概率论与数理统计41数学期望
高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
概率论与数理统计4.1离散型随机变量的数学期望

12×0.6-5×0.4=5.2万元 平均效益的计算方法就是离散型随机变量数学期望的计算方法.
河北农业大学理学院
一维离散型随机变量数学期望的概念
定义 设离散型随机变量X的概率分布为P(X=xk)=pk,k=1,2,...,
④若(X,Y)是二维随机向量,且X与Y独立,则E(XY)=EXEY 证明:
E(X Y)
(xi y j ) pij
X0
1
2
3
P 0.750 0.204 0.041 0.005
则有:
E( X ) 0 0.750 1 0.204 2 0.041 3 0.005 0.301.
河北农业大学理学院
一维离散型随机变量数学期望例题小结
经计算可得: (1) 若X服从参数为p的0-1分布,则EX=p; (2) 若X~B(n,p),则EX=np; (3) 若X服从参数为λ的泊松分布,则EX= λ.
若Y=g(X),且E(g(X))存在,则:E(g( X )) g(xn ) pn
n
同理
若g(X,Y)为随机变量X,Y的函数,E[g(X,Y)]存在,则
E[g(X ,Y)]
g(xi , y j ) pij
ij
河北农业大学理学院
例题分析
例1 设随机变量X 的分布律为
X
-1
0
1
2
P
0.1
0.3
0.4 0.2
k
注意 数学期望反映了随机变量取值的平均值,它是一种加权平均.
河北农业大学理学院
一维离散型随机变量数学期望例题分析
例1 泊松分布 设 X ~ P(), 且分布律为
概率论与数理统计复习笔记

概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。
概率论与数理统计公式整理(超全免费版)

P( B | A)
P( AB) P( A) P( B) P( B) P( A) P( A)
(14)独立 性
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独 立。 必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2,, Bn 满足 1° B1, B 2,, Bn 两两互不相容, P( Bi ) 0(i 1,2,, n) ,
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,
概率论与数理统计复习4-5章

∑ g ( x ) p 绝对收敛,则Y的期望为 ∞
k =1 k k
∑ g(x
k =1
k
) pk
(2) 设X是连续型随机变量,概率密度为 f ( x) , 如果积分 ∫−∞ g ( x) f ( x)dx 绝对收敛,则Y的期望为
E (Y ) = E[ g ( X )] = ∫ g ( x ) f ( x )dx
例 设X的概率分布律为
X −1
0 12
1
2
p 1 3 1 6 1 6 1 12 1 4
试求Y=-X+1及 Z = X 2 的期望和方差。 X -1 0 1/2 解 由于 P 1/3 1/6 1/6 Y =-X+1 2 1 1/2 Z = X2 1 0 1/4
1 1 1 1 1 1 2 E (Y ) = ( −1) ⋅ + 0 ⋅ + ⋅ + 1⋅ + 2 ⋅ = 4 12 2 6 6 3 3
2 2
D( Z ) = E ( Z 2 ) + [ E ( Z )]2 = 2.23264
1 + x − 1 < x < 0 例 设随机变量X的概率密度为 f ( x ) = 1 − x 0 ≤ x < 1 1)求D(X), 2)求 D ( X 2 )
解 (1) E ( X ) = ∫ x(1 + x)dx + ∫ x(1 − x)dx
第四章 随机变量的数字特征
离散型随机变量的数学期望 连续型随机变量的数学期望 数学期望的性质及随机变量函数的期望 方差及其性质
4.1数学期望 数学期望
数学期望——描述随机变量取值的平均特征 数学期望——描述随机变量取值的平均特征 一、离散型随机变量的数学期望 定义 设离散型随机变量X的概率分布为
4-1 数学期望 概率论与数理统计课件

则有
E(X) x(px)dx
x
1 e(x2σμ2)2dx
2σ
令x μ t x μ σ t, σ
所以 E (X )x 1e(x 2 σ μ 2)2dx
2 σ
1
t2
(μσ)te 2dt
2
μ1
et2 2dtσ
t2
te2dt
2
2
μ.
可 见 ,N (,2 ) 中 的 正 是 它 的 数 学 期 望 .
又 E (X 3 ) ( 2 ) 3 1 0 3 1 1 3 1 3 3 1 1 , 3 2 1212 3
故 E (2 X 3 5 ) 2 E (X 3 ) 5 2 1 5 1.3 3 3
例3 商店的销售策略 某商店对某种的 家销 用售 电采 器用先使
付款的,方 记式 使用寿 X(以 命年 为)计 ,规定 :
证明 例如
E(C)X Ckx pkC xkpkCE (X).
k
k
E(X)5, 则 E (3X )3 E (X )3 5 1.5
3. 设 X、Y 是两个随机变量, 则有
E (X Y ) E (X ) E (Y ).
证明 E (X Y ) (x ky k)p k
k
推广
xkpk ykpkE (X )E (Y ).
n
n ( n p 1 )! p k 1 ( 1 p ) (n 1 ) (k 1 )
k 1 ( k 1 )[n !( 1 ) ( k 1 )]!
n
np
( n 1 )!
p k 1 ( 1 p ) ( n 1 ) ( k 1 )
k 1 ( k 1 )[n !( 1 ) ( k 1 )]!
定 义 设离散型随机变量X 的分布律为
概率论与数理统计浙江大学第四版盛骤概率论部分

浙江大学 盛骤
2019/3/16
1
概率论与数理统计是研究随机现象 数量规律的一门学科。
2
第一章
• • • • • • 1.1 1.2 1.3 1.4 1.5 1.6
概率论的基本概念
随机试验 样本空间 概率和频率 等可能概型(古典概型) 条件概率 独立性
第二章
• • • • • 2.1 2.2 2.3 2.4 2.5
第九章 方差分析及回归分析
• • • • 9.1 9.2 9.3 9.4 单因素试验的方差分析 双因素试验的方差分析 一元线性回归 多元线性回归
5
第十章 随机过程及其统计描述
• 10.1 随机过程的概念 • 10.2 随机过程的统计描述 • 10.3 泊松过程及维纳过程
第十一章 马尔可夫链
15
§3 频率与概率
(一)频率 n A; f ( A ) 定义:记 n n 其中 nA—A发生的次数(频数);n—总试验次 数。称fn ( A)为A在这n次试验中发生的频率。 例:
中国国家足球队,“冲击亚洲”共进行了n次,其中成功了
1 n; 一次,则在这n次试验中“冲击亚洲”这事件发生的频率为
nH
251 249 256 253 251 246 244 258 262 247
fn(H)
0.502 0.498 0.512 0.506 0.502 0.492 0.488 0.516 0.524 0.494
表 2
实验者
德·摩根 蒲丰
K·皮尔逊 K·皮尔逊
n
nH
fn(H)
2048 4040
12000 24000
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
概率论与数理统计总结

第一章 随机事件与概率第一节 随机事件及其运算1、 随机现象:在一定条件下,并不总是出现相同结果的现象2、3、4、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω 表示基本结果,又称为样本点。
5、随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表示,Ω表示必然事件,∅表示不可能事件。
6、随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。
7、时间的表示有多种:(1) 用集合表示,这是最基本形式 (2) 用准确的语言表示(3) 用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事件B 发生,则称A 被包含于B ,记为A ⊂B;(2)相等关系:若A ⊂B 且B ⊃ A ,则称事件A 与事件B 相等,记为A =B 。
(3)互不相容:如果A ∩B=∅,即A 与B 不能同时发生,则称A 与B 互不相容7、事件运算(1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。
(2)事件A 与B 的交:事件A 与事件B 同时发生,记为A ∩ B 或AB 。
(3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。
用交并补可以表示为B A B A =-。
(4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B ∩C)=(A ∪B)∩(A ∪C)、 A(B ∪C)=(A ∩B)∪(A ∩C)= AB ∪AC(4)棣莫弗公式(对偶法则):B A B A ⋂=⋃ B A B A ⋃=⋂9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。
概率论与数理统计课件数学期望EX

Mathematical Expectation 例如:某7人的高数成绩为90,85,85,80,80, 75,60,则他们的平均成绩为
90 85 2 80 2 75 60 7 1 2 2 1 1 90 85 80 75 60 7 7 7 7 7 79.3
1 所以 k 2
1 xdx k 4 2k 1 2
3 1
f X ( x)
f ( x , y )dy
1 xydy 2 x 2 1
3
1
所以
2 x f X ( x) 0
x [0,1] 其它
y [1, 3] 时
fY ( y )
连续型随机变量
定义 设连续型随机变量X的概率密度为 f (x), 则
若广义积分 X 的数学期望
xf ( x )dx 绝对收敛, 则称此积分为
即
E( X )
x f ( x)dx
数学期望的计算
例 已知随机变量X的密度函数为
1 f ( x) 1 x 2 0
1
(3)另解
E( X )
3
xf ( x , y )dxdy
3 1
1
0
1
dx
1
1 x xydy 2
1
无需求 边缘分布密度函数
0
2 x 2 xdx 3
E (Y )
1
yf ( x , y )dxdy
数学期望

《概率论与数理统计》第四章随机变量的数字特征数学期望:1.随机变量数学期望的定义—连续型E(ξ)=⎰-∞+∞xp(x)dx E(g(ξ))=⎰-∞+∞g(x)p(x)dx 2.二维随机变量(X,Y)的数学期望:连续型E(X)=⎰-∞+∞xf X (x)dx=⎰-∞+∞⎰-∞+∞xf(x,y)dxdy E(Y)=⎰-∞+∞yf Y (y)dy=⎰-∞+∞⎰-∞+∞yf(x,y)dxdy 3.二维随机变量X 的函数Y=g(X)的数学期望:E[g(X,Y)]=⎰-∞+∞⎰-∞+∞g(x,y)f(x,y)dxdy 4.数学期望的性质E(c)=c ,E(a ξ)=a ξ,E(ξ±η)=E ξ±E η若ξ与η相互独立,则E(ξη)=E ξE η方差:1.随机变量方差的定义−−-D(X)=E[X-E(X)]2=EX 2–(EX)2D(X)=⎰-∞+∞[x-E(X)]2f(x)dx 2.方差性质:D(c)=0,D(a ξ)=a 2ξ,D(a ξ+b)=a 2D ξ,D(ξ±η)=D ξ+D η±2cov(ξ,η)若ξ与η相互独立,则D(ξ±η)=D ξ+D η协方差:1.ξ与η的协方差cov(ξ,η)=E[(ξ-E ξ)(η-E η)](或为σξη)2.协方差的性质:cov(ξ,ξ)=D ξcov(ξ,η)=cov(η,ξ),cov(ξ,c)=0cov(a ξ,b η)=ab cov(ξ,η),cov(ξ,η±ζ)=cov(ξ,η)±cov(ξ,ζ)3.协方差矩阵:设n 维随机变量X 1,X 2,…,X n ,记c ij =cov(X i ,X j ),则称阶矩阵C=(c ij )n ⨯n 为X 1,X 2,…,X n 的协方差矩阵例1:设ξ的密度函数p(x)=2x ∈[1,3]其它求:E ξ[解]∵1=⎰-∞+∞p(x)dx ∴c=3/2;E ξ=⎰-∞+∞xp(x)dx=⎰13x 32x 2dx=32lnx=32ln3.例2设x 1,x 2是随机变量ξ的两个任意取值,证明:E[(ξ-x 1+x 22)2]≥D ξ。
概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计PPT课件第四章数学期望与方差

在回归分析中,数学期望和方差 等统计指标用于描述因变量和自 变量之间的关系,以及预测未来
的趋势。
假设检验
在假设检验中,数学期望和方差等 统计指标用于比较两组数据或样本 的差异,判断是否具有显著性。
方差分析
方差分析利用数学期望和方差等统 计指标,分析不同组别或处理之间 的差异,确定哪些因素对数据变化 有显著影响。
质量控制
统计分析
在统计分析中,方差分析是一种常用 的统计方法,通过比较不同组数据的 方差,可以判断它们是否存在显著差 异。
在生产过程中,方差用于度量产品质 量波动的程度,通过控制产品质量指 标的方差,可以提高产品质量稳定性。
03
期望与方差的关系
期望与方差的关系式
期望值是随机变量取值的平均数 ,表示随机变量的“中心趋势”
方差的性质
方差具有可加性
当两个随机变量相互独立时,它们组 合而成的随机变量的方差等于它们各 自方差的线性组合。
方差与期望值的关系
方差与期望值之间存在一定的关系, 如方差等于期望值减去偏差的平方和 再求平均值。
方差的应用
风险评估
在金融和经济学中,方差被用来度量 投资组合的风险,通过计算投资组合 中各个资产的方差和相关系数,可以 评估投资组合的整体风险。
期望与方差的拓展
期望与方差在金融中的应用
金融风险评估
利用数学期望和方差计算 金融资产的风险,评估投 资组合的风险和回报。
资产定价
利用数学期望和方差等统 计指标,对金融资产进行 定价,确定其内在价值。
保险精算
通过数学期望和方差等统 计方法,评估保险产品的 风险和回报,制定合理的 保费和赔付方案。
期望与方差在统计学中
期望与方差在其他领域的应用
(2021年整理)概率论与数理统计习题集及答案

概率论与数理统计习题集及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(概率论与数理统计习题集及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为概率论与数理统计习题集及答案的全部内容。
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 。
1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形。
样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数。
样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= 。
(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: 。
(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: 。
(5)A 、B 、C 中至少二个发生表示为: 。
(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 。
3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = 。
第五版-经管类概率论与数理统计课后习题-完整版吴赣昌pdf

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.现习题91.2 随机事件的概率1.3 古典概型现习题3现习题5现习题6现习题8现习题9现习题101.4 条件概率习题3 空现习题41.5 事件的独立性现习题6现习题7现习题8总习题1习题3. 证明下列等式:习题4.现习题5习题7习题9习题11现习题12习题14习题15习题17习题18习题19习题20习题21习题22现习题23现习题24第二章 随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.习题3一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.习题4 (空)求因代营业务得到的收入大于当天的额外支出费用的概率.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布; (2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.习题10 纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.习题11设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.2.3 随机变量的分布函数习题1.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.习题4习题5习题6在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.2.4 连续型随机变量及其概率密度习题1习题2习题3习题4习题5设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.习题6习题7 (空) 习题8习题9习题10习题112.5 随机变量函数的分布 习题1习题2习题3习题4习题5习题6总习题二 1、2、4、6、7、9、11、12、14、16、17、19、20、第三章 多维随机变量及其分布 3.1 二维随机变量及其分布1、2、⑴⑵⑶3、⑴⑵⑶5、6、8、9、3.2 条件分布与随机变量的独立性 1、2、3、5、7、3.3 二维随机变量函数的分布 1、7、4、复习总结与总习题解答 1、。
概率论与数理统计期望

第一节 数学期望
单击此处添加副标题
一、离散型随 机变量的数学 期望
汇报日期
我们希望引进这样一个特征数字,它能反 映随机变量X所取数值的集中位置,就象 力学系统中的重心反映该系统质量的集中 位置一样,在概率论中,这样一个数字就 是随机变量的数学期望(也称平均值). 先看一个例子。
中靶环数(xi) 0 1 2 3 4 5 6 7 8 9 10 频 数(ni) 1 2 1 2 3 3 2 1 2 2 1
0,
0 x,
其它.
E(Y)0sinx1dx2
f(x) 1e1 2x2, x
2
E(例X)10设xfX(x~)dNx (0,1), 求 E(xX)1,E(eX122x2)d.x 0
2解
E( X 2 )
x2 f (x)d x
x2
1
x2
e 2 dx
2
1
x2
xd(e 2 )
2
方法1 先利用分布函数法求得Y的概率密度为
fY (y)
2, 1y2
0 y 1,
0,
其它.
再由公式(2)得
1
E(Y) y
0
12y2dy2
例9 设随机变量X在区间(0,p)内服从均匀分 布,求随机变量函数Y=sinX的数学期望.
全国自考概率论与数理统计(经管类)模拟试卷41(题后含答案及解析)

全国自考概率论与数理统计(经管类)模拟试卷41(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 综合题 5. 应用题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设事件A、B同时发生必然导致事件C发生,则( )A.P(C)≥P(AB)B.P(C)=P(AB)C.P(C)=P(A+B)D.P(C)≤P(AB)正确答案:A解析:由图可知A正确.2.X为连续型随机变量,f(x)为其概率密度,则( )A.f(x)=F(x)B.f(x)≤lC.P{X=x}=f(x)D.f(x)≥0正确答案:D解析:本题考查概率密度的性质(1)f(x)≥o.3.设随机变量X1,X2,…,Xn,…相互独立,且Xi(i=1,2,…,n,…)都服从参数为1的泊松分布,则当n充分大时,随机变量X=的概率分布近似于正态分布【】A.N(1,1)B.N(1,n)C.D.正确答案:C4.若A,B为两事件,A B,P(A)>0,P(B)>0,则( )A.P(A∪B)=P(A)+P(B)B.P(AB)=P(A)·P(B)C.P(B|A)一1D.P(A—B)=P(A)一P(B)正确答案:C解析:P(A∪B)=P(A)+P(B)一P(AB)=P(B)(选项A不对);(选项B不对);(选项D不对);.5.设事件A,B相互独立,且P(A)=,P(B)>0,则P(A|B)=( )A.B.C.D.正确答案:D解析:事件A、B相互独立,则P(AB)=P(A)P(B),又因为P(B)>0,故条件概率P(A/B)=6.甲、乙、丙三人独立地破译一密码,他们每人译出的概率都是,则密码被译出的概率为【】A.B.C.D.正确答案:C解析:设密码被译出的事件为A,则7.已知随机变量x的分布律为,且E(X)=1,则常数x=( )A.2B.4C.6D.8正确答案:B解析:8.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则( )A.P(B|A)=0B.P(A|B)>0C.P(A|B)=PD.P(AB)=P(A)P(B)正确答案:A解析:P(B|A)=,P(A)>0,又A与B互不相容,所以P(AB)=0即P(A|B)=0.9.设随机变量X服从参数为3的指数分布,其分布函数记为F(x),则=( )A.B.C.D.正确答案:C解析:∵X服从参数为3的指数分布,10.已知随机变量X的概率密度为f(x)=则(E)X= ( ) A.6B.3C.1D.正确答案:B解析:因为E(x)=∫-∞+∞xf(x)dx,所以就有填空题请在每小题的空格中填上正确答案。
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为X01P1-p p由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z), 得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2 +1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1] +(-1)2×0.3+12×0.3 =5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2). 解答: 如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx ⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy ⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy ⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615. 习题13设X 和Y 相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY). 解答:解法一 由独立性.E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx∫0+∞ye -(y-5)dy=23×6=4.解法二 令z=y-5, 则E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx ⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X 服从泊松分布,且P(X=1)=P(X=2), 求E(X),D(X). 解答:由题设知,X 的分布律为P{X=k}=λkk!e -λ(λ>0)λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ; Array (C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:X的分布律为P{X=k}=λkk!e-λ,k=0,1,2,⋯,于是由已知条件得3×λ11!e-λ+2×λ22!e-λ=4×λ00!e-λ,\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2 (Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy=E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X 3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200, D(X)=∑i=15D(X i)=225+240+225+265+270=1225 .(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-12001225≤y-12001225=Φ(y-12001225)>0.99.查标准正态分布表得y-12001225=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2). 若( X , Y ) 的概率密度为f ( x, y) ,
且
g ( x, y) f ( x, y)dxdy 绝对收敛,
则:EZ=
g ( x, y) f ( x, y)dxdy 。
返回主目录
第四章
随机变量的数字特征
§1 数学期望 例6 设风速 V 在(0,a)上服从均匀分布,又设飞机机 2 W kV 翼受到的正压力 W 是 V 的函数: ,(k>0); 求 EW。
第四章
随机变量的数字特征
§1 数学期望
例8
设在国际市场上每年对我国某种出口商品的 需求量是随机变量 X(吨) ,它在 [2000,4000] 上服从均匀分布,又设每售出这种商品一吨, 可为国家挣得外汇 3 万元,但假如销售不出而 囤积在仓库,则每吨需浪费保养费 1 万元。 问需要组织多少货源,才能使国家收益最大。
甲、乙的平均环数可写为
EX 8 0.1 9 0.3 10 0.6 9.5
EY 8 0.2 9 0.5 10 0.3 9.1
因此,从平均环数上看 ,甲的射击水平要比乙 的好.
返回主目录
第四章
随机变量的数字特征
§1 数学期望
例3
设随机变量X 服从Cauchy分布,其密度函数为 1 x2 f x x 1 1
;
N 1 k 所以 EX (k 1 kq ) N (1 q k ) k k
只要选 k 使 1 1/ k q k 1 ,即 1 / k q k ,就可使第 二个方案减少化验次数;当 q 已知时,若选 k 使 f (k ) 1 1 / k q k 取最小值,就可使化验次数最少。
数学期望也称为均值。
返回主目录
第四章
随机变量的数字特征
§1 数学期望
说 明
的求和顺序无关.
(1) X 的数学期望刻划了X 变化的平均值.
时,才能保证级数 xn pn 的和与其级数 xn pn
n 1 n 1 n 1
变化的平均值,因此, 只有当级数 xn pn 绝对收敛 ( 2)由于随机变量 X 的数学期望表示的是随 机变量 X
试说明适当选取 k 可使第二个方案减少化验次数。
返回主目录
第四章
随机变量的数字特征
§1 数学期望 (例 9续) 解:设X表示第二个方案下的总化验次数, X i 表 示第i个组的化验次数,则
X
X
i 1
N
k
i
, 且 EX
EX
i 1
N
k
i
EX表示第二种方案下总的 平均化验次数,EX i 表示 第i个组的平均化验次数。 下面求 EXi :
k 1
数学期望也称为均值。
返回主目录
第四章
随机变量的数字特征
§1 数学期望
(2)、连续型
f ( x) , 设连续型随机变量 X 的概率密度为
若积分 xf ( x)dx 绝对收敛,则称积分 xf ( x)dx
的值为 X 的数学期望。记为 EX= xf ( x)dx ,
定理 2:
Z g ( x, y )
若 ( X , Y ) 是二维随机变量,g ( x, y ) 是二元连续函数,
(1). 若( X , Y ) 的分布律为P{ X
i , j 1
xi , Y y j } Pij
i , j 1
,
且 g ( xi , y j ) Pij 绝对收敛;则 EZ= g ( xi , y j ) Pij 。
Xi 只可能取两个值 1 或 k+1,
P{ X i 1} q
k
,
q 1 p
k
;
返回主目录
P{ X i k 1} 1 q
;
第四章
随机变量的数字特征
§1 数学期望
(例 9续) EX i q k (k 1)(1 q k ) k 1 kq k
,
i 1,2,, N / k
2, ( x, y ) A 解: f ( x, y ) 0, 其它;
0 0
0
x
x y 1 0
1 EX= xf ( x, y)dxdy dx x 2dy 3 1 1 x 0 0 1 E(-3X+2Y)= dx 2(3x 2 y )dy 3 1 x 1 0 0 1 EXY= xyf ( x, y)dxdy dx x 2 ydy 12 1 1 x
0, 第i站没人下车 解:设 X i , i 1,2, ,10 , 1, 第i站有人下车
易见 X X 1 X 10 , EX EX i ,
P{X i 0} (9 / 10)
20
i 1
10
20 P { X 1 } 1 ( 9 / 10 ) , i ,i 1,,10 ,
(1) 旅客 8:00 到站,求他侯车时间的数学期望。 (2) 旅客 8:20 到站,求他侯车时间的数学期望。
解:设旅客的候车时间为 X(以分记)
(1) X 的分布律: X 10 30 50 P 1/6 3/6 2/6 EX=10*(1/6)+30*(3/6)+50*(2/6)=33.33(分)
返回主目录
例如:当p=0.1,q=0.9时,可证明k=4可使最小; 这时, EX N (1 1 / 4 0.9 4 ) 0.5939N 工作量将减少40%.
返回主 数学期望 例 10 一民航送客载有 20 位旅客自机场开出,旅客有 10 个车站可以下车,如到达一个车站没有旅客下车就不 停车。以 X 表示停车的次数。 求 EX(设每个旅客在各个车站下车是等可能的,并 设各旅客是否下车相互独立) 。
i i i i 1 i 1
n
n
i
IV)
若x , y独立,则 EXY=EXEY
返回主目录
第四章
随机变量的数字特征
§1 数学期望
例 9 对N个人进行验血,有两种方案:
(1)对每人的血液逐个化验,共需N次化验; (2)将采集的每个人的血分成两份,然后取 其中的一份,按 k 个人一组混合后进行化验 (设N是k的倍数),若呈阴性反应,则认为 k 个人的血都是阴性反应,这时 k 个人的血只 要化验一次;如果混合血液呈阳性反应,则 需对k个人的另一份血液逐一进行化验,这时 k个人的血要化验k+1次; 假设所有人的血液呈阳性反应的概率都是 P,且各次 化验结果是相互独立的。
且
P g( x
k 1 k
k
) 绝对收敛, 则
EY= Pk g ( xk )
k 1
(2).若 X 的概率密度为f ( x) ,且 g ( x) f ( x)dx 绝对收敛,
则 EY= g ( x) f ( x)dx 。
返回主目录
第四章
随机变量的数字特征
§1 数学期望
到站时间 8:10,9:10 概率 1/6 8:30,9:30 8:50,9:50 3/6 2/6
返回主目录
第四章
随机变量的数字特征
§1 数学期望
2、随机变量函数的数学期望
定理 1:
设 Y=g(X), g(x) 是连续函数,
(1)若 X 的分布率为 Pk P{X xk } k 1,2,
返回主目录
第四章
随机变量的数字特征
§1 数学期望
例2
甲、乙两人射击,他们 的射击水平由下表给出 : X:甲击中的环数;
Y:乙击中的环数;
X P
Y
8 0.1
8
9 0.3
9
10 0.6
10 0.3
P 0.2 0.5 试问哪一个人的射击水 平较高?
返回主目录
第四章
随机变量的数字特征
§1 数学期望
解:
例2(续)
此时, i 1,2, ,10 EX i 1 (9 / 10) 20 ,i 1, , ,10X i 不是相互独立的 EX 10[1 (9 / 10) 20 ] 8.784(次 )。 返回主目录
第四章
随机变量的数字特征
例 11 §1 数学期望 用某台机器生产某种产品,已知正品率随着该机器
由于
x f xdx
1 x2
1
x
dx
0 1 x2
2
x
dx
1
ln 1 x 2
0
这表明积分 xf x dx 不绝对收敛,因而 EX 不存在.
返回主目录
第四章
随机变量的数字特征
§1 数学期望
例4
设离散型随机变量 X 的分布律为: X 0 1 2 P 0.1 0.2 0.7
解:设 y 为预备出口的该商品的数量,这个数 量可只 介于 2000 与 4000 之间, 用 Z 表示国家的收益(万元)
3 y, Z 3 X ( y X ),
X y X y
返回主目录
第四章
随机变量的数字特征
(例8续)
3 y, z g ( x) 3x ( y x),
x y x y
§1 数学期望
2000 y 4000
下面求 EZ,并求使 EZ 达到最大的 y 值, y 4000 3x ( y x) 3y EZ g ( x) f ( x)dx dx dx 2000 2000