高中数学数列PPT (1)
合集下载
数列的概念(第一课时)课件-高二数学人教A版(2019)选择性必修第二册
的哪些相关内容?
函数值
=
自变量
项
n
an =
序号
问题1:你能求出这个函数的解析式吗?
数列通项公式
如果数列 的第n项与序号n之间的
关系可以用一个公式来表示,那么这
个公式就叫做这个数列的通项公式.
探究新知
, , , , ⋯
项
序号
1 2 3 4
=
, , , , , … .
解析 (3)数列的项有的是分数,有的是整数,可将各项统一成分数再观察:
, , , , , ⋯ .所以,它的一个通项公式为
=
.
(4)可看作+,可看作+,可看作+,可看作+,
人教A版同步教材名师课件
数列的概念
---第一课时
学习目标
学习目标
核心素养
了解数列的概念
掌握数列的几种表示方法
能由数列的递推关系写出数列的通项公式
数学抽象
数学运算
数学运算
学习目标
学习目标:
1.理解数列的概念.
2.掌握数列的通项公式及应用.
3.理解数列是一种特殊的函数,理解数列与函数的关系 .
4.能根据数列的前几项写出数列的一个通项公式.
=
, 为偶数, ∈ ∗ .
法二: =
即 =
+ + − + −
−
+
.
=
+ − + −
方法归纳
1.常见数列的通项公式归纳
(1)数列, , , , …的一个通项公式为=;
函数值
=
自变量
项
n
an =
序号
问题1:你能求出这个函数的解析式吗?
数列通项公式
如果数列 的第n项与序号n之间的
关系可以用一个公式来表示,那么这
个公式就叫做这个数列的通项公式.
探究新知
, , , , ⋯
项
序号
1 2 3 4
=
, , , , , … .
解析 (3)数列的项有的是分数,有的是整数,可将各项统一成分数再观察:
, , , , , ⋯ .所以,它的一个通项公式为
=
.
(4)可看作+,可看作+,可看作+,可看作+,
人教A版同步教材名师课件
数列的概念
---第一课时
学习目标
学习目标
核心素养
了解数列的概念
掌握数列的几种表示方法
能由数列的递推关系写出数列的通项公式
数学抽象
数学运算
数学运算
学习目标
学习目标:
1.理解数列的概念.
2.掌握数列的通项公式及应用.
3.理解数列是一种特殊的函数,理解数列与函数的关系 .
4.能根据数列的前几项写出数列的一个通项公式.
=
, 为偶数, ∈ ∗ .
法二: =
即 =
+ + − + −
−
+
.
=
+ − + −
方法归纳
1.常见数列的通项公式归纳
(1)数列, , , , …的一个通项公式为=;
北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
人教B版高中数学选择性必修第三册精品课件 复习课 第1课时 数列
式
1-q
1-q
(1)通项公式的推广:an= amqn-m (n,m∈N+).
(2)若 s+t=p+q=2k(s,t,p,q,k∈N+),则 asat= apaq =2 .
等比数列
的常用性
质
(3)若数列{an},{bn}(项数相同)是等比数列,则
{λan},
1
2
,{
},{a
nbn},
式
上述关系式为这个数列的一个通项公式
如果已知数列的首项(或前几项),且数列的相邻两项或两项
数列的递推公
以上的关系都可以用一个公式来表示,则称这个公式为数
式
列的递推关系(也称为递推公式或递归公式)
一般地,给定数列{an},称Sn= a1+a2+a3+…+an 为数列{an}
的前n项和.由数列的前n项和为Sn,求其通项公式
设等差数列{an}的公差为d,其前n项和
n(a 1 +a n )
n(n-1)
2
2
Sn=
或 Sn=na1+
d
(1)通项公式的推广:an= am+(n-m)d (n,m∈N+).
(2)若数列{an}为等差数列,且k+l=m+n(k,l,m,n∈N+),则
ak+al=am+an.
(3)若数列{an}是等差数列,公差为d,则{a2n}也是等差数列,公差
【例 3】 已知数列{an}满足
解:在
1
1 +1
an+1= an+
两边分别乘以
3
2
n
1-q
1-q
(1)通项公式的推广:an= amqn-m (n,m∈N+).
(2)若 s+t=p+q=2k(s,t,p,q,k∈N+),则 asat= apaq =2 .
等比数列
的常用性
质
(3)若数列{an},{bn}(项数相同)是等比数列,则
{λan},
1
2
,{
},{a
nbn},
式
上述关系式为这个数列的一个通项公式
如果已知数列的首项(或前几项),且数列的相邻两项或两项
数列的递推公
以上的关系都可以用一个公式来表示,则称这个公式为数
式
列的递推关系(也称为递推公式或递归公式)
一般地,给定数列{an},称Sn= a1+a2+a3+…+an 为数列{an}
的前n项和.由数列的前n项和为Sn,求其通项公式
设等差数列{an}的公差为d,其前n项和
n(a 1 +a n )
n(n-1)
2
2
Sn=
或 Sn=na1+
d
(1)通项公式的推广:an= am+(n-m)d (n,m∈N+).
(2)若数列{an}为等差数列,且k+l=m+n(k,l,m,n∈N+),则
ak+al=am+an.
(3)若数列{an}是等差数列,公差为d,则{a2n}也是等差数列,公差
【例 3】 已知数列{an}满足
解:在
1
1 +1
an+1= an+
两边分别乘以
3
2
n
人教版高中数学选修二4.1数列的概念(一)课件
人教2019 A版 选择性必修二
第四章 数 列
4.1 数列的概念(1)
学习目标
1.理解数列的有关概念与数列的表示方法.
2.掌握数列的分类.
3.理解数列的函数特征,掌握判断数列增减性的方法
4.掌握数列通项公式的概念及其应用,能够根据数列的前几项
写出数列的一个通项公式.
情景导学
古语云:“勤学如春
起之苗,不见其增,日有所
− 4 ,当
n=2,3 时,an 取得最小值,最小值为-12.
10 +1
10
10
-(n+1) 11 = 11
11
∴当n<9时,an+1-an>0,即an+1>an;
当n=9时,an+1-an=0,即an+1=an;
当n>9时,an+1-an<0,即an+1<an.
故a1<a2<a3<…<a9=a10>a11>a12>…,
a10=
,224是该数列的第
项.
解析:a10=102-1=99.令an=n2-1=224,解得n=15,
即224是该数列的第15项.
答案:99 15
典例解析
例1. 根据下列数列{an}的通项公式,写出数列的前5项,并画出它们的图像.
(1) =
2 +
2
;
(2) =
(−1)
(2)1,-3,5,-7,9,…;
(3)9,99,999,9 999,…;
22 -1 32 -2 42 -3 52 -4
(4) 1 , 3 , 5 , 7 ,…;
1
第四章 数 列
4.1 数列的概念(1)
学习目标
1.理解数列的有关概念与数列的表示方法.
2.掌握数列的分类.
3.理解数列的函数特征,掌握判断数列增减性的方法
4.掌握数列通项公式的概念及其应用,能够根据数列的前几项
写出数列的一个通项公式.
情景导学
古语云:“勤学如春
起之苗,不见其增,日有所
− 4 ,当
n=2,3 时,an 取得最小值,最小值为-12.
10 +1
10
10
-(n+1) 11 = 11
11
∴当n<9时,an+1-an>0,即an+1>an;
当n=9时,an+1-an=0,即an+1=an;
当n>9时,an+1-an<0,即an+1<an.
故a1<a2<a3<…<a9=a10>a11>a12>…,
a10=
,224是该数列的第
项.
解析:a10=102-1=99.令an=n2-1=224,解得n=15,
即224是该数列的第15项.
答案:99 15
典例解析
例1. 根据下列数列{an}的通项公式,写出数列的前5项,并画出它们的图像.
(1) =
2 +
2
;
(2) =
(−1)
(2)1,-3,5,-7,9,…;
(3)9,99,999,9 999,…;
22 -1 32 -2 42 -3 52 -4
(4) 1 , 3 , 5 , 7 ,…;
1
【高中数学】第1课时数列的概念及通项公式课件 高二下学期数学人教A版(2019)选择性必修第二册
上升(下降)趋势,即数列递增(减).
典例精析
题型二:归纳通项公式
例2
写出下列数列的一个通项公式,使它的前4项分别是下列各数:
1 1
1
(1)1,- , ,- ;
2 3
4
解
1
9
(2) ,2, ,8;
2
2
(1)这个数列的前4项的绝对值都是 (2)数列的项,有的是分数,
序号的倒数,并且奇数项为正,
偶数项为负,
跟踪练习
2.在数列1,1,2,3,5,8,13,x,34,…中,x的值是(
A.19
B.20
C.21观察数列可得规律
1+1=2,1+2=3,2+3=5,…,8+13=x=21,13+21=34,
∴x=21,故选C.
跟踪练习
3.数列0,1,0,-1,0,1,0,-1,…的一个通项公式为(
解
(3) 各项加1后,
(4)2,0,2,0.
(4) 这个数列的前4项构成一个摆动数列,
变为10,100,1 000,10 000,…,
奇数项是2,偶数项是0,所以,
此数列的通项公式为10n,可得原数列
它的一个通项公式为an=(-1)n+1+1,n∈N*.
的一个通项公式为an=10n-1,n∈N*.
典例精析
(2)符号{an}和an是不同的概念,{an}表示一个数列,而an表示数列中的第n项.
新知探索
数列的分类
[提出问题]
问题:观察上面4个例子
中对应的数列,它们的项数分
别是多少?这些数列中从第2
项起每一项与它前一项的大小
关系又是怎样的?
提示:数列1中有6项,数
典例精析
题型二:归纳通项公式
例2
写出下列数列的一个通项公式,使它的前4项分别是下列各数:
1 1
1
(1)1,- , ,- ;
2 3
4
解
1
9
(2) ,2, ,8;
2
2
(1)这个数列的前4项的绝对值都是 (2)数列的项,有的是分数,
序号的倒数,并且奇数项为正,
偶数项为负,
跟踪练习
2.在数列1,1,2,3,5,8,13,x,34,…中,x的值是(
A.19
B.20
C.21观察数列可得规律
1+1=2,1+2=3,2+3=5,…,8+13=x=21,13+21=34,
∴x=21,故选C.
跟踪练习
3.数列0,1,0,-1,0,1,0,-1,…的一个通项公式为(
解
(3) 各项加1后,
(4)2,0,2,0.
(4) 这个数列的前4项构成一个摆动数列,
变为10,100,1 000,10 000,…,
奇数项是2,偶数项是0,所以,
此数列的通项公式为10n,可得原数列
它的一个通项公式为an=(-1)n+1+1,n∈N*.
的一个通项公式为an=10n-1,n∈N*.
典例精析
(2)符号{an}和an是不同的概念,{an}表示一个数列,而an表示数列中的第n项.
新知探索
数列的分类
[提出问题]
问题:观察上面4个例子
中对应的数列,它们的项数分
别是多少?这些数列中从第2
项起每一项与它前一项的大小
关系又是怎样的?
提示:数列1中有6项,数
湘教版高中数学选择性必修第一册精品课件 第1章 数列 1.3.1 等比数列及其通项公式
变式训练3
某工厂去年产值为a,计划十年内每年比上一年产值增长10%,若今年作为
第一年,则这个工厂的产值超过2a是( C )
A.从第6年起
B.从第7年起
C.从第8年起
D.从第9年起
解析 由题意知,第一年的产值为a(1+10%)=1.1a,且每年的产值构成以1.1a
为首项,公比为1.1的等比数列,则等比数列的通项公式an=1.1a×1.1n-1
1 2 3 4 5 6
3.已知等比数列{an}的公比q为正数,且2a3+a4=a5,则q的值为( B )
A.-1
B.2
C.-1或2
D.3
解析 由已知得2a3+a3q=a3q2,整理得2+q=q2,解得q=2或q=-1.又因为q>0,所
以q=2.
1 2 3 4 5 6
4.[2024甘肃酒泉高二期中]等比数列{an}中,a3a7a15=6,a8=3,则a9=( A )
面积为an+1,设2023年底沙漠面积为b1,经过n年后沙漠面积为bn+1,则
a1+b1=1,an+bn=1.
依题意,an+1由两部分组成:一部分是原有绿洲面积an减去被侵蚀的部分
8%·an的剩余面积92%·an,另一部分是新绿化的12%·bn.所以
4
3
an+1=92%·an+12%(1-an)=5an+25 ,即
1
(方法 1)由已知,得
解得
2
5
= 2,
1 + 1 = 9,
故 a7=a1q =32×
6
1 6
2
=
1
.
高中数学课件-1-2-1-1等差数列的概念和通项公式 课件(北师大版必修5)
§2 等差数列
第一章 数列
进入导航
2.1 等差数列
第一章 数列
进入导航
第1课时 等差数列的概念和通项公式
预习篇 课堂篇 提高篇
巩固篇 课时作业
第一章 数列
进入导航
学习目标
1.理解等差数列的特点与定义,掌握等差数列的判断 方法.
2.记住等差数列的概念、等差数列的通项公式,并能 运用通项公式解决一些简单问题.
第一章 数列
进入导航
进入导航
【尝试解答】 数列5,8,11,…记为{an},数列 3,7,11,…记为{bm},则an=5+(n-1)·3=3n+2,bm=3+ (m-1)·4=4m-1.
令an=bm,得3n+2=4m-1(n,m∈N+), 即n=43m-1(n,m∈N+). 要使n为正整数,m必须是3的倍数,记m=3k(k∈N+). ∴n=43·3k-1=4k-1.
第一章 数列
进入导航
理解等差数列的定义需注意以下问题: (1)注意定义中“从第2项起”这一前提条件的两层含 义:其一,第1项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且 必须从第2项起,以便保证数列中各项均与其前一项作差. (2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后 面的项减前面的项;其二是强调这两项必须相邻.
第一章 数列
进入导航
规律方法 求解时要紧紧抓住“同一个常数”这个条件,本例中 的第2小题是从第2项开始的等差数列,即1,2,3,…n构 成等差数列,但整个数列不是等差数列.
第一章 数列
进入导航
根据下列数列的通项公式an,判断各数列是否为等差 数列:
(1)an=3n+5;(2)an=n2.
第一章 数列
进入导航
2.1 等差数列
第一章 数列
进入导航
第1课时 等差数列的概念和通项公式
预习篇 课堂篇 提高篇
巩固篇 课时作业
第一章 数列
进入导航
学习目标
1.理解等差数列的特点与定义,掌握等差数列的判断 方法.
2.记住等差数列的概念、等差数列的通项公式,并能 运用通项公式解决一些简单问题.
第一章 数列
进入导航
进入导航
【尝试解答】 数列5,8,11,…记为{an},数列 3,7,11,…记为{bm},则an=5+(n-1)·3=3n+2,bm=3+ (m-1)·4=4m-1.
令an=bm,得3n+2=4m-1(n,m∈N+), 即n=43m-1(n,m∈N+). 要使n为正整数,m必须是3的倍数,记m=3k(k∈N+). ∴n=43·3k-1=4k-1.
第一章 数列
进入导航
理解等差数列的定义需注意以下问题: (1)注意定义中“从第2项起”这一前提条件的两层含 义:其一,第1项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且 必须从第2项起,以便保证数列中各项均与其前一项作差. (2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后 面的项减前面的项;其二是强调这两项必须相邻.
第一章 数列
进入导航
规律方法 求解时要紧紧抓住“同一个常数”这个条件,本例中 的第2小题是从第2项开始的等差数列,即1,2,3,…n构 成等差数列,但整个数列不是等差数列.
第一章 数列
进入导航
根据下列数列的通项公式an,判断各数列是否为等差 数列:
(1)an=3n+5;(2)an=n2.
人教版高中数学选择性必修2《数列的概念》PPT课件
第1位的数,ℎ2=87是排在第2位的数……ℎ17=168是排在第17位的数,它们之
间不能交换位置.
所以,①是具有确定顺序的一列数.
2.在两河流域发掘的一块泥版(编号K90,约产生于公元前7世纪)上,有一列
依次表示一个月中从第1天到第15天每天月亮可见部分的数:
5,10,20,40,80,96,112,128,
∗
(1)数列的通项公式实际上是一个以正整数集 或它的有限子集{1,2, … ,}为
定义域的函数的解析式.
(2)利用一个数列的通项公式能解决以下问题:
①求出该数列的各项;
②判断某个数是否为该数列中的项;
③判断该数列的增减性;
④求该数列的最大项和最小项等.
(3)同“所有函数不一定都有解析式”类似,并不是所有数列都有通项公式,如
1
2
反映了− 的次幂按1次幂、2次幂、3次幂、4次幂……的顺序排列时的确定位置,
1
1
1
即1= − 2是排在第1位的数,2= 4是排在第2位的数,3= − 8是排在第3位的
数,…,它们之间不能交换位置. 所以③是具有确定顺序的一列数.
归纳: 上述例子的共同特征是什么?
新知讲解
一、数列的定义
+1 − =0 ⇔ { }为常数列.
四、数列的通项公式
如果数列{ }的第项与它的序号之间的对应关系可以用一个式子来表示,那么
这个式子叫做这个数列的通项公式.
例如,数列③的通项公式为=
1
− 2 .显然,通项公式就是数列的函数解析式,根
据通项公式可以写出数列的各项.
对通项公式的五点说明:
例2 根据下列数列的前4项,写出数列的一个通项公式:
1
间不能交换位置.
所以,①是具有确定顺序的一列数.
2.在两河流域发掘的一块泥版(编号K90,约产生于公元前7世纪)上,有一列
依次表示一个月中从第1天到第15天每天月亮可见部分的数:
5,10,20,40,80,96,112,128,
∗
(1)数列的通项公式实际上是一个以正整数集 或它的有限子集{1,2, … ,}为
定义域的函数的解析式.
(2)利用一个数列的通项公式能解决以下问题:
①求出该数列的各项;
②判断某个数是否为该数列中的项;
③判断该数列的增减性;
④求该数列的最大项和最小项等.
(3)同“所有函数不一定都有解析式”类似,并不是所有数列都有通项公式,如
1
2
反映了− 的次幂按1次幂、2次幂、3次幂、4次幂……的顺序排列时的确定位置,
1
1
1
即1= − 2是排在第1位的数,2= 4是排在第2位的数,3= − 8是排在第3位的
数,…,它们之间不能交换位置. 所以③是具有确定顺序的一列数.
归纳: 上述例子的共同特征是什么?
新知讲解
一、数列的定义
+1 − =0 ⇔ { }为常数列.
四、数列的通项公式
如果数列{ }的第项与它的序号之间的对应关系可以用一个式子来表示,那么
这个式子叫做这个数列的通项公式.
例如,数列③的通项公式为=
1
− 2 .显然,通项公式就是数列的函数解析式,根
据通项公式可以写出数列的各项.
对通项公式的五点说明:
例2 根据下列数列的前4项,写出数列的一个通项公式:
1
高中数学第四章数列1第1课时数列的概念与简单表示法课件新人教A版选择性必修2
若数列{an}满足an=2n,则数列{an}是( ) A.递增数列 B.递减数列 C.常数列 【解析】选A.an+1-an=2n+1-2n=2n>0, 所以an+1>an,即{an}是递增数列.
D.摆动数列
【补偿训练】已知下列数列:
(1)0,0,0,0,0,0;
(2)0,-1,2,-3,4,-5,…;
2.已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n(n∈N*). (1)求数列{an}的通项公式. (2)讨论数列{an}的单调性,并证明你的结论. 【解析】(1)因为f(x)=2x-2-x,f(log2an)=-2n, 所以有2log2an-2-log2an=-2n, 即an-a1n =-2n, 所以an2 +2nan-1=0, 解得an=-n± n2+1 .
【解析】由数列中项的多少可知(1)是有穷数列,(2)(3)(4)(5)是无穷数列,根据数 列单调性的定义知(3)是递增数列,(4)是递减数列,(1)是常数列,(2)(5)是摆动数 列. 答案:(1) (2)(3)(4)(5) (3) (4) (1) (2)(5)
探究点二 用观察法求数列的通项公式
A.1,13 ,312 ,313 ,…
B.sin
π 13
,sin
2π 13
,sin
3π 13
,sin
4π 13
,…
C.-1,-12 ,-13 ,-14 ,…
D.1,2,3,4,…,30
【思维导引】(1)根据数列的定义去判断. (2)根据无穷数列和递增数列的定义逐一判断四个选项,即可得正确答案.
【解析】(1)选C.A中的{1,2,3,5,7}表示集合而不是数列,故A错,B中的两 个数列是不同的两个数列,因为1,0,-1,-2这四个数的顺序不一样,故B错 误,数列0,2,4,6,8,…,可记为{2(n-1)},而不是{2n},故D错.
人教版高中数学必修五等差数列的前n项和课件 (1)
解析: 数列{an}的公差d=a1177--a11=-121-7--1 60=3, ∴an=a1+(n-1)d=-60+(n-1)×3=3n-63. 由an<0得3n-63<0,解得n<21. ∴数列{an}的前20项是负数,第20项以后的项都为非负 数. 设Sn,S′n分别表示数列{an}和{|an|}的前n项和, 当n≤20时,S′n=-Sn=--60n+nn2-1×3 =-32n2+1223n;
可利用配方法求出二次函数的最值来确定Sn的最值,但应注意
n∈N*. ,
2.(1)在数列{an}中,已知an=2n-49,则Sn取 得最小值时,n=( )
A.26
B.25
C.24 D.23
(2)若等差数列{an}的前n项和为Sn,且a1= 29,5a8=a5-8,则Sn的最大值为________.
解析: (1)由an=2n-49知a1=-47,d=2>0. Sn=na1+nn2-1d=-47·n+nn2-1×2 =n2-48n=(n-24)2-242 ∴当n=24时,Sn取得最小值.
解析: 利用等差数列的性质求解. ∵{an}是等差数列,∴a2+a4=2a3=1+5,∴a3=3, ∴S5=5a12+a5=5×22a3=5a3=5×3=15.
答案: B
3.在等差数列{an}中,a1=1,a3+a5=14,其 前n项和Sn=100,则n=____________.
解析: ∵a3+a5=a1+a7=14,∴a7=13. 又a7=a1+(7-1)d,∴d=13- 6 1=2. Sn=na1+nn-2 1d. ∴n×1+nn2-1×2=100. 解得n=10或n=-10(舍).
2a1+5d=19, (2)由题设可得5a1+552-1d=40, 即a21a+1+2d5=d=8,19, 解得da=1=32,, 故 a10=2+3×(10-1)=29.
高中数学第1章数列111数列的概念课件北师大版必修5
第7页
3.是否所有的数列都有通项公式?若有,通项公式是否唯 一?
答:①不是,如π的不足近似值组成的数列 1,1.4,1.41, 1.414,……就没有通项公式.
②若一个数列有通项公式,也不一定唯一,如数列:-1,1, -1,1,……的通项公式可以写成 an=(-1)n,也可以写成 an=(- 1)n+2,也可以写成 an=- 1(1n为(偶n为数奇).数),
(5)将数列各项写为93,939,9399,….
第17页
【解析】 所给五个数列的通项公式分别为 (1)an=2n2-n 1; (2)an=n22; (3)an=1+(2-1)n; (4)an=- 3n 1n((nn==22kk-)1,)其,中k∈N*
第18页
由于 1=2-1,3=2+1,所以数列的通项公式可合写成 an =(-1)n·2+(n-1)n;
第24页
【解析】 (1)an=n(n+1)=600=24×25,所以 n=24. (2)①a4=3×42-28×4=-64, a6=3×62-28×6=-60. ②由 3n2-28n=-49,解得 n=7 或 n=37(舍).所以-49 是 该数列的第 7 项;由 3n2-28n=68 解得 n=-2 或 n=334,均不 合题意,所以 68 不是该数列的项.
B.9
C.6
D.20
答案 C
第32页
3.数列 2, 5,2 2, 11,…,则 2 5是该数列的( )
A.第 6 项
B.第 7 项
C.第 10 项
D.第 11 项
答案 B
第33页
4.数列{n2+n}中的项不能是( )
A.56
B.72
C.60
D.132
答案 C
第34页
3.是否所有的数列都有通项公式?若有,通项公式是否唯 一?
答:①不是,如π的不足近似值组成的数列 1,1.4,1.41, 1.414,……就没有通项公式.
②若一个数列有通项公式,也不一定唯一,如数列:-1,1, -1,1,……的通项公式可以写成 an=(-1)n,也可以写成 an=(- 1)n+2,也可以写成 an=- 1(1n为(偶n为数奇).数),
(5)将数列各项写为93,939,9399,….
第17页
【解析】 所给五个数列的通项公式分别为 (1)an=2n2-n 1; (2)an=n22; (3)an=1+(2-1)n; (4)an=- 3n 1n((nn==22kk-)1,)其,中k∈N*
第18页
由于 1=2-1,3=2+1,所以数列的通项公式可合写成 an =(-1)n·2+(n-1)n;
第24页
【解析】 (1)an=n(n+1)=600=24×25,所以 n=24. (2)①a4=3×42-28×4=-64, a6=3×62-28×6=-60. ②由 3n2-28n=-49,解得 n=7 或 n=37(舍).所以-49 是 该数列的第 7 项;由 3n2-28n=68 解得 n=-2 或 n=334,均不 合题意,所以 68 不是该数列的项.
B.9
C.6
D.20
答案 C
第32页
3.数列 2, 5,2 2, 11,…,则 2 5是该数列的( )
A.第 6 项
B.第 7 项
C.第 10 项
D.第 11 项
答案 B
第33页
4.数列{n2+n}中的项不能是( )
A.56
B.72
C.60
D.132
答案 C
第34页
高中数学优质PPT课件微专题01 求数列通项的方法
解 : n 2时, an S n S n 1 n 2 2n 1 [( n 1) 2 2(n 1) 1] 2n 1;
n 1时, a1 S1 12 2 1 2 2 1 1, 不符合上式.
2, n 1
数列{an }的通项公式an
1
1
又 1, 是首项和公差为1的等差数列,
S1
Sn
1
1
1 (n 1) 1 n, S n ,
Sn
n
1
1
1
n 2时, an S n S n 1
;
n n 1
n(n 1)
1
n 1时, a1 S1 1
, 不符合上式;
S n 1 ( n 1)a n (n 1)n, n 2.
两式相减得, n 2时, an nan 1 (n 1)an 2n,
即n 2时, nan 1 nan 2n,
即an 1 an 2(n 2).
若a, G, b成等差数列, 则2G a b
2.公式法
d>0
若a, G, b成等比数列, 则G 2 ab
2. 等差数列 a n 是递增数列,前 n 项和为 S n ,且 a1 , a3 , a9 成等比数列,
S 5 a52 .求数列 a n 的通项公式.
解:设数列 an 的公差为 d (d 0) ,
求解关于a1和d或a1和q的方程组.
3
3
3
3 3
d
a
(
n
1
)
n.
高中数学必修 第四章 数 列-课件 第1课时 等差数列前n项和公式的推导及简单应用
【题型探究】
题型一 等差数列前 n 项和的基本运算——师生共研 例 1 在等差数列{an}中, (1)已知 a1=56,an=-32,Sn=-5,求 n 和 d; (2)已知 a1=4,S8=172,求 a8 和 d. (3)已知 d=2,an=11,Sn=35,求 a1 和 n.
解:(1)由题意得,Sn=na1+ 2 an=n56- 2 32=-5,解得 n=15. 又 a15=56+(15-1)d=-32,∴d=-16.∴n=15,d=-16. (2)由已知得 S8=8a12+a8=84+2 a8=172,解得 a8=39, 又∵a8=4+(8-1)d=39,∴d=5,∴a8=39,d=5.
跟踪训练 2 (1)设等差数列{an}的前 n 项和为 Sn,若 S4=8,S8=20,
2.若 S 奇表示奇数项的和,S 偶表示偶数项的和,公差为 d, ①当项数为偶数 2n 时,S 偶-S 奇=___n_d____,SS奇偶=___a_an+_n1___;
②当项数为奇数 2n-1 时,S 奇-S 偶=_____a_n______, SS奇偶=____n_-_n_1_____,S2n-1=_(_2_n_-__1_)_an.
例 2 (1)等差数列前 3 项的和为 30,前 6 项的和为 100,
则它的前 9 项的和为( )
A.130
B.170
C.210
D.260
解析:利用等差数列的性质:S3,S6-S3,S9-S6 成等 差数列,所以 S3+(S9-S6)=2(S6-S3), 即 30+(S9-100)=2(100-30),解得 S9=210. 答案:C
解析:Sn-Sn-4=an-3+an-2+an-1+an=80, S4=a1+a2+a3+a4=40. 两式相加得 4(a1+an)=120,∴a1+an=30, 又 Sn=na12+an=15n=210,∴n=14. 答案:14
苏教版 高中数学选择性必修第一册 数列 课件1
4.an 与 Sn 的关系 已知数列{an}的前 n 项和为 Sn,则 an=SS1n, -nS= n-11,,n≥2.
教材拓展
求数列的最大(小)项,一般可以利用数列的单调性,即 用aann≥ ≥aann- +11,(n≥2,n∈N*)或aann≤ ≤aann- +11,(n≥2,n∈N*)求解, 也可以转化为函数的最值问题或利用数形结合思想求解.
三角形数
1, 3,
6,
10, .…..
正方形数
1, 4,
9,
16, ……
提问:这些数有什么规律吗?
3
三角形数:1,3,6,10,···
正方形数:1,4,9,16,···
1,2,3,4……的倒数排列成的一列数:
1,1 ,1 ,1 , 234
高一(4)班每次考试的名次由小到大排成的一列数: 1,2,3,4,35 -1的1次幂,2次幂,3次幂,……排列成一列数: 1, 1,1, 1 无穷多个1排列成的一列数:
1, 1, 1, 1,
4
定义:按一定顺序排列着的一列数称为 (数列具有有序性)
问1: 数列 3 1,2 ,3 ,… ,35 改为 3 , 2 ,1 ,… ,35 请问:是不是同一数列?
问2: 数列 4 -1,1,-1,1…… 改为: 1,-1,1,-1……,请问:是不是同一数列?
5
新知讲解:
数
反思感悟用作差法判断数列的单调性关键是判断符号,为此,一般要对差式进行通分,因式分解等变 形;若用作商法则要特别注意分母的符号.
►规律方法 根据形如 an+1=pan+q 的递推关系式求通项公式时,一 般先构造公比为 p 的等比数列{an+x},即将原递推关系式 化为 an+1+x=p(an+x)的形式,再求出数列{an+x}的通项公 式,最后求{an}的通项公式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的拆项公式有:
1 1 1 1. n(n 1) n n 1
1 1 1 1 2. ( ) n( n k ) k n n k
1 1 1 1 3. ( ) (2n 1)(2n 1) 2 2n 1 2n 1
1 1 1 1 4. [ ] n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
1 bn {b 例6、设 {an } 是公差d 不为零的等差数列 , n } 满足 an an1 求: bn 的前n项和
解: b n
1 an an 1
Sn b1 b2 b3
1 1 1 an 1 an ) ( d an an 1 dan an 1
高中选修《数学2-1》(新人教A版)
数列求和
数
列
求
和
介绍求一个数列的前 n 项和的几 种方法:
1运用公式法
2 通 项 分 析 法(分组求和法)
3 错位相减法 4 裂项相消法
1.公式法: 即直接用求和公式,求数列的前n和S
①等差数列的前n项和公式:
②等比数列的前n项和公式 ③ 1 1 2 3 n n(n 1) 2 ④
=
(
-
1 2n+1 1
)
2 1 3 3 5 1 1 n = (1 )= 2 2n+1 2n+1
+……+
2n-1
-
2n+1
)
评:裂项相消法的关键就是将数列的每 一项拆成二项或多项使数列中的项出现 有规律的抵消项,进而达到求和的目的。
4.拆项相消法(或裂项法):若数列 {an } 的通项公
式拆分为某数列相邻两项之差的形式即: an
Sn n n 2n 4n 当x 1时,
1 1 x )( 2 4 x x
2n
1 2 n ) 2n x
( x 1)( x 1) 2n 2n 2 x ( x 1)
4n( x 1) 2n S n ( x 1)( x 2 n 2 1) 2n( x 1) 2n 2 x ( x 1)
bn
1 1 1 1 1 1 1 1 1 ( ) ( ) ( ) d a1 a2 d a2 a3 d an 它的拆项 an1
1 1 1 1 1 ( d a1 a2 a2 a3 1 1 ) an an 1
方法你掌 握了吗?
1 1 1 n ( ) . d a1 an 1 a1an 1
2
1 2 3
3 3 3
n(n 1) n 2
3
了解
Hale Waihona Puke 例1:若实数a,b满足:4a2 9b2 4a 6b 2 0
求: a a 2b a3b2 a100b99 分析:通过观察,看出所求得数列实际上就是等比 数列其首项为a,公比为ab,因此由题设求出a,b, 再用等比数列前n项和公式求和 解:由已知有(4a2 4a 1) (9b2 6b 1) 0
例2 求和:1+(1/ a)+(1/a2)+……+(1/an)
解: ∵1,1/a,1/a2……1/an是首项为 1,公比为1/a的等比数列,
1 1 1 n1 a ∴原式= 1 原因: 1 a
a 1 n 1 n a a
n 1
上述解法错误在于,当公比 1/a=1即a=1时,前n 项和公式 不再成立。
a=1 a 1
对策: 在求等比数列前n项和时,要特别 注意公比q是否为1。当q不确定时 要对q分q=1和q≠1两种情况讨论求 解。
2.分组求和法: 若数列 {an } 的通项可转化为 an bn cn {bn } {cn } 可求出前n项和 sb s c 则 的形式,且数列
例3.求下列数列的前n项和 (1) 2 1 , 4 1 , 6 1 , , 2n 1
4
8
16
2n 1
n
1 2 2 1 2 2 ( x ) , ( x 2 ) , x x
1 2 , (x n ) x
1 解(1):该数列的通项公式为 an 2n n 1 2 1 1 1 1 sn 2 4 6 (2n n1 ) 4 8 16 2
1 1 ( )] n n 1
1 2n 2(1 ) n 1 n 1
例4、求和Sn =1+2x+3x2+……+nxn-1 (x≠0,1)
[分析] 这是一个等差数列{n}与一个等比数列{xn-1}的对应 相乘构成的新数列,这样的数列求和该如何求呢?
Sn =1 + 2x +3x2 + …… +nxn-1 ① 相减 xSn = x + 2x2 +……+ (n-1)xn-1 + nxn ② (1-x)Sn =1 + x + x2+ …… + xn-1 nxn
2
2 n n 1
1 2 1 n n 2 2
n
a 1 a 1 a
n n 1
2
例5、Sn =
1
1×3
+
1
3×5
+……+
1
(2n-1)×(2n+1)
[分析]:观察数列的前几项:
1 1×3 = 1 2 ( 1 1 1 3 )
1 1 1 1 ( ) 3 5 2 3 5
na1 (q 1) Sn a1 (1 q n ) a1 an q 1 q 1 q (q 1)
n
n(a1 an ) n(n 1) Sn na1 d 2 2
1 2 3
2 2 2
⑤
1 了解 n n(n 1)(2n 1) 6 2
2 即:(2a-1) (3b 1)2 0 解得a= ,b .
1 2
a a b a b
2 3 2
a
1 3
100
b
99
a 1 (ab) 1 ab
100
1 2
3 1 (1 100 ). 5 6
1 100 1 ( ) 6 1 1 6
n项
这时等式的右边是一个等 比数列的前n项和与一个 式子的和,这样我们就可 以化简求值。
例4、求和Sn =1+2x+3x2+ …… +nxn-1 (x≠0,1)
解:∵ Sn =1
∴xSn =
+ 2x +3x2 + …… +nxn-1 x + 2x2 + … + (n-1)xn-1+nxn
∴ ① -②,得: (1-x) Sn =1+x+x2+ … + xn-1 - nxn 1-xn - nxn = 1-x
n+nxn+1 1-(1+n)x ∴ Sn= (1-x)2
3.错位相减法:设数列 {a } 是公差为d的等差数列
(d不等于零),数列 {bn } 是公比为q的等比数列(q不 等于1),数列 {cn } 满足: cn anbn 则 {cn } 的前n项 和为:
n
Sn c1 c2 c3
1 1 1 (2n-1)×(2n+1) = 2 ( 2n-1 - 2n+1 ) 1
裂项相 消法
这时我们就能把数列的每一项裂成 两项再求和,这种方法叫什么呢?
例5、Sn =
1
1×3
+
1
3×5 1
+……+ 1 2
1
(2n-1)×(2n+1) 1 2n-1 1
解:由通项an=
∴Sn= 1 (
(2n-1)×(2n+1) 1 1 + 1 1
1 1 5. ( a b) a b a b
1 练习:求an 的前n项和 1 2 3 n 2 1 解:an 1 2 3 n n(n 1)
1 1 2( ) n n 1
1 1 1 S n 2[(1 ) ( ) 2 2 3
练习: ()求 1 S n a 1 a 2 2
an n
解: 1 Sn a 1 a 2
2
a a2
a n 1 2
a n
n
n
当a=0时,Sn n n 1 当a=1时,Sn n 当a 0,1时,Sn
(2 4 6 1 1 2 n) ( 4 8
1 4 1 1 n 2 1 1 2
1 n 1 ) 2
n(2 2n) 2
1 1 n( n 1) n 1 2 2
(2)
1 1 4 Sn ( x 2 2) ( x 4 2) x x
2
1 2 1 2n an ( x n ) x 2 n 2 x x
n
(x
2n
1 2 n 2) x
(x x
2 4
1 1 (1 2n ) 2 2n 2 当x 1时,Sn x (1 x ) x x 2n 2 1 1 x 1 2 x 2n 2n2
祝愿同学们学业有成, 前途似锦!
1 [(3n 2) n ] 2
(1 a a2 an1 )
(3).Sn x 2x 3x
2 3
nx
n
x 0
1 1 1 1 4Sn 1 2 2 3 3 4 nn 1