数学:7.3《探索轴对称的性质》课件(北师大版七年级下)

合集下载

北师大版七年级数学下册课件:5.2探索轴对称的性质(共33张PPT)

北师大版七年级数学下册课件:5.2探索轴对称的性质(共33张PPT)

【解析】 A 不正确,应该是 MN 垂直平分 AB;B 不正确,全等的两个三角 形不一定成轴对称;C 正确;D 不正确,A 点的对称点与 A 重合.
2.[2016·南充]如图 47-5,直线 MN 是四边形 AMBN 的对称轴,点 P 是直线
MN 上的点,下列判断错误的是 ( B )
A.AM=BM
类型之二 画轴对称图形 如图 47-3,已知△ABC 与直线 l,画出△ABC 以直线 l 为对称轴的轴对
称图形.
图 47-3
解:(1)如答图,作 AD⊥直线 l,垂足为 D; (2)延长 AD 至点 A′,使 A′D=AD,则点 A′为点 A 的对称点; (3)用同样的方法作出点 B,C 的对称点 B′,C′; (4)连接 A′B′,B′C′,A′C′. ∴△A′B′C′就是所求作的图形.
【点悟】 利用轴对称的性质,找出角的相等关系.
【变式跟进】 如图 47-2,△ABC 与△DEF 关于直线 l 成轴对称. (1)指出其中的对应点、对应线段和对应角; (2)找出图中相等的线段和相等的角.
图 47-2
解:(1)对应点:点 A 与点 D,点 B 与点 E,点 C 与点 F; 对应线段:线段 AB 与线段 DE,线段 AC 与线段 DF,线段 BC 与线段 EF; 对应角:∠A 与∠D,∠B 与∠E,∠C 与∠F; (2)相等的线段:线段 AB 与线段 DE,线段 AC 与线段 DF,线段 BC 与线段 EF; 相等的角:∠A 与∠D,∠B 与∠E,∠C 与∠F.
图 47-11 【解析】 本题主要考查轴对称图形的性质:对应线段相等.
解:∵点 P 与点 P1,P2 分别关于 OA,OB 对称, ∴PM=P1M,PN=P2N, ∴△PMN 的周长=PM+PN+MN=P1P2=5 cm.

北师大版七年级下册数学《利用轴对称进行设计》生活中的轴对称PPT教学课件

北师大版七年级下册数学《利用轴对称进行设计》生活中的轴对称PPT教学课件

利用轴对称变换设计美丽图案
轴对称变换:
像上面那样,由一个平面图 形得到它的轴对称图形叫作轴对称 变换.
典例精析
例1 如图,已知△ABC和直线l,作出与△ABC关于 直线l对称的图形.
l
A A′
C B
C′ B′
∴△A′B′C′即为所求.
例2 某居民小区搞绿化,要在一块长方形空地(如 下图)上建花坛,现征集设计方案,要求设计的图案 由圆和正方形组成(圆与正方形的个数不限),并且 使整个矩形场地成轴对称图形.请在下边长方形中 画出你的设计方案.
是轴对称图形.
走进生活,动手创作
观察图案: (1)它们是轴对称图形吗? (2)生活中这些图案可以代表什么含义? (3)自己设计一个轴对称图案,并说明你的设计意图.
利用两个圆、两条线段、两个三角形设计 一个轴对称图案,并说明你的设计意图和要表 达的含义.
当堂练习
1. 如图给出了一个图案的一半,其中的虚线 l 是这个
解:如图所示.
做一做
取一张长30厘米、宽6厘米的纸条,将它每3厘米一 段,一反一正像“手风琴”那样折叠起来,并在折 叠好的纸上画出字母E.用小刀把画出的字母E挖去, 拉开“手风琴”,你就可以得到一条以字母E为图 案的花边.
在上面的活动中,如果先把纸条纵向对折,再 折成“手风琴”,然后继续上面的步骤,此时 会得到怎样的花边?它是轴对称图形吗?
(1)你会得到怎样的图案?先猜一猜,再做一做.
(2)你能说明为什么会得到这样的图案吗?应用学过 的轴对称知识试一试.
两次对折折出了2条对称轴,因此图案中一定有2条对称轴.
(3)如果将正方形按上面方式对折3次,然后沿圆 弧剪开,去掉较小部分,展开后结果又会怎样?
三次对折折出了4条对称轴,因此图案中一定有4条对称轴. (4)当纸对折2次后,剪出的图案至少部分的面积相等. (2)答案不唯一,如图所示:

北师大版七年级下册532简单的轴对称图形ppt课件

北师大版七年级下册532简单的轴对称图形ppt课件
P
M
结论:线段垂直平分线上的点到这条线段A两个
端点的距离相等。
O
B
8
结论:
(1)无论M点取在直线的何处,线段MA和MB都重合. (2)线段的垂直平分线的性质:
线段的垂直平分线上的点到这条线段两个端点的距离相等.
P
M
A
O
B
9
跟踪训练 1、如图, l 线段AB的垂直平分线, O 、P分别是l上的两点,
A
M
N
B
P
Q
C
13
5、 △ABC中 , ED是线段BC的垂直平分线, ∠A=720,∠ACE=340 求∠B的度数
A
E
B
D
C
探究活动二: 尺规作图
如图,已知线段AB, 你能用尺规作出它的垂直平分线吗? 已知: 线段AB 求作: 线段AB的垂直平分线
A
B
15
跟踪训练
1自己画一条线段AB,用尺规作出它的垂直平分线。 2完成课本P124的做一做:利用尺规作出三角形的重心
则PA 、PB 、OA 、OB的关系是( D )
A 、PA= OA ,PB=OB
l
B 、PA= OA =PB=OB
O
C 、PA=OB ,OA =PB
D 、OA=OB ,A P=BP
A B
P
10
2、如图,AB是△ABC的一条边, DE是AB的垂直平分线,垂足为
E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________,
16
拓展提高 A ,B ,C三点表示三个工厂,现要建一供水站,使它
到这三个工厂的距离相等,请在图中标出供水站的位 置P,请给予说明理由.
17

北师大数学七下课件5.2探索轴对称的性质(共29张ppt)

北师大数学七下课件5.2探索轴对称的性质(共29张ppt)

灿若寒星
实物 欣赏
灿若寒星
蝴蝶
灿若寒星
灿若寒星
灿若寒星
灿若寒星
建筑
灿若寒星
灿若寒星
如图5-5,将一张矩形纸对折, 然后用笔尖扎出“14’’这个数字, 将纸打开后铺平. (1)上图中,两个“14‘’有什么关
系? (2)在上面扎字的过程中,点E 与点E’重合,点F与点F’ 重 合.设折痕所在直线为L,连 接;点E与点E’ 的线段与L有 什么关系?点F与点F’呢? (3)线段AB与线段A’B’有什么关 系?CD与C’D’呢? (4)∠1与∠2有什么关系?∠3与 ∠4呢?说说你的理由.
初中数学课件
金戈铁骑整理制作
20世纪著名数学家赫尔曼·外 尔所说的,“对称是一种思想, 人们毕生追求,并创造次序、美 丽和完善……”
灿若寒星
灿若寒星
知识回顾:
1、轴对称图形和轴对称的区别与联系
轴对称图形
轴对称
A
图形
A
A'
区别 联系
一个 两个 B
C
(1)轴对称图形是指(
B
C
C'
) (1)轴对称是指(
灿若寒星
做—做
观察图5-6的轴对称图形:
(1)找出它的对称轴.
(2)连接点A与点A’的线段
与对称轴有什么关系?连接 点 B与点B’的线段呢? (3)线段AD与线段A’D’有什 么关系?线段BC与线段B’C’ 呢?为什么?
(4)∠1与∠2有什么关系?∠3 与∠4呢?说说你的理由.灿若寒星
在图5—6中,沿对称轴对 折后,点A与点A’重合, 称
加拿大 韩国 澳大利亚 乌拉圭 瑞典
灿若寒星
瑞士
4 判断

七年级数学下册第五章轴对称的应用将军饮马问题课件(新版)北师大版

七年级数学下册第五章轴对称的应用将军饮马问题课件(新版)北师大版

A P
B l
B′
6、为什么这样找到的点P,就能使得PA+PB最短呢?你能尝试证明吗?
探究新知
证明:在直线L上任意取不同于点P的一点Q,连接QA、QB、 QB/,如图所示。
∵PA+PB=PA+PB/=AB/ QA+QB=QA+QB/
又∵AB/<QA+QB/(两点之间线段最短或三角形中两边之和大 于第三边)
∴PA+PB< QA+QB 即此时点P使得PA+PB的值最小
B
A P L
Q
B/
小试牛刀
如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛 奶,已知居民区A、B分别距离街道1km、2km,两居民区水平距 离4km,请问奶站修建在什么地方才能使得A,B到它的距离之和 最短?最短距离是多少?
C
居民区A 街道
精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这 个问题.这个问题后来被称为“将军饮马问题”.
你知道海伦是如何帮助将军解决问题的吗?
B A
l
任务驱动 启迪智慧
问题
A
1、截至目前, 你学到那些最短 问题?
2、如图,A,B 两点位于直线L
A
的两侧,你能
在直线L上找一
点P,使得点p
到A、B两点距
直线段路径
课后拓展延伸
课后作业
1、如图,菱形ABCD中,AB=2, ∠BAD=600,E是AB 的中点,点P是对角线AC上的一个动点,请找出使得 PE+PB的值最小时点P的位置(找出位置即可)
D
A
P C
E B
课后拓展延伸
☆一点P,让PB与PA 的差最大,并给出证明!

北师大版数学七年级下册利用轴对称进行设计课件(15张P)

北师大版数学七年级下册利用轴对称进行设计课件(15张P)
得到一个有 2 条对称轴的图案.
(2) 你能说明为什么会得到这样的图案吗?应用学过 的轴对称知识试一试.
如图,按照上面的做法,实际上相当于折出了正方形 的 2 条对称轴,因此 (1) 中的图案一定有 2 条对称轴.
(3) 如果将正方形纸按上面方式对折3次,然后沿 圆弧剪开,去掉较小部分,展开后结果又会怎样? 为什么? 展开后有 4 条对称轴. (4) 当纸对折 2 次后,剪出的图案至少 有几条对称轴? 3 次呢? 当纸对折2次,剪出的图案至少有 2条对称轴; 当纸对折3次,剪出的图案至少有 4条对称轴.
E 边. E E E E
EEEEE
EEEEE EEEEE
在上面的活动中,如果先把纸条纵向对折,再折成“手 风琴”,然后继续上面的步骤,此时会得到怎样的花边? 它是轴对称图形吗?先猜一猜,再做一做.
是轴对称图形.
EEEEE EEEEE
2. 如图所示,取一张薄的正方形纸,沿对角线对 折后,得到一个等腰直角三角形,再沿底边上的 高线对折. 将得到的角形纸沿图中的黑色线剪开, 去掉含 90° 角的部分. 打开折叠的纸,并将其铺平. (1) 你会得到怎样的图案?先猜一猜,再做一做.
七年级下册数学(北师版)
第五章 生活中的轴对称
5.4 利用轴对称进行设计
情景导入 剪纸在生活中经常见到,你知道它是利用图形的 轴对称性进行设计的吗?
探究新知 30 cm、宽 6 cm 的纸条,将它每 3 cm 一段 ,一反一正像“手风琴”那样折叠起来. 在折叠好的纸 上画出字母 E,并用小刀把画出的字母 E 挖去. 拉开“ 手风琴”纸条,你就可以得到一条以字母 E 为图案的花
解:如图所示.
做一做 生活中有很多具有轴对称性质的图案,例如:

北师大版七年级数学下册课件:轴对称现象

北师大版七年级数学下册课件:轴对称现象

A
B
C
D
4.【例2】下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形有( C )
A.1个
B.2个
C.3个
D.4个
.下列“数字”图形中,有且仅有一条对称轴的是( A )
A
B
C
D
ቤተ መጻሕፍቲ ባይዱ
5.【例3】下列图形中,△A'B'C'与△ABC关于直线MN成轴对 称的是( B )
A
B
C
D
如图,(1)属于轴对称图形的有 ①③④⑧⑩; (2)两个图形成轴对称的有 ②⑤⑥⑦⑨ .(填序号)
(2)找出如图所示的轴对称图形的对称轴.是否有些图形的对 称轴不止一条呢?
画对称轴略.一个轴对称图形的对称轴可以有1条,也可以有多 条,还可以有无数条.
对点训练 1.(1)下列是轴对称图形的是( D )
A
B
C
D
(2)(传统文化)甲骨文是我国的一种古代文字,下面是 “北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的 是( B )
第五章 生活中的轴对称
轴对称现象
学习目标
1.(课标)了解轴对称图形的概念,认识并欣赏自然界和现实生 活中的轴对称图形. 2.通过具体实例了解轴对称的概念(课标).理解成轴对称的图 形的意义,能够识别这些图形并能指出它们的对称轴.
知识要点
知识点一:轴对称图形 (1)如果一个平面图形沿一条直线折叠后,直线两旁的部分能 够互相 重合 ,那么这个图形叫做轴对称图形,这条直线叫 做 对称轴 . 注意:对称轴是一条直线,不是射线或线段.
6.【例4】(北师7下P117改编)下面四个图形中,哪些是轴对称 图形?如果是轴对称图形,各有几条对称轴?分别画出来.

北师大版数学七年级下册探索轴对称的性质课件

北师大版数学七年级下册探索轴对称的性质课件

A
B
M
P
N
A1
2.如图,已知点P是∠AOB内任意一点,点P1,P关于 OA对称,点P2,P关于OB对称.连接P1P2,分别交 OA,OB于C, D.连接PC,PD.若P1P2=10cm,则 △PCD的周长为 10cm .
P1 .
A
C
.P
O
B
D .P2
小结
1.对应点所连的线段被 对称轴垂直平分
轴对称 的性质
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的 面积等于正方形ABCD面积的一半,因为正方形 ABCD的边长为4cm,所以S阴影=42÷2=8(cm2).故 选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
解:如图所示.
1.如图,已知点A、B直线MN同侧两点,点A1、A 关于直线MN对称.连接A1B交直线MN于点P,连 接AP.
(1)若A1B=5cm,则AP+BP的长为 5cm .AB NhomakorabeaM
P
N
A1
(2)某乡为了解决所辖范围内张家村A和李家村B的 饮水问题,决定在河MN边打开一个缺口P将河水 引入到张家村A和李家村B.为了勤俭资金,使修 建的水渠最短,应将缺口P修建在哪里?请你利用 所学知识解决这一问题,并用红色线段画出水渠.
点B与点B1的线段呢?
与对称轴垂直.
D
D1
3
4
A1
C
C1 B1
12
(3)线段AD与线段A1D1有什么
关系?线段BC与B1C1呢?
为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合以上三个问题,你可以得到什么 结论?
1.对应点所连的线段被对称轴垂 直平分
2.对应线段相等,对应角相等
实战演练
1. 如果两个图形关于某条直线对称,那 么对应点所连的线段被 对称轴 垂直平 分。 2. 下图是轴对称图形,相等的线段 是 AB=CD,BE=CE ,相等的角 ∠B=∠C 。
A E D
第七章 生活中的轴对称
7.3
探索轴对称图形的性质
六汪中学
樊建栋
如图,△ABC与△A′ B ′ C′ 成轴对称,观察动画回 答下列问题:
′ ⑴连接点A与点A 的线段 与对称轴有什么关系? 连接点B与点B′ 的线段呢? ′ ′ ′ ⑵线段AB与线段A B′ 有什么关系?AC与A C 呢? ⑶∠A与∠A′ 有什么关系?∠B与∠B′ 呢?
实战演练
1 . 如图,已知点P是∠AOB内任意一点, 点P1,P关于OA对称,点P2,P关 于OB对称。连接P1P2,分别交OA,OB于 C, D。连接PC,PD。若P1P2=10cm, 则△PCD的周长为 10cm 。 . p1 A C p
.
O
B
Байду номын сангаас
D
. p2
实战演练
2 . 如图,△ABC与△DEF关于直线L成轴对称。 ①请写出其中相等的线段; ②如果△ABC的面积为6cm,且DE=3cm, 求△ABC中AB边上的高h。
实战演练
6. 已知互不平行的两条线段AB,CD关于直线l 对称,AB,CD所在直线交于点P,下列结论中: ①AB=CD;②点P在直线l上; ③若A,C是对 称点,则l垂直平分线段AC; ④若B,D是对称 点,则PB=PD 。其中正确的结论有( ) D A. C. 1个 3个 B. D. 2个 4个
实战演练
1. 若直角三角形是轴对称图形,这起三 个内角的度数为 45°, 45°,90°。
实战演练
2 . 学完轴对称的性质后,小明认为:关于 直线MN对称的两个图形全等;小颖认为: 若△ABC与△DEF关于MN对称,则 △ABC是轴对称图形;小刚认为:AD是 △ABC的中线,若△ABC不是等腰三角形, 则△ABC关于直线AD对称的图形不存在。 你认为他们谁对( D ) A. 小明和小刚 C. 小刚 B. 小明和小颖 D. 小明
B
C
实战演练
3.两个图形关于某直线对称,对称点一定 ( D ) A.这直线的两旁 B.这直线的同旁 C.这直线上 D.这直线两旁或这直线上 4.轴对称图形沿对称轴对折后,对称轴两旁的 部分( A ) A.完全重合 C.两者都有 B.不完全重合
实战演练
5. 下面说法中正确的是( C )
A.设A,B关于直线MN对称,则AB垂 直平分MN。 B.如果△ABC≌△DEF,则一定存在一条 直线MN,使△ABC与△DEF关于MN 对称。 C.如果一个三角形是轴对称图形,且对称 轴不止一条,则它是等边三角形。 D.两个图形关于MN对称,则这两个图形 分别在MN的两侧。
L
实战演练
2 . 如图,要在河边修建一个水泵站向A,B两 地送水,修在什么地方所用的水管最短?
A
A′
随堂小结
• 1. 通过这堂课的学习,你知道成 轴对称的图形有哪些性质? • 2. 你学会用轴对称的性质解决哪 些问题?
作业:
1.习题7.4 知识技能 2.小组合作完成数学理解第2题
相关文档
最新文档