数学期望及其应用

合集下载

浅谈数学期望在生活中的应用

浅谈数学期望在生活中的应用

浅谈数学期望在生活中的应用浅谈数学期望在生活中的应用一、数学期望的定义引例某射手在一次射击比赛中共发射了10发子弹,其中有一发中7环,有二发中8环,有三发中9环,有4发中10环,求该射手在此次射击比赛中每发子弹击中的平均环数. 解平均环数这里的平均环数并不是这10发子弹击中的4个值的简单平均,而是以取这些值的次数与射击总次数的比值为权重的加权平均.在某种程度上说,这个加权平均可以用来衡量该射手的射击水平.二、数学期望的应用1.数学期望在疾病普查中的应用在一个人数为N的人群中普查某种疾病,为此要抽验N个人的血,如果将每个人的血分别检验,那么共需检验N次,为了能减少工作量,一位统计学家提出一种方法:按k个人一组进行分组,把同组k个人的血样混合检验,如果这混合血样呈阴性反响,就说明此k个人的血都呈阴性反响,此k个人都无此疾病,因而这k个人只需要检验一次就够了,相当于每个人检验1/k次,检验的工作量明显的减少了.如这混合血样呈阳性反响,就说明此k个人中至少有一个人的血呈阳性反响,那么在对这k个人的血样分别进行检验,因而这k个人的血要检验1+k次,相当于每个人检验1+1/k 次,此时增加了检验次数,假设该疾病的发病率为р且得此病相互独立,试问此种方法能否减少平均检验次数? 分析看能否减少平均检验次数,可以求出每个人检验次数的数学期望,根据数学期望大小再判断.解设以k个人为一组时,组内每个人检验次数为x,那么x是一个随机变量,其分布规律为所以每人平均检验次数为 .由此可知,只要选择k使就可减少验血次数,而且也可以通过不同的发病率р计算出最正确分组人数,此外,也得知:发病率越小,分组检验的效益越大.在二战期间,美国对新兵验血就是使用这种方法来减少工作量的.2.数学期望在揭开赌场骗局中的应用在我国南方流行一种称为“捉水鸡〞的押宝,其规那么如下:由庄家摸出一只棋子放在密闭的盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一.赌客把钱押在一块写有上述12个字(六个红字,六个黑字)的台面的某一个字上,押定后,庄家揭开盒子露出原来的棋子,凡押中者(字和颜色都对)以一比十得奖金,不中者其押金归庄家,此押宝赌博对谁有利? 分析这道题的思想简单,与0-1分布一样.解不妨设一个赌徒押了10元,而收回奖金X元,假设押中,X=100;假设不中,X=0.X的概率分布列为因此数学期望元.由于支付10元,和期望收入8.33元不等.因此这是不公平的赌博,明显对庄家有利,事实上,当赌徒进入赌场,他面临的都是这种不公平的赌博,否那么赌场的巨额开支业主的高额利润从何而来.3.数学期望在通信中的应用设无线电台发出的呼唤信号被另一电台收到的概率为0.2,信号每隔5秒钟拍发一次,直到收到对方的答复为止.假设发出信号到收到对方答复信号之间至少要经过16秒时间,求在双方建立联系之前已经拍发的呼唤信号的平均次数.分析明显,此题是考查几何分布数学期望的求法,但是又隐藏陷阱“假设发出信号到收到对方答复信号之间至少要经过16秒时间〞,意味随机变量X最小取值为4.×0.8k-4,k=4,5,... X的期望为因此在双方建立联系之前已经拍发的呼唤信号的平均次数为8次.这个例题虽是很简单的一个求数学期望的问题,但是“假设发出的信号到收到对方答复信号之间至少要经过16秒时间〞这个条件极易被忽略.上面这几题都是关于离散型随机变量数学期望一些性质应用的例子,接下来的4、5两个例子都是关于连续型随机变量数学期望一些性质,还要注意函数是分段函数. 4.数学期望在交通上的应用地铁列车到达某一站时刻为每个整点的第5分,25分,45分,设某一乘客在早上8点到9点之间随时到站候车,求他的平均候车时间.分析此题主要考查分段函数求期望的方法,必须先求出分段函数的表达式及X的密度函数.解设他到达地铁站的时刻为X,他候车时间为Y,那么由题意知X~U(0,60),那么有又知Y是变量X的函数, 由期望的性质知利用此例题可准确地对乘客的平均等待时间进行了预测,可以更好地指导实际,为人民群众效劳. 5.数学期望在决策中的应用设某种商品每周需求量是区间[10,30]上的均匀分布随机变量,而经销商店进货数量为区间[10,30]中的某一整数,商店每销售一单位商品可获利500元,假设供大于求时那么削价处理,每处理一单位商品亏损100元,假设供不应求时,可从外部调剂供给,此时每一单位商品获利300元,为使商品获利润值不少于9280元,试确定最少进货多少?分析此题主要考查分段函数数学期望的求法,但是此处应注意分段函数的求法及均匀分布的密度函数的表达式. 解设进货数量为a,利润为g(X),那么 X的密度函数为得21≤a≤26.故所获利润期望值不少于9280元,最少进货为21单位. 接下来继续看6、7两个应用随机变量的和式分解这个性质解题的例子.这种方法可以解决用期望的定义不能直接求,甚至无法求解的题目,大大降低了求期望的难度,即使随机变量不是同分布也可以运用这一性质. 6.数学期望在电梯运行中的应用一架电梯载有8位乘客,从一楼上升,每位乘客在20层的每一层都可以下电梯,如果没人下,那一层电梯就不停.设每位乘客在各层楼下电梯是等可能的,且各乘客是否下电梯是相互独立的.以X表示电梯停下的次数,求E(X).分析显然X是一个离散型的随机变量,X=1,2,…,20,直接不易求出.不妨转换思想,假设电梯在i层停,那么Xi=1,否那么Xi=0,那么 .现在用数学期望的性质易求出E(X). 解设随机变量那么即xi(i=1,2,...,20)的分布规律为由此可知本例将随机变量分解为多个相互独立的随机变量之和的形式,再利用数学期望的性质.这个处理方法在实际应用中具有普遍意义.如果不用和式分解法几乎无从着手. [。

数学期望的原理及应用

数学期望的原理及应用

数学期望的原理及应用数学期望是概率论中的一个基本概念,它描述了一个随机变量的平均水平或预期值。

具体地说,数学期望通过将随机变量的可能取值与相应的概率加权求和来计算。

数学期望的原理可以简单地表示为:对于一个离散型随机变量X,它的数学期望E(X)等于X每个可能取值xi乘以对应的概率p(xi)的累加和。

数学期望的计算公式可以表示为:E(X) = x1*p(x1) + x2*p(x2) + ... + xn*p(xn)其中,x1, x2, ..., xn为随机变量X所有可能的取值,p(x1), p(x2), ..., p(xn)为对应的概率。

对于连续型随机变量,数学期望的计算方法类似,只是将求和换成了求积分。

具体地说,对于一个连续型随机变量X,它的数学期望E(X)等于X在整个取值范围上的每个取值x乘以对应的概率密度函数f(x)的乘积的积分。

数学期望的计算公式可以表示为:E(X) = ∫x*f(x)dx数学期望的应用非常广泛,以下列举了一些常见的应用场景:1. 风险评估:数学期望可以用于评估风险,通过计算损失的数学期望来衡量风险的大小。

例如,在金融领域中,投资者可以通过计算股票的预期收益来评估投资的风险和回报。

2. 制定决策:数学期望可以帮助人们在面临多个选择时做出决策。

通过计算不同选择的数学期望,可以找出最具有潜在利益的选择。

3. 设计优化:数学期望可以帮助优化设计过程。

例如,在工程领域中,可以通过计算产品的预期性能来指导设计参数的选择和调整。

4. 分析:数学期望被广泛应用于分析中。

游戏参与者可以通过计算不同下注策略的数学期望来制定最终的下注策略。

5. 统计推断:数学期望是许多重要的统计量的基础,如方差、标准差等。

通过计算数学期望,可以进行更深入的统计分析和推断。

6. 优化调度:在运输和调度问题中,数学期望可以用来优化资源的分配和调度。

通过计算任务完成时间的数学期望,可以制定最优的任务调度策略。

总之,数学期望是概率论中一个重要的工具和概念,它可以帮助我们理解和分析随机现象,并在很多实际问题中发挥重要作用。

数学期望在市场营销中的应用

数学期望在市场营销中的应用

数学期望在市场营销中的应用1. 导言数学期望是概率论中的一种重要概念,它在市场营销领域中有着广泛的应用。

本文将探讨数学期望在市场营销中的应用,并简要介绍数学期望的定义和计算方法。

2. 数学期望的定义数学期望是随机变量的一种统计特征,它表示了随机变量的平均值。

对于一个离散型的随机变量X,其数学期望定义如下:E(X) = Σ(xi * P(xi))其中,xi代表随机变量X的取值,P(xi)代表X取值为xi时的概率。

对于一个连续型的随机变量X,其数学期望定义如下:E(X) = ∫(x * f(x))dx其中,f(x)表示X的概率密度函数。

3. 数学期望在市场营销中的应用3.1. 风险评估在市场营销中,经常需要对不同的策略或决策进行评估和比较。

数学期望可以用来评估策略或决策的预期收益或风险。

通过计算不同策略的期望值,可以选择最优的策略或决策。

3.2. 客户价值估计客户价值是指一个客户对于企业的经济贡献价值。

通过分析客户的消费行为和购买模式,可以计算客户的数学期望,从而估计客户的价值。

这有助于企业制定有针对性的市场营销策略,提高客户满意度和忠诚度。

3.3. 市场需求预测市场需求的预测是市场营销中的关键任务之一。

数学期望可以用来对市场需求进行预测。

通过分析历史数据和市场趋势,结合数学期望的计算方法,可以预测未来市场的需求量和趋势,为企业决策提供参考。

3.4. 产品定价数学期望在产品定价中也有着重要的应用。

通过分析市场的需求和竞争情况,计算产品价格的数学期望,可以帮助企业确定合理的定价策略,从而最大化企业利润。

4. 结论数学期望在市场营销中具有广泛的应用。

通过对不同领域的案例分析和数学期望的计算,可以帮助企业做出合理的决策和制定科学的营销策略,提高市场竞争力和盈利能力。

数学期望

数学期望
17:39
5000 1000 100 10 0 2 105 10 105 100 105 1000 105 p0
每张彩票平均能得到奖金
1
2
E( X ) 10000 105 5000 105 0 p0
0.5(元),
每张彩票平均可赚 2 0.5 0.3 1.2(元),
因此彩票发行单位发行 10 万张彩票的创收利润为
17:39
分析:
设这个人一次购物得奖金X元,X的分布 列为:
X 500 100
10
20
p 1 105 10 105 102 105 103 105 0
17:39
X的数学期望为:
( X ) 500 1/105 100 10 /105 10 102 /105 2103 /105 0 0 0.045(元)
设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖 100个,奖金各100元;五等奖1000个,奖金各 10 元。每张彩票的成本费为 0.3 元, 请计算彩 票发行单位的创收利润。
分析:设每张彩票中奖的数额为随机变量X, 则
X 10000 p 1 105
(1)A得200·(1/2) 法郎,B得200·(1/2) 法郎;
(2)A得200·(2/3) 法郎,B得200·(1/3) 法郎。
17:39
既然前两种分法都 不合理,那么第(3) 种更合理的办法又该 怎样分呢?
17:39
假设继续赌两局,则结果有以下四种情况:
AABiblioteka ABBABB
A胜B负 A胜B负
A胜B负 B胜A负

B
1
只能获得赌金的4
.
因此, A 能“期望”得到的数

4.4 数学期望的性质和应用

4.4 数学期望的性质和应用

一、数学期望的性质1.设C 是常数,则E (C )=C ;4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X );3.E (X +Y )=E (X )+E (Y );注意:由E (XY )=E (X )E (Y )不一定能推出X 、Y 独立推广(诸X i 相互独立)推广11[]()n n i i i i E X E X ===∑∑11[]()n n i i i i E X E X ===∏∏例1 性质 4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定独立X Y p ij-1 0 1-1118181818181818180p • j 383828p i•383828()()0;E X E Y ==()0;E XY =()()()E XY E X E Y =1(1,1)8P X Y =-=-=23(1)(1)8P X P Y ⎛⎫≠=-=-= ⎪⎝⎭5.若X ≥0,且EX 存在,则EX ≥0.推论:若X ≤Y ,则EX ≤EY .证明:设X 为连续型随机变量,密度函数为f (x ),则由X ≥0得:所以证明:∵Y −X ≥ 0,E (Y −X )≥0又∵E (Y −X )=E (Y )−E (X ) E (X ) ≤E (Y ).()0,0f x x =<0()()0EX xf x dx xf x dx +∞+∞-∞==≥⎰⎰例1.(二项分布B(n,p)) 设单次实验成功的概率是p ,问n 次独立重复试验中,成功次数X 的期望?解: 引入1,0,i i X i ⎧⎪=⎨⎪⎩第次试验成功,第次试验不成功。

则X =X 1+X 2+⋯+X n 是n 次试验中的成功次数。

因此,这里,X ~B(n,p).1()n i i EX E X ==∑1(1)ni i P X ===∑np=本题是将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.为普查某种疾病,n 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验n 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设:每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例2.二、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.设:第i 组需化验的次数为X i ,则其分布律为Xi1 k +1 P(1−p )k 1− (1−p )k ()1(1)(1)[1(1)]k k i E X p k p =⨯-++⨯--(1)(1)kk k p =+--解:为简单计,不妨设n 是k 的倍数,共分成j =n /k 组.(2)分组化验.每k 个人为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,此时k 个人的血需化验k+1次.每个人血液化验呈阳性的概率为p .若则E (X ) < n ,即方案2优于方案1方案2:需要化验的总次数为如:n =1000, p =0.001, k =10()(1)(1)k i E X k k p =+--1()()j i i E X E X ==∑12j X X X X =+++[(1)(1)]k n k k p k =+--1[1((1))]k n p k =---1(1)0,k p k-->101()1000[1(0.999)]1101000.10E X =--≈<<例3.据统计65岁的人在10年内正常死亡的概率为0.98,因事故死亡概率为0.02.保险公司开办老人事故死亡保险,参加者需交纳保险费100元.若10年内因事故死亡公司赔偿a元,应如何定a,才能使公司可期望获益;若有1000人投保,公司期望总获益多少?表示保险公司从第i个投保者身上所得的收益,i=1,2, (1000)解:设Xi则其分布律为:X i100 100−aP0.98 0.02)=100×0.98+(100−a)×0.02= 100−0.02a>0易求得E(XiE (X i )=100−0.02a >0即:当100<a<5000时,公司可期望获益若1000人投保,期望总收益为1000100011()()10000020i ii i E X E X a ====-∑∑例4.市场上对某种产品每年需求量为X 吨,X ~U [2000,4000],每出售一吨可赚3万元;售不出去,则每吨需仓库保管费1万元,问应该生产这种商品多少吨,才能使平均利润最大?解:设每年生产y 吨,其利润为Y .则易知,2000<y <4000,且有易知,需求量X 的密度函数为1,20004000()20000,X x f x ⎧<<⎪=⎨⎪⎩其它3,()3()1,y y X Y g X X y X y X ≤⎧==⎨--⋅>⎩3,4,y y X X y y X≤⎧=⎨->⎩3,()4,y y X Y g X X y y X ≤⎧==⎨->⎩3,()4,y y x g x x y y x ≤⎧=⎨->⎩()()()X E Y g x f x dx +∞-∞=⎰400020001()2000g xdx =⎰261(214000810)2000y y =-+-⨯4000200011()()20002000y y g x dx g x dx =+⎰⎰4000200011(4)320002000y y x y dx y dx =-+⎰⎰即:当y=3500时,E (Y )最大,最大值为8250万元.解得:y=3500()1(414000)2000dE Y y dy =-+0=令261()(214000810)2000E Y y y =-+-⨯。

06-第二十三讲 数学期望的性质及应用

06-第二十三讲 数学期望的性质及应用

所以
E(
X
Y
)
xy
f
( x,
y)dxdy
xy
fX
( x)
fY
(
y)dxdy
xf
X
(
x)dx
yfY
(
y)
dy
E( X )E(Y ).
第23讲 数学期望的性质及应用
定理 (数学期望的性质)
( 1 ) 若 a X b (a.e) 则 a E ( X ) b.(a,b为常数).
(2)若 c 为常数,则 E(cX )cE( X ).
(3) E( X Y ) E( X ) E(Y ).
( 4 ) 若X ,Y相互独立,则E( X Y ) E( X )E(Y ).
推论
(5)若X c (a.e)则 E( X ) c. (c 为常数).
(6) 若c1,c2 ,,cn 均为常数,则 E(n ck X k ) n ck E( X k ).
500h
300
(
x
)
1 200
dx
1 200
{3a0
[
0
x
1 2
(
a
x)
]
d
x
5
a
0
0adx}
1 800
(3
a2
2600a
90000)
第23讲 数学期望的性质及应用
解 设公司应组织货源 a 吨(300a500). 又设公司获利Y 千元,则
1a ,
a X 500,
Y
h(
X
)
1 X
12 ( a
X
E( Xi ) k (1 pi )k 1 pi
k 1
1 pi

数学期望的原理及应用

数学期望的原理及应用

数学期望的原理及应用1. 原理数学期望是概率论中的一个重要概念,用于描述随机变量的平均值。

在概率论中,随机变量是指在一个随机实验中,可以随机地取不同值的变量。

数学期望可以看作是随机变量的平均取值,它是对随机变量可能取值的加权平均。

数学期望的计算公式为:$$E(X) = \\sum_{i=1}^{n} X_i \\cdot P(X_i)$$其中,X i是随机变量的某个取值,P(X i)是X i对应的概率。

数学期望的求解步骤如下:1.确定随机变量的全部可能取值;2.计算每个取值的概率;3.计算每个取值与其对应概率的乘积;4.将上述乘积相加即得到数学期望。

2. 应用数学期望在各个领域都有广泛的应用,以下是数学期望在一些具体问题中的应用案例:2.1 统计学在统计学中,数学期望是一个重要的统计指标,用于衡量一个随机变量的中心位置。

例如,在对一个随机样本的分析过程中,可以通过计算样本的数学期望来了解样本的平均水平。

数学期望还被广泛应用于估计总体的参数,例如通过样本的平均值来估计总体的均值。

2.2 金融学在金融学中,数学期望在投资组合的管理中发挥重要作用。

通过计算各个投资标的的数学期望,可以评估投资标的的预期收益。

基于这些数学期望,投资者可以根据自己的风险偏好进行资产配置,以达到最优的投资组合。

2.3 工程学在工程学中,数学期望可以应用于各种实际问题的分析。

例如,在电力系统中,可以通过计算电力负荷的数学期望来确定电力系统的设计容量。

在工程项目的成本估算中,也可以通过计算工程成本的数学期望来进行成本控制和决策。

2.4 计算机科学在计算机科学中,数学期望被广泛用于分析算法的性能。

通过计算算法的平均运行时间的数学期望,可以评估算法的效率和性能。

数学期望还被用于建模和优化网络传输的时延和吞吐量。

3. 总结数学期望作为概率论中的一个重要概念,具有广泛的应用领域。

它是随机变量的平均取值,描述了随机变量的中心位置。

通过计算随机变量的数学期望,可以用于统计分析、金融投资、工程项目和计算机科学等领域的问题解决。

数学期望的计算方法及其应用

数学期望的计算方法及其应用

数学期望的计算方法及其应用摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。

本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。

本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。

关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT :第一节 离散型随机变量数学期望的计算方法及应用1.1 利用数学期望的定义,即定义法[1]则随机变量X的数学期望E(X)=)(1ini ix p x ∑=学期望不存在[]2例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。

推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。

试问推销人在用船运送货物时,每箱期望得到多少?按数学期望定义,该推销人每箱期望可得=)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2 公式法对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。

数学期望在生活中的运用

数学期望在生活中的运用

数学期望的性质及其在实际生活中的应用●数学期望的概念:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。

是最基本的数学特征之一,它反映随机变量平均取值的大小。

●数学期望的定义E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。

在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)E(X)对于这几个数据来说就是他们的算术平均值。

●数学期望的应用:例一、某一彩票中心发行彩票10万张,每张2元。

设头等奖1个,奖金1万元,二等奖2个,奖金各5千元;三等奖10个,奖金各1千元;四等奖100个,奖金各100元;五等奖1000个,奖金各10元。

每张彩票的成本费为0.3元,请计算彩票发行单位的创收利润。

E(X)=10000×+5000×+ 0=0.5(元)每张彩票平均可赚2-0.5-0.3=1.2(元),因此彩票发行单位发行10万张彩票的创收利润为100000×1.2=120000(元)小结:通过计算期望,我们可以得到单张彩票的平均利润,从而得出总共的创收利润。

例二、某投资者有10万元资金,现有两种投资方案供选择:一是购买股票;二是存人银行。

买股票的收益主要取决于经济形势,假设经济形势分为三种状态:形势好、形势中等、形势不好。

在股市投资10万元,以一年计算,若形势好可获利40 000元;若形势中等可获利10 000元;若形势不好则会损失20 000元。

简述期望的性质及其应用(可编辑)

简述期望的性质及其应用(可编辑)

简述期望的性质及其应用简述期望的性质及其应用摘要数学期望是概率论课程中的一个重要概念,是随机变量的重要数字特征之一,数学期望在人们社会实践中有重要并且广泛的应用。

本文首先介绍了数学期望的几个定义和主要性质,然后通过举例说明数学期望在农业、经济、日常生活中以及在其他学科知识上的应用,最后总结了数学期望的应用前景和发展方向。

关键词:数学期望;随机变量;多维随机变量Brief mathematical expectation Properties and ApplicationsAbstract Mathematical expectation is an important concept in probability theory course,which is one of the important digital features of random variables, the mathematical expectation in people's social practice used widely and importantly. This article firstly introduces several definitions and main properties of mathematical expectation, then illustrate mathematical expectation in the agricultural, economic and daily life as well as the application knowledge in other disciplines, and finally summarizes the mathematical expectation of application prospects and development direction.Keywords: Mathematical expectation;Random variable;Multiplerandom variable.目录摘要IAbstract II第一章引言 1第二章数学期望 22.1 数学期望的定义 22.2 一维随机变量的数学期望性质 32.3 多维随机变量数学期望的性质 4第三章数学期望的应用 63.1 数学期望在农业中的应用73.2 数学期望在经济中的应用83.3 数学期望在日常生活中的应用 93.4数学期望在其他学科知识的应用10主要参考文献12致谢13简述期望的性质及其应用第一章引言早起的埃及人为了忘记饥饿,经常聚在一起玩一种游戏叫做“猎犬与胡狼”的游戏,实际上就是掷骰子游戏,相对面的数学之和是7的骰子大约产生于公元前1400年的埃及,骰子就是游戏中常用的随机发生器,这类游戏也叫机会性游戏。

数学期望及其应用

数学期望及其应用

数学期望及其应用信息上的例谈数学期望这篇文章,对数学期望的相关性质以及应用做了进一步的探讨.1.数学期望的定义由于随机变量分为离散随机变量和连续随机变量,所以在定义数学期望式分两种情况.1.1 离散随机变量的数学期望设离散随机变量X的分布列为:这里例题所求运用了期望的定理1,对随机变量所得函数进行了期望计算.3.2 数学期望在实际生活中的应用3.2.1 数学期望在商店进货问题中应用例2 设某商店销售某种商品,该商品每周的需求量ξ是一个服从区间[100,300] 上的均匀分布的随机变量.正常情况下,每销售一单位商品可获利500元.若供大于求,则削价处理,每处理一单位剩余商品亏损100元;若供不应求,可以外部调剂供应,此时一单位商品获利300元.问该商店进货量应该为多少,可使平均每周的利润达到最大?y实际上为变量,对y求导得0,得到y=23.33.又因为E L ″1/ 3y=-150.所以当y=23.33时,利润的数学期望E L 取得最大值.3.2.2 数学期望在法律纠纷中的应用在民事纠纷案件中,受害人如果将案件提交法院诉讼,其不仅需要考虑诉讼胜利的可能性,还应该考虑承担诉讼的费用问题.如果对案件进行理性思考,一般人往往会选择私下解决而不通过法院.现在以一个民事纠纷案件来说明.例3 某施工单位A在施工过程中由于某种原因致使居民B 受伤,使居民受伤并使其遭受了20万元的经济损失.若将该案件提交诉讼,则诉讼费共需要0.8万元,并按所负责任的比例双方共同承担.而根据案件发生的情形以及外部因素的影响,法院最后的判决可能有三种情况:(1)施工单位A承担事故100 % 责任,要向受害人B支付20万元的赔偿费,并支付诉讼费0.8万元;(2)施工单位A承担70 % 的责任,要向受害人B支付14万元的赔偿费,并支付诉讼费0.56万元,另外0.24万元诉讼费由受害人支付;(3)施工单位A承担50 % 的责任,要向受害人B支付10万元的赔偿费,并支付诉讼费0.4万元,另外0.4万元诉讼费由受害人支付.居民B估计法院三种判决的可能性分别为0.2,0.6,02,如2/ 3果施工单位A想私下和解而免于诉讼,至少应向受害人B赔偿多少数额的赔偿费,才能使受害居民B从经济利益考虑而选择私下和解?首先从受害人B的角度来看受害人通过法院诉讼所获得的期望赔偿.设受害人B上诉可获赔偿为:(万元),则ξ的分布列:由上述分析和求解可以看出,若从经济利益角度来看,私下和解赔偿给受害人B的数额应该不超过14.976万元,否则,私下和解对于施工单位A便失去了意义.结束语本论文主要涉及了数学期望的概念,性质,定理并通过商品进货,法律问题方面的举例来说明数学期望在实际生活中的应用.整体是由数学期望的理论转向其在实际生活中的应用.从上述众多性质和所列举的例子中可以体会到数学期望的奇妙之处和应用的广泛性,它是减少随机性的重要手段,在涉及概率统计和决策时,往往会利用数学期望理论,但数学期望只是一种平均值,在实际问题中往往要结合其他的数字特征才能更好的解决问题.3/ 3。

数学期望的计算及应用

数学期望的计算及应用

数学期望的计算及应用数学期望的计算及应用数学与应用数学111 第四小组引言:我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。

因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。

在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即∑∞==1)(k k kp xX E ;2. 应用随机变量函数的期望公式∑∞==1)())((k k k p x q x q E 3. 利用期望的有关性质。

但是还是会碰到许多麻烦,这里我们将介绍一些解决这些难题的简单方法。

在现实生活中,许多地方都需要用到数学期望。

如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。

就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。

下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。

1. 变量分解法]1[如果可以把不易求得的随机变量X 分解成若干个随机变量之和,应用)(...)()()...(2121n n X E X E X E E E X E ++=++再进行求解得值,这种方法就叫做变量分解法。

这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。

例题1 :从甲地到乙地的旅游车上载有20位旅客,自甲地开出,沿途有10个车站,如到达一个车站没有旅客下车,就不停车,以X 表示停车次数,求E(X).(设每位旅客在各个车站下车是等可能的) 分析:汽车沿途10站的停车次数X 所以可能取值为0,1,….,10,如果先求出X 的分布列,再由定义计算E(X),则需要分别计算{X=0},{X=1},…,{X=10}等事件的概率,计算相当麻烦。

注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1对应起来,映入随机变量i X 每一种结果的概率较易求得。

数学期望性质与应用举例

数学期望性质与应用举例

5.数学期望的基本性质利用数学期望的定义可以证明,数学期望具有如下基本性质:设ξ, η为随机变量,且E(ξ),E(η)都存在,a,b,c为常数,则性质1.E(c)=c;性质2.E(aξ)=aE(ξ);性质3.E(a+ξ)=E(ξ)+a;性质4.E(aξ+b)=aE(ξ)+b;性质5. E(ξ+η)=E(ξ)+E(η).例3.5.7设随机变量X的概率分布为:P(X =k)=0.2 k =1,2,3,4,5.求E(X),E(3X+2).解. ∵P(X=k)=0.2 k=1,2,3,4,5∴由离散型随机变量的数学期望的定义可知E(X)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3,E(3X+2)=3E(X)+2=11.例3.5.8. 设随机变量X的密度函数为:求E(X),E(2X-1).解.由连续型随机变量的数学期望的定义可知=-1/6+1/6=0.∴E(2X-1)=2E(X)-1=-1.我们已经学习了离散型随机变量和连续型随机变量的数学期望,在随机变量的数字特征中,除数学期望外,另一重要的数字特征就是方差.4.1.2 数学期望的性质(1)设是常数,则有。

证把常数看作一个随机变量,它只能取得唯一的值,取得这个值的概率显然等于1。

所以,。

(2)设是随机变量,是常数,则有。

证若是连续型随机变量,且其密度函数为。

当是离散型随机变量的情形时,将上述证明中的积分号改为求和号即得。

(3)设都是随机变量,则有。

此性质的证明可以直接利用定理4.1.2,我们留作课后练习。

这一性质可以推广到有限个随机变量之和的情况,即。

(4)设是相互独立的随机变量,则。

证仅就与都是连续型随机变量的情形来证明。

设的概率密度分别为和,的联合概率密度为,则因为与相互独立,所以有。

由此得此性质可以推广到有限个相互独立的随机变量之积的情况。

例4.1.2 倒扣多少分?李老师喜欢在考试中出选择题,但他知道有些学生即使不懂哪个是正确答案也会乱撞一通,随便选一个答案,以图侥幸。

条件数学期望的定义归纳及其应用

条件数学期望的定义归纳及其应用

条件数学期望的定义归纳及其应用
条件数学期望是经济学中非常重要的一个概念,它是由条件随机变量和另一个随机变量共同给定而定义的期望值。

它的推导是基于概率的条件化思想,用于识别和研究一个特殊的随机变量,用于分析条件概率性质。

举个例子,假设人们想知道一个投资者每年的资产的期望值,其中资产是根据投资者的经验决定的。

则可以使用条件数学期望模型,满足以下条件:A_i表示投资者经验等级,B_i表示投资者投资获得的资产期望值,则有:
E(B_i|A_i)=∑e^(A_i)P(B_i|A_i)
因此,这里A_i作为条件,条件数学期望是基于满足A_i条件,B_i期望值的和。

条件数学期望有很多应用,主要有以下几类:
- 风险分析:对不同的风险类型分析,如投资风险、经济风险、市场风险等,去除偏差;
- 预测模型:预测投资者的收入水平、未来的资产价值,以及股票的价格等;
- 理财决策:驱动投资者的理财决策,预估收入,确定风险、收益比等;
- 统计学:应用在数据可视化、样条建模、多元回归等;
总而言之,条件数学期望是一种重要的经济学指标,能够有效地分析和探索市场现象,为经济与投资的健康发展提供重要的指导方向及数据支撑。

论数学期望在实际生活中的运用

论数学期望在实际生活中的运用

论数学期望在实际生活中的运用数学期望在实际生活中的运用
数学期望是一个概念,源于概率论,是在统计学上用来求取不确定结果
reates的一种工具。

它是随机变量所有可能发生情况的概率加权总和,是对统计
量的预期,同时也是取决于预先设定的概率的一种期望值。

当我们谈论数学期望在我们的生活中的运用时,最典型的应用例子当属投资。

投资者需要掌握投资的数学期望值,以帮助他们决定投资组合的最佳选择,最大限度地利用可能的收益。

数学期望有助于他们理解潜在投资收益应当受到多少风险损失的影响,以及收益和风险之间的权衡。

另一个有趣的应用是健康博弈。

健康博弈就是利用概率和数学期望来预测不同
解决方案带来的结果,从而帮助决策者做出明智的抉择。

它也可以用于棋牌游戏,帮助玩家对自己的通常投注行为进行计算,以预测游戏结果,并以此帮助他们制定最合适的战略和策略。

由此可见,数学期望扮演着重要的角色,在生活各个领域都有许多运用。

除了
注意上文提及的实际应用,它还可以用于分析政策效应、支付定价以及护理服务博弈等多种场景。

由于其可以作为基于期望值的分析工具,数学期望可以帮助投资者和决策者进行风险管理和决策进行,获得更高收益。

数学期望在高校教育中的作用也很重要,学生们可以通过有关数学期望的学习,认识到其重要性,并能够通过将之运用于实际生活中的场景,进行有效的数学分析和实践。

从而有助于提升高等教育水平,作出更准确、客观和有效的决策。

高考数学期望知识点

高考数学期望知识点

高考数学期望知识点数学作为高考的一门基础学科,在社会发展的过程中扮演着重要的角色。

而其中的数学期望概念,更是每个高中学生必须掌握的知识点之一。

本文将从不同角度对高考数学期望知识点展开深入的探讨,希望对广大考生有所帮助。

1. 数学期望的定义数学期望是统计学中的一个重要概念,用来描述一组数据的平均值。

在高考数学中,期望值通常用符号E(X)表示,其中X是随机变量。

数学期望的计算方法根据不同的随机变量类型而异,比如离散型随机变量和连续型随机变量。

对于离散型随机变量,期望可以通过每个事件发生的概率乘以对应的取值,再求和来计算;对于连续型随机变量,期望可以通过概率密度函数进行积分求解。

2. 数学期望的应用数学期望在实际生活中有着广泛的应用。

以购买彩票为例,假设一张彩票中奖的概率为p,中奖金额为x,不中奖的金额为y。

那么购买一张彩票的期望收益可以表示为(1-p)y+px,其中(1-p)y为不中奖的期望收益,px为中奖的期望收益。

通过计算这个期望值,可以帮助人们做出更明智的决策。

在金融领域,数学期望也扮演着重要的角色。

例如,在投资理财中,人们可以通过计算不同投资方案的期望收益来评估风险和回报。

通过对期望收益的比较,可以选择最合适的投资组合,以达到最佳的资产配置目标。

3. 数学期望的性质数学期望具有一些特殊的性质,这些性质在高考中也经常被考察。

其中,最重要的性质是线性性质。

即期望运算对于常数的线性性质,对于随机变量X,Y和常数a,b,有E(aX+bY) = aE(X) +bE(Y)。

这个性质使得计算复杂随机变量的期望值变得相对简单。

另外,数学期望还具有一个重要的性质,即保序性。

对于两个随机变量X和Y,如果对于任意的实数x,有P(X≤x) ≤ P(Y≤x),那么有E(X) ≤ E(Y)。

这个性质直观地表明了数学期望可以用于比较不同随机变量的概率分布。

4. 高考数学期望题型在高考数学中,期望作为一个重要的考察点,经常出现在各种题型中。

数学期望在生活中的应用原文

数学期望在生活中的应用原文

一、数学期望的定义及性质(一)数学期望分为离散型和连续型1、离散型离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。

数学期望是最基本的数学特征之一。

它反映随机变量平均取值的大小。

又称期望或均值。

如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。

它是简单算术平均的一种推广,类似加权平均。

E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。

X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。

在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。

2、连续型连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。

若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。

能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。

(二)数学期望的常用性质1.设X是随机变量,C是常数,则E(CX)=CE(X);2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y);3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。

对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。

对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科生毕业论文题目: 数学期望的计算方法与实际应用专业代码: 070101原创性声明本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任.学位论文作者签名: 日期指导教师签名: 日期目录1.引言 (1)2. 数学期望的定义及其性质 (2)2.1数学期望的定义 (2)2.2数学期望的基本性质 (2)2.3数学期望的计算方法 (3)3 数学期望在实际生活中的应用 (7)3.1在医学疾病普查中的应用 (7)3.2数学期望在体育比赛中应用 (8)3.3数学期望在经济问题中的应用 (10)3.3.1 免费抽奖问题 (10)3.3.2 保险公司获利问题 (11)3.3.3 决定生产批量问题 (11)3.3.4 机器故障问题 (12)3.3.5 最佳进货量问题 (13)3.3.6 求职决策问题 (14)4 结论 (15)参考文献 (16)致谢 (17)摘要数学期望简称期望,又称均值,是概率论中一项重要的数字特征,它代表了随机变量总体取值的平均水平。

数学期望的涉及面非常之大,广泛应用于实际生活中的各个领域。

在实际生活中,有许多问题都可以直接或间接的利用数学期望来解决。

其意义是运用对实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析等提供准确的理论依据。

本文从数学期望的内涵出发,介绍了数学期望的定义、性质,介绍了数学期望的几种计算方法并举以实例,通过数学期望在医学疾病普查、体育比赛和经济问题中的应用的探讨。

特别是在经济问题方面,本文又详细分为免费抽奖问题、保险公司获利问题、决定生产批量问题、机器故障问题、最佳进货量问题和求职决策问题,试图初步说明数学期望在实际生活中的重要作用,几个例子将数学期望与实际问题结合,用具体实例说明利用数学期望方法解决实际问题的可行性,体现了数学期望在生活中的应用。

关键词:概率论与数理统计;数学期望;性质;计算方法;应用AbstractMathematical expectation or expectations, also known as average, is very important digital features in the theory of probability, and it represents the overall average value random variables. Mathematical expectation is very big, widely applied in all fields in actual life. In real life, there are a lot of problems can be directly or indirectly solved by using the mathematical expectation. Its meaning is to use mathematical model to carry on the analysis of practice of abstracting method, so as to achieve the purpose of understanding the objective world rule, in order to provide accurate theoretical basis such as decision analysis.Based on the connotation of mathematical expectation, this paper introduces the definition and properties of mathematical expectation,and introduces several calculation methods of mathematical expectation and with examples, through the mathematical expectation in the medical disease census, sports, and discussed the application of economic problems. Especially in terms of economy, this paper is divided into free sweepstakes problem, insurance company profits, decided to production batch problems, machine failure problem, best carried out and cover decision problem, and attempts to preliminarily illustrate the important role of mathematical expectation in the actual life,and a few examples combine mathematical expectation and actual problem, with specific example is given to illustrate the feasibility of solving practical problems with mathematical expectation method,and embodies the application of mathematical expectation in life.Keywords:Probability and mathematical statistics; Mathematical expectation; Properties; Calculation method; application数学期望的计算方法与实际应用1.引言知识来源于人类的实践活动,又反过来运用到改造世界的实践活动中去,其价值也就在于此.面对当今信息时代的要求,我们应当思维活跃,富于创新,既要学习数学知识,更应该重视对所学知识的应用.在现实生活中,我们常常需要研究各种各样的随机变量.对于一个随机变量,如果掌握了它的概率分布,当然就可以对它进行全面的分析,但是在实际问题中要求出一个随机变量的概率分布往往不是一件容易事.有时甚至是不可能,而有些实际问题我们也不一定非要掌握一个随机变量的概率分布,而只要知道它的某些数字特征就够了,因此并不需要求出它的分布函数.这些特征就是随机变量的数字特征,是随机变量的分布所决定的常数,刻画了随机变量某一方面的性质。

例如比较不同班级的某次统考的成绩,通常就是比较各班的平均分;考察某种大批量生产的元件的寿命往往只需知道元件的平均寿命;评定某地区粮食产量的水平时,经常考虑平均亩产量;对一射手进行技术评定时,经常考察射击命中环数的平均值;检查一批棉花的质量时,关心的是棉花纤维的平均长度等.这个重要的数字特征就是数学期望,它是现实生活中“平均值”概念的推广,在现实生活中有重要的作用.盛骤等人在文献[1]中给我们系统地介绍了数学期望的定义、基本性质等,文献[2——5]中介绍了用特征函数、逐项微分、特殊积分等求解数学期望的方法,解法各具特色,张艳娥等在文献[6]中讨论了数学期望理论在疾病普查中的应用,杨先伟在文献[7]中对数学期望在体育比赛中的应用作了研究,文献[8——12]通过几个例子研究了数学期望在某些经济问题中的应用,内容包括免费抽奖问题、保险公司获利问题、决定生产批量问题、机器故障问题等.本文介绍了数学期望的定义、性质及其计算方法与技巧,并从数学期望的内涵出发,通过几个例子将数学期望与实际问题结合,用具体实例说明利用数学期望方法解决实际问题的可行性,体现了数学期望在生活中的广泛应用.2. 数学期望的定义及其性质2.1 数学期望的定义掷一枚质地均匀的骰子N 次,观察每次出现点数.它是一个随机变量ξ,如果用1N 、2N 、3N 、4N 、5N 、6N 表示出现1、2、3、4、5、6点的次数,那么每次投掷骰子出现点数的平均值为NN N N N N N N N N N N N N N N N N X 654321654321654321654321++++++++++= NN i 表示事件投掷骰子出现i 点的频率,由于频率具有波动性,因此该平均值也具有波动性,并不能代表每次投掷骰子出现点数的平均值,当N 很大时,NN i 应稳定于61,故该平均值也应该稳定于 ()2765432161616615614613612611=+++++=⨯+⨯+⨯+⨯+⨯+⨯ 那么,这使得平均值是真正的每次投掷骰子出现点数的平均值,他是随机变量ξ的可能取值i x 与所对应的概率i p 乘积的总和,这是一个常数,可以用来描述随机变量ξ的数学特征,称之为ξ的数学期望,记作ξE .定义 1 若离散型随机变量ξ可能取值为()⋯⋯=,3,2,1i a i ,其分布列为i p ()⋯⋯=,3,2,1i ,则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为∑∞==1i i i p a E ξ,如果∞=∑∞=i i i p a 1,则数学期望不存在.定义2 设连续型随机变量ξ的概率密度函数为()x P , 若积分⎰+∞∞-dx x xP )(是一个有限值,则称积分⎰+∞∞-dx x xP )(为ξ的数学期望,记作ξE ,即=ξE ⎰+∞∞-dx x xP )(.2.2 数学期望的基本性质设C 、a 、b 为常数,ξ为随机变量,则有如下性质:性质1 常数C 的数学期望等于本身:C EC =.证明:以离散随机变量为例来证明,对于连续随机变量可类似地证明.下同, 把常数C 视为概率1取本身值的离散随机变量,即得 C EC =.性质2 ()C E C E +=+ξξ证明:设随机变量ξ的概率分布为)(i x P =ξ=)(i x P ,(i =1,2,…)则()C E x P C x P x x P C x C E ii i i i i i i +=+=+=+∑∑∑ξξ)()()()(.性质3 ξξCE C E =)(.证明:∑∑===i i ii i i CE x P x C x P Cx C E ξξ)()()(.性质4 ξξbE a b a E +=+)(.证明:利用前三个性质得ξξξbE a Eb Ea b a E +=+=+)(.2.3 数学期望的计算方法方法一:利用数学期望的定义,即定义法此法是计算数学期望最常用的一种方法.它是先通过数学手段将∑∞=1k k k p x 转化成组合数公式、二项式定理或特殊级数的形式,然后求和获解.该方法思路明确,但有时计算比较麻烦.例1 设X~ U ( a, b) , 求E ( X).解 X 的概率分布为()⎪⎩⎪⎨⎧<<-=bx a a b x f ,1,0其他 X 的数学期望为()()2-b a dx a b x dx x xf X E +=--∞=∞= 方法二: 公式法对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望.(1) 二点分布:()011~p p X -,则()p X E =(2) 二项分布:),(~p n B X ,01p <<,则np X E =)((3) 几何分布:)(~p G X ,则有pX E 1)(= (4) 泊松分布:)(~λP X ,有λ=)(X E(5) 超几何分布:),,(~M N n h X ,有NM nX E =)( 方法三: 性质法当一个随机变量的分布较为复杂时,若直接求它的数学期望会很困难,我们可以通过将它转化成比较常见的简单的随机变量之和来解决. 主要是利用数学期望的性质()∑∑===⎪⎭⎫ ⎝⎛ni i n i i X E X E 11来使问题简单化.例2 将n 个球随机地放入M 个盒子中去,设每个球放入各个盒子是等可能的,求有球盒子数X 的期望.解 记⎩⎨⎧=个盒子有球,第个盒子无球,第i 1i 0i X ,i=1,2,3,…,M,则∑==M X X 1i i 。

相关文档
最新文档