《高等数学》函数的连续性与连续函数的计算

合集下载

《高等数学》函数的连续性与连续函数的计算2

《高等数学》函数的连续性与连续函数的计算2

例1 . 设
均在
上连续, 证明函数
也在
上连续.
证:
f (x) g(x)
f (x) g(x)
根据连续函数运算法则 , 可知 连续 .
也在

机动 目录 上页 下页 返回 结束
二、初等函数的连续性 基本初等函数在定义区间内连续 连续函数经四则运算仍连续 连续函数的复合函数连续
一切初等函数 在定义区间内 连续
例6
求 lim
1 x2 1 .
x0
x
0.
例7. 设 讨论复合函数
(x) xx, 4,
x 1 x 1
的连续性 .
机动 目录 上页 下页 返回 结束
内容小结
基本初等函数在定义区间内连续 连续函数的四则运算的结果连续 连续函数的反函数连续 连续函数的复合函数连续
初等函数在 定义区间内 连续
说明: 分段函数在界点处是否连续需讨论其 左、右连续性.
2、lim x 1 1 ____________.
x0
x
3、lim ln(2cos 2x) ____________. x 6
4、lim x
2 2cos tan2 x
x
____________.
4
5、lim e t 1 ____________.
t t 2
6、设
e x , x 0 f (x)
定理3. 连续函数的复合函数是连续的.
证: 设函数
且 (x0 ) u0 .
于0
f [(x0 )]
机动 目录 上页 下页 返回 结束
例如,
是由连续函数链
x R*
复合而成 , 因此
在 x R* 上连续 .

高等数学 第一章、第十节 连续函数的运算与性质

高等数学 第一章、第十节 连续函数的运算与性质

幂指函数 u( x)v( x) 的极限计算: 的极限计算:
若 lim u( x) = a > 0,
x→x0
x→x0
lim v( x) = b,
lim v( x)
则有 lim u( x)v( x) = [ lim u( x)] x→x0
x→x0 x→x0
= ab .
1 求 lim( x + 2ex ) x−1. 例6 x→0 1 1 lim 解: lim( x + 2e x )x−1 = [lim( x + 2e x )] x→0 x−1 x→0 x→0
∃ M > 0, 使对∀ x∈[a, b], 都有| f ( x) |≤ M (2) f (x) 在 [ a , b ] 上一定能取得它的最大值和最小值 )
即至少一点ξ1 ∈[a, b], 使 f (ξ1 )为最大值 ,
和至少一点ξ2 ∈[a, b], 使 f (ξ2 )为最小值 . y 1 注记: 注记: (1)区间一定要是闭区间。 )区间一定要是闭区间。 y= x 1 3 例 y = , I = (0, 1) o 1 x 在 I = (0, 1) 上连续, 但无界, 1 也无最大值和最小值。 也无最大值和最小值。
第十节 连续函数的运算与性质
• • • • • 一、四则运算的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 四、闭区间上连续函数的性质 五、小结
一、四则运算的连续性
, 定理1 定理1 若函数 f ( x), g( x)在点x0处连续
f ( x) ( g( x0 ) ≠ 0) 则 f ( x) ± g( x), f ( x) ⋅ g( x), g( x) 在点x 在点 0 处也连续.
(1) lim f ( x) = A , lim f ( x) = B, 且 A⋅ B< 0,

高数第一章函数的连续性与间断点

高数第一章函数的连续性与间断点

2
当 a= 1

2
时 f ( x) 在x

2
处连续
11
二、连续函数及运算法则
定义4
y f x x [a, b] 若 f x 在a, b 内连续,
且 f a f (a), f b f (b) 存在,则称
f x 在[a, b] 上连续, 称区间 [a, b] 为 f x 的连续区间。
高等数学
第九讲
主讲教师:
王升瑞
1
第八节 函数的连续与间断
一、 函数在一点的连续性 二、 连续函数及运算法则 三、 初等函数的连续性 四、 函数的间断点
第一章
五、 闭区间上连续函数的性质
2
客观世界处在不断的变化中,这些变化有的是渐变,
有的是突变。反映到数学上就产生了连续和间断的概念。 从几何上直观来理解函数的连续性的意义,通常
( 利用极限的四则运算法则证明)
例如, 在其定义域内连续
定理2. 连续单调递增 (递减) 函数的反函数 也连续单
调递增 (递减).
(证明略)
例如, y sin x 在
上连续单调递增,
14
其反函数 y arcsin x 在 [-1 , 1] 上也连续单调递增.
又如,
其反函数


上连续 单调 递增,
则在 x 1 处间断。
y
x 1 f x 作新函数 F x x 1 o 1 2 x x2 1 x 1 F x x 1 在 x 1处的连续性。 2 x 1 25
例9 讨论函数 解
间断点的类型.
x 1, 2 为间断点
lim f x lim x 1 2 x1 x 1 x 2

《高等数学》第三节 函数的连续性

《高等数学》第三节  函数的连续性

如果 x0 是函数 第一类间断点 可去间断点
f ( x) 的间断点,可将其分成两类:
f ( x) 在点 x0 处的左右极限存在;
其它
f ( x) 在点 x0 处的左右极限至少有
第二类间断点
一个不存在. 无穷间断点 振荡间断点 其它
例2 考察函数
2 x 0 x 1 f ( x) 1 x 1 在 x 1处的连续性. 1 x x 1
解 该函数在点x 1 处没有定义,所以函数在x 1 处间断;又因为
1 x 1 x 1 lim
,极限
x 1
不存在,趋于无穷,所以 是函数
f ( x)
1 x 1 的第二类间断点,
且为无穷间断点.
例4 考察函数
解 该函数在
1 f (x) sin 在 x 0 处的连续性. x
lim y lim f ( x0 x) f ( x0 ) 0 函数增量 y 也趋于零,即 x0 x0
,则称函数
y f ( x) 在点 x0
处连续,x0 称为函数 f ( x)
的连续点.
若记 x x0 x ,则 y f ( x) f ( x0 ) ,且当
x 0 处没有定义,
所以函数在 x 0 处间断,又因为当
x0
时,极限不存在,函数值在1与-1之间无
限次地振荡,所以 x 0 是
f ( x ) sin 1 x
的第二
类间断点,且为振荡间断点.
二、初等函数的连续性
g ( x) 均 定理1(连续函数的四则运算) 如果 f ( x)、
在点
f (b) ,
为介于 f (a) 与 f (b) 之间的任一实

高等数学:第一讲 函数的连续性

高等数学:第一讲 函数的连续性
y
y f (x)
f (x0 )
0
x0
x
2.函数在一点的连续性同极限一样,都是函数的局部性质.
3. 判别函数y=f (x)在点x0连续的步骤:
(1) y = f (x)在点x0的某个邻域内有定义, y = f (x0) 存在;
(2) 极限
存在;
(3) 函数在 x0 处极限值等于函数值,即
例1 讨论函数 f (x)=x+1在x=2处的连续性.

lim
x x0
f (x)
f ( x0 ) , 称y = f (x) 在x0处左连续.
设函数y = f (x) 在[x0, x0+ ) 有定义,

lim
x x0
f (x)
f ( x0 ) , 称y = f (x) 在x0处右连续.
定理1
函数 y f ( x)在点 x0处连续的充要条件
是函数 y f ( x)在点 x0处既左连续又右连续,即
定义 2 设函数y=f (x)在点x0的某邻域内有定义,如
果x→x0时,相应的函数值f(x)→f(x0)
,即
lim
x x0
f (x)
f ( x0 ),
则称函数 y=f (x)在点x0连续,点x0为函数y=f (x)的连续点.
说明:
1. 函数 y=f (x)在点x0连续的几何意义:函数图形在x0不断开, 图像是连续不断的.
函数的连续性
函数的连续性
1、函数y=f (x) 在点 x0处的连续性
定义1 设y=f (x)在点x0的某邻域内有定义,如果当x在
x0处的增量x趋于零时,相应的函数增量y=f (x0+ x)- f(x0)也

高等数学1.10连续函数的运算与初等函数的连续性教师教材.ppt

高等数学1.10连续函数的运算与初等函数的连续性教师教材.ppt
注:在定理6的条件下有
limf [j(x)]=f(u0)=f [j(x0)].
x x0
青苗辅导
8
例 4 讨论函数 y=sin1 的连续性. x
解 函数 y=sin1 可看作是由 y=sin u 及 u1= 复合而成的.
x
x
sin u 在(-, +)内连续,1 在(-, 0)和(0, +)内连续. x
由定理 6,函数 sin1 在无限区间(-,0)和(0,+)内是连续的. x
青苗辅导
9
三、初等函数的连续性
基本的连续函数: 三角函数: sin x , cos x , tan x , cot x ; 反三角函数:arcsinx ,arccosx ,arctanx ,arccotx ; 指数函数:a x (a>0,a 1); 对数函数:log ax (a>0,a 1); 证明 指数函数ax (a>0,a1)对于一切实数x 都有定义,且
例 2 由于 y=sin x 在闭区间[- , ]上单调增加且连续,
22 加且连续,所以它的反函数y=arcsin x 在区间[-1,1]上也是单调 增加且连续的.
青苗辅导
4
同样,y=arccos x 在区间[-1,1]上也是单调减少且连续; y=arctan x 在区间(-,+)内单调增加且连续;y=arccot x 在区 间(-,+)内单调减少且连续.
点 x0=0 是初等函数 f(x)= 1 - x2 的定义区间[-1,1]上的点,
所以lim 1 - x2 = 1 =1; x0
又如
点 x 0=
2
是初等函数 f(x)=ln sin x
的一个定义区间(0,)内

高等数学——连续函数的运算与性质

高等数学——连续函数的运算与性质

连续函数的运算与性质一、基本内容1. 连续函数的和、差、积、商的连续性:连续函数的和、差、积、商仍然连续。

2. 复合函数的连续性:设)(x u ϕ=在点0x 连续, 且00)(u x =ϕ, 而)(u f y =在点0u u =连续, 则)]([x f ϕ在点0x 也连续。

3. 初等函数的连续性:一切初等函数在其定义区间内都是连续的.4. 闭区间上连续函数的性质:1)最值定理:在闭区间上连续的函数一定有最大值和最小值。

2)有界性定理:在闭区间上连续的函数一定有界。

3)零点定理:设函数)(x f 在闭区间],[b a 上连续,且)(a f 与)(b f 异号,则在开区间),(b a 内至少有函数)(x f 的一个零点,即至少存在一点ξ(b a <<ξ),使0)(=ξf 。

4)介值定理:设)(x f 在闭区间],[b a 上连续,且在这区间的端点取不同的函数值A a f =)(及B b f =)(,则对于A 与B 之间的任意一个数C ,在开区间),(b a 至少有一点ξ(b a <<ξ),使C f =)(ξ(b a <<ξ)5)推论:在闭区间上连续的函数必取得介于最大值与最小值之间的任何值。

二、学习要求1. 了解初等函数的连续性。

2. 知道在闭区间上连续函数的性质。

三、基本题型及解题方法题型1 求初等函数在其定义区间内某点的极限解题方法:只需求初等函数在该点的函数值。

即)()(lim 0→0x f x f x x =, (∈0x 定义区间)【例1】 求极限:52lim20+-→x x x ; 解:因为 52)(2+-=x x x f 是初等函数,而0=x 是定义区间内的点,所以 52lim 20+-→x x x =5500=+-【例2】 求下列极限:(1)xx x sin ln lim 0→; (2)x x e 1lim ∞→。

解:(1)x x x sin ln lim 0→=x x x sin lim ln 0→=1ln =0 (2)x x e 1lim ∞→=x x e 1lim ∞→=0e =1 题型2 利用闭区间上连续函数的性质证明一些相关问题,如讨论方程的实根,函数的有界性等解题方法:一般解题步骤1)作辅助函数2)寻找闭区间,使辅助函数在该区间端点处的值异号,利用零点定理。

高等数学 第八节 函数的连续性-55页文档

高等数学 第八节  函数的连续性-55页文档

x0
x0
limf (x) limsinx0
x0
x0
lim f(x)lim f(x)
x 0
x 0
故 x = 0 是 f (x) 的第一类间断点.
将左、右极限存在但不相等的间断点, 称为函数的跳跃型间断点.
例5 讨论 f(x)x21在x1处的连. 续 x1
解 函数在 x =1 无定义, x =1 为函数的间断点.
x0为函数的.间断点
又 limf(x)lim sin1 不存在,
x0
x0 x
故 x = 0 为函数的第二类间断点.
看看该函数的图形.
y y sin 1
1
x
O
x
1
称x0为f(x)sin 1的振荡型. 间断 x
第 二 类 间 断 点
左右极限至少 有一个不存在
无穷型间断点
左右极限至少有一个为无穷
x x0
x x0
a

f
(x0
).
2.函数间断点的分类

第一类间断点


跳跃
可去

断 点
第二类间断点
无穷 振荡 其它
(1) 第一类间断点
定义
若 x0 为函数 f (x) 的一个间断点, 且 x l ix0 m f(x)与 x l ix0 m f(x)存,在 则称 x0 为函数 f (x) 的第一类间断点.
例1 函数 y = x2 在点 x = 0 处是否连续 ?
解 y = x 2 在 U(0) 内有定义,
又 lim x2 0 x0

yx0x2 x00
函数 y = x2 在点 x = 0 处连续.

高等数学第五节 函数连续性

高等数学第五节 函数连续性

O
但是由于
2
x
lim f(x)1f(0)0,
x 0
因此 x = 0 是该函数的第一类间断点 . 这类间断点又 称为可移去间断点.
因为,如果修改定义 f (0) = 1, 则函数
s inx
f
(x)
x
,
x 0,
在 x = 0 连续.
1 , x 0
y
1
2 O
2
x
所以,左、右极限存在且相等的间断点称为 可移去间断点.
例如,由l于 im cc(c为 常 ), li数 m xx0,且
x x0
x x0
x0 ( , ) 的 任因意 此,点 函数f, (x) = c, g (x) = x 在 ( , ) 内连续.
例 1 证明函数 y = sin x 在其定义域内连续 .
证 任取 x0 (- , + ),则因
y f (x0 + x) - f (x0) sin(x0 + x) - sinx0
定义 1 表明,函数在某点连续含有三层意思: (1)它在该点的一个邻域内有定义; (2)极限存在; (3) 极限值等于该点处的函数值.
函数 y = f (x) 在x0处连续的几何意义是: 函数 y f (x) 的图形在点( x0,f (x0) )处不断开;
函数y = f (x) 在 (a, b) 连续的几何意义是: 函数 y f (x) 的图形在 ( a, b) 内连绵不断.
l i m f(x)g(x)l i m f(x)l i m g(x)
x x0
x x0
x x0
f(x0)g(x0),
因此 f (x) · g (x) 在 x0 处连续 .
定理 2 设函数 y = f (u) 在 u0 处连续,函数 u

大学高等数学_03连续性间断点_连续函数运算_连续函数性质与习题课

大学高等数学_03连续性间断点_连续函数运算_连续函数性质与习题课
第八节 函数的连续性与间断点
一、 函数连续性的定义 二、 函数的间断点
第一章
机动
目录
上页
下页
返回
结束
一、 函数连续性的定义
定义: 设函数 在 的某邻域内有定义 , 且
则称函数 f ( x) 在 x0 连续. 可见 , 函数 (1) (2) 极限 (3) 在点 在点 x0 连续必须具备下列条件:
有定义 , 即
o
1
x
y
1
o
f ( 0 ) 1 ,

f (0 ) 1

1
x
x 0 为其跳跃间断点 .
机动 目录 上页 下页 返回 结束
内容小结
在点 连续的等价形式
在点
左连续 间断的类型
右连续
第一类间断点 第二类间断点
可去间断点 左右极限都存在 跳跃间断点 无穷间断点 左右极限至少有一 个不存在 振荡间断点
存在 ;
存在 ;
机动
目录
上页
下页
返回
结束

在某区间上每一点都连续 , 则称它在该区间上 上的连续函数的集合记作 C [ a , b ]. ( 有理整函数 ) 在 上连续 .
连续 , 或称它为该区间上的连续函数 .
在闭区间
例如,
又如, 有理分式函数 在其定义域内连续.
Q ( x0 , ) 0), , 都有 lim x)( x 0 R ) 只要 x0 ( lim P ( x)R ( P ) ( x0 continue
第九节 目录 上页 下页 返回 结束
备用题 确定函数 f ( x)
解: 间断点 x 0 , x 1
1 1 e
x 1 x

第1章 函数极限与连续 §1.8 连续函数的性质

第1章  函数极限与连续 §1.8 连续函数的性质

提示: 令 ( x ) f ( x a ) f ( x ) ,
则 ( x ) C [0 , a ] , 易证
(0) (a ) 0
作业
P49 / 2 ; 3 ; 5
解 本题是求初等函数的极限, 因 x 1是定义区间内的点, 故
e 2 x ln(3 2 x ) e 21 ln(3 2 1) lim arcsin x arcsin1 x 1

2e
2

.
高等数学 第1章 函数极限与连续 函数 极限与连续
1.8 连续函数的性质
ln( e n x n ) ( x 0) 的连续性. 例1.8.4 讨论函数 f ( x ) lim n n
1.8 连续函数的性质
内容小结
设 f ( x ) C [a , b] , 则
1. f ( x ) 在 [a , b]上有界; 2. f ( x ) 在 [a , b]上达到最大值与最小值; 3. f ( x ) 在 [a , b]上可取最大与最小值之间的任何值;
4. 当 f (a ) f (b) 0 时, 必存在 (a , b) ,使 f ( ) 0.
高等数学 第1章 函数 极限与连续
1.8 连续函数的性质
思考与练习
1. 任给一张面积为 A 的纸片(如图), 证明必可将它
一刀剪为面积相等的两片.
提示: 建立坐标系如图.
y
S ( )
则面积函数 S ( ) C[ , ]
因 S ( ) 0 ,
S ( ) A
o

x
故由介值定理可知:
由此可知f ( x ) sin x 2在( ,)不是一致连续的.

高等数学:第二讲 初等函数的连续性

高等数学:第二讲 初等函数的连续性

x0
x

由于
ln(1
x)
ln(1
1
x)x
x
1
设 y ln u, u (1 x) x , x 0 时,
u e, 且 y ln u 在 u e 处连续.
1
原式 lim ln(1 x) x lim ln u lne 1.
x 0
u e
1
1
或: 原式 lim[ln(1 x) x ] ln[lim(1 x) x ] ln e 1.
x 0
x 0
3. 初等函数的连续性
定 理 3(初等函数的连续性)
初等函数在其定义区间内是连续的.
注意:定义区间是指包含在定义域内的区间!
启发:根据定理3可知,如果x0是初等函数f (x)定义区间内的点, 那么,求 x x0 时的极限,只要求f (x)在点x0的函数值就可以了.

lim
x x0
f
(x)=
f
( x0 )
例题1:
计算 lim arcsin(ln x)
x e
解: 因为arcsin(lnx) 是初等函数,且x=e是它 的定义区间内的一点,由定理2,有:
lim arcsin(ln x) arcsin(ln e)
xe
例题2:
计算 lim 1 x 1
x0
x
解: lim 1 x 1 lim
表明: 复合函数 y = f [(x)] 满足推论条件时:
(1)可作变量代换求复合函数的极限, 即
lim f [ ( x) ] 令u=(x)
x x0
lim f (u)
u u0
(2)极限运算与函数运算可以交换次序,即
lim f ( x) f [lim ( x)].

高等数学:连续函数的运算

高等数学:连续函数的运算

《高等数学》 1.9.1 连续函数的运算
初等函数连续性的应用
【1】求初等函数在其有定义的点处的极限时,根据连续性,此时只需直接求初等函数在该
点的函数值。这是因为,只要是求极限,函数在该点的空心邻域内也一定有定义,就是该点一
定是定义区间内的点,故函数在该点必然连续,即
lim
xx0
f (x)
f (x0()
《高等数学》 1.9.1 连续函数的运算
【例3】
求极限
lim
xa
arc
s
in(loga
x)(a
1)
解:因为函数 arcsin(log a x)(a 1) 是初等函数,且该函数在x=a处有定义,所以有
lim
xa
arcsin(loga
x)
arcsin(loga
a)
arcsin1
2
【例4】求函数
y
简证:因为φ(x)在点 x0 连续,所以有
lim
xx0
(
x)
(
x0
)
而函数 y f (u) 在点 u0 连续,再由定理2 ,有
lim
xx0
f [(x)]
f [lim (x)] xx0
f [(x0 )]
即复合函数 f [(x)] 在点 x0 处也连续。
连续函数经复合运算后仍然连续
《高等数学》 1.9.1 连续函数的运算
x0
定义区间)。
【2】求间断点。高等数学的主要研究对象是初等函数和分段函数。对于初等函数,有定义的 点处要么是连续的,要么是孤立点不讨论连续或间断。因而,初等函数的间断点一定是其无定义 的点。对于分段函数,其在每一个区间段内都是初等函数,即分段函数在每一个区间段内均连续 ,故其间断点只可能是无定义的点及其分段点。

高等数学 第一章 第八节 函数的连续性与间断点

高等数学 第一章 第八节  函数的连续性与间断点
教学:题型,求分段函数中的未知参数,前提条件为收敛、连续、可导等。
4.连续函数与连续区间
在区间上每一点都连续的函数,叫做在该区间上 的连续函数,或者说函数在该区间上连续.
如果函数在开区间 (a , b)内连续, 并且在左端点 x a处右连续, 在右端点 x b处左连续, 则称 函数 f ( x )在闭区间 [a , b]上连续.
lim f ( x ) limcos x 1,
x 0 x 0
lim f ( x ) lim(a x ) a ,
x0 x0
要使 f (0 0) f (0 0) f (0), a 1,
故当且仅当a 1时, 函数 f ( x )在 x 0处连续.
1 例如, u 在 ( , 0) (0, )内连续, x y sin u 在(, )内连续,
1 y sin 在 ( , 0) (0, )内连续. x
教学:复合函数的极限、连续问题归纳,三个定理。
4. 反函数的连续性.
定理3 严格单调的连续函数必有严格单调的连 续反函数.

教学:谈谈不连续的情形,第一类(可去、跳跃)、第二类(无穷大、振荡)
定理
(1) y f ( x) 在点 x0 处连续
f ( x0 ) 有定义, lim f ( x) 存在,且 lim f ( x) f ( x0 ) ;
x x0 x x0
(2) y f ( x) 在点 x0 处连续
x 0 x 0
lim f ( x ) lim( x 2) 2 f (0),
x 0 x 0
右连续但不左连续 ,
故函数 f ( x )在点 x 0处不连续.

高等数学-第一章 第八节连续函数

高等数学-第一章 第八节连续函数
(2) lim f ( x) 存在; x x0
(3) lim f ( x) f ( x0 ) x x0 5
连续函数

由上述定义可知, f(x)在x0点的连续性 是描述 f(x)在x0点邻域的性态的. 即它是对 某一邻域而言. 因此在孤立点处无连续可言.
一般讲,证明的命题用函数连续的定 义1方便; 判断函数在某点是否连续, 尤其 是判断分段函数在分界点处是否连续用 定义2方便.
处连续.

lim x0
x sin
1 x

0,
又 f (0) 0, lim f ( x) f (0), x0
函数 f ( x)在 x 0处连续.
8
连续函数
3. 左、右连续
若 lim x x0
f (x)
f ( x0 )
f ( x0 ) f ( x0 ) ,
则称f ( x)在点x0处左连续(continuity from the
4
连续函数
定义3 ( ) 0, 0,
使当 x x0 时, 恒有 f ( x) f ( x0 ) .
把极限定义严密化,便于分析论证.
连续性的三种定义形式不同, 但本质相同. 这三种定义中都含有 三个要素:
(1) f (x)在U ( x0 )内有定义;
f (u0 ).
意义 1. 变量代换 u g( x)的理论依据.
2. 在定理的条件下, lim 与f 可交换次序;
16
连续函数
定理3
若 lim x x0
g( x)

u0 , 函数
f
(u)在点u0连续,
则有 lim x x0
f [g( x)]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,)0),,
都lim有
x x0
Pli(mx)R(Px)(
x x0
x0R) (
x0c)ontinue
机动 目录 上页 下页 返回 结束
对自变量的增量
有函数的增量
函数 在点 连续有下列等价命题:
lim
x x0
f
(x)
f
(x0 )
lim y 0
x0
lim
x0
f
( x0
x)
f (x0 )
y y f (x)
第七节(2-1)
第一章
函数的连续性与
连续函数的运算
一、函数的连续性
二、函数的间断点 三、小结、思考题
机动 目录 上页 下页 返回 结束
一、 函数连续性的定义
定义: 设函数
在 的某邻域内有定义 , 且
则称函数 f (x)在 x0 连续.
可见 , 函数
在点 x0 连续必须具备下列条件:
(1)
在点 有定义 , 即
间断点分类:
第一类间断点: 及
均存在 ,
若 若 第二类间断点:
称 x0为可去间断点 . 称 x0 为跳跃间断点 .

中至少一个不存在 ,
若其中有一个为 , 称 x0 为无穷间断点 .
若其中有一个为振荡 , 称 x0 为振荡间断点 .
机动 目录 上页 下页 返回 结束
例4
讨论函数
f
(
x)
x, 1 x,
2
(k
0,1,2,).
2
x, x 1
四 、 f ( x) 0, x 0 x 1 和 x 1 为 第 一 类 间 断 点 .
x, x 1
五、(1)a 0, b 1;
(2)a 1, b e .
存在 ;
(2) 极限
存在 ;
(3)
机动 目录 上页 下页 返回 结束
若 在某区间上每一点都连续 , 则称它在该区间上
连续 , 或称它为该区间上的连续函数 .
在闭区间
上的连续函数的集合记作 C[ a , b ].
例如, 在
( 有理整函数 ) 上连续 .
又如, 有理分式函数
在其定义域内连续.
只x要0 Q((x0
x 0,在x 0处的连续性. x 0,
y
o
x
例5 讨论函数
f
(
x)
2 1,
x,
0 x 1, x1
1 x, x 1,
在x 1处的连续性 .
y y 1 x
2 y2 x
1
o1
x
例6
讨论函数
f
(x)
1 x
,
x 0,在x 0处的连续性.
x, x 0,
y
o
x
★ 狄利克雷函数
y
D(
x
振荡型
思考与练习
1. 讨论函数
间断点的类型.
答案: x = 1 是第一类可去间断点 , x = 2 是第二类无穷间断点 .
2. 设 连续函数.
提示:
时为
机动 目录 上页 下页 返回 结束
补充题 确定函数 f (x)
1 间断点的类型. x
1 e1x
机动 目录 上页 下页 返回 结束
作业P70 1(1)、2(1,4)、3
y
f (x0 ) f (x0 ) f (x0 )
左连续 右连续
x
o x0 x x
0, 0, 当 x x0 x 时, 有
f (x) f (x0) y
机动 目录 上页 下页 返回 结束
例.1 证明函数

内连续 .
证: x (, )
y sin(x x) sin x
判断下列间断点类型:
y
y f x
x1 o
x2
x3
x
再如:
y
y tan x
x
2
为其无穷间断点 .
x 0 为其振荡间断点 .
y
o
x
2
y y sin 1 x
0x
x 1为可去间断点 .
o1 x
机动 目录 上页 下页 返回 结束
x , x 1
(4)
y
f (x)
1 2
,
x 1
y
1
显然 lim f (x) 1 f (1)
二、研究函数 f ( x) 1, x 1 的连续性,并画出函数 的图形 .
三、指出下列函数在指定范围内的间断点,并说明这些
间断点的类型,如果是可去间断点,则补充或改变
函数的定义使它连续 .
1、
f
(
x)
x 3
1, x,
x x
1在 1
xR

.
2、 f ( x) x ,在x R 上 . tan x
内容小结
在点 连续的等价形式
左连续 右连续
在点 间断的类型
可去间断点 第一类间断点 跳跃间断点 左右极限都存在
第二类间断点
无穷间断点 振荡间断点
左右极限至少有一 个不存在
机动 目录 上页 下页 返回 结束
第y 一
可去型




o x0
x
y
第 二 类 间 断o 点
x0
x
无穷型
y 跳跃型
o
x0
x
y
o
连续性.
二、 函数的间断点
设 在点 的某去心邻域内有定义 , 则下列情形
之一函数 f (x) 在点 不连续 :
(1) 函数 在 无定义 ;
(2) 函数 在 虽有定义 , 但
不存在;
(3) 函数 在 虽有定义 , 且
lim f (x) f (x0)
x x0
这样的点 称为间断点 .
存在 , 但
机动 目录 上页 下页 返回 结束
四、讨论函数
1 x2n f ( x) lim
的连续性,若有间断
n 1 x 2n
点,判断其类型 .
五、试确定 a, b 的值,使 f ( x) e x b , ( x a)( x 1)
(1)有无穷间断点x 0 ;(2)有可去间断点 x 1 .
练习题答案
一、1、一类,二类; 2、一类,一类,二类.
x)
1, 0,
当x是有理数时, 当x是无理数时,
在定义域R内每一点处都间断,且都是第二类间 断点.

f
(
x)
x, x,
当x是有理数时, 当x是无理数时,
仅在x=0处连续, 其余各点处处间断.

f
(
x)
1, 1,
当x是有理数时, 当x是无理数时,
在定义域 R内每一点处都间断, 但其绝对值处 处连续.
二、 f ( x)在(,1)与(1,)内连续, x 1为跳跃间 断点.
三、1、x 1为第一类间断点;
2、 x k 为可去间断点, 2
x k(k 0)为第二类间断点.
f1(
x)
x tan
x
,
x
k,
k
2
1, x 0
(k 0,1,2,),
f2(
x)
x tan 0, x
, x k,k x k
y
2
sin
x 2
cos(
x
x 2
)
x x 0 0

这说明

同样可证: 函数
内连续 .

内连续 .
机动 目录 上页 下页 返回 结束
例2
试证函数
f
(
x)
x
sin
1 x
,
x 0, 在x 0
0, x 0,
处连续.
例3
讨论函数
f (x)
x 2,
x
2,
x 0, x 0,
在 x 0处的
练习题
一、填空题: 1、指出 y x 2 1 在 x 1 是第_______类间 x2 3x 2 断点;在 x 2 是第_____类间断点 . 2、指出 y x 2 x 在 x 0 是第________类间 x ( x 2 1) 断点;在 x 1 是第______类间断点;在 x 1 是第_____类间断点 . x, x 1
1 2
x1
o
x 1为其可去间断点 .
(5)
y
f (x)
Байду номын сангаас
x
0
1
, ,
x0 x0
x 1 , x 0
f (0 ) 1,
f (0 ) 1
x 0 为其跳跃间断点 .
1x
y
1
o
x
1
机动 目录 上页 下页 返回 结束
例7 当a取何值时,
函数
f
(x)
cos a
x, x,
x 0, 在 x 0处连续. x 0,
相关文档
最新文档