各种有趣的分形

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种有趣的分形

我们看到正方形,圆,球等物体时,不仅头脑里会迅速反映出它是什么,同时,只要我们有足够的数学知识,我们头脑中也反映出它的数学概念,如正方形是每边长度相等的四边形,圆是平面上与某一点距离相等的点的集合,等等。

但是,当我们看到一个山的形状时,我们会想到什么?"这是山",没错,山是如此的不同于其他景象,以至于你如果绘画水平不高,根本画不出象山的东西。可是,山到底是什么?它既不是三角形,也不是球,我们甚至不能说明山具有怎样的几何轮廓,但为什么我们却有如此直观而又强烈的山的印象?分形的创始人是曼德布洛特思考了这个问题。让

图中的风景图片又是说明分形的另一

很好的例子。这张美丽的图片是利用分

形技术生成的。在生成自然真实的景物

中,分形具有独特的优势,因为分形可

以很好地构建自然景物的模型。

这是一棵厥类植物,仔细观察,你会发

现,它的每个枝杈都在外形上和整体相

同,仅仅在尺寸上小了一些。而枝杈的

枝杈也和整体相同,只是变得更加小

了。

Sierpinski三角形具有严格的自相似特

Kohn雪花具有严格的自相似特性

分维及分形的定义

分维概念的提出

对于欧几里得几何所描述的整形来说,可以由长度、面积、体积来测度。但用这种办法对分形的层层细节做出测定是不可能的。曼德尔布罗特放弃了这些测定而转向了维数概念。分形的主要几何特征是关于它的结构的不规则性和复杂性,主要特征量应该是关于它的不规则性和复杂性程度的度量,这可用“维数”来表征。维数是几何形体的一种重要性质,有其丰富的内涵。整形几何学描述的都是有整数维的对象:点是零维的,线是一维的,面是二维的,体是三维的。这种几何对象即使做拉伸、压缩、折叠、扭曲等变换,它们的维数也是不变的;这种维数称为“拓扑维”,记为d。例如当把一张地图卷成筒,它仍然是一个二维信息载体;一根绳子团成团,仍然是一维结构。但曼德尔布罗特认为,在分形世界里,维数却不一定是整数的。特别是由于分形几何对象更为不规则,更为粗糙,更为破碎,所以它的分数维(简称“分维”,记为D)不小于它的拓扑维,即D≥d。

维数和测量有密切关系。如为了测一平面图形的面积,就要用一个边长为l、面积为l2的标准面元去覆盖它,所得的数目就是所测的面积。

如果用长度l去测面积,就会得到无穷大;而如果用l3去测这块面积,结果就是零。这就表明,用n维的标准体l n去测量一个几何对象,只当n与拓扑维数d一致时,才能得出有限的数值。如果n<d,就会得到无穷大;如果n>d,则结果为零。分数维也是按照这个要求来定义的。由于分形的复杂性有多种不同类型,所以可以提出不同定义的分维概念,从不同的角度表示分形的不规则性。通常用的是“容量维”。简单地说,分维所表示的不规整程度,相当于一个物体占领空间的本领。一条光滑的一维直线,完全不能占领空间;但是“科赫曲线”却有无穷的长度,比光滑的直线有更多的折皱,拥挤在一个有限的面积里,的确占领了空间,它已不同于一条直线,但又小于一个平面。所以它大于一维,又小于二维,它的容量维为1.2618,这看来是理所当然的。海岸线的分维数通常在1.15到1.25之间。曼德尔布罗特指出,对于各种分形来说,即使在不同的尺度上,用分维表示的不规整程度却是一个常量。这真是一个令人惊奇的性质,也表明“分维”概念的客观现实特性。分维所表征的正是大自然的规则的不规则性。一个分形的曲线意味着一种有组织的结构,这个结构隐藏在奇特怪异的形状之中。

分数维概念

我们知道0维是

点,一维是线,二维

是面,三维是空间。

那么,谁能告诉我

1.5维是什么? 一条直线段是一维的,由四条这样的直线段组成的正方形是二维的。六个这样的正方形组成的正方体是三维的。直线的长度数值,正方形的面积数值和立方体的体积数值都和我们测量的单位有关。测量的单位也往往是我们所能分辨的最小单位。假设我们的分辨能力增加了一倍,因此我们把直线段长度单位减小到原单位的一半,直线段长度的计量值就变为原来的两倍,正方形面积就变为原来的四倍,体积则变为原来的八倍。我们有下式:

log4/log2=2 log8/log2=3

这里的二和三不是巧合,这是另一种维数的定义:测度维的概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从

而突破了一般拓扑集维数为整数的界限。

如果某图形是由把原图缩小为1/λ的相似的b个图形所组成,有:λ^D=k

D即维数D=logk/logλ

其中的λ为线度的放大倍数,K为“体积”的放大倍数。

回到海岸线长度的问题。当用直线段来近似曲线时,长度单位减为原来的一半往往意味着我们可以用长度为原来的二分之一的直线段来近似曲线。这时,海岸线长度增加程度近似于一个固定的倍数。对于英国海岸线来说,其值约为 2.7,而log2.7/log2=1.41,1.41就是英国海岸线的维数。1.41由于是一个分式所得出的比值,因此人们称之为分数维。还有其他一些分数维的定义方法,但得出的结果都比较近似。分数维是衡量分形的基本参数之一。

自然界的山,其分形维数在2.2维左右,但从2.1维到2.5维画出来的都有一定的山的效果.

下面详细介绍分维及计算

1)新的维数(全维数:整数维+分维)

a.由欧氏几何的"整数维"引出的非欧几何----分维:

a).欧氏几何的"整数维"

欧氏几何学是一门具有2000多年历史的数学分支,他是以规整几何图形为其研究对象的.有线性和曲线两大类.这些规整几何图形的点,直线,平面图形(曲线),空间图形的维数(欧氏维数)都是整数维,分别为0,1,2,3.对规整几何图形的几何测量是指长度,面积和体积的测量.则上述两类几何图形的测量结果,可以归纳简化表述为如下两点:

i. 长度=l,面积=l2 ,体积=l3

ii.长度(半径)=r1,面积=πr2,(球)体积=(4/3)πr3

上述各种关系的量纲分别是长度单位l的1,2,3次方,即这些方次恰与该几何图形的欧氏维数相等,并且是整数.

归结上述两点,各类几何图形的测量都是以长度l为基础的.所以,欧氏几何中对规整几何图形的测量,可以概括表述为

长度=l 面积A=al2体积V=bl3

式中a和b为常数,称为几何因子,他与具体的几何图形的形状有关.如圆a=π;球b=4π/3. 以上都是欧几里得几何规则图形的整数维.而对于不规则的非欧几何图形,其维数关系也就不那末规整了,即欧几里得测

相关文档
最新文档