DEA数据包络分析
数据包络分析
数据包络分析数据包络分析(Data Envelopment Analysis,简称DEA)是一种以线性规划为基础的效率评价方法,用于评估决策单元的相对效率。
它是由Charnes、Cooper和Rhodes于1978年首次提出,并逐渐发展成为管理科学领域中重要的工具和方法。
数据包络分析的基本原理是通过构建数学模型,通过比较决策单元投入与产出之间的差异,计算出每个决策单元的效率得分。
这些决策单元可以是企业、组织、部门或个人等。
通过这种方法,可以找出相对效率较高的决策单元,并为效率较低的决策单元提供改进的方向。
数据包络分析的优势在于可以同时考虑多个输入和输出指标,而不需要事先确定权重。
它能够根据现有数据自动计算决策单元的效率得分,并对其进行排名。
此外,数据包络分析还能够帮助发现潜在的改进空间,并对目标设定提供参考。
数据包络分析的主要应用领域包括生产效率评价、性能评估、资源配置和效率提升等。
在生产效率评价方面,数据包络分析可帮助企业评估和优化生产过程,提高资源利用率和生产效率。
在性能评估方面,此方法可以用于评估学校、医院、银行等组织的绩效,并为其提供改进建议。
在资源配置方面,数据包络分析可以帮助管理者合理分配资源,并提供最佳决策支持。
在效率提升方面,数据包络分析可通过分析不同决策单元之间的差异,找出效率最高的决策单元,并借鉴其经营管理模式。
虽然数据包络分析在实践中有着广泛的应用,但其方法也存在一些局限性。
首先,数据包络分析对数据的质量要求较高,需要准确和完备的数据才能得出可靠的结果。
其次,数据包络分析假设每个决策单元在同一时期内具有相同的技术效率,忽略了随时间变化的因素。
此外,数据包络分析方法对异常值较为敏感,可能会产生误导性的结果。
总的来说,数据包络分析是一种有效的评估方法,适用于各种决策单元效率评价和资源配置问题。
在实际应用中,需要结合具体情况,灵活运用数据包络分析方法,并注意其局限性,以获得准确的结果和有效的决策支持。
DEA数据包络分析法
DEA数据包络分析法DEA数据包络分析法(Data Envelopment Analysis,DEA)是一种用于评估组织或单位绩效的方法。
它是一种非参数的效率评价方法,不需要任何先验假设或函数形式的假设。
DEA通过比较多个输入和输出变量来确定一个单位的相对效率,即单位在给定的资源限制下能够产生的最佳输出水平。
DEA方法可以用来评估各种类型的单位,包括公司、医院、学校等。
DEA方法的基本思想是将单位的输入和输出量转化为数值来进行比较。
每个单位可以被看作是一个生产过程,输入变量是生产这个过程所需要的资源,输出变量是生产过程所产生的结果。
DEA方法可以帮助管理者找到哪些单位在利用资源方面效率最高,哪些单位在利用资源方面存在浪费,从而指导管理者进行资源配置和决策。
DEA方法的核心是构建生产可能性集(Production Possibility Set,PPS)。
PPS是指所有可能的输入和输出组合,构成一个封闭的边界,这个封闭的边界被称为数据包络(Data Envelopment)。
在这个边界上的单位都被认为是有效率的,而在这个边界内的单位被认为是无效率的。
DEA方法有很多优点。
首先,DEA方法不需要事先制定有效率的标准,而是通过比较各个单位之间的相对效率来确定哪些单位是最有效率的。
这样避免了主观性带来的偏差。
其次,DEA方法可以同时考虑多个输入和输出变量,考虑了生产中的多维度特性。
第三,DEA方法可以识别出生产过程中的浪费,帮助管理者改进资源配置和管理方式。
DEA方法也存在一些局限性。
首先,DEA方法只能提供相对效率的评价结果,而不是绝对效率。
这意味着DEA方法无法提供单位具体的效率水平,只能比较单位之间的相对效率。
其次,DEA方法对输入输出数据的准确性要求很高,数据的质量直接影响了评价结果的准确性。
第三,DEA方法对于数据包络的选择比较敏感,不同的数据包络选择可能导致不同的评价结果。
在实际应用中,DEA方法广泛应用于各种类型的单位绩效评估。
数据包络分析DEA
算法优化
并行计算
针对大规模数据的DEA分析,可以采用并行计算技术, 以提高计算效率。通过将数据分成若干个子集,并行计 算可以同时处理多个子集,显著缩短计算时间。
智能优化算法
将智能优化算法应用于DEA模型的求解过程,可以找到 更优的解。例如,遗传算法、粒子群算法等智能优化算 法可以用于求解DEA模型,以获得更准确的分析结果。
05
DEA实践案例
案例一:某制造企业的DEA分析
总结词
提高生产效率
详细描述
某制造企业通过DEA分析,评估了各生产车间的效率 ,找出了瓶颈环节,并针对性地优化了生产流程,提 高了整体生产效率。
案例二:某金融机构的DEA分析
总结词
优化资源配置
详细描述
某金融机构利用DEA分析,对各业务部门进行了效率 评估,根据评估结果调整了资源分配,使得资源能够更 加合理地配置到高效率部门,提高了整体业绩。
数据包络分析(DEA
目 录
• DEA概述 • DEA模型 • DEA的优缺点 • DEA的改进方向 • DEA实践案例
01
DEA概述
DEA定义
总结词
数据包络分析(DEA)是一种非参数的线性规划方法,用于评估一组决策单元(DMU)的相对效率。
详细描述
DEA使用数学规划模型,通过输入和输出数据,对一组决策单元进行相对效率评估。它不需要预先设 定函数形式,能够处理多输入和多输出的情况,并且可以对每个决策单元进行效率评分。
规模收益与技术效率
总结词
规模收益与技术效率是DEA分析中重要的概 念。
详细描述
规模收益指的是随着投入的增加,产出的增 加比例。技术效率则是指在给定投入下,实 际产出与最优产出之间的比率。在DEA分析 中,技术效率可以进一步分解为配置效率和 纯技术效率。
数据包络分析DEA
数据包络分析DEA数据包络分析(Data Envelopment Analysis,DEA)是一种用来衡量决策单元(decision-making unit,DMU)效率的定量方法。
DEA是由Charnes、Cooper和Rhodes于1978年提出的,该方法主要用于评价相对效率,即将一个或多个输入变量转换为一个或多个输出变量的能力。
它可以在多个指标和多个决策单元之间进行效率比较。
DEA的基本概念是通过线性规划来求解每个决策单元的效率得分。
具体来说,通过找到每个DMU的最佳投入组合和输出组合来计算得分,使得该DMU的得分最大化同时满足其他DMU的得分小于等于1、DEA是一种基于相对效率评估的方法,不需要假设预先设定的效率标准,可以避免传统经验评估方法中存在的主观偏差。
DEA的应用范围非常广泛,包括政府、企业、银行、学校等各个领域。
它可以评估和比较不同DMU之间的相对效率,并为找到效率改进的潜力提供指导。
DEA还可以用于评估决策单元的技术效率和规模效率。
技术效率表示在给定的投入下,决策单元能够获得的最大输出水平。
规模效率反映了决策单元是否在最优规模下运营。
DEA的优点在于它能够考虑多个输入和输出因素,并将各个因素的权重纳入计算中。
它不需要对输入和输出进行单一的加权求和,而是通过优化模型来获得最佳权重。
此外,DEA的计算过程较为简单直观,可以提供DMU的效率得分及其组成部分的详细信息。
这些信息可以帮助决策者确定效率改进的方向,并制定相应的策略。
当然,DEA也有一些限制。
首先,DEA是一种非参数方法,对输入和输出数据的精确度要求较高。
缺乏精确度的数据可能会导致评估结果不准确。
其次,DEA只能评估相对效率,而无法提供绝对效率的标准。
最后,DEA在处理多个输入输出时可能会存在规模失效的问题,即DMU的规模过大或过小时可能导致评估结果偏差。
总的来说,DEA是一种有效的工具,用于评估和比较决策单元的效率。
它可以帮助决策者确定效率改进的方向,并提供有关决策单元效率的详细信息。
DEA数据包络分析
DEA数据包络分析DEA 数据包络分析(Data Envelopment Analysis)是一种用于评估相对效率的方法,它能够帮助研究人员和决策者评估和比较各种组织或单位之间的绩效。
在许多领域中,如经济学、管理学和运筹学等,DEA 都得到了广泛的应用。
本文将对 DEA 数据包络分析的基本概念、原理以及应用进行介绍,并探讨其在不同领域的应用现状。
DEA数据包络分析是一种基于线性规划的非参数方法,旨在评估相对效率。
其基本思想是将所有的单位或组织看作一个投入产出系统,通过将输入和输出变量转化为规范化的值,从而找到一个最佳的线性组合,即数据包络面。
该数据包络面可以被用来确定所有单位或组织的相对效率水平,即它们的输入产出比相对于最佳线性组合的能力。
DEA数据包络分析的基本原理是寻找一个最佳的参考集合,即有效前沿,以确定单位或组织相对效率的水平。
在DEA中,每个单位或组织都被视为一个节点,它们的输入和输出被视为向量,而有效前沿则是一个凸集,表示所有可能的最佳的输入产出比。
通过比较每个单位或组织相对于有效前沿的距离,可以确定它们的相对效率水平,即这个距离越小,则表示单位或组织的效率越高。
DEA数据包络分析具有许多优点,例如非参数性、能够同时考虑多个输入输出变量、能够考虑内部不均衡等。
这使得DEA成为评估和比较不同单位或组织绩效的理想方法。
在实际应用中,DEA数据包络分析可以用于评估公司的绩效、比较不同行业的效率、确定最佳经营策略等。
在公司绩效评估中,DEA数据包络分析可以帮助管理者确定哪些单位或部门是最有效率的,从而帮助他们制定更好的管理和运营决策。
通过比较相对效率水平,管理者可以找到一些潜在的改进空间,并提出相应的改进措施。
此外,DEA还可以用来评估公司的绩效相对于同行业其他公司的优势和劣势,为公司发展和竞争提供有力依据。
除了公司绩效评估外,DEA数据包络分析还被广泛应用于其他领域。
例如,DEA可以帮助政府评估公共服务的效率、帮助银行评估分行的效率、帮助学校评估教育质量等。
dea数据包络分析法
dea数据包络分析法
DEA数据包络分析(DEA)是一种经济规划工具,它利用线性规划技术来比较多个决策单位(DMU)的生产绩效。
这种分析法可以判断哪些DMU工作良好,哪些表现不佳,以及
哪些DMU可以从其他DMU复制绩效表现,以提高整体效率。
DEA数据包裹分析模型基于历史向前的效率前提,它利用存在的资源限制来合理分配
产出,即输出、输入,并且还考虑了不同的技术约束,即输入规格和输出规格。
通过这种
方法,可以比较DMU的当期效率以及其他技术水平,从而为经理和决策者提供有用的指导。
DEA数据包裹分析分析模型的基本结构如下:首先,根据DMU所使用的资源和生产要
素确定它们的“数据包”,也就是当期绩效信息;每个DMU的数据包由它们的输出量和输
入量组成,用一种数学模型表示,比如投入-输出分析。
然后,使用一种特定的约束条件,如最小输入规格或边际效率,确定一个最佳的技术水平解决方案,该解决方案用最佳DMU
的数据包,以及DMU之间的关系来建模;最后,求解该数据包,使DMU的效率尽可能达到
最优水平。
DEA数据包裹分析模型可以帮助公司管理者有效地将资源优化配置,通过与其他DMU
的比较,从而发掘潜在的差距,发现可以从其他DMU中复制的管理方法和技术。
同时,该
模型还有助于政府决策部门把握市场状况,及时利用市场收入和资源,积极提高相关部门
的效率。
DEA数据包络分析
DEA数据包络分析数据包络分析(Data Envelopment Analysis,DEA)是一种多变量效率评估方法,广泛应用于衡量组织、企业或其他单位的综合效率。
DEA方法可以根据输入和输出数据评估单位之间的相对效率,并确定最有效率的单位以及在哪些方面改进。
DEA方法的基本原理是利用线性规划技术,以最大化单位的输出为目标函数,同时限制每个单位的输入不超过其他单位。
通过这种方式,DEA 方法可以衡量每个单位实现生产最优水平的能力。
在DEA中,每个单位可以被看作是一个能够将一组输入转化为一组输出的生产者。
输入可以是任何有助于产出的资源,如劳动力、资本、原材料等;输出可以是组织产出的产品、服务或者其他结果。
DEA方法通过建立一个线性规划问题来衡量单位的效率。
该问题的目标是最大化单位的输出,并且输入不能超过其他单位。
DEA方法的优势是可以在没有事先确定权重的情况下,评估单位的效率。
这种方法对于评估多指标、多维度问题非常有效,因为它使用相对效率的概念,而不是绝对效率。
相对效率表示一个单位在给定输入和输出约束下的最佳性能水平。
这意味着即使单位的输入和输出数量不同,但DEA 可以根据它们的相对效率进行比较。
DEA方法还可以用于确定单位的最大效率范围。
通过对每个单位进行批量线性规划,可以找到最优解,即单位达到最大效率时的输入和输出比例。
这个最优解被称为有效前沿,它表示了实现最佳性能的边界。
通过比较每个单位的实际效率和有效前沿,可以识别出哪些方面可以改进以提高效率。
DEA方法在实践中有许多应用。
例如,在金融领域,DEA可以用于评估银行、保险公司等机构的效率。
在教育领域,DEA可以用于评估学校、大学等机构的教学效率。
在公共管理领域,DEA可以用于评估政府机构的绩效和效率。
在医疗领域,DEA可以用于评估医院、诊所等机构的医疗效果。
综上所述,DEA方法是一种强大的数据包络分析工具,可以用于衡量单位的效率。
它的主要特点是不需要事先设定权重,并且可以同时考虑多个输入和输出。
DEA数据包络分析教程
数据包络分析(the Data Envelopment Analysis,简称DEA)是1978年由美国著 名旳运筹学家A.Charnes和W.W.Cooper等 学者,以相对效率概念为基础发展起来旳 一种效率评价措施。他们旳第一种模型被 命名为C2R模型,从生产函数角度看,这 一模型是用来研究具有多种输入、尤其是 具有多种输出旳“生产部门”同步为“规 模有效”与“技术有效”旳十分理想且卓 有成效旳措施。1984年 R.D.Banker,A.Charnes和W.W.Cooper给出 了一种被称为BC2旳模型。
第三步,针对各成果,进行分析
针对成果进行效率分析、投入冗余产出不 足分析、投影分析等
怎样从EXCEL里读取数据
1.Excel编制,按照产出项,投入项,(要素价格)排列 2.将Excel工作表→ "另存新档" 3.档案名称为"数字或英文字母" 4.档案类型为"格式化文字(空白分隔)" →防止格 式走调.. 5.再按"储存" →储存位置须在"DEAP资料夹"中 6.储存后,副档名为.prn,再以笔记本旳另存新档方 式,将副档名改为.dta.
每一个DMU都有相应旳效率评价指数
n
hj
uT y j vT x j
ur yrj
r 1 m
vi xij
,
j 1, 2,
,t
i 1
x j (x1 j , , xmj )T , y j ( y1 j , , ynj )T , j 1, 2, , t
其中
可以适本地h选j 取1权, j系 数1, 2和, ,,使t 其满足:
数据包络分析(即DEA)能够看作是一种统计分析旳 新措施,它是根据一组有关输入-输出旳观察值来 估计有效生产前沿面旳。在有效性旳评价方面,除 了DEA措施以外,还有其他旳某些措施,但是那些 措施几乎仅限于单输出旳情况。相比之下,DEA措 施处理多输入,尤其是多输出旳问题旳能力是具有 绝对优势旳。而且,DEA措施不但能够用线性规划 来判断决策单元相应旳点是否位于有效生产前沿面 上,同步又可取得许多有用旳管理信息。所以,它 比其他旳某些措施(涉及采用统计旳措施)优越, 用处也更广泛。
数据包络分析DEA教程(全)
DEA的起源与发展
金融投资
在金融投资领域,DEA用于评估投资组合的相对效率,为投资者提供决策依据。
环境保护
在环境保护领域,DEA用于评估企业的环保投入与产出的相对效率,促进企业绿色发展。
公共部门
DEA也被广泛应用于公共部门,如政府机构、学校、医院等,用于评估其资源利用效率和改进方向。
运营管理
DEA被广泛应用于运营管理领域,用于评估企业的生产效率、资源配置效率和流程改进等方面。
02
随着DEA的应用范围不断扩大,许多学者对DEA模型进行了改进和发展。例如,Banker、Charnes和Cooper提出的BCC模型,解决了CCR模型中固定规模报酬假设的问题。
03
此外,DEA还与其他方法结合,如Malmquist指数、超效率DEA、方向距离函数等,进一步扩展了DEA的应用领域和评估准确性。
除了比率法和角度法,DEA有效性判定还可以采用其他方法,如SBM模型、全局DEA模型等。
03
CHAPTER
DEA的优化与改进
考虑了不同决策单元(DMU)在不同规模下的效率变化,能够更准确地评估DMU的效率。
总结词
规模报酬可变的DEA模型假设生产过程中可能存在规模效应,即随着生产规模的扩大,生产效率可能会提高。该模型通过调整权重来考虑不同规模下的效率变化,从而更准确地评估DMU的效率。
DEA的应用领域
02
CHAPTER
DEA基本模型
CCR模型
CCR模型(Charnes, Cooper和Rhodes模型)是最早提出的数据包络分析模型,用于评估决策单元(DMU)的相对效率。
02
CCR模型假设所有DMU都具有相同的输入和输出指标,并且规模报酬不变。
DEA数据包络分析
DEA数据包络分析DEA(Data Envelope Analysis,数据包络分析)是一种评价单位效率的方法,它被广泛应用于众多行业和领域,如金融、医疗、教育等。
在本文中,将介绍DEA的基本原理、方法以及在实际应用中的一些案例。
DEA的基本原理是利用线性规划技术对各个单位的输入(如资源、能源、资金等)与输出(如产量、业绩、效益等)进行量化分析,以评估单位的效率水平。
在DEA中,每个单位被视为一个包络面,即有效生产边界,所有单位的输入-输出数据点都必须在这个包络面内。
DEA的目标是找到这个包络面的最优解,即最佳效率分数。
DEA的方法基于两个基本假设:1.充分利用资源:认为每个单位的输入产出是有潜力的,单位之间的差异是由于资源利用的差异。
2.基于比较:通过对单位之间的相对效率进行比较,而不是对绝对效率进行评估。
DEA的具体方法可以分为两种模型:CCR(Charnes-Cooper-Rhodes)模型和BCC(Banker-Charnes-Cooper)模型。
CCR模型是DEA的最早方法之一,它通过构建线性规划模型来获取单位的相对有效性评分。
CCR模型基于一种输入型产出型的假设,即单位的输入与产出之间存在着正比关系。
这种假设下,CCR模型能够计算出所有单位的相对效率得分,并将其分为两个部分:技术效率和规模效率。
技术效率涵盖了单位在给定资源水平上的最优化,而规模效率衡量了单位是否在最优规模下运营。
与CCR模型不同,BCC模型允许在输入和输出之间存在不完全正比的关系,因此它更适用于一些非线性问题。
BCC模型通过使用相同的线性规划方法来计算单位的相对有效性得分,但它将生成更多的约束条件,以刻画输入和输出之间的非线性关系。
DEA在实际应用中有许多成功的案例。
以金融行业为例,银行可以使用DEA来评估自身的效率和竞争力,并找到进一步改进的空间。
在医疗领域,DEA可以帮助评估医院、诊所等单位的效率,并找出提高医疗资源利用率的方法。
DEA数据包络分析
即有:
n
∑j=1j yrj ≥ yrj0
(r = 1,2,…,s)
n
∑j=1j xij ≤ E xij0
n
∑j=1j = 1
,j ≥0
(i = 1,2,…,m,E<1)
(j = 1,2,…,n)
11/29/20这23阐明 j0 决策单元不处于生产前沿面上。
15
基于上述事实,能够写出如下线性规划旳数学模型:
每个决策单元有相同旳 m 项投入(输入)(i = 1,2,…,m )
每个决策单元有相同旳 s 项产出(输出) (r = 1,2,…,s )
Xij ——第 j 决策单元旳第 i 项投入 yrj ——第 j 决策单元旳第 r 项产出 衡量第 j0 决策单元是否DEA有效
11/29/2023
8
决策单元
投1 入2 项… 目m
用,但是DEA措施显得更有效.
11/29/2023
6
数据包络分析(DEA)模型简介
• DEA是使用数学规划(涉及线性规划、多目旳规划、 具有锥形构造旳广义最优化、半无限规划、随机规划 等)模型,评价具有多种输入、尤其是多种输出旳 “部门”或“单位”(称为“决策单元”,简记DMU) 间旳相对有效性(称为DEA有效)。
• 因而,需采用一种全新旳措施进行绩效比较。这种措施就 是二十世纪七十年代末产生旳数据包络分析(DEA)。 DEA措施处理多输入,尤其是多输出旳问题旳能力是具有 绝对优势旳。
11/29/2023
3
数据包络分析(DEA)源起
1978年,著名运筹学家、美国德克萨斯大学教授 A.Charnes及W.W.Cooper和E.Rhodes刊登了一篇主要论 文:“Measuring the efficiency of decision making units”(决策单元旳有效性度量),刊登在权威旳“欧洲 运筹学杂志”上。正式提出了运筹学旳一种新领域:数据 包络分析,其模型简称 C2R 模型。该模型用以评价部门间 旳相对有效性(所以被称为DEA有效)。
数据包络分析法DEA模型
数据包络分析法DEA模型数据包络分析法(Data Envelopment Analysis,DEA)是一种用来评估相对效率的技术,可以帮助决策者评价各个决策单元(DecisionMaking Unit,DMU)的相对效率水平。
DEA模型以线性规划为基础,通过构建虚拟标杆来评估各个DMU的相对效率。
DEA模型的核心思想是利用多个输入与输出指标来评估各个DMU的效率,同时考虑到各个DMU之间的相互关联。
具体来说,DEA模型通过将每个DMU的输入与输出指标与其他DMU进行比较,建立最优化模型,并基于最优化解来评估各个DMU的相对效率。
这种相对效率评估的方法可以避免了传统的相对效率评估方法中需要事先设定权重的问题。
DEA模型的基本步骤如下:1.确定输入与输出指标:首先需要明确评估的DMU的输入与输出指标。
输入指标代表着DMU在生产过程中所投入的资源,而输出指标代表着DMU在生产过程中所实现的结果。
2. 构建基本的DEA模型:根据所选定的指标,可以使用线性规划模型构建DEA模型。
DEA模型可以有不同的变体,如CCR模型(Charnes, Cooper, & Rhodes, 1978)或BCC模型(Banker, Charnes & Cooper, 1984)。
CCR模型假设各个输入与输出指标之间存在恒定的比例关系,而BCC模型则放宽了这一假设。
3.计算DMU的相对效率:通过求解DEA模型,可以得到各个DMU的相对效率得分。
相对效率得分表示DMU的输出相对于其输入的效率水平。
相对效率得分一般介于0和1之间,接近1表示DMU的效率较高,接近0表示DMU的效率较低。
4. 评估相对效率得分的稳定性:为了评估相对效率得分的稳定性,可以通过引入Bootstrap方法,通过重新抽样来计算得到效率得分的方差。
DEA模型的优势在于它可以将各个DMU的相对效率进行直接的比较,而不需要设定权重或者建立其中一种理论模型。
数据包络分析(DEA)
3
未来展望
随着大数据和人工智能技术的不断发展,DEA将 与这些技术结合,进一步提高评估效率和准确性。
02 DEA的基本原理
线性规划模型
线性规划模型是数据包络分析 (DEA)的基础,用于描述决策 单元(DMU)在多输入和多输出
条件下的最优配置。
DEA模型通过构建输入和输 出的权重,使得决策单元的 效率最大化,同时满足一系
列约束条件。
线性规划模型能够处理多输入 和多输出的情况,并且可以比 较不同决策单元之间的效率水
平。
决策单元与输入/输出指标
01 02 03 04
决策单元(DMU)是DEA分析的基本单位,通常代表一个组织、企业或 项目。
输入指标反映决策单元在生产过程中所投入的资源,如人力、物力、 财力等。
输出指标反映决策单元在生产过程中的产出或效益,如产量、销售额 、利润等。
决策单元的数量
无法处理多阶段或多过程生产
DEA方法的准确性在很大程度上取决于决策 单元(DMU)的数量,过少可能导致结果不 准确。
DEA方法主要适用于单阶段或多阶段生产 系统,对于多过程生产系统可能无法准确 评估。
DEA的未来发展方向
考虑不确定性
将不确定性因素纳入DEA模型中,以 提高评估的稳健性和准确性。
政策制定
政府可以利用DEA评估公共部门的效率,制定更有效的政策,优化 公共资源的配置。
DEA的历史与发展
1 2
起源
DEA由美国著名运筹学家Charnes和Cooper等 人于1978年提出,最初用于评估公共部门和营 利组织的效率。
发展
随着DEA理论的不断完善和应用领域的拓展, DEA逐渐被用于金融、医疗、教育等更多领域。
04 DEA的应用案例
DEA数据包络分析法
DEA数据包络分析法数据包络分析法(Data Envelopment Analysis, DEA)是一种管理分析方法,用于评估相对效率和有效性,特别是在多个输入和输出变量之间存在复杂的相互依赖性的情况下。
DEA可以应用于各种不同类型的组织和行业,包括生产企业、公共部门机构和非盈利组织等。
数据包络分析法最早由Charnes、Cooper和Rhodes等人于1978年提出,其核心原理是利用线性规划方法构建一系列包络曲线,衡量各组织单位的相对效率水平。
在DEA方法中,每个单位被视为一个决策单元,其输入和输出变量被用来衡量其绩效和效率。
DEA的主要优势之一是可以处理多个输入和输出变量之间的复杂关系。
在传统的效率评估方法中,通常只考虑一个输入和一个输出变量,而DEA可以同时评估多个输入和输出变量之间的相互关系。
这使得DEA在实际应用中更加灵活和适用。
DEA方法的基本思想是将各决策单元的输入和输出变量通过线性规划模型转化为相对效率值。
在这个模型中,每个决策单元被认为是一个能够最大化输出而最小化输入的理想决策单元。
DEA分析的目标是找到可以最大程度地逼近这个理想决策单元的决策单元。
在DEA方法中,有两种基本的模型类型:CCR模型(Charnes,Cooper and Rhodes Model)和BCC模型(Banker, Charnes and Cooper Model)。
CCR模型假定所有决策单元都处于可变规模生产状态,而BCC模型则假定决策单元的规模是固定的。
这两个模型都可以通过线性规划方法求解,得到每个决策单元的相对效率值和对应的最优权重。
DEA方法的应用范围广泛。
例如,在生产企业中,DEA可以评估不同生产单元的生产效率,并确定可能的改进措施。
在公共部门和非盈利组织中,DEA可以评估不同单位的服务效率,并帮助优化资源配置。
此外,DEA方法还可以用于研究和比较不同国家、地区或行业的效率水平。
然而,DEA方法也存在一些限制。
数据包络分析法(DEA)概述
数据包络分析法(DEA)概述数据包络分析法(Data Envelopment Analysis,DEA)是一种用于评估决策单元(Decision Making Units,DMU)相对效率的数学方法。
它是由Charnes、Cooper和Rhodes于1978年提出的。
DEA的基本思想是通过比较各个DMU在多个输入和输出指标上的相对效率,找出相对有效的DMU,并为相对无效的DMU提供改进方案。
DEA的核心概念是效率。
在DEA中,效率是指在给定的输入条件下,一个DMU所能产生的最大输出。
如果一个DMU的产出等于其他DMU的产出,并且它的输入小于等于其他DMU的输入,则该DMU被认为是有效的。
而如果一个DMU的产出小于其他DMU的产出,并且它的输入等于其他DMU的输入,则该DMU被认为是无效的。
DEA的基本步骤包括建立评估模型、选择评估指标、确定权重、计算相对效率和最优化模型等。
首先,建立评估模型。
评估模型是一个线性规划模型,用于描述DMU的输入和输出之间的关系。
在建立模型时,需要确定输入和输出指标,并通过数学公式将DMU的输入和输出指标与权重进行关联。
接下来,选择评估指标。
评估指标是用来衡量DMU在各个方面的效率的指标。
它可以包括经济指标、财务指标、生产指标等。
选择评估指标时,需要考虑指标的可衡量性、可比性和权重的确定性。
然后,确定权重。
权重是用来衡量每个指标对DMU效率的贡献程度的系数。
在确定权重时,可以使用各种方法,如线性规划、Data Phillips 法、构造权重法等。
计算相对效率是DEA的核心内容之一、相对效率是通过比较每个DMU在评估指标上的绝对效率来计算的。
相对效率的计算是通过将一个DMU与其他DMU进行比较,得出一个相对效率的值。
最后,构建最优化模型。
最优化模型是通过将所有相对有效的DMU组成一个集合,并使用线性规划等方法,为相对无效的DMU提供改进方案。
DEA的优点在于它能够同时考虑多个输入和输出指标,能够在相对有效和相对无效的DMU间做出准确的区分,并且不需要预先设定权重。
数据包络分析DEA
数据包络分析DEA数据包络分析(Data Envelopment Analysis, DEA)是一种非参数的效率评价方法,用于评估一个单位(如公司、机构等)在多个输入和输出指标下的相对效率。
它是由美国经济学家Sherman和Charnes在1978年提出的,并在过去几十年里得到了广泛应用和发展。
DEA方法的基本思想是将各个单位看作是一个生产或投入过程,将输入和输出分别表示为向量,通过构建一个包络面来评估单位的效率。
包络面是一个用于衡量相对效率的边界,单位在包络面内表示其相对有效,而在包络面上或外表示其相对无效。
DEA方法的核心是建立一个线性规划模型,即包络模型。
在该模型中,首先要定义各个单位的输入和输出指标,并建立它们之间的关系。
然后,利用线性规划方法计算单位的相对效率和最优权重,得出单位的有效性评估结果。
DEA方法具有以下几个特点:1.非参数性:相比于传统的参数模型,DEA方法不需要提前对模型的具体函数形式进行假设,也不需要预设任何关于生产函数或投入产出关系的具体形式,因此更加灵活和适应不同情况下的评估需求。
2.相对效率评价:DEA方法不仅可以评估单位的绝对效率水平,还可以比较不同单位之间的相对效率差距。
通过对有效单位的分析,可以为相对无效单位提供参考和改进方向,从而提高整体效率。
3.多输入输出:DEA方法可以同时考虑多个输入和输出指标,充分利用了多指标评估的信息,更加全面地揭示了单位的效率。
4.联合效率评价:DEA方法可以对多个相关单位进行联合评估,比如对多个子公司或分支机构进行整体效率评估。
这有利于掌握单位间的协同效应和资源配置效果,并提出相应的管理建议。
DEA方法的应用范围非常广泛,几乎涵盖了所有需要评估效率的领域。
在商业领域,DEA方法可以用于评估公司的生产效率、经营绩效等;在金融领域,它可以用于评估银行或证券公司的投入产出效率、风险管理效能等;在公共管理领域,DEA方法可以应用于衡量政府部门或公共服务机构的效率,如医院、学校等。
数据包络分析DEA教程
数据包络分析DEA教程一、DEA的基本原理1.效率评价问题效率评价问题通常涉及多个输入与输出指标,要评估一些单位的综合效率。
DEA提供一种比较的视角,将待评估的单位看作是生产(或转换)效率的多个前沿,通过比较这些前沿的相对效率来评估各单位的效率水平。
2.DEA的基本思想DEA的基本思想是将多个输入与输出指标封装为数据包络,将待评估的单位与其他单位进行比较,通过比较单位投入产出之间的相对差异来评估其效率水平,找到最优前沿。
二、DEA模型1.输入型DEA模型输入型DEA模型根据单位投入的数量来评估其产出水平。
其基本形式为:Maximize θSubject to∑(sij*yj) - θ∑(rij*xj) ≤ 0∑(sij*yj) - θ∑(ri'j*xj) ≤ 0sij ≥ 0, θ ≥ 0其中,θ表示单位的效率水平,sij表示单位i对j的投入产出比例,xj表示单位j的投入数量,yj表示单位j的产出数量,rij表示单位i对j的投入产出比例。
2.输出型DEA模型输出型DEA模型根据单位产出的数量来评估其投入水平。
其基本形式为:Minimize φSubject to∑(rij*xj) - φ∑(sij*yj) ≤ 0∑(ri'j*xj) - φ∑(sij*yj) ≤ 0rij ≥ 0, φ ≥ 0其中,φ表示单位的效率水平,rij表示单位i对j的投入产出比例。
三、DEA计算方法1.线性规划法(LP)线性规划法是计算DEA模型的一种常用方法,通过构建线性规划模型来求解最优解。
该方法的主要步骤包括构建线性规划模型、求解模型和解析结果。
2.消除负数法(ENH)消除负数法是一种计算DEA模型的简化方法,通过解决线性规划模型中存在的负数问题来求解最优解。
该方法的主要步骤包括构建线性规划模型、消除负数、再次求解和解析结果。
四、DEA的应用领域1.产业评估DEA可以用于评估不同行业或不同地区的产业绩效,帮助决策者了解各个行业或地区的生产效率,找到低效单位并提出改进措施。
数据包络分析法(DEA模型)
一、 数据包络分析法数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具手段.这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。
衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。
但当被衡量的同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值.例如,大部分机构的运营单位有多种投入要素,如员工规模、工资数目、运作时间和广告投入,同时也有多种产出要素,如利润、市场份额和成长率。
在这些情况下,很难让经理或董事会知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低。
1。
1数据包络分析法的主要思想一个经济系统或者一个生产过程可以看成一个单元在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。
虽然这些活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。
由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单元被称为“决策单元”(Decision Making Units,DMU )。
可以认为每个DMU 都代表一定的经济含义,它的基本特点是具有一定的输入和输出,并且在将输入转换成输出的过程中,努力实现自身的决策目标.1。
2数据包络分析法的基本模型我们主要介绍DEA 中最基本的一个模型——2C R 模型。
设有n 个决策单元( j = 1,2,…,n ),每个决策单元有相同的 m 项投入(输入),输入向量为()120,1,2,,,,,Tjjjmjj nx xxx=>=每个决策单元有相同的 s 项产出(输出),输出向量为()120,1,2,,,,,Tjjjsjj nyy y y=>=即每个决策单元有m 种类型的“输入”及s 种类型的“输出”。
(完整版)数据包络分析法DEA总结
DEA(Data Envelopment Analysis)数据包络分析目录一、DEA的起源与发展(参考网络等相关文献) (2)二、基本概念 (2)1.决策单元(Decision Making Unit,DMU) (2)2.生产可能集(Production Possibility Set,PPS) (3)3.生产前沿面(Production Frontier) (3)4.效率(Efficiency) (4)三、模型 (5)R模型 (5)2.BBC模型 (5)3.FG模型 (5)4.ST模型 (5)5.加性模型(additive model,简称ADD) (5)6.基于松弛变量的模型(Slacks-based Measure,简称SBM) (5)7.其他模型 (5)四、指标选取 (6)五、DEA的步骤(参考于网络) (6)六、优缺点(参考一篇博客) (7)七、非期望产出 (7)1.非期望产出的处理方法: (8)2.非期望产出的性质: (8)八、DEA几个注意点 (9)九、DEA相关文献的总结 (9)1.能源环境效率 (9)2.碳减排与经济增长 (10)3.关于工业、制造业、产业的DEA (10)4.关于企业的DEA (11)5.其他 (12)一、DEA的起源与发展(参考网络等相关文献)数据包络分析(DEA)是一种常用的效率评估的方法,用以评价一组具有多个投入、多个产出的决策单元(Decision Making Units,DMUs)之间的相对效率。
1978年,A.Chames(查恩斯),W.Cooper(库伯)和E.Rhodes(罗兹)提出了第一个DEA模型,这个模型被命名为CCR模型。
该模型在评价多投入多产出DMU的规模有效性和技术有效性方面十分有效。
1985年,A.Chames,W.Cooper,B.Golany(格拉尼),L.Seiford(赛福德)和J.Stutz(斯图茨)给出另一个模型,称为C2GS2模型,这一模型用来研究生产部门间的“技术有效性”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相对有效性评价问题举例
例4:银行分理处相对有效性评价 振华银行的 4 个分理处的投入产出如下表。求各个分理处的 运行是否DEA有效。 (产出单位:处理笔数/月) 分理处 投入
职员数 营业面积(m2) 储蓄存取
产出
贷款 中间业务
分理处1 分理处2 分理处3 分理处4
15 20 21 20
140 130 120 135
2018/8/8 3
数据包络分析(DEA)源起
1978年,著名运筹学家、美国德克萨斯大学教授 A.Charnes及W.W.Cooper和E.Rhodes发表了一篇重要论 文:“Measuring the efficiency of decision making units”(决策单元的有效性度量),刊登在权威的“欧洲 运筹学杂志”上。正式提出了运筹学的一个新领域:数据 包络分析,其模型简称 C2R 模型。该模型用以评价部门间 的相对有效性(因此被称为DEA有效)。
∑j yrj ≥ yrj0
j=1
(r = 1,2,…,s)
∑j xij ≤ E xij0
j=1
n
(i = 1,2,…,m,E<1) (j = 1,2,…,n)
∑j = 1 ,j ≥0
j=1
n
这说明 j0 决策单元不处于生产前沿面上。
基于上述事实,可以写出如下线性规划的数学模型:
min E
∑j yrj ≥ yrj0
DEA有效性的判断
• 对具有非阿基米德无穷小量的C2R对偶输入模 型,可以根据以下规则判断DEA有效性: • 若θ<1,则DMUj0不为弱DEA有效; ^T • 若θ=1, e S eT S 0 则DMUj0仅为弱DEA 有效; ^T • 若θ=1, e S eT S 0 则DMUj0为DEA有效;
1 2 23 4 s1 1
1 , 2 , 3 , 4, s1 , s2 , s1 0
2018/8/8
19
• 最优解为
(1,0,0,0)
0
T
s
0 1 0
s
0 2
s
0 1
0
1
• 所以,DMU1为DEA有效。
2018/8/8 20
25
相对有效性评价问题举例
例2:硕士点教育质量评价 某系统工程研究所对我国金属热处理专业的26个硕士 点的教育质量,进行了有效性评价。 评价采用的指标体系为: 输入:导师人数;实验设备;图书资料;学生入学情 况。 输出:科研成果;论文篇数;学生毕业时的情况。
相对有效性评价问题举例
例3:行风(行业作风)建设有效性评价 本项目研究人员选定江苏省 S 市交通客运系统作为对象,包括7家 交通客运汽车公司。 选定了输入指标 4 项,输出指标 4 项。分别是: 输入指标:1、年末职工总数(单位:人); 2、单位成本(单位:元/千人公里); 3、燃料单位消耗(单位:升/千人公里); 4、行车责任事故率(单位:次/千人公里)。 输出指标:1、劳动生产率(单位:元/人); 2、行车准点率(%); 3、群众满意率(按问卷调查)(%) 4、车辆服务合格率(包括:服务态度、服务措施、车辆设施 等)(%)
• Input-DEA 模型:基于投入的技术效率,即在 一定产出下,以最小投入与实际投入之比来估 计。或者说,决策者追求的倾向是输入的减少, 即求θ的最小。 • Output-DEA 模型:基于产出的技术效率,即 在一定的投入组合下,以实际产出与最大产出 之比来估计。或者说,决策者追求的倾向是输 出的增大,即求z的最大。
2018/8/8 6
数据包络分析(DEA)模型简介
• DEA是使用数学规划(包括线性规划、多目标规划、 具有锥形结构的广义最优化、半无限规划、随机规划 等)模型,评价具有多个输入、特别是多个输出的 “部门”或“单位”(称为“决策单元”,简记DMU) 间的相对有效性(称为DEA有效)。 • 实际上“效率”或“相对有效性”的概念也是指产出 与投入之比,不过是加权意义之下的产出投入比。 • 根据对各DMU观察的数据判断DMU是否为DEA有效, 本质上是判断DMU是否位于可能集的“生产前沿面” 上。
数据包络分析概述
• 但当被衡量的同类型组织有多项投入和多项产出,且不能 折算成统一单位时,就无法算出投入产出比的数值。例如, 大部分机构的运营单位有多种投入要素,如员工规模、工 资数目、运作时间和广告投入,同时也有多种产出要素, 如利润、市场份额和成长率。在这些情况下,很难让经理 或董事会知道,当输入量转换为输出量时,哪个运营单位 效率高,哪个单位效率低。 • 因而,需采用一种全新的方法进行绩效比较。这种方法就 是二十世纪七十年代末产生的数据包络分析(DEA)。 DEA方法处理多输入,特别是多输出的问题的能力是具有 绝对优势的。
2018/8/8 22
生产前沿面
• 生产前沿面实际上是指由观察到的决策 单元的输入数据和输出数据的包络面的 有效部分,这也是称谓“数据包络分析” 的原因所在。 • 决策单元为DEA有效,也即相应于生产 可能集而言,以投入最小、产出最大为 目标的Pareto最优。因此,生产前沿面即 为Pareto面(Pareto最优点构成的面)。
DEA模型是直接使用输入、输出数据建立非参数的经济数学模型。
数据包络分析应用现状
• DEA的优点吸引了众多的应用者,应用范围已扩 展到美国军用飞机的飞行、基地维修与保养,以 及陆军征兵、城市、银行等方面.目前,这一方 法应用的领域正在不断地扩大。它也可以用来研 究多种方案之间的相对有效性(例如投资项目评 价);研究在做决策之前去预测一旦做出决策后 它的相对效果如何(例如建立新厂后,新厂相对 于已有的一些工厂是否为有效)。DEA模型甚至可 以用来进行政策评价。
数据包络分析(DEA)
数据包络分析概述
• 数据包络分析是线性规划模型的应用之一,常被用来衡量 拥有相同目标的运营单位的相对效率。 • 数据包络分析是一种基于线性规划的用于评价同类型组织 (或项目)工作绩效相对有效性的特殊工具手段。这类组织 例如学校、医院、银行的分支机构、超市的各个营业部等, 各自具有相同(或相近)的投入和相同的产出。衡量这类组 织之间的绩效高低,通常采用投入产出比这个指标,当各自 的投入产出均可折算成同一单位计量时,容易计算出各自的 投入产出比并按其大小进行绩效排序。
2018/8/8 10
C2R模型
max s.t u Y0 T v X0 u Y0 1, j 1, , n, T v X0 u 0, v 0
2018/8/8 11
T
T
C2R的对偶输入模型模型
min s.t
X
j 1 n j 1 j
n
j
j X 0 ,
j
Y
Y0 ,
决策单元 投 入 项 目
1 2 … m
1
X11 X21 … Xm1
2
X12 X22 … Xm2
…
… … … …
n
X1n X2n … Xmn
1
y11 y21 … ys1
2
y12 y22 … ys2
…
… … … …
n
y1n y2n … ysn
决策单元
1 2 … s
产 出 项 目
输入型与输出型的DEA模型
1 1 2 1 3 2 3 1 3 3 3 4 4 2 1
1
1
2
1
2018/8/8
18
考察DMU1,取ε=10-5
min
[ ( s1 s2 s1 )]
s.t 1 32 33 44 s1
31 2 33 24 s2 3
1800 1000 800 900
200 350 450 420
1600 1000 1300 1500
例4:银行分理处相对有效性评价
min s.t [ (e S eT S )]
^T n
X
j 1 n j 1
j
j S X 0 ,
Y S Y0 , j j
j 0, j 1, , n
S 0, S 0
2018/8/8 17
• 例1:考虑具有4个决策单元,2个输入和 1个输出,相应的输入数据和输出数据由 下表给出:
min s.t
X
j 1 n
n
j
j X 0 ,
Y
j 1 n
j
j Y0 ,
1
j 1
2018/8/8
j
j 0, j 1, , n
14
构建DEA 模型的思路
衡量某一决策单元 j0是否DEA有效——是否处于由包 络线组成的生产前沿面上,先构造一个由 n 个决策单元组 成(线性组合成)的假想决策单元。如果该假想单元的各 项产出均不低于 j0 决策单元的各项产出,它的各项投入均 低于 j0 决策单元的各项的各项投入。 即有: n
2018/8/8
5
数据包络分析应用现状
• 最引人注目的研究是把DEA与其它评价方法进行比较。 例如将DEA应用于北卡罗来纳州各医院的有效性评价。 已有的按计量经济学方式给出的回归生产函数认为, 此例中不存在规模收益。DEA的研究发现,尽管使用 同样的数据,回归生产函数不能象DEA那样正确测定 规模收益.其关键在于: • DEA和回归方法虽然都使用给定的同样数据,但使用 方式不一样; • DEA致力于每个单个医院的优化,而不是对整个集合 的统计回归优化。 • 在其它的研究中,例如在评价医院经营有效性时,将 DEA与马萨诸塞州有效性评定委员会使用的比例方法 进行了比较,当使用模拟方法对DEA进行检验后认为, 尽管由回归函数产生的数据有利于回归方法的使用, 但是DEA方法显得更有效.
2018/8/8 23