八年级数学上册_一次函数说课稿_北师大版
北师大版八年级数学上册:4.3《一次函数的图象》说课稿
北师大版八年级数学上册:4.3《一次函数的图象》说课稿一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4章第3节的内容。
本节课主要介绍了一次函数的图象特点,以及如何通过图象来分析一次函数的性质。
教材通过生动的实例,引导学生探究一次函数图象的规律,培养学生的观察能力、思考能力和实践能力。
二. 学情分析八年级的学生已经掌握了函数的基本概念,一次函数的解析式也有一定的了解。
但在实际操作中,对一次函数图象的认识和分析还相对薄弱。
因此,在教学过程中,要注重引导学生通过观察、实践来理解一次函数图象的特点,提高学生对一次函数图象的分析能力。
三. 说教学目标1.知识与技能目标:让学生掌握一次函数图象的性质,能够通过图象来分析一次函数的特点。
2.过程与方法目标:通过观察、实践,培养学生的观察能力、思考能力和实践能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神,使学生在探究过程中体验到数学的乐趣。
四. 说教学重难点1.教学重点:一次函数图象的性质及其应用。
2.教学难点:如何引导学生通过观察、实践来理解一次函数图象的特点。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际生活中的图片,引导学生关注一次函数图象在现实生活中的应用,激发学生的学习兴趣。
2.探究一次函数图象的性质:让学生观察、分析实例,引导学生发现一次函数图象的规律,总结一次函数图象的特点。
3.小组讨论:让学生分小组讨论一次函数图象在实际问题中的应用,培养学生解决问题的能力。
4.巩固提高:通过练习题,让学生运用所学知识分析一次函数图象,提高学生的实践能力。
5.总结:对本节课的内容进行总结,强调一次函数图象的性质及其在实际问题中的应用。
七. 说板书设计板书设计要清晰、简洁,突出一次函数图象的性质。
北师大版数学八年级上册4《一次函数的应用》说课稿3
北师大版数学八年级上册4《一次函数的应用》说课稿3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4节的内容。
本节主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。
教材通过实例引导学生认识一次函数的图像和性质,以及如何用一次函数解决实际问题。
二. 学情分析八年级的学生已经学习了初中数学的前置知识,对函数的概念和性质有了一定的了解。
但学生在解决实际问题时,往往不知道如何将数学知识与实际问题相结合。
因此,在教学过程中,教师需要引导学生将数学知识运用到实际问题中,提高学生的应用能力。
三. 说教学目标1.让学生了解一次函数在实际生活中的应用,体会数学与生活的紧密联系。
2.培养学生用数学的眼光观察生活,提高学生的数学应用能力。
3.帮助学生掌握一次函数的图像和性质,为后续学习打下基础。
四. 说教学重难点1.教学重点:一次函数在实际生活中的应用,一次函数的图像和性质。
2.教学难点:如何将一次函数与实际问题相结合,解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律。
2.利用多媒体课件,展示一次函数的图像,帮助学生直观理解一次函数的性质。
3.创设生活情境,让学生在实践中感受一次函数的应用。
4.分组讨论与合作,培养学生团队合作精神,提高学生的解决问题能力。
六. 说教学过程1.导入:通过展示实际问题,引导学生思考如何用数学知识解决问题。
2.新课导入:介绍一次函数的定义和性质,让学生了解一次函数的基本概念。
3.实例讲解:通过生活实例,讲解一次函数在实际中的应用,让学生体会数学与生活的联系。
4.课堂练习:让学生独立解决实际问题,巩固一次函数的应用。
5.分组讨论:让学生围绕实际问题展开讨论,探讨如何用一次函数解决问题。
6.总结提升:总结一次函数的图像和性质,强化学生对一次函数的认识。
7.课后作业:布置相关练习题,巩固课堂所学知识。
七. 说板书设计板书设计应突出一次函数的图像和性质,以及一次函数在实际中的应用。
北师大版数学八年级上册2《一次函数》说课稿4
北师大版数学八年级上册2《一次函数》说课稿4一. 教材分析北师大版数学八年级上册2《一次函数》是学生在学习了初中数学基础知识后,进一步深入研究函数的一次函数部分。
本节课的主要内容是让学生了解一次函数的定义、性质和图像,以及一次函数在实际生活中的应用。
通过本节课的学习,学生能够掌握一次函数的基本知识,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了初中数学的一些基础知识,如代数、几何等。
但对于一次函数的认识可能还比较模糊,对一次函数的应用更是缺乏了解。
因此,在教学过程中,需要注重对学生基础知识点的巩固,并通过生动的实例让学生感受一次函数在实际生活中的应用。
三. 说教学目标1.知识与技能:了解一次函数的定义、性质和图像,会运用一次函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生自主学习的能力和合作精神。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和解决问题的能力。
四. 说教学重难点1.教学重点:一次函数的定义、性质和图像。
2.教学难点:一次函数在实际生活中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等。
2.教学手段:多媒体课件、黑板、粉笔、教学卡片等。
六. 说教学过程1.导入:通过一个实际问题引入一次函数的概念,激发学生的兴趣。
2.自主学习:让学生通过阅读教材,了解一次函数的定义和性质。
3.课堂讲解:讲解一次函数的图像特点,并通过实例让学生感受一次函数在实际生活中的应用。
4.小组讨论:让学生分组讨论,分享各自对一次函数的理解和应用。
5.巩固练习:布置一些相关的练习题,让学生加深对一次函数知识的理解。
6.课堂小结:对本节课的主要内容进行总结,强调一次函数在实际生活中的重要性。
七. 说板书设计板书设计要简洁明了,突出一次函数的定义、性质和图像。
可以采用流程图、等形式,帮助学生直观地理解一次函数。
八. 说教学评价教学评价可以从学生的课堂表现、练习成绩和课后反馈等方面进行。
北师大版数学八年级上册1《函数》说课稿2
北师大版数学八年级上册1《函数》说课稿2一. 教材分析北师大版数学八年级上册1《函数》是学生在初中阶段首次接触函数概念和性质的重要章节。
本章内容主要包括函数的定义、函数的性质、一次函数、二次函数和反比例函数等。
这些内容不仅是学生对数学知识的拓展,也是学生解决实际问题的重要工具。
在本章的学习中,学生将掌握函数的基本概念和性质,能够理解和运用函数解决实际问题。
通过对一次函数、二次函数和反比例函数的学习,学生将能够理解不同类型函数的特点和应用。
此外,本章还涉及到函数图象的绘制和分析,使学生能够通过图象更好地理解和运用函数。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学知识有一定的理解和运用能力。
然而,由于函数概念和性质较为抽象,学生可能对其理解和运用存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,及时解答学生的疑问,帮助学生理解和掌握函数知识。
同时,学生在学习函数的过程中,可能存在对函数图象的理解和绘制方面的困难。
因此,在教学过程中,需要加强对函数图象的讲解和分析,让学生能够通过图象更好地理解和运用函数。
三. 说教学目标1.知识与技能:学生能够理解函数的基本概念和性质,掌握一次函数、二次函数和反比例函数的定义和性质,能够通过函数解决实际问题。
2.过程与方法:学生能够通过观察、分析和绘制函数图象,培养数形结合的数学思想方法。
3.情感态度与价值观:学生能够认识函数在实际生活中的重要性,培养对数学的兴趣和好奇心。
四. 说教学重难点1.教学重点:函数的基本概念和性质,一次函数、二次函数和反比例函数的定义和性质。
2.教学难点:函数图象的绘制和分析,对函数性质的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生主动探索和解决问题,培养学生的数学思维能力。
2.教学手段:利用多媒体课件和教学辅助工具,直观地展示函数图象和性质,帮助学生理解和掌握函数知识。
六. 说教学过程1.导入:通过生活中的实际问题,引发学生对函数的思考,激发学生的学习兴趣。
八年级数学上册第四章一次函数:一次函数与正比例函数说课稿新版北师大版
八年级数学上册说课稿新版北师大版:4.2 一次函数与正比例函数一、教材分析:这节课是九年义务教育北师大版八年级上册第四章第二节,在七年级下学期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。
函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容。
新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;一次函数的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习奠定了基础。
二、教学目标分析1、知识技能:理解一次函数与正比例函数的概念;能根据所给条件写出简单的一次函数表达式.2、数学思考:如何根据所给条件写出正比例函数和简单一次函数的表达式.3、问题解决:通过具体情境列出相应的正比例函数与简单的一次函数表达式.4、情感态度与价值观:感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣在探索过程中体验成功的喜悦,树立学习的自信心.三、教学重点难点分析根据教材分析、教学目标分析本节课的重点是从具体情境中列出相应地一函数表达式,从而抽象出一次函数的概念. 难点则是如何根据实际情景写出一次函数的表达式,发展学生的抽象思维能力.为了突出重点、突破难点。
利多媒体课件。
让学生亲自动手操作,积极参与并主动探索,帮助学生直观地理解一次函数与正比例函数.四、教学方法鉴于教材特点及八年级学生的年龄特点、心理特征和认知水平,采用“问题教学法和对比教学法”,用层层推进的提问启发学生深入思考,主动探究,主动获取知识,给学生充分的自主探索时间.调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,整个学习过程中教师扮演的角色是组织者、引导者,调控课堂,适当点拨.五、学习方法根据本节教材内容和学生的认识水平,在教学过程中,我采用学案导学的模式,学案能让学生知道老师的授课目标、意图,让学生的学习能做到有备而来,给学生以知情权、参与权.使课堂容量变大,更高效;首先课前完成预习学案,独立完成,做到诚实守信、相信自己、锻炼自己.第二,了解探究学案,使得自己在课堂上变被动听讲为主动探究.通过预习把自己的疑惑记录下来,以便在课堂上质疑,找到解决问题的办法.组织学生参与“探究——讨论——总结——巩固练习”的学习活动过程.由于学生认知水平,学习能力以及学好函数的信心等方面存在差异,所以探讨活动的效果也会因人而异.这一点我们应该尊重学生的个体差异,尽可能让每个学生都学有所获.使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙. 六、教学过程本节课设计了七个环节: 第一环节:复习引入;第二环节:新课讲述;第三环节:巩固练习;第四环节:知识提高;第五环节:反馈练习;第六环节:课堂小结;第七环节:布置作业.第一环节:复习引入内容:复习上节课学习的函数,教师提出问题:(1)什么是函数? (2)函数有哪些表示方式?(3)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢?设计意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识.若课堂气氛不够浓厚,也可由教师先举例,让学生来列函数表达式,激发学生的学习激情,再让学生举例:(如可补充如下习题)①假设某学生骑自行车的速度为10km/h,则他骑自行车用的时间t(h)和所走过的路程s之间的关系是什么?②上网费用是2元/小时,则上网t(小时),费用y(元)的关系式是什么?第二环节:新课讲述例1 例2总结归纳:通过观察、探索、总结,归纳出一次函数与正比例函数的概念:一般地,若两个变量x,y间的关系式可以表示成y=kx+b( k,b为常数, k≠0)的形式,则称y是x的一次函数( x是自变量,y 为因变量).特别地,当b=0时,则y是x 的正比例函数.设计意图:从生动有趣的问题情景(弹簧的长度、汽车油箱中的余油量)出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.第三环节:巩固练习设计意图:对本节知识进行巩固练习.学生基本能较好的独立完成练习题,收到了较好的教学效果.。
北师大版数学八年级上册《一次函数的图象与性质》说课稿2
北师大版数学八年级上册《一次函数的图象与性质》说课稿2一. 教材分析《一次函数的图象与性质》是北师大版数学八年级上册第五章的内容,本节内容是在学生已经掌握了函数的概念、一次函数的定义和图象的基础知识上进行的。
本节内容的主要目的是让学生了解一次函数的图象与性质,会利用一次函数的图象解决一些实际问题。
本节内容共分为三个部分:一次函数的图象、一次函数的性质和一次函数图象的应用。
一次函数的图象主要让学生了解一次函数图象的形状和特点;一次函数的性质主要让学生了解一次函数的单调性、截距和斜率的关系等;一次函数图象的应用主要是让学生学会利用一次函数图象解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经掌握了函数的概念、一次函数的定义和图象的基础知识,对于这些基础知识的理解和运用已经比较熟练。
但是,对于一次函数的图象与性质的深入理解和运用还需要加强。
此外,学生对于数学知识的应用能力还需要进一步提高。
三. 说教学目标1.知识与技能:了解一次函数的图象与性质,学会利用一次函数的图象解决一些实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探索一次函数的图象与性质,提高学生的逻辑思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:一次函数的图象与性质的理解和运用。
2.教学难点:一次函数图象的应用,学生的实际问题解决能力的培养。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过复习函数的概念和一次函数的定义,引出一次函数的图象与性质的学习。
2.新课导入:介绍一次函数的图象,让学生观察和分析一次函数图象的形状和特点。
3.探索与交流:让学生通过小组合作学习,探索一次函数的性质,包括单调性、截距和斜率的关系等。
4.应用与拓展:让学生通过解决实际问题,学会利用一次函数的图象解决一些实际问题。
北师大版八年级上册一次函数的应用说课稿
北师大版八年级上册一次函数的应用说课稿一. 教材分析北师大版八年级上册数学教材中,一次函数的应用是本节课的主要内容。
一次函数是初中数学中的重要知识点,也是解决实际问题的重要工具。
本节课通过引入一次函数的概念和性质,使学生能够理解和掌握一次函数的基本特征,并能够运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了代数知识,对数学概念和符号有一定的理解。
但是,对于一次函数的应用,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于解决实际问题感到困惑,需要教师进行引导和指导。
三. 说教学目标1.知识与技能目标:学生能够理解一次函数的概念和性质,能够运用一次函数解决实际问题。
2.过程与方法目标:学生能够通过实例和练习,掌握一次函数的应用方法,培养解决实际问题的能力。
3.情感态度与价值观目标:学生能够对数学产生兴趣和自信心,培养积极的学习态度和合作精神。
四. 说教学重难点1.教学重点:一次函数的概念和性质,一次函数的应用方法。
2.教学难点:一次函数在实际问题中的应用,理解函数的图像和性质。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实例和练习,引导学生自主学习和合作学习。
2.教学手段:利用多媒体课件和板书,展示一次函数的图像和性质,帮助学生直观理解。
六. 说教学过程1.导入:通过引入一次函数的实例,激发学生的兴趣,引导学生思考一次函数的应用。
2.新课导入:介绍一次函数的概念和性质,引导学生通过实例和练习来理解和掌握一次函数的应用方法。
3.课堂讲解:通过多媒体课件和板书,展示一次函数的图像和性质,引导学生直观理解。
4.练习与讨论:学生进行练习,教师进行个别指导和解答疑问,引导学生通过合作学习来解决问题。
5.总结与反思:教师引导学生总结一次函数的应用方法,反思自己在学习过程中的收获和不足。
七. 说板书设计板书设计要简洁明了,突出一次函数的概念和性质,以及一次函数的应用方法。
北师大版数学八年级上册《1函数》说课稿1
北师大版数学八年级上册《1 函数》说课稿1一. 教材分析北师大版数学八年级上册《1 函数》这一节的内容主要包括函数的定义、函数的性质和函数图像等。
这部分内容是学生学习初中数学的重要基础,也是后续学习高中数学的关键。
在本节课中,学生需要理解函数的概念,掌握函数的性质,并能通过函数图像来观察和分析函数的特点。
二. 学情分析在八年级的学生中,他们对数学已经有了一定的基础,但函数的概念和性质可能对他们来说比较抽象,难以理解。
因此,在教学过程中,我需要注重引导学生通过实际例子来理解和掌握函数的概念和性质,并通过图形来直观地展示函数的特点。
三. 说教学目标本节课的教学目标包括:1.理解函数的定义,掌握函数的性质。
2.能够通过实际例子来分析和解决问题,提高解决问题的能力。
3.培养学生的观察能力和思维能力,提高学生的数学素养。
四. 说教学重难点本节课的教学重难点包括:1.函数的定义和性质的理解。
2.如何引导学生通过实际例子来理解和掌握函数的概念和性质。
五. 说教学方法与手段在本节课的教学中,我将采用以下教学方法和手段:1.采用问题驱动的教学方法,引导学生通过思考和讨论来理解和掌握函数的概念和性质。
2.使用多媒体教学手段,通过动画和图形来直观地展示函数的特点,帮助学生更好地理解和掌握函数的概念和性质。
六. 说教学过程1.导入:通过一个实际例子,引出函数的概念,激发学生的兴趣。
2.新课导入:讲解函数的定义和性质,引导学生通过实际例子来理解和掌握函数的概念和性质。
3.实例分析:分析一些具体的函数实例,让学生通过观察和思考来理解函数的特点。
4.练习与讨论:布置一些练习题,让学生通过独立思考和小组讨论来巩固和加深对函数的理解。
5.总结与反思:对本节课的内容进行总结,引导学生反思自己在学习过程中的收获和不足。
七. 说板书设计板书设计如下:1.函数的定义2.函数的性质在板书设计中,我会用简洁的语言和清晰的图表来展示函数的概念和性质,帮助学生更好地理解和掌握。
北师版一次函数的应用说课稿9篇
北师版一次函数的应用说课稿9篇北师版一次函数的应用说课稿精选篇1大家好!我今天说课的内容是八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。
一、教材分析1、教材地位和作用本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。
2、教学目标分析根据新课程标准,我确定以下教学目标:知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。
过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。
情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。
3、教学重难点本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。
二、教法学法分析八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。
根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术————多媒体和实物投影。
三、教学过程分析本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。
为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:(1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为m=6t(2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走_小时,则他离开广场中心的距离y与_之间的函数关系式为y=—2_(3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则_天后小芳的储蓄罐里有y元钱,那么y与_之间的函数关系式为y=2_+3(4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为Q=936—312t然后请学生观察这些函数,它们有哪些共同特征?m=6t;y=—2_;y=2_+3;Q=936—312t学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。
北师版八年级数学上册一次函数说课稿1
一次函数说课稿(二)各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:一、说教材(一)本节内容在教材中的地位和作用本课的内容是北师大版八年级上册第4章第2节第2课时,就是课本115到116页的内容。
在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。
本节课安排在正比例函数的图象与一次函数的概念之后。
通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。
它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。
本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。
作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
(二)说教学目标基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:知识技能:1、理解直线y=kx+b与y=kx之间的位置关系;2、会利用两个合适的点画出一次函数的图象;3、掌握一次函数的性质.数学思考:1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。
情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
(三)说教学重点难点教学重点:一次函数的图象和性质。
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。
二、说教法学法1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
因此我选用了以下教学方法:1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。
北师大版数学八年级上册2《一次函数》说课稿2
北师大版数学八年级上册2《一次函数》说课稿2一. 教材分析《一次函数》是北师大版数学八年级上册第二单元的内容。
这部分内容是在学生已经掌握了代数基本知识的基础上进行的一次函数的学习。
一次函数是初中数学中的重要内容,它不仅在日常生活中有着广泛的应用,而且也是进一步学习二次函数、函数图像等知识的基础。
本节课的主要内容有一是一次函数的定义,即形如y=kx+b(k≠0,k、b是常数)的函数;二是一次函数的性质,包括图像是一条直线,斜率k和截距b的物理意义等。
二. 学情分析学生在学习这部分内容时,已经具备了代数基本知识,对函数有一定的认识。
但一次函数的定义和性质可能对学生来说比较抽象,需要通过具体例子和实际应用来理解和掌握。
三. 说教学目标1.知识与技能目标:让学生掌握一次函数的定义,了解一次函数的性质,能够绘制一次函数的图像。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生自主学习和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。
四. 说教学重难点1.教学重点:一次函数的定义和性质。
2.教学难点:一次函数图像的绘制和理解斜率、截距的物理意义。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学。
六. 说教学过程1.导入新课:通过生活中的实例,如电梯的上升和下降,引入一次函数的概念。
2.讲解新课:讲解一次函数的定义,通过示例让学生理解一次函数的性质,如图像是一条直线,斜率和截距的物理意义等。
3.实践操作:让学生利用数学软件或手工绘制一次函数的图像,加深对一次函数性质的理解。
4.巩固练习:布置一些相关的练习题,让学生巩固所学知识。
5.总结反思:让学生总结一次函数的特点和应用,反思自己在学习过程中的收获和不足。
七. 说板书设计板书设计要清晰、简洁,能够突出一次函数的重要概念和性质。
北师大版八年级数学上册:4.4《一次函数的应用》说课稿1
北师大版八年级数学上册:4.4《一次函数的应用》说课稿1一. 教材分析《一次函数的应用》是北师大版八年级数学上册第4章“一次函数”的最后一节内容。
在此之前,学生已经学习了直线、射线、线段的性质,一次函数的定义、性质和图象,以及一次函数与方程、不等式的关系。
本节内容是对一次函数知识的应用和拓展,旨在让学生理解和掌握一次函数在实际问题中的应用,培养学生的数学应用能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对一次函数的知识有一定的了解。
但学生在解决实际问题时,往往难以将数学知识与实际问题相结合,对一次函数在实际问题中的应用还不够熟练。
因此,在教学过程中,需要关注学生的认知水平,引导学生将一次函数知识应用于实际问题,提高学生的数学应用能力。
三. 说教学目标1.知识与技能目标:使学生理解一次函数在实际问题中的应用,掌握一次函数解决实际问题的方法。
2.过程与方法目标:通过解决实际问题,培养学生将数学知识应用于实际问题的能力,提高学生的数学素养。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的创新精神和团队合作意识。
四. 说教学重难点1.教学重点:一次函数在实际问题中的应用。
2.教学难点:如何将实际问题转化为一次函数问题,以及一次函数解决实际问题的方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过一个实际问题,引入一次函数在实际中的应用,激发学生的学习兴趣。
2.知识讲解:讲解一次函数解决实际问题的基本方法,引导学生理解一次函数在实际问题中的应用。
3.案例分析:分析几个典型的实际问题,引导学生运用一次函数解决实际问题。
4.小组讨论:让学生分组讨论,分享各自解决问题的方法和经验,培养学生团队合作意识。
5.总结提升:对一次函数在实际问题中的应用进行总结,强调一次函数解决实际问题的方法。
北师大版数学八年级上册1《函数》说课稿1
北师大版数学八年级上册1《函数》说课稿1一. 教材分析北师大版数学八年级上册1《函数》这一节的内容,主要介绍了函数的概念、性质以及一些基本的函数类型。
这部分内容是整个初中数学的重要基础,对于学生理解数学的本质,培养逻辑思维能力具有重要意义。
教材通过丰富的例题和练习题,帮助学生掌握函数的基本知识,并能运用函数解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有了初步的了解。
但是,对于函数这一抽象的数学概念,学生可能一开始感到困惑,难以理解。
因此,在教学过程中,需要注重引导学生从具体的事物中抽象出函数的概念,并通过大量的实例让学生体会函数的性质。
三. 说教学目标1.知识与技能目标:学生能够理解函数的概念,掌握函数的性质,了解一些基本的函数类型,并能运用函数解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,学生能够自主探索函数的性质,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够体验数学与生活的紧密联系,培养对数学的兴趣和好奇心。
四. 说教学重难点1.教学重点:函数的概念、性质和基本类型的理解。
2.教学难点:函数的概念的抽象理解,函数性质的推导和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的逻辑思维能力和解决问题的能力。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学的直观性和趣味性。
六. 说教学过程1.导入:通过生活中的实例,引导学生感受函数的存在,激发学生的兴趣。
2.新课导入:介绍函数的概念,引导学生从具体的事物中抽象出函数的概念。
3.知识讲解:讲解函数的性质,通过例题和练习题让学生体会函数的性质。
4.实例分析:分析一些实际的例子,让学生了解函数在生活中的应用。
5.小组讨论:学生分组讨论,探索函数的性质,并分享自己的发现。
八年级数学上册 一次函数说课稿 北师大版
八年级数学上册一次函数说课稿北师大版
撰写人:__________________
时 间:__________________
(一)教材的地位和作用
从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。而一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
1、见下表:
x
-2
-1
0
1
2
……
y
-5
-2
1
4
7
……
根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]
(二)教学目标
1.知识目标
(1)理解一次函数和正比例函数的概念,以及它们之间的关系。
(2)能根据所给条件写出简单的一次函数表达式。
2.能力目标
(1)经历一般规律的探索过程、发展学生的抽象思维能力。
(2)通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
北师大版八年级数学上册:4.3《一次函数的图象》说课稿2
北师大版八年级数学上册:4.3《一次函数的图象》说课稿2一. 教材分析北师大版八年级数学上册4.3《一次函数的图象》这一节,是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行教学的。
本节课的主要内容是一次函数的图象,通过图象来研究一次函数的性质。
教材通过实例引入一次函数的图象,让学生通过观察、分析、归纳,理解并掌握一次函数图象的特点,从而提高学生的数学素养。
二. 学情分析八年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有一定的了解。
但是,学生对一次函数图象的认识还不够深入,需要通过实例和活动来帮助学生理解和掌握。
此外,学生对图象的观察和分析能力还需要进一步提高。
三. 说教学目标1.知识与技能目标:理解一次函数图象的概念,掌握一次函数图象的性质,能够画出一次函数的图象。
2.过程与方法目标:通过观察、分析、归纳,培养学生的逻辑思维能力和数学素养。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。
四. 说教学重难点1.教学重点:一次函数图象的概念和性质。
2.教学难点:一次函数图象的性质的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法、小组合作法等。
2.教学手段:多媒体课件、黑板、粉笔、教学卡片等。
六. 说教学过程1.导入:通过一个实际问题,引入一次函数图象的概念。
2.新课:讲解一次函数图象的性质,通过实例和活动,让学生理解和掌握。
3.练习:让学生通过练习,巩固所学知识。
4.拓展:引导学生思考一次函数图象在实际生活中的应用。
5.小结:总结本节课的主要内容,强调一次函数图象的性质。
七. 说板书设计板书设计如下:一次函数的图象1.图象的概念2.图象的性质八. 说教学评价通过课堂表现、练习成绩、学生反馈等方式进行评价。
重点关注学生对一次函数图象的理解和应用能力。
九. 说教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
北师大版数学八年级上册3《一次函数的图象》说课稿5
北师大版数学八年级上册3《一次函数的图象》说课稿5一. 教材分析《一次函数的图象》是北师大版数学八年级上册第三章的内容。
本节课主要让学生掌握一次函数的图象特点,学会如何绘制一次函数的图象,并能够通过图象分析一次函数的性质。
教材通过引入实际生活中的例子,激发学生的学习兴趣,让学生体会数学与生活的紧密联系。
在教材中,安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析八年级的学生已经学习了函数的基本概念,对函数有一定的认识。
但是,对于一次函数的图象,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出一次函数的图象,帮助学生建立函数图象的概念。
此外,学生需要掌握如何利用描点法绘制一次函数的图象,并能够通过图象分析一次函数的性质。
三. 说教学目标1.知识与技能目标:让学生掌握一次函数的图象特点,学会如何绘制一次函数的图象,并能够通过图象分析一次函数的性质。
2.过程与方法目标:通过实际问题引入一次函数的图象,培养学生从实际问题中抽象出函数图象的能力。
利用描点法绘制一次函数的图象,培养学生的动手操作能力。
3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,培养学生的学习兴趣和积极性。
四. 说教学重难点1.教学重点:一次函数的图象特点,绘制一次函数的图象方法。
2.教学难点:如何从实际问题中抽象出一次函数的图象,利用描点法绘制一次函数的图象。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,提高教学效果。
六. 说教学过程1.导入新课:通过一个实际问题,引入一次函数的图象,激发学生的学习兴趣。
2.知识讲解:讲解一次函数的图象特点,如何绘制一次函数的图象。
3.动手实践:让学生利用描点法绘制一次函数的图象,培养学生的动手操作能力。
4.案例分析:分析一些实际问题,引导学生从实际问题中抽象出一次函数的图象。
北师大版数学八年级上册3《一次函数的图象》说课稿4
北师大版数学八年级上册3《一次函数的图象》说课稿4一. 教材分析《一次函数的图象》是北师大版数学八年级上册第三节的内容。
本节课的主要内容是一次函数的图象及其性质。
一次函数是初中学段数学的重要内容,是学生从形象思维向抽象思维过渡的关键部分。
通过学习一次函数的图象,可以帮助学生更好地理解一次函数的性质,提高他们解决实际问题的能力。
二. 学情分析八年级的学生已经具备了一定的函数基础,对一次函数的概念和性质有一定的了解。
但学生在函数图象方面的认识和理解还相对较弱,需要通过具体的教学活动来提高他们的认知水平。
此外,学生的学习动机、学习习惯和学习方法等方面也存在一定的差异,需要在教学过程中给予关注和引导。
三. 说教学目标1.知识与技能目标:让学生掌握一次函数的图象及其性质,能够绘制一次函数的图象,并运用一次函数的图象解决实际问题。
2.过程与方法目标:通过观察、操作、探究等活动,培养学生的观察能力、动手能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极参与数学学习的积极性和自信心。
四. 说教学重难点1.教学重点:一次函数的图象及其性质。
2.教学难点:一次函数图象的绘制和运用。
五. 说教学方法与手段本节课采用问题驱动的教学方法,结合多媒体辅助教学手段,以学生为主体,教师为指导,引导学生通过观察、操作、探究等活动,发现一次函数图象的性质,提高他们的数学素养。
六. 说教学过程1.导入:通过复习一次函数的性质,引导学生思考一次函数的图象是什么样的,激发学生的学习兴趣。
2.新课:介绍一次函数的图象及其性质,引导学生通过观察、操作、探究等活动,发现一次函数图象的性质。
3.巩固:通过例题和练习题,帮助学生巩固一次函数图象的知识,提高他们的解题能力。
4.拓展:引导学生运用一次函数图象解决实际问题,提高他们的实际应用能力。
5.小结:对本节课的内容进行总结,帮助学生形成知识体系。
七. 说板书设计板书设计要简洁明了,突出一次函数的图象及其性质。
北师版八年级数学上册一次函数说课稿
一次函数说课稿(一)一次函数说课稿本节课主要从以下几个方面进行说课一、说教材二、说教法三、说学法四、说教学过程五、板书设计一、说教材教材分析。
一次函数是本章介绍的几种函数中最基本的一种。
学习了一次函数之后,学生对研究函数的基本方法有了一个初步的了解,再讨论二次函数和反比例函数的有关问题,就有基础了。
教学目标。
本课的教学目标是:1、知道一次函数与正比例函数的意义,以及它们之间的关系。
2、能写出实际问题中正比例关系与一次函数的解析式。
3、使学生了解正比例函数与一次函数的区别与联系,进而体会到事物间的特殊与一般的辨证关系。
教学重点和难点本节课的教学重点是:理解一次函数与正比例函数的概念。
教学难点是:一次函数与正比例函数的区别与联系。
二、说教法教是为了不教,因此在课堂上更重要的是教会学生如何学习、如何发现问题和解决问题,而不是老师把所有的知识都咬得“碎碎的”,一口一口地塞给学生。
因此,本节课,在教法上采用指导-自学的方式,让学生在教师的引导下进行自主学习。
三、说学法本节课主要以学生自学为主,因此通过本节课的教学,教给学生掌握从“特殊到一般”的认识规律去发现问题的方法。
同时培养学生自主思考问题,解决问题的能力。
四、说教学过程本节课的教学过程主要从以下几个方面入手:(一)复习引入、(二)自学新课、(三)检查总结、(四)当堂检测、( 五) 课堂小结。
(一)复习引入通过复习正比例函数的定义及图象性质,既检查了学生对已学知识的掌握情况,又让学生初步了解研究函数应从定义、图象、图象性质入手。
为后面学习一次函数、反比例函数、二次函数做铺垫。
(二)自学新课对于新课的学习,主要以学生为主,采取学生自学,教师巡回指导并检查的方式进行。
因此,在学生自学之前,先给出学习目标,为了防止有些学生没有重点,又给出了自学指导和导学案。
在学生自学新课的过程中,教师在行间巡视,督促学生按照老师的方法自学,及时表扬速度快、效果好的同学。
通过个别询问、讨论的形式,最大限度暴露学生在自学中存在的问题。
北师大版-数学-八年级上册-北师大版八年级上册《一次函数的应用》精品说课稿
北师大版八年级上册《一次函数的应用》精品说课稿一.说教材:(一)教材所处的地位和作用:《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第四章《一次函数》的第四IL本节内容安排了2个课时完成,本节为第一课时.主要是利用一次函数图象解决有关现实问题,本肖课将借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,通过本节课的学习,应该在图象信息的识别与分析中,提髙学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.(二)教学目标:知识与技能目标:1∙能通过函数图象获取信息,解决简单的实际问题:2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
过程与方法目标:1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;2.通过具体问题的解决,培养学生的数学应用能力;3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.情感与态度目标:1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.•教学重点一次函数图象的应用.•教学难点正确地根据图象获取信息,并解决现实生活中的有关问题.二.说学法教法:1、学情分析:学生已学习了一次函数及英图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全而、系统,所以还需通过具体实例来培养他们这方而的能力.2、教法:一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,并让学生展开充分的讨论,提倡从不同的角度思考问题,一方而力求让学生体会数学的广泛运用,另一方而, 在学科教学中渗透徳育教冇.在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议"、“想一想"的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有逍理,教师应给予鼓励和恰当的评价•通过分层练习,调动了不同学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,再进行点评。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数说课稿
斗古中学马思(一)教材的地位和作用
从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。
而一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标
1.知识目标
(1)理解一次函数和正比例函数的概念,以及它们之间的关系。
(2)能根据所给条件写出简单的一次函数表达式。
2.能力目标
(1)经历一般规律的探索过程、发展学生的抽象思维能力。
(2)通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
3.情感目标
(1)通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
(2)经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
(三)教材重点、难点
1、重点
(1)一次函数、正比例函数的概念及关系。
(2)根据具体情境所给的信息确定一次函数的表达式
2、难点
根据具体情境所给的信息确定一次函数的表达式接下来我来谈谈第二方面:教法与学法:
在本节课的教学中我准备采用的教学方法主要是指导——自学方式。
根据学生的理解能力和生理特征,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上,另一方面要创造条件和机会,让学生发表意见,发挥学生的主动性。
通过本节课的学习,教给学生从特殊到一般的认知规律去发现问题的解决方法,培养学生独立思考的能力和解决问题的能力。
下面是我说课的重点,也就是教学过程的设计、整节课我共设为四个环节:
第一个环节是创设问题,引领导入:
这一环节我通过设置两个问题引导学生概括出一次函数的概念。
问题1:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:
(2)你能写出x与y之间的关系式吗?
这一环节让学生带着问题去研究,找出函数和变量之间的关系,计算出对应值。
但是让学生写出x与y之间的关系式有一定的难度,学生出现一定的差异在所难免,教学中应该给予学生一定的思考空
间,组织学生进行小组交流,教师适当点拨,不要简单地“告诉”。
学生经过交流讨论会得出y=0.5x+3。
问题2:某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。
(1)完成下表:
你能写出x与y之间的关系吗?(y=100-0.18x或y=100-
50x)
这一问题让学生自主完成,对有困难的学生,教师适当给予帮助指导。
通过对上面两个问题的研究概括出一次函数的概念。
发现两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式。
并且自变量和因变量的指数都是一次。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当b=0时,称y是x的正比例函数。
第二个环节是例题讲解
这一环节我设计两个例题,在理解一次函数和正比例函数的概念的基础上,根据x与y之间的关系式区分一次函数和正比例函数,并能根据所给条件写出简单的一次函数表达式。
例1:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?
①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
②圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)
学生根据已有的知识经验写出x与y之间的关系式,并在对一次函数和正比例函数概念掌握的基础上判断分析(1)y=60x,y是x的
一次函数,也是x的正比例函数;(2)y=πx2,y不是x的正比例函数,也不是x的一次函数;(3)y=50+2x,y是x的一次函数,但不是x的正比例函数。
例2:我国现行个人工资薪金税征收办法规定:月收入低于1600元的部分不收税,月收入超过1600元但低于2100元的部分征收5%的所得税……如某人某月收入1960元,他应缴个人工资薪金所得税为(1960-1600)×5%=18(元)
①当月收入大于1600元而又小于2100元时,写出应缴所得税y (元)与月收入x(元)之间的关系式。
②某人某月收入为1760元,他应缴所得税多少元?
③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?
根据所给条件写出简单的一次函数表达式是本节课的重点有事难点,所以在解决这一问题时及时引导学生总结学习体会,教给学生掌握“从特殊到一般”的认识规律中发现问题的方法。
类比出一次函数关系式的一般式的求法,以此突破教学难点。
在学习过程中,教师巡视并予以个别指导,关注学生的个体发展。
经学生分析:
(1)当月收入大于1600元而小于2100元时,y=0.05×(x-1600);
(2)当x=1760时,y=0.05×(1760-1600)=8(元);
(3)设此人本月工资、薪金是x元,则19.2=0.05×(x-1600) X=1984
第三个环节是课堂练习
通过以上环节的学习,学生对本课知识应已能基本掌握,要让学生真正理解、准确运用,还是需要进行适量的训练,因此我安排了教材第184页第1、2题这样的练习,并将根据学生课堂上掌握的实际情况,适当补充有关练习,尤其是针对学生可能出问题,如:
1、见下表:
根据上表写出y与x之间的关系式是:________________,y是
否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用
水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/
米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。
设每户每月用水量为x米3,应缴水费y元。
(1)写出每月用水量不
超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是
否为一次函数。
(2)已知某户5月份的用水量为8米3,求该用户5
月份的水费。
[①y=0.6x,y=x-2.4,y是x的一次函数。
②y=8-2.4=5.6
(元)]
第四个环节是课后小节
引导学生回忆一次函数、正比例函数的概念及关系。
并能根据已
知简单信息,写出一次函数的表达式。
现在我谈一下本课的板书设计,
一次函数
1、y=0.5x+3 1、y=60x 1、y=0.05×(x-1600)
2、y=100-0.18x 2、y=πx2 2、y=0.05×
(1760-1600)=8(元)
y=kx+b(k,b为常数k≠0) 3、y=50+2x 3、19.2=0.05×(x-1600)
当b=0时,称y是x的正比例函数 x=1984 以上是我对《一次函数》一课的认识与教学设计,整个的设计力
图体现教学设计的结构性。
敬请各位评委予以指导,谢谢大家。