表示.所以a n =2n 2n2-1=2n 4n 2-1(n ∈N *). (2)正负交替出现,且奇数项为负,偶数项为正,所以用(-1)n表示; 1, 13, 935, 1763, 3399,…↕ ↕ ↕ ↕ ↕31×3, 53×5, 95×7, 177×9, 339×11,… 分母是连续奇数相乘的形式,观察和项数n 的关系,用(2n -1)(2n +1)表示;分子是21+1,22+1,23+1,24+1,用2n+1表示.所以 a n =(-1)n·2n+12n -12n +1=(-1)n ·2n+14n 2-1(n ∈N *).(3) 9, 99, 999, 9 999,… ↕ ↕↕↕101-1, 102-1, 103-1, 104-1,… 所以a n =10n-1(n ∈N *).由a n 与S n 的关系求通项公式[例2] 已知数列{a n }的前n 项和为S n =3n-1,求它的通项公式a n . [自主解答] 当n ≥2时,a n =S n -S n -1=3n-1-(3n -1-1)=2×3n -1;当n =1时,a 1=S 1=2也满足a n =2×3n -1.故数列{a n }的通项公式为a n =2×3n -1.若将“S n =3n -1”改为“S n =n 2-n +1”,如何求解? 解:∵a 1=S 1=12-1+1=1, 当n ≥2时,a n =S n -S n -1=(n 2-n +1)-[(n -1)2-(n -1)+1]=2n -2.∴a n =⎩⎪⎨⎪⎧1n =1,2n -2n ≥2.———————————————————已知S n 求a n 时应注意的问题数列的通项a n 与前n项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.2.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.求数列{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2.由已知a 1=S 1>1,因此a 1=2. 又由a n +1=S n +1-S n=16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2), 得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0,即a n +1-a n =3,从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项公式为a n =3n -1.由递推关系式求数列的通项公式[例3] 根据下列条件,确定数列{a n }的通项公式. (1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n =n -1na n -1(n ≥2); (3)a 1=2,a n +1=a n +3n +2. [自主解答] (1)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1),即a n +1+1a n +1=3. ∴数列{a n +1}为等比数列,公比q =3. 又a 1+1=2,∴a n +1=2×3n -1.∴a n =2×3n -1-1.(2)∵a n =n -1na n -1(n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1×12×23×…×n -1n =a 1n =1n .(3)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.——————————————————— 由递推公式求通项公式的常用方法已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. 当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+fn 时,用累加法求解;当出现a na n -1时,用累乘法求解.3.(2012·大纲全国卷)已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求数列{a n }的通项公式.解:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3;由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n >1时有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1,a 3=42a 2,…a n -1=n n -2a n -2,a n =n +1n -1a n -1,将以上n 个等式两端分别相乘,整理得a n =n n +12.综上可知,数列{a n }的通项公式a n =n n +12.数列函数性质的应用[例4] 已知数列{a n }. (1)若a n =n 2-5n +4, ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.某某数k 的取值X 围. [自主解答] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.②∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94的对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.———————————————————函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.4.若数列⎩⎨⎧⎭⎬⎫nn +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________.解析:法一:由题意知, ⎩⎪⎨⎪⎧k k +4⎝ ⎛⎭⎪⎫23k ≥k -1k +3⎝ ⎛⎭⎪⎫23k -1,kk +4⎝ ⎛⎭⎪⎫23k ≥k +1k +5⎝ ⎛⎭⎪⎫23k +1,解得10≤k ≤1+10. ∵k ∈N *,∴k =4.法二:设a n =n (n +4)⎝ ⎛⎭⎪⎫23n,则a n +1-a n =(n +1)(n +5)⎝ ⎛⎭⎪⎫23n +1-n (n +4)⎝ ⎛⎭⎪⎫23n=⎝ ⎛⎭⎪⎫23n ⎣⎢⎡⎦⎥⎤23n +1n +5-n n +4=⎝ ⎛⎭⎪⎫23n 10-n 23. 当n ≤3时,a n +1-a n >0,即a n +1>a n ,当n ≥4时,a n +1-a n <0,即a n +1<a n , 故a 1<a 2<a 3<a 4,且a 4>a 5>a 6>…. 所以数列中最大项是第4项. 答案:41个关系——数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.3类问题——数列通项公式的求法及最大(小)项问题 (1)由递推关系求数列的通项公式常用的方法有: ①求出数列的前几项,再归纳出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用叠加法、累乘法、迭代法. (2)由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式; ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . (3)数列{a n }的最大(小)项的求法 可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.创新交汇——数列与函数的交汇问题1.数列的概念常与函数、方程、解析几何、不等式等相结合命题.2.正确理解、掌握函数的性质(如单调性、周期性等)是解决此类问题的关键. [典例] (2012·某某高考)已知f (x )=11+x .各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.[解析] ∵a n +2=11+a n ,又a 2 010=a 2 012=11+a 2 010,∴a 22 010+a 2 010=1.又a n >0,∴a 2 010=5-12. 又a 2 010=11+a 2 008=5-12,∴a 2 008=5-12,同理可得a 2 006=…=a 20=5-12. 又a 1=1,∴a 3=12,a 5=11+a 3=23,a 7=11+a 5=35,a 9=11+a 7=58,a 11=11+a 9=813. ∴a 20+a 11=5-12+813=135+326. [答案]135+326[名师点评]1.本题具有以下创新点(1)数列{a n }的递推关系式,以函数f (x )=11+x为载体间接给出;(2)给出的递推关系式不是相邻两项,即a n 与a n -1(n ≥2)之间的关系,而是给出a n 与a n+2之间的关系式,即奇数项与奇数项、偶数项与偶数项之间的递推关系. 2.解决本题的关键有以下两点 (1)正确求出数列{a n }的递推关系式; (2)正确利用递推公式a n +2=11+a n,分别从首项a 1推出a 11和从a 2 010推出a 20. [变式训练]1.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n n的最小值为( ) A.172B.212C .10D .21解析:选B 由已知条件可知:当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33适合, 故a n =n 2-n +33.又a n n=n +33n-1,令f (n )=n +33n-1,f (n )在[1,5]上为减函数,f (n )在[6,+∞)上为增函数,又f (5)=535,f (6)=212, 所以f (5)>f (6).故f (n )=a n n 的最小值为212.2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1x ≤0,f x -1+1x >0,把函数g (x )=f (x )-x 的零点按从小到大的顺序排成一个数列,则该数列的通项公式为( )A .a n =n n -12(n ∈N *) B .a n =n (n -1)(n ∈N *)C .a n =n -1(n ∈N *) D .a n =2n -2(n ∈N *)解析:选C 据已知函数关系式可得f (x )=⎩⎪⎨⎪⎧2x-1x ≤0,2x -10<x ≤1,2x -2+11<x ≤2,…,此时易知函数g (x )=f (x )-x 的前几个零点依次为0,1,2,…,代入验证只有C 符合.一、选择题(本大题共6小题,每小题5分,共30分) 1.数列1,23,35,47,59,…的一个通项公式a n 是( )A.n 2n +1B.n 2n -1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故通项为n2n -1.2.已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若数列{a n }为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是有3>2λ,即λ<32.由λ<1可得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件.3.数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大值是( )A .310B .19 C.119D.1060解析:选C 因为a n =1n +90n,运用基本不等式得1n +90n≤1290,由于n ∈N *,不难发现当n =9或10时,a n =119最大.4.(2013·某某模拟)设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为T r ,则T 2 013的值为( )A .-12B .-1C.12D .2 解析:选B 由a 2=12,a 3=-1,a 4=2可知,数列{a n }是周期为3的周期数列,从而T 2013=(-1)671=-1.5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 解析:选B 由a n =⎩⎪⎨⎪⎧S n n =1S n -S n -1n ≥2=⎩⎪⎨⎪⎧-8n =1,2n -10n ≥2,得a n =2n -10.由5<2k -10<8得7.5<k <9,由于k ∈N *,所以k =8. 6.(2012·某某高考)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( )A .1 006B .2 012C .503D .0解析:选A 由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 012=503×2=1 006.二、填空题(本大题共3小题,每小题5分,共15分)7.根据下图5个图形及相应点的个数的变化规律,猜测第n 个图中有________个点.解析:观察图中5个图形点的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,故第n 个图中点的个数为(n -1)×n +1=n 2-n +1. 答案:n 2-n +18.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n⎝ ⎛⎭⎪⎫0≤a n<12,2a n-1⎝ ⎛⎭⎪⎫12≤a n<1,若a 1=67,则a 2 013=________.解析:因为a 1=67∈⎣⎢⎡⎭⎪⎫12,1,所以a 2=2a 1-1=2×67-1=57.因为a 2=57∈⎣⎢⎡⎭⎪⎫12,1,所以a 3=2a 2-1=2×57-1=37.因为a 3=37∈⎣⎢⎡⎭⎪⎫0,12,所以a 4=2a 3=2×37=67.显然a 4=a 1,根据递推关系,逐步代入,得a 5=a 2,a 6=a 3,…故该数列的项呈周期性出现,其周期为3,根据上述求解结果,可得a 3k +1=67,a 3k +2=57,a 3k +3=37(k ∈N ).所以a 2 013=a 3×671=a 3=37.答案:379.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10=________.解析:∵a n +a n +1=b n ,a n ·a n +1=2n, ∴a n +1·a n +2=2n +1,∴a n +2=2a n .又∵a 1=1,a 1·a 2=2,∴a 2=2, ∴a 2n =2n,a 2n -1=2n -1(n ∈N *),∴b 10=a 10+a 11=64. 答案:64三、解答题(本大题共3小题,每小题12分,共36分)10.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3…·a n =n 2,求a 3+a 5的值.解:∵a 1·a 2·a 3·…·a n =n 2, ∴a 1a 2=4,a 1a 2a 3=9,解得a 3=94.同理a 5=2516.∴a 3+a 5=6116.11.已知数列{a n }的前n 项和S n ,分别求它们的通项公式a n . (1)S n =2n 2+3n ; (2)S n =2n+1.解:(1)由题可知,当n =1时,a 1=S 1=2×12+3×1=5,当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1. 当n =1时,4×1+1=5=a 1,故a n =4n +1. (2)当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1)=2n -1.当n =1时,21-1=1≠a 1,故a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.12.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设=T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{}的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2), 故b n=⎩⎪⎨⎪⎧1n n ≥2,23n =1.(2)∵=b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1,∴+1-=12n +2+12n +3-1n +1=-n -12n +22n +3n +1<0.∴{}是递减数列.1.根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,…; (1)0.8,0.88,0.888,…; (3)32,1,710,917,…; (4)0,1,0,1,….解:(1)符号问题可通过(-1)n或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n(6n -5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…故a n =89⎝⎛⎭⎪⎫1-110n .(3)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为=n 2+1,故可得它的一个通项公式为a n =2n +1n 2+1.(4)a n =⎩⎪⎨⎪⎧n 为奇数,1n 为偶数或a n =1+-1n2或a n =1+cos n π2.2.已知数列{a n }的通项公式a n =(n +1)⎝ ⎛⎭⎪⎫1011n (n ∈N *),试问数列{a n }有没有最大项?若有,求最大项和最小项的项数;若没有,说明理由.解:∵a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n =⎝ ⎛⎭⎪⎫1011n·9-n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ;故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…∴数列中有最大项,最大项为第9、10项, 即a 9=a 10=1010119.3.设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎪⎫n ,S n n(n ∈N *)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解:(1)依题意得,S nn=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5. 所以a n =6n -5(n ∈N *). (2)由(1)得b n =3a n a n +1=36n -5[6n +1-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =∑i =1nbi=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1 =12⎝⎛⎭⎪⎫1-16n +1.因此,使得12⎝ ⎛⎭⎪⎫1-16n +1<m 20(n ∈N *)成立的m 必须且仅需满足12≤m 20,即m ≥10,故满足要求的最小正整数m 为10.4.(2012·某某高考)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解:(1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1,易知当n =1时也满足通式a n =4n -1, 所以a n =4n -1,n ∈N *.由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N *.(2)由(1)知a n·b n=(4n-1)·2n-1,n∈N*,所以T n=3+7×2+11×22+…+(4n-1)·2n-1,2T n=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,2T n-T n=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5. 故T n=(4n-5)2n+5,n∈N*.。

2014届高考数学一轮复习(基础知识+高频考点+解题训练)《数列求和》教学案

2014届高考数学一轮复习(基础知识+高频考点+解题训练)《数列求和》教学案

第四节数_列_求_和[知识能否忆起]一、公式法1.如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.2.一些常见数列的前n 项和公式: (1)1+2+3+4+…+n =n n +2;(2)1+3+5+7+…+2n -1=n 2; (3)2+4+6+8+…+2n =n 2+n . 二、非等差、等比数列求和的常用方法 1.倒序相加法如果一个数列{a n },首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,等差数列的前n 项和即是用此法推导的.2.分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,等比数列的前n 项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[小题能否全取]1.(2012·沈阳六校联考)设数列{(-1)n}的前n 项和为S n ,则对任意正整数n ,S n =( ) A.n -n-1]2B.-n -1+12C.-1n+12D.-n-12解析:选D 因为数列{(-1)n}是首项与公比均为-1的等比数列,所以S n =-1--n-1--=-n-12.2.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100 解析:选C ∵S n =n a 1+a n2=n (n +2),∴S n n =n +2.故S 11+S 22+…+S 1010=75. 3.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A .31B .120C .130D .185解析:选C a 1+…+a k +…+a 10=240-(2+…+2k +…+20)=240-+202=240-110=130.4.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为________. 解析:S n =-2n1-2+n+2n -2=2n +1-2+n 2.答案:2n +1+n 2-25.数列12×4,14×6,16×8,…,12n n +,…的前n 项和为________.解析:因a n =12nn +=14⎝ ⎛⎭⎪⎫1n -1n +1 则S n =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=nn +.答案:n n +数列求和的方法(1)一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.(2)解决非等差、等比数列的求和,主要有两种思路:①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.②不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.典题导入[例1] (2011·山东高考)等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前2n 项和S 2n . [自主解答] (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18.所以公比q =3,故a n =2·3n -1.(2)因为b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n(ln 2-ln 3)+(-1)nn ln 3,所以S 2n =b 1+b 2+…+b 2n =2(1+3+…+32n -1)+[-1+1-1+…+(-1)2n](ln 2-ln 3)+[-1+2-3+…+(-1)2n2n ]ln 3=2×1-32n1-3+n ln 3=32n+n ln 3-1.由题悟法分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.以题试法1.已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求:(1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.解:(1)由x 1=3,得2p +q =3,又因为x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1.(2)由(1),知x n =2n+n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +2.典题导入[例2] (2012·江西高考)已知数列{a n }的前n 项和S n =kc n-k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n .[自主解答] (1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kc n -1(n ≥2).由a 2=4,a 6=8a 3 ,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n-kc n -1=2n(n ≥2),于是a n =2n.(2)T n =∑i =1nia i =∑i =1ni ·2i,即T n =2+2·22+3·23+4·24+…+n ·2n.T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n+1+2+n ·2n +1=(n -1)2n +1+2.由题悟法用错位相减法求和应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.以题试法2.(2012·济南模拟)已知等比数列{a n }的前n 项和为S n ,且满足S n =3n+k . (1)求k 的值及数列{a n }的通项公式; (2)若数列{b n }满足a n +12=(4+k )a n b n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,由a n =S n -S n -1=3n+k -3n -1-k =2·3n -1,得等比数列{a n }的公比q=3,首项为2.∴a 1=S 1=3+k =2,∴k =-1,∴数列{a n }的通项公式为a n =2·3n -1.(2)由a n +12=(4+k )a n b n ,可得b n =n2·3n -1, 即b n =32·n 3n .∵T n =32⎝ ⎛⎭⎪⎫13+232+333+…+n 3n ,∴13T n =32⎝ ⎛⎭⎪⎫132+233+334+…+n 3n +1,∴23T n =32⎝ ⎛⎭⎪⎫13+132+133+…+13n -n 3n +1,∴T n =94⎝ ⎛⎭⎪⎫12-12·3n -n 3n +1.典题导入[例3] 已知数列{a n }的前n 项和为S n ,a 1=1,S n =na n -n (n -1)(n ∈N *). (1)求数列{a n }的通项公式; (2)设b n =2a n a n +1,求数列{b n }的前n 项和T n .[自主解答] (1)∵S n =na n -n (n -1),当n ≥2时,S n -1=(n -1)·a n -1-(n -1)(n -2),∴a n =S n -S n -1=na n -n (n -1)-(n -1)a n -1+(n -1)·(n -2), 即a n -a n -1=2.∴数列{a n }是首项a 1=1,公差d =2的等差数列, 故a n =1+(n -1)·2=2n -1,n ∈N *. (2)由(1)知b n =2a n a n +1=2n -n +=12n -1-12n +1,故T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n 2n +1.本例条件不变,若数列{b n }满足b n =1S n +n,求数列{b n }的前n 项和T n . 解:S n =na n -n (n -1)=n (2n -1)-n (n -1)=n 2.b n =1S n +n =1n 2+n =1n n +=1n -1n +1, T n =⎝⎛⎭⎪⎫11-12+⎝⎛⎭⎪⎫12-13+⎝⎛⎭⎪⎫13-14+…+⎝⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.由题悟法利用裂项相消法求和应注意(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.以题试法3.(2012·“江南十校”联考)在等比数列{a n }中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1、a 5的等比中项为16.(1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n ∈N *恒成立.若存在,求出正整数k 的最小值;不存在,请说明理由.解:(1)设数列{a n }的公比为q ,由题意可得a 3=16, ∵a 3-a 2=8,则a 2=8,∴q =2. ∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =n n +4.∵1S n =4nn +=43⎝ ⎛⎭⎪⎫1n -1n +3, ∴1S 1+1S 2+1S 3+…+1S n=43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3=43⎝ ⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3<229,∴存在正整数k 的最小值为3.1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5B.3116或5 C.3116D.158解析:选C 设数列{a n }的公比为q .由题意可知q ≠1,且-q 31-q=1-q 61-q,解得q =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116.2.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4D .不确定解析:选B 由数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),可知数列{a n }是等差数列,由S 25=a 1+a 252=100,解得a 1+a 25=8,所以a 1+a 25=a 12+a 14=8.3.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n解析:选A 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n .4.(2012·“江南十校”联考)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎪⎫1-14nD.23⎝⎛⎭⎪⎫1-12n解析:选C a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1, 则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n .5.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101 B.99101 C.99100D.101100解析:选A 设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+-2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1nn +=1n -1n +1,∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101. 6.已知函数f (n )=⎩⎪⎨⎪⎧n 2当n 为奇数时,-n 2当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200解析:选B 由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.7.在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________. 解析:由等差数列的性质及a 2+a 8=18-a 5, 得2a 5=18-a 5,则a 5=6, 故S 9=a 1+a 92=9a 5=54.答案:548.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n.∴S n =2-2n +11-2=2n +1-2.答案:2n +1-29.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和S n =________.解析:设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n,故b n =log 3a n =n ,所以1b n b n +1=1nn +=1n -1n +1. 则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.答案:nn +110.(2013·唐山统考)在等比数列{a n }中,a 2a 3=32,a 5=32. (1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,求S 1+2S 2+…+nS n . 解:(1)设等比数列{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q ·a 1q 2=32,a 1q 4=32,解得a 1=2,q =2,故a n =2·2n -1=2n.(2)∵S n 表示数列{a n }的前n 项和, ∴S n =-2n1-2=2(2n-1),∴S 1+2S 2+…+nS n =2[(2+2·22+…+n ·2n )-(1+2+…+n )]=2(2+2·22+…+n ·2n )-n (n +1),设T n =2+2·22+…+n ·2n,① 则2T n =22+2·23+…+n ·2n +1,②①-②,得-T n =2+22+…+2n -n ·2n +1=-2n1-2-n ·2n +1=(1-n )2n +1-2,∴T n =(n -1)2n +1+2,∴S 1+2S 2+…+nS n =2[(n -1)2n +1+2]-n (n +1)=(n -1)2n +2+4-n (n +1).11.(2012·长春调研)已知等差数列{a n }满足:a 5=9,a 2+a 6=14. (1)求{a n }的通项公式;(2)若b n =a n +qa n (q >0),求数列{b n }的前n 项和S n .解:(1)设数列{a n }的首项为a 1,公差为d ,则由a 5=9,a 2+a 6=14,得⎩⎪⎨⎪⎧a 1+4d =9,2a 1+6d =14,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以{a n }的通项a n =2n -1.(2)由a n =2n -1得b n =2n -1+q 2n -1.当q >0且q ≠1时,S n =[1+3+5+…+(2n -1)]+(q 1+q 3+q 5+…+q 2n -1)=n 2+q-q 2n1-q2;当q =1时,b n =2n ,则S n =n (n +1). 所以数列{b n }的前n 项和S n =⎩⎪⎨⎪⎧n n +,q =1,n 2+q -q 2n1-q 2,q >0,q ≠1.12.(2012·“江南十校”联考)若数列{a n }满足:a 1=23,a 2=2,3(a n +1-2a n +a n -1)=2.(1)证明:数列{a n +1-a n }是等差数列;(2)求使1a 1+1a 2+1a 3+…+1a n >52成立的最小的正整数n .解:(1)由3(a n +1-2a n +a n -1)=2可得:a n +1-2a n +a n -1=23,即(a n +1-a n )-(a n -a n -1)=23,故数列{a n +1-a n }是以a 2-a 1=43为首项,23为公差的等差数列.(2)由(1)知a n +1-a n =43+23(n -1)=23(n +1),于是累加求和得a n =a 1+23(2+3+…+n )=13n (n +1),∴1a n =3⎝ ⎛⎭⎪⎫1n -1n +1, ∴1a 1+1a 2+1a 3+…+1a n =3-3n +1>52,∴n >5, ∴最小的正整数n 为6.1.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =( ) A .6n -n 2B .n 2-6n +18 C.⎩⎪⎨⎪⎧6n -n 2n n 2-6n +nD.⎩⎪⎨⎪⎧6n -n 2n n 2-6n n解析:选C ∵由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2. ∴a n =-5+(n -1)×2=2n -7, ∴n ≤3时,a n <0,n >3时,a n >0,∴T n =⎩⎪⎨⎪⎧6n -n2n ,n 2-6n +n2.(2012·成都二模)若数列{a n }满足a 1=2且a n +a n -1=2n+2n -1,S n 为数列{a n }的前n 项和,则log 2(S 2 012+2)=________.解析:因为a 1+a 2=22+2,a 3+a 4=24+23,a 5+a 6=26+25,….所以S 2 012=a 1+a 2+a 3+a 4+…+a 2 011+a 2 012=21+22+23+24+…+22 011+22 012=-22 0121-2=22 013-2.故log 2(S 2 012+2)=log 222 013=2 013.答案:2 0133.已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求S n .解:(1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8. ∴a 2+a 4=20.∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2,或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }为递增数列, ∴⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n.(2)∵b n =2n ·log 122n =-n ·2n,∴-S n =1×2+2×22+3×23+…+n ×2n.①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①-②得S n =2+22+23+…+2n -n ·2n +1=-2n1-2-n ·2n +1=2n +1-n ·2n +1-2.∴S n =2n +1-n ·2n +1-2.1.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项; (2)求数列{2a n }的前n 项和S n .解:(1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d1+2d ,解得d =1或d =0(舍去),故{a n }的通项a n =1+(n -1)×1=n . (2)由(1)知2a n =2n, 由等比数列前n 项和公式得S n =2+22+23+ (2)=-2n1-2=2n +1-2.2.设函数f (x )=x 3,在等差数列{a n }中,a 3=7,a 1+a 2+a 3=12,记S n =f (3a n +1),令b n =a n S n ,数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为T n .(1)求{a n }的通项公式和S n ; (2)求证:T n <13.解:(1)设数列{a n }的公差为d ,由a 3=a 1+2d =7,a 1+a 2+a 3=3a 1+3d =12,解得a 1=1,d =3,则a n =3n -2.∵f (x )=x 3,∴S n =f (3a n +1)=a n +1=3n +1. (2)证明:∵b n =a n S n =(3n -2)(3n +1), ∴1b n =1n -n +=13⎝ ⎛⎭⎪⎫13n -2-13n +1.∴T n =1b 1+1b 2+…+1b n=13⎝ ⎛⎭⎪⎫1-14+14-17+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1.∴T n <13. 3.已知二次函数f (x )=x 2-5x +10,当x ∈(n ,n +1](n ∈N *)时,把f (x )在此区间内的整数值的个数表示为a n .(1)求a 1和a 2的值; (2)求n ≥3时a n 的表达式; (3)令b n =4a n a n +1,求数列{b n }的前n 项和S n (n ≥3).解:(1)f (x )=x 2-5x +10,又x ∈(n ,n +1](n ∈N *)时,f (x )的整数个数为a n ,所以f (x )在(1,2]上的值域为[4,6)⇒a 1=2;f (x )在(2,3]上的值域为⎣⎢⎡⎦⎥⎤154,4⇒a 2=1.(2)当n ≥3时,f (x )是增函数,故a n =f (n +1)-f (n )=2n -4. (3)由(1)和(2)可知,b 1=42×1=2,b 2=41×2=2.而当n ≥3时,b n =4n -n -=2⎝⎛⎭⎪⎫12n -4-12n -2.所以当n ≥3时,S n =b 1+b 2+b 3+b 4+…+b n =2+2+2⎝ ⎛⎭⎪⎫12-14+14-16+…+12n -4-12n -2 =4+2⎝ ⎛⎭⎪⎫12-12n -2=5-1n -1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节数列的概念与简单表示法[知识能否忆起]1.数列的定义、分类与通项公式(1)数列的定义:①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类:(3)数列的通项公式:如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n}的首项(或前几项),且任一项a n与它的前一项a n-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.[小题能否全取]1.(教材习题改编)数列1,23,35,47,59…的一个通项公式是()A.a n=n2n+1B.a n=n2n-1C.a n=n2n-3D.a n=n2n+3答案:B2.设数列{a n}的前n项和S n=n2,则a8的值为() A.15 B.16C .49D .64解析:选A a 8=S 8-S 7=64-49=15.3.已知数列{a n }的通项公式为a n =nn +1,则这个数列是( )A .递增数列B .递减数列C .常数列D .摆动数列解析:选A a n +1-a n =n +1n +2-n n +1=(n +1)2-n (n +2)(n +1)(n +2)=1(n +1)(n +2)>0.4.(教材习题改编)已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2·3n -1(n 为偶数),2n -5(n 为奇数),则a 4·a 3=________.解析:a 4·a 3=2×33·(2×3-5)=54. 答案:545.已知数列{a n }的通项公式为a n =pn +q n ,且a 2=32,a 4=32,则a 8=________.解析:由已知得⎩⎨⎧2p +q 2=32,4p +q 4=32,解得⎩⎪⎨⎪⎧p =14,q =2.则a n =14n +2n ,故a 8=94.答案:941.对数列概念的理解(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.2.数列的函数特征数列是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应的函数解析式,即f (n )=a n (n ∈N *).典题导入[例1] (2012·天津南开中学月考)下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( )A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2D .a n =(-1)n -1+32[自主解答] 由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2, a 3=1,a 4=2,…. [答案] C若本例中数列变为:0,1,0,1,…,则{a n }的一个通项公式为________. 答案:a n =⎩⎪⎨⎪⎧0(n 为奇数),1(n 为偶数).⎝⎛⎭⎫或a n =1+(-1)n2或a n=1+cos n π2由题悟法1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n+1来调整.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.以题试法1.写出下面数列的一个通项公式. (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)3,33,333,3 333,…;(4)-1,32,-13,34,-15,36,….解:(1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,….所以a n =13(10n -1).(4)奇数项为负,偶数项为正,故通项公式的符号为(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+(-1)nn,也可写为a n=⎩⎨⎧-1n ,n 为正奇数,3n ,n 为正偶数.典题导入[例2] 已知数列{a n }的前n 项和S n ,根据下列条件分别求它们的通项a n . (1)S n =2n 2+3n ;(2)S n =3n +1.[自主解答] (1)由题可知,当n =1时,a 1=S 1=2×12+3×1=5, 当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1. 当n =1时,4×1+1=5=a 1,故a n =4n +1. (2)当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,故a n =⎩⎪⎨⎪⎧4, n =1,2×3n -1, n ≥2.由题悟法已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.以题试法2.(2012·聊城模拟)已知数列{a n }的前n 项和为S n ,且S n =n n +1,则1a 5=( )A.56 B.65 C.130D .30解析:选D 当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),则a 5=15×6=130.典题导入[例3] 已知数列{a n }的通项公式为a n =n 2-21n +20. (1)n 为何值时,a n 有最小值?并求出最小值; (2)n 为何值时,该数列的前n 项和最小?[自主解答] (1)因为a n =n 2-21n +20=⎝⎛⎭⎫n -2122-3614,可知对称轴方程为n =212=10.5.又因n ∈N *,故n =10或n =11时,a n 有最小值,其最小值为112-21×11+20=-90.(2)设数列的前n 项和最小,则有a n ≤0,由n 2-21n +20≤0,解得1≤n ≤20,故数列{a n }从第21项开始为正数,所以该数列的前19或20项和最小.在本例条件下,设b n =a nn,则n 为何值时,b n 取得最小值?并求出最小值.解:b n =a n n =n 2-21n +20n =n +20n-21,令f (x )=x +20x -21(x >0),则f ′(x )=1-20x 2,由f ′(x )=0解得x =25或x =-25(舍).而4<25<5,故当n ≤4时,数列{b n }单调递减;当n ≥5时,数列{b n }单调递增.而b 4=4+204-21=-12,b 5=5+205-21=-12,所以当n =4或n =5时,b n 取得最小值,最小值为-12.由题悟法1.数列中项的最值的求法根据数列与函数之间的对应关系,构造相应的函数a n =f (n ),利用求解函数最值的方法求解,但要注意自变量的取值.2.前n 项和最值的求法(1)先求出数列的前n 项和S n ,根据S n 的表达式求解最值;(2)根据数列的通项公式,若a m ≥0,且a m +1<0,则S m 最大;若a m ≤0,且a m +1>0,则S m 最小,这样便可直接利用各项的符号确定最值.以题试法3.(2012·江西七校联考)数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大值是( )A .310B .19 C.119D.1060解析:选C a n =1n +90n ,由基本不等式得,1n +90n ≤1290,由于n ∈N *,易知当n =9或10时,a n =119最大.1.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2等于( ) A .4 B .2 C .1D .-2解析:选A 由题可知S n =2(a n -1), 所以S 1=a 1=2(a 1-1),解得a 1=2.又S 2=a 1+a 2=2(a 2-1),解得a 2=a 1+2=4.2.按数列的排列规律猜想数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223解析:选C 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式,a n =(-1)n +12n2n +1,故a 10=-2021.3.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =( )A .2n -1B .n 2 C.(n +1)2n 2D.n 2(n -1)2解析:选D 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2.4.已知数列{a n }满足a 1>0,a n +1a n =12,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列D .不确定解析:选B ∵a n +1a n =12<1.又a 1>0,则a n >0,∴a n +1<a n .∴{a n }是递减数列.5.(2012·北京高考)某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 的值为( )A .5B .7C .9D .11解析:选C 依题意S nn 表示图象上的点(n ,S n )与原点连线的斜率,由图象可知,当n =9时,S nn最大,故m =9.6.(2013·江西八校联考)将石子摆成如图的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 012项与5的差,即a 2 012-5=( )A .2 018×2 012B .2 018×2 011C .1 009×2 012D .1 009×2 011解析:选D 因为a n -a n -1=n +2(n ≥2),所以a n =5+(n +6)(n -1)2,所以a 2 012-5=1009×2 011.7.已知数列{a n }满足a st =a s a t (s ,t ∈N *),且a 2=2,则a 8=________.解析:令s =t =2,则a 4=a 2×a 2=4, 令s =2,t =4,则a 8=a 2×a 4=8. 答案:88.已知数列{a n }满足a 1=1,a 2=2,且a n =a n -1a n -2(n ≥3),则a 2 012=________.解析:将a 1=1,a 2=2代入a n =a n -1a n -2得a 3=a 2a 1=2,同理可得a 4=1,a 5=12,a 6=12,a 7=1,a 8=2,故数列{a n }是周期数列,周期为6,故a 2 012=a 335×6+2=a 2=2.答案:29.已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n =________. 解析:由已知条件可得S n +1=2n +1.则S n =2n +1-1,当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=2n +1-1-2n+1=2n,n =1时不适合a n ,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.答案:⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.10.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解:(1)当n =4时,a 4=42-4×7+6=-6. (2)令a n =150,即n 2-7n +6=150, 解得n =16或n =-9(舍去), 即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍). 故从第7项起各项都是正数.11.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式.解:∵当n ≥2时,a n =S n -S n -1=(2n 2+2n )-[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4也适合, ∴{a n }的通项公式是a n =4n (n ∈N *). ∵T n =2-b n ,∴当n =1时,b 1=2-b 1,b 1=1.当n ≥2时,b n =T n -T n -1=(2-b n )-(2-b n -1), ∴2b n =b n -1.∴数列{b n }是公比为12,首项为1的等比数列.∴b n =⎝⎛⎭⎫12n -1.12.(2012·福州质检)数列{a n }中,已知a 1=2,a n +1=a n +cn (n ∈N *,常数c ≠0),且a 1,a 2,a 3成等比数列.(1)求c 的值;(2)求数列{a n }的通项公式.解:(1)由题知,a 1=2,a 2=2+c ,a 3=2+3c , 因为a 1,a 2,a 3成等比数列,所以(2+c )2=2(2+3c ), 解得c =0或c =2,又c ≠0,故c =2. (2)当n ≥2时,由a n +1=a n +cn 得 a 2-a 1=c , a 3-a 2=2c , …a n -a n -1=(n -1)c ,以上各式相加,得a n -a 1=[1+2+…+(n -1)]c =n (n -1)2c ,又a 1=2,c =2,故a n =n 2-n +2(n ≥2), 当n =1时,上式也成立,所以数列{a n }的通项公式为a n =n 2-n +2(n ∈N *).1.(2013·嘉兴质检)已知数列{a n }满足a 1=1,a n +1a n =2n (n ∈N *),则a 10=( ) A .64 B .32 C .16D .8解析:选B 因为a n +1a n =2n ,所以a n +1a n +2=2n +1,两式相除得a n +2a n=2.又a 1a 2=2,a 1=1,所以a 2=2,则a 10a 8·a 8a 6·a 6a 4·a 4a 2=24,即a 10=25. 2.数列{a n }中,S n 为{a n }的前n 项和,n (a n +1-a n )=a n (n ∈N *),且a 3=π,则tan S 4等于( )A .-33B. 3 C .- 3D.33解析:选B 法一:由n (a n +1-a n )=a n 得 na n +1=(n +1)a n ,可得3a 4=4a 3,已知a 3=π,则a 4=43π.又由2a 3=3a 2,得a 2=23π,由a 2=2a 1,得a 1=π3,故S 4=a 1+a 2+a 3+a 4=103π,tan S 4=tan 103π= 3.法二:∵由n (a n +1-a n )=a n , 得na n +1=(n +1)a n 即a n +1n +1=a nn ,∴a n n =a n -1n -1=a n -2n -2=…=a 33=π3. ∴a n =π3n ,∴S 4=a 1+a 2+a 3+a 4=π3(1+2+3+4)=103π,tan S 4=tan 103π= 3.3.(2012·甘肃模拟)已知数列{a n }中,a 1=1,且满足递推关系a n +1=2a 2n +3a n +ma n +1(n ∈N *).(1)当m =1时,求数列{a n }的通项公式a n ;(2)当n ∈N *时,数列{a n }满足不等式a n +1≥a n 恒成立,求m 的取值范围. 解:(1)∵m =1,由a n +1=2a 2n +3a n +1a n +1(n ∈N *),得a n +1=(2a n +1)(a n +1)a n +1=2a n +1,∴a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,公比也是2的等比数列. 于是a n +1=2·2n -1,∴a n =2n -1.(2)∵a n +1≥a n ,而a 1=1,知a n ≥1, ∴2a 2n +3a n +m a n +1≥a n ,即m ≥-a 2n -2a n , 依题意,有m ≥-(a n +1)2+1恒成立.∵a n ≥1,∴m ≥-22+1=-3,即满足题意的m 的取值范围是[-3,+∞).1.下列说法中,正确的是( ) A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k D .数列0,2,4,6,8,…可记为{2n }解析:选C ∵数列⎩⎨⎧⎭⎬⎫n +1n 的通项公式为a n =n +1n =1+1n ,∴a k =1+1k .故C 正确;由数列的定义可知A 、B 均错;D 应记作{2(n -1)}.2.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ) A .5B.72C.92D.132解析:选B a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,知a 2n =2,a 2n -1=12-2,故S 21=10×12+a 1=5+12-2=72. 3.如图关于星星的图案中,第n 个图案中星星的个数为a n ,则数列{a n }的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2解析:选C 从图中可观察星星的构成规律,n =1时,有1个;n =2时,有3个;n =3时,有6个;n =4时,有10个,…故a n =1+2+3+4+…+n =n (n +1)2. 4.已知数列{a n }中,a 1=3,a n +1=a n 2a n +1,则其通项公式为________. 解析:两边取倒数,得1a n +1=2a n +1a n =2+1a n ,故有1a n +1-1a n=2.故数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=13,公差为2的等差数列,所以1a n =13+2(n -1)=6n -53,故a n =36n -5. 答案:36n -55.已知数列{a n }满足:a 1=1,(n -1)a n =n ×2n a n -1(n ∈N ,n ≥2),则数列{a n }的通项公式为________.解析:当n ≥2,有(n -1)a n =n ×2n a n -1,故a n a n -1=n n -1×2n ,则有a n -1a n -2=n -1n -2×2n -1,a n -2a n -3=n -2n -3×2n -2,…,a 2a 1=21×22.上述n -1个式子累乘,得a n a 1=⎝⎛⎭⎫n n -1×2n ×⎝ ⎛⎭⎪⎫n -1n -2×2n -1×⎝ ⎛⎭⎪⎫n -2n -3×2n -2×…×⎝⎛⎭⎫21×22=n ×2n +(n -1)+(n -2)+…+2=n ×2(n -1)(n +2)2.又因为a 1=1,所以a n =n ×2(n -1)(n +2)2,而当n =1时,a 1=1×20=1,也满足上式,故数列{a n }的通项公式为a n =n ×2(n -1)(n +2)2. 答案:a n =n ×2(n -1)(n +2)2。

相关文档
最新文档