高三数学一轮复习课件数列.ppt

合集下载

高考数学一轮复习第6章数列第1课时数列的基本概念课件理

高考数学一轮复习第6章数列第1课时数列的基本概念课件理

∴an=32+·3nb-1
(n≥2), (n=1).
【答案】 (1)an=4n-5 (2)当 b=-1 时,an=2·3n-1;当 b≠
-1 时,an=32+·3nb-1
(n≥2), (n=1).
第二十四页,共四十六页。
★状元笔记★ 已知Sn求an的一般步骤
(1)当n=1时,由a1=S1求a1的值; (2)当n≥2时,由an=Sn-Sn-1,求得an的表达式; (3)检验a1的值是否满足(2)中的表达式,若不满足,则分段 表示an; (4)写出an的完整表达式.
5.(2018·沧州七校联考)设函数{an}通项为an=
2
+cos
nπ 3
(n∈N*),又k∈N*,则( )
A.ak=ak+3 C.ak=ak+5
B.ak=ak+4 D.ak=ak+6
答案 D
12/11/2021
第十二页,共四十六页。
6.观察下列各图,并阅读图形下面的文字.像这样,10 条 直线相交,交点的个数最多是( )
a10-a9=9. 累加得 a10-a2=2+3+…+9,∴a10=1+2+3+…+9=45.
第十四页,共四十六页。
12/11/2021
授人以渔
第十五页,共四十六页。
12/11/2021
题型一 归纳通项公式 根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,… (2)0.8,0.88,0.888,… (3)1,0,13,0,15,0,17,0,… (4)32,1,170,197,…
第十六页,共四十六页。
【解析】 (1)符号问题可通过(-1)n或(-1)n+1表示,其各
项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝

高考数学一轮复习 第五章 数列 5.4 数列求和课件.pptx

高考数学一轮复习 第五章 数列 5.4 数列求和课件.pptx
分组转化法求和的常见类型 1.若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求
{an}的前 n 项和. 2.通项公式为 an=cbnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn}是等比 数列或等差数列,可采用分组求和法求和. 提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,
Sn=na12+an=_n_a_1_+__n_n_-2__1__d___.
(2)等比数列的前 n 项和公式: Sn=naa11-1-,aqqnq==1_a,_11_1-_-_q_q_n_,__q_≠__1_._ 2.倒序相加法 如果一个数列{an}的前 n 项中首末两端等“距离”的两项的和相等或等于同 一个常数,那么求这个数列的前 n 项和即可用倒序相加法,如等差数列的前 n 项 和公式即是用此法推导的.
1.必会结论 常用求和公式
前 n 个正整数之和 前 n 个正奇数之和
前 n 个正整数的平方和
前 n 个正整数的立方和
1+2+…+n=nn2+1 1+3+5+…+(2n-1)=n2
nn+12n+1 12+22+…+n2=________6_______
13+23+…+n3=nn+2 12
2.必知联系 (1)直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数 (字母)时,应对其公比是否为 1 进行讨论. (2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如 an,an+1 的式子应进行合并. (3)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后 剩多少项.
(2)由(1)可得 bn=2n+n, 所以 b1+b2+b3+…+b10 =(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =211--2210+1+102×10 =(211-2)+55=211+53=2 101.

高考数学一轮复习等差数列-教学课件

高考数学一轮复习等差数列-教学课件
(1)项数为偶数 2n 的等差数列{an}: S2n=n(a1+a2n)=…=n(an+an+1). S 偶-S 奇=nd, S奇 = an .
S偶 an1 (2)项数为奇数(2n+1)的等差数列{an}: S2n+1=(2n+1)an+1. S奇 = n 1 .(其中 S 奇、S 偶分别表示数列{an}中所有奇数 S偶 n 项、偶数项的和)
解析:(1)等差数列{an}中,有 a6+a7+a8=3a7, ∴a7=4,∴S13=13a7=52.
S偶 S奇 354,
(2)由题意,可知
S偶
S奇
32 , 27

S偶
S奇
192, 162.
又项数为 12 的等差数列中 S 偶-S 奇=6d,
∴d=5.
答案:(1)52 (2)5
反思归纳 在等差数列前 n 项和中还常用到以下性质

8a1
87 2
d
4 a1
2d
,
a1 6d 2.

ad1
10, 2.
∴a9=a1+8d=10+8×(-2)=-6.
法二 ∵S8=4a3,∴ 8a1 a8 =4a3.
2
∴a1+a8=a3,∴a3+a6=a3,∴a6=0. ∴d=a7-a6=-2, ∴a9=a7+2d=-6. 故选 A.
即时突破 2 (2013 山东省滨州市质检)已知数
列{an}满足 a1=3,an·an-1=2an-1-1(n≥2).
(1)求 a2,a3,a4;
(2)求证:数列
1 an
1
是等差数列,并求出{an}

新高考一轮复习人教A版专题三数列课件(36张)

新高考一轮复习人教A版专题三数列课件(36张)
则数列{an+bn}是首项为 1,公比为12的等比数列; 由①与②相减得 4(an+1-bn+1)=4(an-bn)+8, 即(an+1-bn+1)-(an-bn)=2(其中 n∈N*), 又 a1-b1=1-0=1,则数列{an-bn}是以 1 为首项,
以 2 为公差的等差数列.
(2)解:由(1)知,an+bn=1×12n-1(其中 n∈N*), ③ an-bn=1+(n-1)×2=2n-1(其中 n∈N*), ④ ③+④得 an=1×12n-21+2n-1=21n+n-21,(n∈N*), 即 bn=12n-1-an=12n-n+12,(n∈N*).
[例 2]在①2Sn=3n+1-3,②an+1=2an+3,a1=1 这两 个条件中任选一个,补充在下列问题中并解答.
设数列{an}的前 n 项和为 Sn,若________,bn=2na-n 6, 求数列{bn}的最大值.
解:若选择条件①,∵2Sn=3n+1-3, ∴2Sn+1=3n+2-3, 则 2Sn+1-2Sn=3n+2-3n+1,得 2an+1=3·3n+1-3n+1= 2×3n+1,则 an+1=3n+1,an=3n(n≥2), 故当 n=1 时,2S1=31+1-3 即 a1=S1=3,满足 an= 3n,∴an=3n,bn=2na-n 6=2n3-n 6. 令 2n-6>0,得 n>3,bn>0,令 2n-6<0,又 n∈N*, ∴0<n<3,bn<0.
①-②得34
n k 1
c
2k=41+422+423+…+42n-24nn-+11,

n k 1
c
2k =
5 9

6n+5 9×4n


2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,② 2a1 + 2a2 +…+2an =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答. 问题:在数列{an}中,已知________. 注:如果选择多个条件分别解答,按第一个解答计分. (1)求{an}的通项公式;
(2)若bn=
2an 1 3an
,求数列{bn}的前n项和Sn.
由(1)可知 bn=2n3-n 1,
则 Sn=311+332+…+2n3-n 1,

13Sn=312+333+…+2n3-n 3+23nn-+11.

两式相减得23Sn=13+322+323+…+32n-23nn-+11=13+2911--313n1-1-23nn-+11
教材改编题
2.数列{an}的前 n 项和为 Sn.若 an=nn1+1,则 S5 等于
A.1
√B.56
C.16
D.310
因为 an=nn1+1=1n-n+1 1, 所以 S5=a1+a2+…+a5=1-12+12-13+…-16=56.
教材改编题
3.Sn=12+12+38+…+2nn等于
2n-n-1 A. 2n
第六章 数 列
§6.5 数列求和
考试要求
1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差数列、非等比数列求和的几种常用方法.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练

一 部 分
落实主干知识
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.

高考总复习一轮数学精品课件 第六章 数列 第一节 数列的概念与简单表示法

高考总复习一轮数学精品课件 第六章 数列 第一节 数列的概念与简单表示法
典例突破
1
例 4.在数列{an}中,a1=2且(n+2)an+1=nan,则它的前 30 项和 S30=(
30
A.
31
29
B.
30
28
C.
29
19
D.
29
)
答案 A
解析 易知
+1
an≠0,∵(n+2)an+1=nan,∴

2 3

∴an=a1·
· ·
…·
1 2
-1
=
1 1 2
2-1-2 , ≥ 2.
增素能 精准突破
考点一
利用an与Sn的关系求通项公式(多考向探究)
考向1.已知Sn求an
典例突破
例1.(1)(2023北京朝阳二模)已知数列{an}的前n项和是2n-1,则a5=(
)
A.9
B.16
C.31
D.33
(2)若数列{an}对任意n∈N*满足a1+2a2+3a3+…+nan=n,则数列{
∴{an}是首项为1,公差为1的等差数列.
∴a4 023=1+(4 023-1)×1=4 023.故选B.
(2)因为 + -1 =an=Sn-Sn-1=( + -1 )( − -1 )(n≥2),所以
− -1 =1.又 1 = √1 =1,所以数列{ }是首项为 1,公差为 1 的等差
(+1)
1+2+3+…+n=
.
2
考向2.已知an与Sn的关系式求an
典例突破
例2.(1)(2023河南名校联考改编)已知正项数列{an}的前n项和为Sn,满足

2024届高考一轮复习数学课件(新教材人教A版强基版):数列

2024届高考一轮复习数学课件(新教材人教A版强基版):数列
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.等比数列{an}中,a1+a2=6,a3+a4=12,则{an}的前 8 项和为
√A.90
B.30( 2+1)
C.45( 2+1)
D.72
等比数列{an}中,a1+a2=6, a3+a4=(a1+a2)q2=12, ∴q2=2,a5+a6=(a3+a4)q2=24, 同理a7+a8=48, 则{an}的前8项和a1+a2+a3+a4+a5+a6+a7+a8=6+12+24+48=90.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11.数列{an}的前n项和为Sn,若a1=1,an+1=2Sn(n∈N*),则有
√A.Sn=3n-1
√B.{Sn}为等比数列
C.an=2·3n-1
√D.an=12·,3nn-=2,1n,≥2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8.数列{an}中,a1=5,a2=9.若数列{an+n2}是等差数列,则{an}的最大 值为
A.9
√B.11
45 C. 4
D.12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
令bn=an+n2,又a1=5,a2=9, ∴b2=a2+4=13,b1=a1+1=6, ∴数列{an+n2}的首项为6,公差为13-6=7, 则an+n2=6+7(n-1)=7n-1, ∴an=-n2+7n-1=-n-722+445,又 n∈N*, ∴当 n=3 或 4 时,an 有最大值为-14+445=11.

2024年高考数学一轮复习课件(新高考版) 第6章 §6.3 等比数列

2024年高考数学一轮复习课件(新高考版)  第6章 §6.3 等比数列

2024年高考数学一轮复习课件(新高考版)第六章 数 列§6.3 等比数列考试要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.等比数列有关的概念(1)定义:如果一个数列从第 项起,每一项与它的前一项的比都等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的,公比通常用字母q (q ≠0)表示.(2)等比中项:如果在a 与b 中间插入一个数G ,使 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2= .2同一个公比a ,G ,b ab2.等比数列的通项公式及前n项和公式a1q n-1(1)若等比数列{a n}的首项为a1,公比是q,则其通项公式为a n=.(2)等比数列通项公式的推广:a n=a m q n-m.(3)等比数列的前n项和公式:当q=1时,S n=na1;当q≠1时,S n=________= .3.等比数列性质(1)若m +n =p +q ,则,其中m ,n ,p ,q ∈N *.特别地,若2w =m +n ,则 ,其中m ,n ,w ∈N *.(2)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为 (k ,m ∈N *).a m a n =a p a q q mS2n-S n S3n-S2n(4)等比数列{a n}的前n项和为S n,则S n,,仍成等比数列,其公比为q n.(n为偶数且q=-1除外)增减常用结论1.等比数列{a n}的通项公式可以写成a n=cq n,这里c≠0,q≠0.2.等比数列{a n}的前n项和S n可以写成S n=Aq n-A(A≠0,q≠1,0).3.数列{a n}是等比数列,S n是其前n项和.判断下列结论是否正确(请在括号中打“√”或“×”)(1)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(2)当公比q >1时,等比数列{a n }为递增数列.( )(3)等比数列中所有偶数项的符号相同.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( )√×××1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分不必要条件√B.必要不充分条件C.充要条件D.既不充分也不必要条件若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.2.设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6等于√A.31B.32C.63D.64根据题意知,等比数列{a n}的公比不是-1.由等比数列的性质,得(S4-S2)2=S2·(S6-S4),即122=3×(S6-15),解得S6=63.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数1,3,9或9,3,1为____________.∴这三个数为1,3,9或9,3,1.第二部分例1 (1)(2022·全国乙卷)已知等比数列{a n}的前3项和为168,a2-a5=42,则a6等于√A.14B.12C.6D.3方法一 设等比数列{a n}的公比为q,易知q≠1.所以a6=a1q5=3,故选D.方法二 设等比数列{a n}的公比为q,所以a6=a1q5=3,故选D.(2)(2023·桂林模拟)朱载堉(1536~1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一√设第一个音的频率为a ,相邻两个音之间的频率之比为q ,那么a n =aq n -1,根据最后一个音的频率是最初那个音的2倍,得a 13=2a =aq 12,即q = ,1122思维升华等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,a n,S n,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.跟踪训练1 (1)设正项等比数列{a n}的前n项和为S n,若S2=3,S4=15,则公比q等于√A.2B.3C.4D.5∵S2=3,S4=15,∴q≠1,(2)在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是A.插入的第8个数为B.插入的第5个数是插入的第1个数的倍C.M>3√D.N<7设该等比数列为{a n},公比为q,则a1=1,a13=2,插入的第5个数为a6=a1q5,插入的第1个数为a2=a1q,112112-要证M >3,即证-1- >3,112112-112121-即证 >4,1122N =M +3.1122112121 所以 >5,所以-1- >4,即M >4,112112 所以N =M +3>7,故D 错误.例2 已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等比数列;②数列{S n+a1}是等比数列;③a2=2a1.注:如果选择不同的组合分别解答,则按第一个解答计分.选①②作为条件证明③:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),解得q=2,所以a2=2a1.选①③作为条件证明②:因为a2=2a1,{a n}是等比数列,所以公比q=2,选②③作为条件证明①:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),因为a2=2a1,所以A(q-1)=A,解得q=2,所以当n≥2时,a n=S n-S n-1=Aq n-2(q-1)=A·2n-2=a1·2n-1,所以{a n}为等比数列.思维升华(3)前n项和公式法:若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列.跟踪训练2 在数列{a n}中,+2a n+1=a n a n+2+a n+a n+2,且a1=2,a2=5.(1)证明:数列{a n+1}是等比数列;所以(a n+1+1)2=(a n+1)(a n+2+1),因为a1=2,a2=5,所以a1+1=3,a2+1=6,所以数列{a n+1}是以3为首项,2为公比的等比数列.(2)求数列{a n}的前n项和S n.由(1)知,a n+1=3·2n-1,所以a n=3·2n-1-1,√∵a1,a13是方程x2-13x+9=0的两根,∴a1+a13=13,a1·a13=9,又数列{a n}为等比数列,等比数列奇数项符号相同,可得a7=3,(2)已知正项等比数列{a n}的前n项和为S n且S8-2S4=6,则a9+a10+a1124+a12的最小值为______.由题意可得S8-2S4=6,可得S8-S4=S4+6,由等比数列的性质可得S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2,当且仅当S4=6时等号成立.综上可得,a9+a10+a11+a12的最小值为24.思维升华(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2023·六安模拟)在等比数列{a n}中,若a1+a2=16,a3+a4=24,则a7+a8等于√A.40B.36C.54D.81在等比数列{a n}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,∵a1+a2=16,a3+a4=24,(2)等比数列{a n}共有奇数个项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1等于√A.1B.2C.3D.4∵a n=192,√∵a1a2…a8=16,∴a1a8=a2a7=a3a6=a4a5=2,第三部分1.(2023·岳阳模拟)已知等比数列{a n}满足a5-a3=8,a6-a4=24,则a3等于√A.1B.-1C.3D.-3设a n=a1q n-1,∵a5-a3=8,a6-a4=24,2.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k等于√A.2B.3C.4D.5令m=1,则由a m+n=a m a n,得a n+1=a1a n,所以a n=2n,所以a k+1+a k+2+…+a k+10=2k (a1+a2+…+a10)=215-25=25×(210-1),解得k=4.3.若等比数列{a n}中的a5,a2 019是方程x2-4x+3=0的两个根,则log3a1+log3a2+log3a3+…+log3a2 023等于√。

高考数学一轮总复习第五章数列2等差数列课件高三全册数学课件

高考数学一轮总复习第五章数列2等差数列课件高三全册数学课件
(2)因为{an}是等差数列,公差为 d,所以 a3(n+1)-a3n=3d(与 n 值无关的常数),所以数列{a3n}也是等差数列.
(3)设等差数列{an},{bn}的公差分别为 d1,d2,则 pan+1+ qbn+1-(pan+qbn)=p(an+1-an)+q(bn+1-bn)=pd1+qd2(与 n 值无 关的常数),即数列{pan+qbn}也是等差数列.
钱.( C )
5
3
A.3
B.2
4
5
C.3
D.4
第二十三页,共四十八页。
解析:设甲、乙、丙、丁、戊分别为 a-2d,a-d,a,a+d, a+2d,由题意可得:
a-2d+a-d+a+a+d+a+2d=5, a-2d+a-d=a+a+d+a+2d, 联立解得 a=1,d=-16. ∴这个问题中,甲所得为 1-2×(-16)=43(钱). 故选 C.
(2)(2019·全国卷Ⅲ)记 Sn 为等差数列{an}的前 n 项和.若 a1≠0,a2
=3a1,则SS150=____4____.
第十六页,共四十八页。
【解析】 (1)解法 1:设等差数列{an}的公差为 d,
∵Sa45= =05, ,
∴4a1+4×2 3d=0, a1+4d=5,
解得da=1=2-,3,
(1)在等差数列{an}中,a2=2,a3=4,则 a10= 18 .
(2)已知等差数列{an}的前 n 项和为 Sn,若 a1=-5,S9=27,则公
差 d= 2 .
(3)在等差数列{an}中,若 a3+a4+a5+a6+a7=450,则 a2+a8
= 180 . (4)在等差数列{an}中,S6=4,S18=24,则 S12= 12 .

高考数学一轮复习 第五章 数列 5.1 数列的概念与简单表示法课件 理 高三全册数学课件

高考数学一轮复习 第五章 数列 5.1 数列的概念与简单表示法课件 理 高三全册数学课件

=__-___1n___.
2021/12/8
第二十八页,共六十三页。
【解析】 (1)当 n=1 时,a1=S1=2(a1-1),可得 a1=2, 当 n≥2 时,an=Sn-Sn-1=2an-2an-1, ∴an=2an-1, ∴数列{an}为首项为 2,公比为 2 的等比数列, 所以 an=2n.
2 . 若 数 列 {an} 的 前 n 项 和 为 Sn , 通 项 公 式 为 an , 则 an = S1,n=1, Sn-Sn-1,n≥2,n∈N*.
3.三种必会方法 (1)叠加法:对于 an+1-an=f(n)型,若 f(1)+f(2)+…+f(n)的和是可 求的,可用多式相加法求得 an.
2021/12/8
第三十六页,共六十三页。
2.若将“an+1=an+n+1”改为“an+1=2an+3”,如何求解?
解:设递推公式 an+1=2an+3 可以转化为 an+1-t=2(an-t), 即 an+1=2an-t,解得 t=-3.故 an+1+3=2(an+3).令 bn=an+3, 则 b1=a1+3=5,且bbn+n 1=aan+n+1+33=2.所以{bn}是以 5 为首项,2 为公比的等比数列.所以 bn=5×2n-1,故 an=5×2n-1-3.
2021/12/8
第三十四页,共六十三页。
考向三 由递推关系求通项公式
n2+n+2
【例 3】 设数列{an}中,a1=2,an+1=an+n+1,则 an=____2____.
【解析】 由条件知 an+1-an=n+1, 则 an=(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)+a1=(2 +3+4+…+n)+2=n2+2n+2.
2021/12/8

高三一轮复习等比数列课件

高三一轮复习等比数列课件

判断性质
根据通项公式判断等比数 列的性质,如公比、项数 等。
求解问题
利用通项公式解决等比数 列相关的问题,如求和、 判断单调性等。
特殊等比数列的通项公式
等差等比混合数列
该数列前n项中,有一部分是等差数列,一部分是等比数列,需要分别推导等 差部分和等比部分的通项公式,再结合得到混合数列的通项公式。
平方数列
算法优化
在计算机性。
05 等比数列的习题与解析
基础习题
基础习题
1. 题目:已知等比数列 { a_n } 中,a_1 = 2,a_3 = 8, 则 a_5 = _______.
3. 题目:已知等比数列 { a_n } 的前 n 项和为 S_n,且 S_3,S_9,S_6 成等差数列,则 a_2a_8 = _______.
高三一轮复习等比数列课件
目录
• 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列在实际生活中的应用 • 等比数列的习题与解析
01 等比数列的定义与性质
等比数列的定义
等比数列的定义
等比数列是一种特殊的数列,其 中任意两个相邻项的比值都相等 ,记作 a_n/a_(n-1)=r(常数) 。
分段等比数列求和
对于一些分段等比数列,需要分段进行求和,并注意分段点处的连 续性。
04 等比数列在实际生活中的 应用
等比数列在金融中的应用
复利计算
等比数列可以用于计算复利,帮 助投资者了解投资收益的增长情
况。
保险计算
保险公司在计算保险费用和赔付 时,常常使用等比数列来计算未
来价值和赔偿金额。
股票分析
等比数列的表示
通常用英文字母q表示等比数列的 公比,用a_1表示第一项,用n表 示项数。

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)

再得出 的表达式
例五.2
在数列 中,1 = 1,+1 =

,求通项公式 ?
3 +2
解:由题意,两边同取倒数,得

1
an+1
+k=2
1
an
+k

1
an+1
1
an+1
=
=
1
2
an
1
2 +3
an
+k
对比原式,得k = 3

1
an
1
an
+ 3 为首项为4,公比为2的等比数列
+ 3 = 4 · 2n−1 = 2n+1
解题思路:设 ,构造等比数列{ + }
具体步骤: 设+1 + = +
即+1 = ⋅ + − 1 ·
对比原式,得k =
q
p−1
得到以1 +为首项,为公比的等比数列{ + }
例四.1
在数列 an 中,a1 = 1,an+1 = 3an + 1,求通项公式an ?
故an =
1
2n+1 −3
六、取对数法
①形如+1 = ⋅
对数运算法则: log ⋅ = log + log
解题思路:等式两边同取对数,构造等比数列
log ⋅= · log
具体步骤: 两边同取以p为底的对数,得log +1 = log + 1
使用条件:已知+1 − =
解题思路: 2 − 1 = 1

高考理科第一轮复习课件(5.1数列)

高考理科第一轮复习课件(5.1数列)
n2 a1a2a3„an=n2可得, n 将n=3和n=5代入, a , 2 (n 1) 9 25 61 a3 a5 . 4 16 16
4.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式是
_______. 【解析】当n=1时,a1=S1=-1;当n≥2时,an=Sn-Sn-1=2n-1.故
9
n个a
(2)0.a,0.aa,0.aaa,0.a aaa,„,其中1≤a≤9,a∈N+. 解决方法同(1), 实际上 0.aa a 1 aa a a (1 1 ). n n
n个a
10
n个a
9
10
(3)a,b,a,b,„,其中a≠b.
ab ab a b a b a, b, 2 2 2 2 故a,b,a,b,„,即 a b a b , a b a b , a b a b , 2 2 2 2 2 2 ab ab ,, 2 2 所以数列的通项为 a n a b 1n a b. 2 2
,
1 1 1 a n a n 1 ( ), 2 2n 3 2n 1 1 1 a n a1 (1 ). 2 2n 1
又∵ a1 ,
1 4n 3 . 4n 2 4n 2 答案: a n 1 2n,故 a 2 21 , a 3 22 ,, a n 2n 1, 将这n-1个等
2 1 (D) n 1 2
(A)2n-1
(C) ( ) n 1
2 3
(B) ( 3 ) n 1
【思路点拨】(1)直接根据a8=S8-S7求出即可. (2)根据任意n∈N+,都有an+1=Sn+1-Sn,把Sn=2an+1化为Sn+1,Sn 之间的关系,求出数列{Sn}的通项. 【规范解答】(1)选A.a8=S8-S7=64-49=15.

高三一轮复习数列通项公式的求法课件(共23张PPT)

高三一轮复习数列通项公式的求法课件(共23张PPT)
或利用等差、等比数列的通项公式)
S1 (n=1) Sn-Sn-1(n≥2)
三、叠加法(形如an+1=an+ f(n)型)
an an an1 an1 an2 a2 a1 a1
四、累乘法
an

an an1
(a形n如1 an+1 an2
=(n

1)+(n
-2)+
•••+2+1+1

n-1 n
1
n2
n2
2
2
12
注:
递推公式形如an+1=an+ f(n)型的数列其中f(n)可以是 关于n的一次函数、二次函数、指数函数、分式函数, 求通项. ①若f(n)是关于n的一次函数,累加后可转化为等差数列 求和; ②若f(n)是关于n的二次函数,累加后可分组求和; ③若f(n)是关于n的指数函数,累加后可转化为等比数列 求和; ④若f(n)是关于n的分式函数,累加后可裂项求和。
1且an 的通项公式为
分析 : an1 n 得 a2 a3 a4 an 1 2 3 4 n-1
an n 2 a1 a2 a3
an1 3 4 5 6
n 1

an a1

1 2 n(n 1)

a1
a1 S1 3不合上式
故an

3 2n
(n 1) (n N ) (n 2)
1100
思考: 已知数列{an}的前n项和sn=2-an.
求数列{an}的通项公式。
解:当n≥2时an=sn-sn-1=(2-an)-(2-an-1)=an-1-an,

高三数学一轮复习 第六章《数列》63精品课件

高三数学一轮复习 第六章《数列》63精品课件

二、分类讨论思想 当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时,{an} a11-qn a1-anq 的前 n 项和 Sn= = .等比数列的前 n 项和公式 1-q 1-q 涉及对公比 q 的分类讨论,此处是常考易错点.
三、解题技巧 1.等比数列的设项技巧 a a (1)对于连续奇数项的等比数列,通常可设为…,q2,q, a,aq,aq2,…; (2)对于连续偶数项且公比为正的等比数列,通常可设 a a 为…,q3,q,aq,aq3,….
an (2){an}{bn}均为等比数列⇒{an· bn}、b 是等比数列. n
am m-n (3){an}为等比数列,则 a = q n
.
(4)若 m、 n、 p、 q∈N*且 m+n=p+q, 则 am· an=ap· aq. 特别地,a1an=a2an-1=a3an-2=…
(5)等间隔的 k 项和(或积)仍成等比数列. 例如:{an}是等比数列,则 ①a1, a3, a5, …, a2n-1; ②a1+a2, a2+a3, a3+a4, …; ③a1a2,a2a3,a3a4,…;④a1+a2,a3+a4,a5+a6……均 成等比数列. (6)an2=an-k· an+k (1≤k<n,n、k∈N*).
1 1 3 解析:a4=a1 2 = a1, 8
15 S4 S4= = a1,∴ =15. 1 8 a4 1-2 答案:15
1 a11-24
• (理)(09·全国Ⅱ)设等比数列{an}的前n项和为Sn.若a1=1, S6=4S3,则a4=________.
解析:设等比数列的公比为 q. 当 q=1 时,由 S6=4S3 得,6a1=4×3a1⇒a1=0(舍). a11-q6 a11-q3 当 q≠1 时,由 S6=4S3⇒ =4· ⇒ 1-q 1-q • 答案: 3 3 1+q =4⇒q3=3⇒a4=a1q3=3.

高三第一轮复习数列的概念与简单表示法课件

高三第一轮复习数列的概念与简单表示法课件

1 ∴ Sn = . 2n
∴当 n ≥ 2, n ∈ N* 时, an = −2 Sn Sn −1 1 1 1 = −2 ⋅ ⋅ =− , 2n 2(n − 1) 2n(n − 1) 1 (n = 1) 2 ∴ an = . 1 − (n ≥ 2, n ∈ N* ) 2n(n − 1)
⋯⋯ a3 = 3, a2 a2 = 2, a1 a1 = 1.
累乘可个 ,
an = n × (n − 1) × (n − 2) × ⋯ × 3 × 2 × 1 = n! . . 故 an = n!
1 (3) ∵ an+1 = an + ln(1 + ), n 1 n +1 . ∴ an+1 − an = ln(1 + ) = ln n n n ∴ an − an−1 = ln , n −1 n −1 an−1 − an−2 = ln , n−2 ⋯⋯ 2 a2 − a1 = ln , 1 ∴ an − a1 = ln n n −1 2 + ln + ⋯ + ln = ln n. n −1 1 n−2 又 a1 = 2,∴ an = ln n + 2.
此题也可用排除法求解,只需验证当n=1时,A 3 3 1 选项为 ,B选项为 ,C选项为 ,均不为1,故 2 4 3 排除A 排除A、B、C,从而选D. 从而选D
在数列{ 3.在数列{an}中,a1=1,a2=5,an+2=an+1-an (n∈N*), 则a100等于 A.1 解析 B.B.-1 方法一 C.5 ( B ) D.D.-5 由a1=1,a2=5,an+2=an+1-an
题型二
由数列的递推公式求通项a 由数列的递推公式求通项an
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2·3n-1n为偶数, 2n-5n为奇数,
则 a4·a3=________.
解析:a4·a3=2×33·(2×3-5)=54. 答案:54
5.已知数列{an}的通项公式为 an=pn+nq,且 a2=32,
a4=32,则 a8=________. 解析:由已知得24pp+ +q2q4==3232, ,
分类标 准
类型
项数
有穷数列 无穷数列
项与项 间的大 小关系
递增数列 递减数列 常数列
满足条件
项数有限 项数 无限
an+1 > an an+1 < an an+1=an
其中 n∈N*
(3)数列的通项公式: 如果数列{an}的第n项与序号n 之间的关系可以用一个式 子来表示,那么这个公式叫做这个数列的通项公式. 2.数列的递推公式 如果已知数列{an}的首项(或前几项),且任一项an 与它 的 前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示, 那么这个公式叫数列的递推公式.
解得p=14, q=2.
则 an=14n+n2,故 a8=94. 答案:94
1.对数列概念的理解 (1)数列是按一定“顺序”排列的一列数,一个数列不仅 与构成它的“数”有关,而且还与这些“数”的排列顺序有关, 这有别于集合中元素的无序性.因此,若组成两个数列的 数相同而排列次序不同,那么它们就是不同的两个数列. (2)数列中的数可以重复出现,而集合中的元素不能重 复出现,这也是数列与数集的区别. 2.数列的函数特征 数列是一个定义域为正整数集N*(或它的有限子集 {1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的 函数解析式,即f(n)=an(n∈N*).
2.根据数列的前几项写出数列的一个通项公式是 不完全归纳法,它蕴含着“从特殊到一般”的思想.
1.写出下面数列的一个通项公式. (1)3,5,7,9,…;
(2)12,34,78,1156,3312,…;
(3)3,33,333,3 333,…; (4)-1,32,-13,34,-15,36,….
解:(1)各项减去 1 后为正偶数,所以 an=2n+1.
(1)先利用a1=S1求出a1; (2)用n-1替换Sn中的n得到一个新的关系,利用an =Sn-Sn-1(n≥2)便可求出当n≥2时an的表达式; (3)对n=1时的结果进行检验,看是否符合n≥2时an 的表达式,如果符合,则可以把数列的通项公式合写;
如果不符合,则应该分n=1与n≥2两段来写.
2.(2012·聊城模拟)已知数列{an}的前 n 项和为 Sn,且 Sn=
答案:A
()
3.已知数列是
A.递增数列 C.常数列
B.递减数列 D.摆动数列
()
解析:
an

1

an

n+1 n+2

n n+1

n+n+121-nn+n+2 2=n+11n+2>0.
答案:A
4 . ( 教 材 习 题 改 编 )已 知 数 列 {an} 的 通 项 公 式 是 an =
由an与Sn的关系求通项an
[例2] 已知数列{an}的前n项和Sn,根据下列条件分 别求它们的通项an.
(1)Sn=2n2+3n;
(2)Sn=3n+1.
[自主解答] (1)由题可知,当n=1时,a1=S1=2×12
+3×1=5,
当n≥2时,an=Sn-Sn-1=(2n2+3n)-[2(n-1)2+3(n -1)]=4n+1.
[例 1] (2013·天津南开中学月考)下列公式可作为
数列{an}:1,2,1,2,1,2,…的通项公式的是
()
A.an=1
B.an=-12n+1
C.an=2-sinn2π
D.an=-1n2-1+3
[自主解答]
由an=2-

sin
2
可得a1=1,
a2=2,
a3=1,a4=2,….
[答案] C
若本例中数列变为:0,1,0,1,…,则{an}的一个 通项公式为________.
答案:
an=01nn为 为奇 偶数 数, .
或an=1+2-1n或an=1+c2os

1.根据数列的前几项求它的一个通项公式,要注 意观察每一项的特点,观察出项与n之间的关系、规律, 可使用添项、通分、分割等办法,转化为一些常见数列 的通项公式来求.对于正负符号变化,可用(-1)n或(- 1)n+1来调整.
目录
数列
第一节 数列的概念与简单表示法 第二节 等差数列及其前n项和 第三节 等比数列及其前n项和 第四节 数列求和 第五节 数列的综合应用
数列
[知识能否忆起] 1.数列的定义、分类与通项公式 (1)数列的定义: ①数列:按照 一定顺序 排列的一列数. ②数列的项:数列中的 每一个数 .
(2)数列的分类:
[小题能否全取]
1.(教材习题改编)数列 1,23,35,47,59…的一个通项公式

()
A.an=2nn+1 C.an=2nn-3
B.an=2nn-1 D.an=2nn+3
答案:B
2.设数列{an}的前n项和Sn=n2,则a8的值为
A.15
B.16
C.49
D.64
解析:a8=S8-S7=64-49=15.
(4)奇数项为负,偶数项为正,故通项公式的符号为(-1)n; 各项绝对值的分母组成数列 1,2,3,4,…;而各项绝对值 的分子组成的数列中,奇数项为 1,偶数项为 3,即奇数 项为 2-1,偶数项为 2+1, 所以 an=(-1)n·2+n-1n,也可写为
an=- n3,n1,n为n为正偶 正数 奇数. ,
(2) 每 一 项 的 分 子 比 分 母 少 1 , 而 分 母 组 成 数 列 21,22,23,24,…,所以 an=2n2-n 1. (3)将数列各项改写为93,939,9939,99399,…,分母都是 3,而分子分别是 10-1,102-1,103-1,104-1,…. 所以 an=13(10n-1).
当n=1时,4×1+1=5=a1,故an=4n+1. (2)当n=1时,a1=S1=3+1=4,
当n≥2时,
an=Sn-Sn-1=(3n+1)-(3n-1+1)=2×3n-1. 当n=1时,2×31-1=2≠a1,
故an=42,×3n-1,
n=1, n≥2.
已知数列{an}的前n项和Sn,求数列的通项公式, 其求解过程分为三步:
相关文档
最新文档