数据包络分析法DEA概述.doc

合集下载

数据包络分析法概述

数据包络分析法概述

数据包络分析法概述数据包络分析法(Data Envelopment Analysis, DEA)是一种评价相对效率的方法,可以对多个输入与输出指标进行综合评估,通常用于评估单位、企业或组织的效率水平。

DEA被广泛应用于经济学、管理学、行政学、工程管理等多个领域。

DEA最早由Cooper、Seiford和Tone于1978年提出,旨在评估多个决策单元的效率水平,即根据输入与输出的关系,评估每个决策单元的相对效率水平。

其核心思想是寻找一种有效的方式,将一个Efficiency Score(相对效率评分)赋予每个决策单元。

在数据包络分析中,输入和输出指标是关键要素。

输入指标是指用于在决策过程中消耗的资源,而输出指标是指预期的产出或结果。

一般来说,输入越小,输出越大,效率就越高。

DEA的基本步骤如下:1.确定输入和输出指标:首先,需要明确评估对象和评估的不同方面。

然后,根据评估目的和数据可用性,选择适当的输入和输出指标,并确保它们能够真实、准确地反映决策单元的效能。

2. 构建评估模型:根据选择的输入和输出指标,建立数据包络模型。

最常见的模型是CCR模型(Charnes-Cooper-Rhodes model)和BCC模型(Banker-Charnes-Cooper model),它们都使用线性规划的方法来测量相对效率。

3.优化决策单元的效率得分:通过求解线性规划的问题,确定每个决策单元的效率得分。

这个得分表明相对于其他决策单元,一个决策单元在给定的输入与输出下的效率水平。

4.空间解释和内部效率分析:通过解释得分和计算效率间隔,可以评估决策单元与最有效率单元之间的差距。

这可以帮助分析员确定决策单元的潜力和优化方向。

5.敏感性分析和改进建议:DEA方法提供了适应性较强的结果,可以在受到噪声和误差的影响下进行灵活的判断。

敏感性分析可以测试结果对参数变化的敏感性,并提供改进建议。

DEA的优势在于可以综合考虑多个输入输出之间的关系,并且不需要关于效用函数或生产函数的任何假设。

数据包络分析法(DEA模型)

数据包络分析法(DEA模型)

一、 数据包络分析法数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具手段。

这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。

衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。

但当被衡量的同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值。

例如,大部分机构的运营单位有多种投入要素,如员工规模、工资数目、运作时间和广告投入,同时也有多种产出要素,如利润、市场份额和成长率。

在这些情况下,很难让经理或董事会知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低。

1.1数据包络分析法的主要思想一个经济系统或者一个生产过程可以看成一个单元在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。

虽然这些活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。

由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单元被称为“决策单元”(Decision Making Units ,DMU )。

可以认为每个DMU 都代表一定的经济含义,它的基本特点是具有一定的输入和输出,并且在将输入转换成输出的过程中,努力实现自身的决策目标。

1.2数据包络分析法的基本模型我们主要介绍DEA 中最基本的一个模型——2C R 模型。

设有n 个决策单元( j = 1,2,…,n ),每个决策单元有相同的 m 项投入(输入),输入向量为()120,1,2,,,,,Tjjj mjj nx xxx=>=每个决策单元有相同的 s 项产出(输出),输出向量为()120,1,2,,,,,Tjjjsjj nyy y y=>=即每个决策单元有m 种类型的“输入”及s 种类型的“输出”。

DEA数据包络分析法

DEA数据包络分析法

DEA数据包络分析法DEA数据包络分析法(Data Envelopment Analysis,DEA)是一种用于评估组织或单位绩效的方法。

它是一种非参数的效率评价方法,不需要任何先验假设或函数形式的假设。

DEA通过比较多个输入和输出变量来确定一个单位的相对效率,即单位在给定的资源限制下能够产生的最佳输出水平。

DEA方法可以用来评估各种类型的单位,包括公司、医院、学校等。

DEA方法的基本思想是将单位的输入和输出量转化为数值来进行比较。

每个单位可以被看作是一个生产过程,输入变量是生产这个过程所需要的资源,输出变量是生产过程所产生的结果。

DEA方法可以帮助管理者找到哪些单位在利用资源方面效率最高,哪些单位在利用资源方面存在浪费,从而指导管理者进行资源配置和决策。

DEA方法的核心是构建生产可能性集(Production Possibility Set,PPS)。

PPS是指所有可能的输入和输出组合,构成一个封闭的边界,这个封闭的边界被称为数据包络(Data Envelopment)。

在这个边界上的单位都被认为是有效率的,而在这个边界内的单位被认为是无效率的。

DEA方法有很多优点。

首先,DEA方法不需要事先制定有效率的标准,而是通过比较各个单位之间的相对效率来确定哪些单位是最有效率的。

这样避免了主观性带来的偏差。

其次,DEA方法可以同时考虑多个输入和输出变量,考虑了生产中的多维度特性。

第三,DEA方法可以识别出生产过程中的浪费,帮助管理者改进资源配置和管理方式。

DEA方法也存在一些局限性。

首先,DEA方法只能提供相对效率的评价结果,而不是绝对效率。

这意味着DEA方法无法提供单位具体的效率水平,只能比较单位之间的相对效率。

其次,DEA方法对输入输出数据的准确性要求很高,数据的质量直接影响了评价结果的准确性。

第三,DEA方法对于数据包络的选择比较敏感,不同的数据包络选择可能导致不同的评价结果。

在实际应用中,DEA方法广泛应用于各种类型的单位绩效评估。

数据包络分析法(DEA)概述

数据包络分析法(DEA)概述

数据包络分析法(DEA)概述(1)数据包络分析法(DEA)概述数据包络分析(Data Envelopment Ana lysis,简称D EA)方法是运用数学工具评价经济系统生产前沿面有效性的非参数方法,它适应用于多投入多产出的多目标决策单元的绩效评价。

这种方法以相对效率为基础,根据多指标投入与多指标产出对相同类型的决策单元进行相对有效性评价。

应用该方法进行绩效评价的另一个特点是,它不需要以参数形式规定生产前沿函数,并且允许生产前沿函数可以因为单位的不同而不同,不需要弄清楚各个评价决策单元的输入与输出之间的关联方式,只需要最终用极值的方法,以相对效益这个变量作为总体上的衡量标准,以决策单元(DM U)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。

这种方法采用数学规划模型,对所有决策单元的输出都“一视同仁”。

这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。

该方法以经验数据为基础,逻辑上合理,故能够衡量个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度。

最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。

1978年由著名的运筹学家查恩斯(A.Charnes),库伯(W.W.Cooper)和罗兹(E.Rhodes)首先提出数据包络分析(Data Envelopment Analysis,简称DEA)的方法,DEA有效性的评价是对已有决策单元绩效的比较评价,属于相对评价,它常常被用来评价部门间的相对有效性(又称之为DEA有效)。

他们的第一个数学模型被命名为CCR模型,又称为模型。

从生产函数角度看,这一模型是用来研究具有多项输入、特别是具有多项输出的“生产部门”时衡量其“规模有效”和“技术有效”较为方便而且是卓有成效的一种方法和手段。

数据包络分析DEA

数据包络分析DEA

算法优化
并行计算
针对大规模数据的DEA分析,可以采用并行计算技术, 以提高计算效率。通过将数据分成若干个子集,并行计 算可以同时处理多个子集,显著缩短计算时间。
智能优化算法
将智能优化算法应用于DEA模型的求解过程,可以找到 更优的解。例如,遗传算法、粒子群算法等智能优化算 法可以用于求解DEA模型,以获得更准确的分析结果。
05
DEA实践案例
案例一:某制造企业的DEA分析
总结词
提高生产效率
详细描述
某制造企业通过DEA分析,评估了各生产车间的效率 ,找出了瓶颈环节,并针对性地优化了生产流程,提 高了整体生产效率。
案例二:某金融机构的DEA分析
总结词
优化资源配置
详细描述
某金融机构利用DEA分析,对各业务部门进行了效率 评估,根据评估结果调整了资源分配,使得资源能够更 加合理地配置到高效率部门,提高了整体业绩。
数据包络分析(DEA
目 录
• DEA概述 • DEA模型 • DEA的优缺点 • DEA的改进方向 • DEA实践案例
01
DEA概述
DEA定义
总结词
数据包络分析(DEA)是一种非参数的线性规划方法,用于评估一组决策单元(DMU)的相对效率。
详细描述
DEA使用数学规划模型,通过输入和输出数据,对一组决策单元进行相对效率评估。它不需要预先设 定函数形式,能够处理多输入和多输出的情况,并且可以对每个决策单元进行效率评分。
规模收益与技术效率
总结词
规模收益与技术效率是DEA分析中重要的概 念。
详细描述
规模收益指的是随着投入的增加,产出的增 加比例。技术效率则是指在给定投入下,实 际产出与最优产出之间的比率。在DEA分析 中,技术效率可以进一步分解为配置效率和 纯技术效率。

数据包络分析DEA

数据包络分析DEA

数据包络分析DEA数据包络分析(Data Envelopment Analysis,DEA)是一种用来衡量决策单元(decision-making unit,DMU)效率的定量方法。

DEA是由Charnes、Cooper和Rhodes于1978年提出的,该方法主要用于评价相对效率,即将一个或多个输入变量转换为一个或多个输出变量的能力。

它可以在多个指标和多个决策单元之间进行效率比较。

DEA的基本概念是通过线性规划来求解每个决策单元的效率得分。

具体来说,通过找到每个DMU的最佳投入组合和输出组合来计算得分,使得该DMU的得分最大化同时满足其他DMU的得分小于等于1、DEA是一种基于相对效率评估的方法,不需要假设预先设定的效率标准,可以避免传统经验评估方法中存在的主观偏差。

DEA的应用范围非常广泛,包括政府、企业、银行、学校等各个领域。

它可以评估和比较不同DMU之间的相对效率,并为找到效率改进的潜力提供指导。

DEA还可以用于评估决策单元的技术效率和规模效率。

技术效率表示在给定的投入下,决策单元能够获得的最大输出水平。

规模效率反映了决策单元是否在最优规模下运营。

DEA的优点在于它能够考虑多个输入和输出因素,并将各个因素的权重纳入计算中。

它不需要对输入和输出进行单一的加权求和,而是通过优化模型来获得最佳权重。

此外,DEA的计算过程较为简单直观,可以提供DMU的效率得分及其组成部分的详细信息。

这些信息可以帮助决策者确定效率改进的方向,并制定相应的策略。

当然,DEA也有一些限制。

首先,DEA是一种非参数方法,对输入和输出数据的精确度要求较高。

缺乏精确度的数据可能会导致评估结果不准确。

其次,DEA只能评估相对效率,而无法提供绝对效率的标准。

最后,DEA在处理多个输入输出时可能会存在规模失效的问题,即DMU的规模过大或过小时可能导致评估结果偏差。

总的来说,DEA是一种有效的工具,用于评估和比较决策单元的效率。

它可以帮助决策者确定效率改进的方向,并提供有关决策单元效率的详细信息。

DEA数据包络分析

DEA数据包络分析

DEA数据包络分析DEA 数据包络分析(Data Envelopment Analysis)是一种用于评估相对效率的方法,它能够帮助研究人员和决策者评估和比较各种组织或单位之间的绩效。

在许多领域中,如经济学、管理学和运筹学等,DEA 都得到了广泛的应用。

本文将对 DEA 数据包络分析的基本概念、原理以及应用进行介绍,并探讨其在不同领域的应用现状。

DEA数据包络分析是一种基于线性规划的非参数方法,旨在评估相对效率。

其基本思想是将所有的单位或组织看作一个投入产出系统,通过将输入和输出变量转化为规范化的值,从而找到一个最佳的线性组合,即数据包络面。

该数据包络面可以被用来确定所有单位或组织的相对效率水平,即它们的输入产出比相对于最佳线性组合的能力。

DEA数据包络分析的基本原理是寻找一个最佳的参考集合,即有效前沿,以确定单位或组织相对效率的水平。

在DEA中,每个单位或组织都被视为一个节点,它们的输入和输出被视为向量,而有效前沿则是一个凸集,表示所有可能的最佳的输入产出比。

通过比较每个单位或组织相对于有效前沿的距离,可以确定它们的相对效率水平,即这个距离越小,则表示单位或组织的效率越高。

DEA数据包络分析具有许多优点,例如非参数性、能够同时考虑多个输入输出变量、能够考虑内部不均衡等。

这使得DEA成为评估和比较不同单位或组织绩效的理想方法。

在实际应用中,DEA数据包络分析可以用于评估公司的绩效、比较不同行业的效率、确定最佳经营策略等。

在公司绩效评估中,DEA数据包络分析可以帮助管理者确定哪些单位或部门是最有效率的,从而帮助他们制定更好的管理和运营决策。

通过比较相对效率水平,管理者可以找到一些潜在的改进空间,并提出相应的改进措施。

此外,DEA还可以用来评估公司的绩效相对于同行业其他公司的优势和劣势,为公司发展和竞争提供有力依据。

除了公司绩效评估外,DEA数据包络分析还被广泛应用于其他领域。

例如,DEA可以帮助政府评估公共服务的效率、帮助银行评估分行的效率、帮助学校评估教育质量等。

(完整word版)数据包络分析(DEA)方法

(完整word版)数据包络分析(DEA)方法

二、 数据包络分析(DEA )方法数据包络分析(data envelopment analysis, DEA )是由著名运筹学家Charnes, Cooper 和Rhodes 于1978年提出的,它以相对效率概念为基础,以凸分析和线性规划为工具,计算比较具有相同类型的决策单元(Decision making unit ,DMU)之间的相对效率,依此对评价对象做出评价[.DEA 方法一出现,就以其独特的优势而受到众多学者的青睐,现已被应用于各个领域的绩效评价中[2],[3].在介绍DEA 方法的原理之前,先介绍几个基本概念:1。

决策单元一个经济系统或一个生产过程都可以看成是一个单位(或一个部门)在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。

虽然这种活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益"。

由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单位(或部门)被称为决策单元(DMU).因此,可以认为,每个DMU (第i 个DMU 常记作DMU i )都表现出一定的经济意义,它的基本特点是具有一定的投入和产出,并且将投入转化成产出的过程中,努力实现自身的决策目标。

在许多情况下,我们对多个同类型的DMU 更感兴趣。

所谓同类型的DMU ,是指具有以下三个特征的DMU 集合:具有相同的目标和任务;具有相同的外部环境;具有相同的投入和产出指标。

2. 生产可能集设某个DMU 在一项经济(生产)活动中有m 项投入,写成向量形式为1(,,)T m x x x =;产出有s 项,写成向量形式为1(,,)T s y y y =。

于是我们可以用(,)x y 来表示这个DMU 的整个生产活动。

定义1. 称集合{(,)|T x y y x =产出能用投入生产出来}为所有可能的生产活动构成的生产可能集. 在使用DEA 方法时,一般假设生产可能集T 满足下面四条公理: 公理1(平凡公理): (,),1,2,,j j x y T j n ∈=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)数据包络分析法(DEA)概述数据包络分析(Data Envelopment Ana lysis,简称D EA)方法是运用数学工具评价经济系统生产前沿面有效性的非参数方法,它适应用于多投入多产出的多目标决策单元的绩效评价。

这种方法以相对效率为基础,根据多指标投入与多指标产出对相同类型的决策单元进行相对有效性评价。

应用该方法进行绩效评价的另一个特点是,它不需要以参数形式规定生产前沿函数,并且允许生产前沿函数可以因为单位的不同而不同,不需要弄清楚各个评价决策单元的输入与输出之间的关联方式,只需要最终用极值的方法,以相对效益这个变量作为总体上的衡量标准,以决策单元(DM U)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。

这种方法采用数学规划模型,对所有决策单元的输出都“一视同仁”。

这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。

该方法以经验数据为基础,逻辑上合理,故能够衡量个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度。

最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。

1978年由著名的运筹学家查恩斯(A.Charnes),库伯(W.W.Cooper)和罗兹(E.Rhodes)首先提出数据包络分析(Data Envelopment Analysis,简称DEA)的方法,DEA有效性的评价是对已有决策单元绩效的比较评价,属于相对评价,它常常被用来评价部门间的相对有效性(又称之为DEA有效)。

他们的第一个数学模型被命名为CCR模型,又称为模型。

从生产函数角度看,这一模型是用来研究具有多项输入、特别是具有多项输出的“生产部门”时衡量其“规模有效”和“技术有效”较为方便而且是卓有成效的一种方法和手段。

自从该方法提出以来,就广泛应用于各个行业的有效性评价上。

此后,得到不断的完善,并且在实践中的应用也越来越广泛。

例如1984年R.D.Banker, A.Charnes和W.W.Cooper给出了一个被称为BCC的模型,又称之为BC2模型。

另外,于1985年Charnes,Cooper和B.Golany, L.Seiford, J.Stutz给出了另一个模型,称为CCGSS模型,又称之为C2GS2模型,这两个模型是用来研究生产部门之间的“技术有效”相对效率。

下面将介绍这两个优化模型。

( 2 ) 数据包络模型(又称为DEA模型)描述数据包络分析(DEA)由美国著名运筹学家A. Charnes等人在1978年以相对效率概念为基础发展起来的一种新的绩效评价方法。

这种方法是以决策单元(Decision Making Unit,简称DMU)的投入、产出指标的权重系数为变量,借助于数学规划模型将决策单元投影到DEA 生产前沿面上,通过比较决策单元偏离DEA生产前沿面的程度来对被评价决策单元的相对有效性进行综合绩效评价。

其基本思路是:通过对投入产出数据的综合分析,得出每个DMU综合相对效率的数量指标,确定各DMU是否为DEA有效。

下面我们先描述DEA模型。

假设有n个待评价的对象(又称之为n个决策单元DMU ),每个决策单元都有m种类型的投入及s种类型的产出,它们所对应的权重向量分别记为: ,。

这n个决策单元中第j个的投入和产出量用向量分别记作:,,其中:为第j个决策单元对第i种类型输入的投入总量,为第j 个决策单元对第r种类型输出的产出总量,且,;为第i种输入指标的权重系数,为第r种产出指标的权重系数,且,。

则每个决策单元DMU投入与产出比的相对效率评价指数如下:通过适当选取权重向量V和U的值,使对每个j,均满足。

现对某第个决策单元进行绩效评价,则以第个决策单元的效率指数为目标,以所有的待评的决策单元的效率指数为约束,第个决策单元简记为,故可以得到一般的DEA优化模型如下:上面的模型是分式规划规划问题模型,为了方便计算,通过适当的变换,我们可以将其化为一个等价的线性规划数学模型,并且引进阿基米德穷小量(在实数范围内表示的是大于0但小于任意正数的量),构成了具有非阿基米德无穷小量的的模型。

它的对偶线性规划问题模型如下:其中:,,均为对偶变量,m维单位向量,s维单位向量,和均松弛变量,,。

模型是假定生产技术是固定规模报酬的。

后来,Banker,Chames and C ooper又对模型进行推广,他们把固定规模报酬假设改为非递增规模报,则在上述的DEA模型的基础上需增加一个约束条件:。

在此假设下非递增规模报酬时的技术效率为。

如果我们把固定规模报酬假设改为可变规模报酬(variable Returns toScale,简记VRS),则DEA模型中的上述约束条件应改为:。

从而得到的如下新的DEA模型:线性规划模型在可变规模报酬(V RS)条件下求得的相对效率称为纯技术效率,在CRS假设条件下得到的相对效率称为技术效率,又称为总体效率,它是规模效率与纯技术效率的乘积。

因此,可以根据C2R模型(4-3)和V RS模型(4-4)来确定规模效率。

模型(4-3)表明,当第j0个决策单元产出Y0保持不变的情况下,应尽量保证投入量X0按照同一比例减少。

假设上述规划问题模型(4-3)求得最优解为,则有,若,且,则称被评价决策单元相对于其它决策单元而言DEA有效,此时该决策单元既满足技术有效又满足规模有效;若,但不同时等于零向量,则称被评价决策单元为弱DEA有效,这时该被评价的决策单元不是同时技术有效和规模有效,此时需要应用V RS模型(4-4)进一步进行计算;如果,则称此被评价的决策单元为非DEA有效。

值得注意的是,V RS模型(4-4)是在对C2R模型(4-3)计算的基础上进行的分析,用以确定是否为纯技术有效。

由于总体效率表现为规模效率和纯技术效率之积,根据上述的分析并通过模型(4-3)和(4-4)容易求得规模效率值。

另外,对于非DEA有效的决策单元,需要通过进一步的分析讨论并求出被评价的决策单元DMU在DEA相对于有效面上的投影(即新决策单元),则新决策单元相对于原来的决策单元而言是DEA有效的。

设为第j0个决策单元对应于在DEA的相对有效面上的投影,则它们之间的转换关系可以表示为如下公式:根据上述公式(4-5),可以求得各个非DEA有效的决策单元相对于某有效决策而言,在保持其产出量不变的情况下,可以计算出对各项指标的投入量进行相应的的调整量。

并且可以对相应的财务绩效上存在不足的决策单元相对于DEA有效的决策单元而言给出针对性的管理建议。

(3)DEA方法的应用自从数据包络法提出至今,其应用范围日渐广泛。

例如它被广泛应用于学校、医院、铁路、银行等公共服务部门的运行效率的评估实证研究。

DEA作一种新的效率评估方法,与以前的传统方法相比有很多优点。

首先,DEA方法可以用于对具有多投入、多产出的多个决策单元的生产(或经营)绩效性进行评价,而且应用时可以避免像传统方法那样因为各指标量纲的不同而寻求权重因素所带来的诸多困难,其评价结果相对而言比较客观;其次,DEA模型中投入、产出指标的权重可以建立数学规划模型,然后根据实际的数据而产生,而不是事先给定投入与产出的权重权重系数,因此它不受人为主观因素的影响,可避免在权重的分配时评价者的主观意愿对评价结果的造成人为的影响;另外,数据包络法是一种典型的非参数估计方法,应用该方法评价时无须设定评价函数的具体形式,投入产出采用隐函数的形式表示,不同决策单元的评价函数其参数可以变动,针对各个决策单元都将通过数学规划模型的手段给出最优的投入产出函数,从而利用计算简化。

数据包络法评价的是决策单元的相对有效性,其生产前沿面可以看成是最优决策单元的投入与产出所组成的一个包络面,如果对应被评价的决策单元在该生产前面上,则称之为DEA有效,否则,称之为非DEA有效。

DEA方法主要用来研究决策单元的多输入多输出的相对有效的绩效评价的有用方法,因此使用这一方法时也存在一些缺陷。

首先,它衡量的生产函数边界是确定的,因而它无法分随机因素和测量误差的影响;其次,该方法的绩效效率评价容易受到极值的影响,而且决策单元的效率值对投入、产出指标的选择比较敏感,这就使得如何准确地选取投入、产出指标成为有效使用DEA方法的关键;另外,由于被评价的决策单元都是从最有利于自己的角度分别求取权重,这就导致了这些权重随着决策单元的不同而可能不同。

从而使得每个决策单元的特性缺乏有效的可比性;最后,根据DEA评价方法的特点就是只能判断各个决策单元是否DEA有效,而将所有决策单元分为有效和非有效两大类,因而使用该方法进行决策单元的绩效评价时,可能出现大量甚至全部的决策单元为有效的情形,因此传统的DEA方法不能对被评价的决策单元进行排序。

4.3.2主成分分析法(1) 主成分分析法介绍主成分分析法又称之为主分量分析法,它是将多个变量通过线性变换以选出少数个重要变量(或称之为指标)的一种多元统计分析方法。

在实际应用中,它常常是将原来诸多具有一定相关性的指标重新组成一组新的相互无关的综合指标来代替原来众多指标以达到降维的一种方法。

在实际问题的研究中,为了更为全面分析问题,常常提出很多与此有关的指标(或称为变量),因为这些指标都在不同程度上反映这个研究问题的某些信息,然而,应用统计分析方法研究具有多个变量的问题时,变量个数太多往往会增加问题的复杂性。

因此最希望于指标数较少而包含的信息量较多。

一般情况下,各个变量之间都有一定的相关性,如果两个变量之间有一定的相关关系时,可以认为这两个变量反映所研究问题的信息有一定的重叠。

主成分分析法是对原来提出的所有指标,建立尽可能少的新指标,使得这些新的指标之间互不相关,并且这些新指标所反映的信息尽可能保持原有的信息,信息的大小通常用方差来衡量。

通常认为主成分分析法是一种对原始信息进行压缩的一种方法。

通过该方法可以将原来相关的若干指标,变换成综合的不相关的少数指标。

(2) 主成分分析法基本思路设X1,X2,…,X P表示以x1,x2,…,x p为样本观测值的随机变量,如果能找到c1,c2,…,c p,使得但上述公式必须加上某种限制,否则权值可选择无穷大而没有意义,通常规定:由于解c1,c2,…,c p是p维空间的一个单位向量,它代表一个“方向”,称为主成分方向。

通常情况下,一个主成分不足以代表原来的p个变量的信息。

因此需要找出第二个甚至更多的主成分,原则上,第二个主成分不应该再包含第一个主成分的信息,其它的也依次类推,统计学上的意义就是让这两个主成分的协方差为零,几何上的解释就是这两个主成分的方向正交。

相关文档
最新文档