离散数学作业(相关知识)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 命题逻辑的基本概念

一、单项选择题

1.下列语句中不是命题的有( ).

A 9+5≤12 B. 1+3=5 C. 我用的电脑CPU 主频是1G 吗?D.我要努力学习。

2. 下列语句是真命题为( ).

A. 1+2=5当且仅当2是偶数

B. 如果1+2=3,则2是奇数

C. 如果1+2=5,则2是奇数

D. 你上网了吗?

3. 设命题公式)(r q p

∧→⌝,则使公式取真值为1的p ,q ,r 赋值分别是

( ) 0,0,1)D (0,1,0)C (1,0,0)B (0

,0,0)A ( 4. 命题公式q q p →∨)(为 ( )

(A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式

5. 设p:我将去市里,q :我有时间.

命题“我将去市里,仅当我有时间时”符号化为为( )

q p q p q p p q ⌝∨⌝↔→→)D ()C ()B ()A (6.设P :我听课,Q :我看小说. “我不能一边听课,一边看小说”的符号为( )

A. Q P ⌝→ ;

B. Q P →⌝;

C. P Q ⌝∧⌝ ;

D. )(Q P ∧⌝

二、判断下列语句是否是命题,若是命题是复合命题则请将其符号化

(1)中国有四大发明。

(2)2是有理数。

(3)“请进!”

(4)刘红和魏新是同学。

(5)a+b

(6)如果买不到飞机票,我哪儿也不去。

(8)侈而惰者贫,而力而俭者富。(韩非:《韩非子•显学》)

(9)火星上有生命。

(10)这朵玫瑰花多美丽啊!

二、将下列命题符号化,其中p:2<1,q:3<2

(1)只要2<1,就有3<2。

(2)如果2<1,则3≥2。

(3)只有2<1,才有3≥2。

(4)除非2<1,才有3≥2。

(5)除非2<1,否则3≥2。

(6)2<1仅当3<2。

三、将下列命题符号化

(1)小丽只能从筐里拿一个苹果或一个梨。

(2)王栋生于1992年或1993年。

四、设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。(1)p∨(q∧r)

(2)(p↔r)∧(﹁q∨s)

(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)

(4)(⌝r∧s)→(p∧⌝q)

五、用真值表判断下列公式的类型:

(1) p∧(p→q)∧(p→⌝q)

(2) (p∧r) ↔(⌝p∧⌝q)

(2)((p→q) ∧(q→r)) →(p→r)

第二章命题逻辑等值演算

一、填空

(1)给定两个命题公式A,B,若,则称A和B时等值的,记作A⇔B.

(2)德摩根律为:。(3)蕴涵等值式为。(4)由已知的等值式推演出另外一些等值式的过程称为。

二、用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ⌝(p∧q→q)

(2)(p→(p∨q))∨(p→r)

(3)(p∨q)→(p∧r)

三、用等值演算法证明下面等值式

(1)(p→q)∧(p→r)⇔(p→(q∧r))

(2)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)

三、用等值演算求下列公式的析取范式与合取范式。

(1)(⌝p→q)→(⌝q∨p)

(2)⌝(p→q)∧q∧r

(3)(p∨(q∧r))→(p∨q∨r)

第三章命题逻辑的推理理论

一、填空

1.数理逻辑的的主要任务是。

推理是指,前提是,结论是。

2.推理正确是指:

3.命题公式A

1,A

,2

, ,A

,k

推B的推理正确当且仅当

二、先把下列命题符号化,再写出前提、结论、推理的形式结构,然后用真值表法、等值演算法证明下列推理是正确的。

若今天是星期一,则明天是星期三。明天不是星期三,所以今天不是星期一。

三、自然推理系统下用直接法或用附加前提法或用归谬法构造推理证明

相关文档
最新文档