复合函数的单调性测试题(一)(含答案)

合集下载

2023年高三数学《函数的单调性与奇偶性》知识梳理与专项练习(含答案解析)

2023年高三数学《函数的单调性与奇偶性》知识梳理与专项练习(含答案解析)

2023年高三数学《函数的单调性与奇偶性》知识梳理与专项练习(含答案解析)知识梳理一 函数的单调性1. 单调性的定义一般地,设函数()f x 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数;如果对于定义域I 内某个区间D 上的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数。

2.单调性的注意事项1. 函数的单调性要针对区间而言,因此它是函数的局部性质;对于连续函数,单调区间可闭可开,即“单调区间不在一点处纠结”;单调区间不能搞并集。

2. 若函数()f x 满足1212()[()()]0x x f x f x −−>,则函数在该区间单调递增;若满足1212()[()()]0x x f x f x −−<,则函数在该区间单调递减。

3. 函数单调性的判断方法主要有:(1) 定义法:在定义域内的某个区间D 上任取12,x x 并使得12x x <,通过作差比较1()f x 与2()f x 的大小来判断单调性。

(2) 性质法:若函数()f x 为增函数,()g x 为增函数,()h x 为减函数,()x ϕ为减函数,则有①()()f x g x +为增函数,②()()f x h x −为增函数, ③()()h x x ϕ+为减函数,④()()h x g x −为减函数。

(3) 图像法:对于含绝对值或者分段函数经常使用数形结合的思想,通过函数的图象来判断函数的单调性。

二 函数的奇偶性一.函数奇偶性的定义:(1)对于函数()f x 的定义域内任意一个x ,都有()()x f x f =− ⇔函数()f x 是偶函数; (2)对于函数()f x 的定义域内任意一个x ,都有()()x f x f −=− ⇔函数()f x 是奇函数。

函数模块5年高考真题汇总通用版(含答案)

函数模块5年高考真题汇总通用版(含答案)

答案解释考点01函数概念与单调性考点02函数周期性与奇偶性应用又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.(2022·全国·统考高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.6.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知二、填空题考点03函数图像应用一、单选题-的大致图像,1.(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间[3,3]则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .2y =【答案】A【分析】由函数图像的特征结合函数的性质逐项排除即可得解【详解】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,....A.10π9BC.4π3D【答案】C【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到....【答案】D【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.....【答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x y f x ==+32()22x x x f x -=-=-+,344240,2-⨯>+排除选项D ;考点04函数性质综合应用一、单选题1.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3.(2021·全国·统考高考真题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b>C .2ab a <D .2ab a >【答案】D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到,a b 所满足的关系,由此确定正确选项.【详解】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当a<0时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,a<0,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D933⎝⎦。

指数函数比较大小及复合函数的单调性测试题(含答案)

指数函数比较大小及复合函数的单调性测试题(含答案)

指数函数比较大小及复合函数的单调性一、单选题(共8道,每道12分)1.已知实数a,b满足,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:指数函数单调性的应用2.设,则这三个数的大小关系是( )A.a>b>cB.b>a>cC.c>a>bD.a>c>b答案:C解题思路:试题难度:三颗星知识点:指数函数的图象与性质3.已知,这三个数的大小关系是( )A.b<a<cB.c<a<bC.a<b<cD.c<b<a答案:C解题思路:试题难度:三颗星知识点:指数函数的图象与性质4.设,那么( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:指数函数单调性的应用5.函数的单调递减区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:指数型复合函数的性质及应用6.若函数,满足,则的单调递减区间是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:指数型复合函数的性质及应用7.函数,在上的最大值和最小值之和是5,则a=( )A. B.C.2D.4答案:C解题思路:试题难度:三颗星知识点:指数函数单调性的应用8.函数的单调递增区间与值域相同,则实数a的值是( )A.﹣2B.2C.﹣1D.1答案:B解题思路:试题难度:三颗星知识点:指数型复合函数的性质及应用。

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。

它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。

为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。

一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。

2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。

3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。

4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。

复合函数单调性(专题训练)

复合函数单调性(专题训练)

复合函数单调性一.选择题1.函数f(x)=的图象大致为()A.B.C.D.2.函数y=()的单调递增区间是()A.[﹣1,]B.(﹣∞,)C.[,+∞)D.[,2]3.函数f(x)=的单调减区间为()A.()B.()C.D.(1,+∞)4.已知函数在[1,+∞)上单调递减,则实数a的取值范围是()A.(﹣∞,2)B.[2,+∞)C.D.5.设函数,则使得f(x)≤f(2x﹣1)成立的x的取值范围是()A.(﹣∞,1]B.[1,+∞)C.D.6.已知函数f(x)=log a(﹣x2﹣2x+3),若f(0)<0,则此函数的单调递增区间是()A.(﹣∞,﹣1]B.[﹣1,+∞)C.[﹣1,1)D.(﹣3,﹣1]7.函数y=|log2x|在区间(k﹣1,k+1)内有意义且不单调,则k的取值范围是()A.(1,+∞)B.(0,1)C.[1,2)D.(0,2)8.函数在[0,1]上是减函数,则实数a的取值范围是()A.0<a<1B.1<a<2C.1<a D.a<29.若函数有最大值,则a的取值范围为()A.B.C.D.(1,2)10.设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=在R上为减函数B.y=|f(x)|在R上为增函数C.y=2﹣f(x)在R上为减函数D.y=﹣[f(x)]3在R上为增函数11.函数f(x)=log0.5(2﹣x)+log0.5(2+x)的单调递增区间是()A.(2,+∞)B.(﹣∞,﹣2)C.(0,2)D.(﹣2,0)12.函数y=|log2|x﹣2||的单调递增区间()A.(2,3)B.(3,+∞)C.(1,2)和(3,+∞)D.(﹣∞,﹣1)和(2,3)二.填空题13.已知f(x)=(a2﹣2a﹣2)x是增函数,则实数a的取值范围是.14.函数y=()|x|﹣1的单调增区间为.15.函数f(x)=lgx2的单调递减区间是.16.函数f(x)=(x2﹣6x+5)的单调递减区间是.17.已知函数y=log a(ax2﹣x)在区间[2,4]上是增函数,则实数a的取值范围是.18.函数y=(m2﹣m﹣1)是幂函数且在(0,+∞)上单调递减,则实数m的值为.19.设f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x.若对任意的x∈[t,t+1],不等式f(x+t)≥f3(x)恒成立,则实数t的取值范围是.20.已知函数f(x)与函数的图象关于直线y=x对称,则函数f(x2+2x)的单调递增区间是.复合函数单调性一.选择题(共12小题)1.函数f(x)=的图象大致为()A.B.C.D.【分析】利用函数的定义域与函数的单调性排除A、B,C,推出结果即可.【解答】解:令g(x)=lnx﹣1,则g′(x)=>0,由g'(x)>0,得x>0,即函数g(x)在(0,+∞)上单调递增,所以当x=e时,函数g(x)=0,函数f(x)=对任意的x∈(0,e),(e,+∞),有f(x)是减函数,故排除A、B、C,故选:D.2.函数y=()的单调递增区间是()A.[﹣1,]B.(﹣∞,)C.[,+∞)D.[,2]【分析】令t=﹣x2+x+2,则y=()t,本题即求函数t的减区间,再利用二次函数的性质可得结论.【解答】解:y=(),令t=﹣x2+x+2=﹣(x﹣)2+,则y=()t,本题即求函数t的减区间.再利用二次函数的性质可得t的减区间为[,+∞),故选:C.3.函数f(x)=的单调减区间为()A.()B.()C.D.(1,+∞)【分析】令t=x2﹣x>0,求得函数的定义域,本题即求t在定义域内的增区间.再利用二次函数的性质可得t在定义域内的增区间.【解答】解:令t=x2﹣x>0,求得x<0,或x>1,故函数的定义域为{x|x<0,或x>1},本题即求t在{x|x<0,或x>1}内的增区间.利用二次函数的性质可得t在{x|x<0,或x>1}内的增区间为(1,+∞),即函数f(x)=的单调减区间为(1,+∞),故选:D.4.已知函数在[1,+∞)上单调递减,则实数a的取值范围是()A.(﹣∞,2)B.[2,+∞)C.D.【分析】可看出该函数是由t=x2﹣ax+3a和y=log0.5t复合而成的复合函数,这样根据二次函数、对数函数和复合函数的单调性及对数函数的定义域便可建立关于a的不等式组,解出a的取值范围即可.【解答】解:设y=f(x),令x2﹣ax+3a=t,则y=log0.5t单调递减;∵f(x)在[1,+∞)上单调递减;∴t=x2﹣ax+3a在[1,+∞)上单调递增,且满足t>0;∴;解得,﹣<a≤2;∴实数a的取值范围是(﹣,2].故选:D.5.设函数,则使得f(x)≤f(2x﹣1)成立的x的取值范围是()A.(﹣∞,1]B.[1,+∞)C.D.【分析】根据题意,分析可得函数f(x)为偶函数且在(0,+∞)上为减函数,进而可以将f(x)≤f(2x﹣1)转化为|x|≥|2x﹣1|,变形可得x2≥4x2﹣4x+1,解可得x的取值范围,即可得答案.【解答】解:根据题意,函数,分析可得f(﹣x)=[1+(﹣x)2]+=(1+x2)+=f(x),则函数f(x)为偶函数,分析易得:f(x)在(0,+∞)上为减函数,若f(x)≤f(2x﹣1),则有f(|x|)≤f(|2x﹣1|),即有|x|≥|2x﹣1|,变形可得x2≥4x2﹣4x+1,解可得:≤x≤1,即x的取值范围是[,1];故选:C.6.已知函数f(x)=log a(﹣x2﹣2x+3),若f(0)<0,则此函数的单调递增区间是()A.(﹣∞,﹣1]B.[﹣1,+∞)C.[﹣1,1)D.(﹣3,﹣1]【分析】令t=﹣x2+2x﹣3>0,求得函数的定义域,根据f(0)=log a3<0,可得0<a<1,f(x)=g(t)=log a t,本题即求函数t在定义域内的减区间,再利用二次函数的性质得出结论.【解答】解:令t=﹣x2﹣2x+3>0,可得﹣3<x<1,故函数的定义域为{x|﹣3<x<1}.根据f(0)=log a3<0,可得0<a<1,f(x)=g(t)=log a t,本题即求函数t在定义域内的减区间.再利用二次函数的性质求得函数t在定义域内的减区间为[﹣1,1),故选:C.7.函数y=|log2x|在区间(k﹣1,k+1)内有意义且不单调,则k的取值范围是()A.(1,+∞)B.(0,1)C.[1,2)D.(0,2)【分析】由题意可得1>k﹣1≥0,且k+1>1,由此求得k的取值范围.【解答】解:∵函数y=|log2x|在区间(k﹣1,k+1)内有意义且不单调,可得k﹣1≥0,且1∈(k ﹣1,k+1),∴1>k﹣1≥0,且k+1>1.解得1≤k<2,故选:C.8.函数在[0,1]上是减函数,则实数a的取值范围是()A.0<a<1B.1<a<2C.1<a D.a<2【分析】利用对数函数的底数,求出a的范围,利用复合函数的单调性求解即可.【解答】解:函数在[0,1]上是减函数,可得a>0并且a≠1,y=1﹣在[0,1]上是减函数,所以a>1,并且1,解得a∈(1,2).故选:B.9.若函数有最大值,则a的取值范围为()A.B.C.D.(1,2)【分析】由题意可得内层函数t=要有最小正值,且为减函数,可得外层函数y=log a t 为减函数,可知0<a<1.再由二次函数t=的判别式小于0求得x的范围,取交集得答案.【解答】解:令t=,要使函数有最大值,则内层函数t=要有最小正值,且为减函数,则外层函数y=log a t为减函数,可知0<a<1.要使内层函数t=要有最小正值,则,解得.取交集可得:a的取值范围为().故选:B.10.设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=在R上为减函数B.y=|f(x)|在R上为增函数C.y=2﹣f(x)在R上为减函数D.y=﹣[f(x)]3在R上为增函数【分析】根据题意,依次分析选项:对于A、B、D,举出反例分析可得其错误,对于C,结合复合函数的单调性判定方法,分析可得C正确,即可得答案【解答】解:根据题意,依次分析选项:对于A,对于函数f(x)=x,y==,在R上不是减函数,A错误;对于B,对于函数f(x)=x,y=|f(x)|=|x|,在R上不是减函数,B错误;对于C,令t=f(x),则y=2﹣f(x)=()f(x)=()t,t=f(x)在R上为增函数,y=()t在R上为减函数,则y=2﹣f(x)在R上为减函数,C正确;对于D,对于函数f(x)=x,y=﹣[f(x)]3=﹣x3,在R上是减函数,D错误;故选:C.11.函数f(x)=log0.5(2﹣x)+log0.5(2+x)的单调递增区间是()A.(2,+∞)B.(﹣∞,﹣2)C.(0,2)D.(﹣2,0)【分析】先求出函数的定义域,结合复合函数单调性的性质进行求解即可.【解答】解:要使函数有意义,则得,即﹣2<x<2,即函数的定义域为(﹣2,2),f(x)=log0.5(2﹣x)+log0.5(2+x)=log0.5(2﹣x)(2+x)=log0.5(4﹣x2),设t=4﹣x2,则y=log0.5t是减函数,要求函数f(x)的单调递增区间,等价为求函数t=4﹣x2,的单调递减区间,∵函数t=4﹣x2,的单调递减区间为[0,2),∴f(x)的单调递增区间为(0,2),故选:C.12.函数y=|log2|x﹣2||的单调递增区间()A.(2,3)B.(3,+∞)C.(1,2)和(3,+∞)D.(﹣∞,﹣1)和(2,3)【分析】先求得函数的定义域,然后分情况去掉绝对值符号,根据根据复合函数单调性的判断方法及基本函数的单调性可得函数的单调区间.【解答】解:由x﹣2≠0得函数的定义域为(﹣∞,2)∪(2,+∞),当2<x≤3时,y=﹣log2(x﹣2),单调递减;当x>3时,y=log2(x﹣2),单调递增;当1≤x<2时,y=﹣log2(2﹣x),单调递增;当x<1时,y=log2(2﹣x),单调递减;综上,函数y=|log2|x﹣2||的单调递增区间为:(3,+∞)和(1,2),故选:C.二.填空题(共8小题)13.已知f(x)=(a2﹣2a﹣2)x是增函数,则实数a的取值范围是(﹣∞,﹣1)∪(3,+∞).【分析】利用指数函数的性质,列出不等式求解即可.【解答】解:f(x)=(a2﹣2a﹣2)x是增函数,可得a2﹣2a﹣2>1,解得a∈(﹣∞,﹣1)∪(3,+∞).故答案为:(﹣∞,﹣1)∪(3,+∞).14.函数y=()|x|﹣1的单调增区间为(﹣∞,0)(亦可写成(﹣∞,0]).【分析】利用换元法,结合复合函数单调性之间的关系进行求解即可.【解答】解:设t=|x|﹣1,则y═()t为减函数,要求函数y=()|x|﹣1的单调增区间,根据复合函数单调性之间的关系,等价求函数t=|x|﹣1的减区间,∵当x≤0时,函数t=|x|﹣1是减函数,∴函数t=|x|﹣1的单调递减区间为(﹣∞,0),则函数y=()|x|﹣1的单调增区间为(﹣∞,0),故答案为:(﹣∞,0).15.函数f(x)=lgx2的单调递减区间是(﹣∞,0).【分析】先将f(x)化简,注意到x≠0,即f(x)=2lg|x|,再讨论其单调性,从而确定其减区间;也可以函数看成由复合而成,再分别讨论内层函数和外层函数的单调性,根据“同増异减”再来判断.【解答】解:方法一:y=lgx2=2lg|x|,∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;当x<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).方法二:原函数是由复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).16.函数f(x)=(x2﹣6x+5)的单调递减区间是(5,+∞).【分析】先求出fx)的定义域,在利用复合函数的单调性得出答案.【解答】解:有函数f(x)有意义得x2﹣6x+5>0,解得x<1或x>5.令g(x)=x2﹣6x+5,则g(x)在(﹣∞,1)上单调递减,在(5,+∞)上单调递增,∴f(x)=log(x2﹣6x+5)在(﹣∞,1)上单调递增,在(5,+∞)上单调递减.故答案为(5,+∞)17.已知函数y=log a(ax2﹣x)在区间[2,4]上是增函数,则实数a的取值范围是(1,+∞).【分析】先根据复合函数的单调性确定函数g(x)=ax2﹣x的单调性,进而分a>1和0<a<1两种情况讨论.【解答】解:令g(x)=ax2﹣x(a>0,且a≠1),当a>1时,g(x)在[2,4]上单调递增,∴∴a>1当0<a<1时,g(x)在[2,4]上单调递减,∴∴a∈∅综上所述:a>1故答案为:(1,+∞)18.函数y=(m2﹣m﹣1)是幂函数且在(0,+∞)上单调递减,则实数m的值为2.【分析】根据幂函数的系数一定为1可先确定参数m的值,再根据单调性进行排除,可得答案.【解答】解:∵函数y=(m2﹣m﹣1)是幂函数∴可得m2﹣m﹣1=1 解得m=﹣1或2当m=﹣1时,函数为y=x5在区间(0,+∞)上单调递增,不满足题意当m=2时,函数为y=x﹣13在(0,+∞)上单调递减满足条件故答案为:2.19.设f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x.若对任意的x∈[t,t+1],不等式f(x+t)≥f3(x)恒成立,则实数t的取值范围是(﹣∞,﹣2] .【分析】由当x>0时,f(x)=2x.函数是奇函数,可得当x=0时,f(x)=0,当x<0时,f(x)=﹣2﹣x,从而f(x)在R上是单调递增函数,且满足f3(x)=f(3x),再根据不等式f(x+t)≥f3(x)=f(3x)在[t,t+1]恒成立,可得x+t≥3x在[t,t+1]恒成立,即可得出答案.【解答】解:当x>0时,f(x)=2x.∵函数是奇函数∴当x<0时,f(x)=﹣2﹣x∴f(x)=,∴f(x)在R上是单调递增函数,且满足f3(x)=f(3x),∵不不等式f(x+t)≥f3(x)=f(3x)在[t,t+1]恒成立,∴x+t≥3x在[t,t+1]恒成立,即:x≤t在[t,t+1]恒成立,∴t+1≤t解得:t≤﹣2,故答案为:(﹣∞,﹣2].20.已知函数f(x)与函数的图象关于直线y=x对称,则函数f(x2+2x)的单调递增区间是(﹣∞,﹣1] .【分析】先求出函数f(x)的解析式,确定内外函数的单调性,即可求得函数f(x2+2x)的单调递增区间.【解答】解:∵函数f(x)与函数的图象关于直线y=x对称,∴f(x)=∴函数f(x)在R上单调递减∵t=x2+2x=(x+1)2﹣1,∴t=x2+2x在(﹣∞,﹣1]上单调递减∴函数f(x2+2x)的单调递增区间是(﹣∞,﹣1]故答案为:(﹣∞,﹣1].。

复合函数的单调性(人教A版)(含答案)

复合函数的单调性(人教A版)(含答案)

复合函数的单调性(人教A版)一、单选题(共8道,每道12分)1.函数的单调递减区间是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的单调性2.函数的单调递减区间为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:复合函数的单调性3.函数的单调递增区间为( )A.(-&infin;,-2]B.[4,+&infin;)C.(-&infin;,-3]D.[-3,+&infin;)答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性4.函数的单调递增区间为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的单调性5.函数的单调递减区间为( ).A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的单调性6.若函数在R上是减函数,则函数的单调递增区间为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性7.若函数的单调递减区间为,则函数( )A.在区间内是减函数B.在区间内是增函数C.在区间内是减函数D.在区间内是减函数答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性8.若函数的单调递减区间为,则函数( )A.在区间(0,1)内是减函数B.在区间内是减函数C.在区间(3,4)内是增函数D.在区间(4,5)内是增函数答案:B解题思路:试题难度:三颗星知识点:复合函数的单调性。

对数型复合函数的单调区间解答题(2)

对数型复合函数的单调区间解答题(2)

1.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)2f =.(1)求a 的值及()f x 的定义域;(2)求()f x 在区间答案:解答:(1)∵(1)2f =,∴log 42(0,1)a a a =>≠,∴2a =. 由10,30,x x +>⎧⎨->⎩得(1,3)x ∈-,∴函数()f x 的定义域为(1,3)-. (2)22222()log (1)log (3)log (1)(3)log [(1)4]f x x x x x x =++-=+-=--+, ∴当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数.函数()f x 在上的最大值是2(1)log 42f ==,函数()f x 在 ∴()f x 在区间2(1)当5a =时,求函数()f x 的定义域; (2)当函数()f x 的定义域为R 时,求实数a 的取值范围.答案:11,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭(2)(),4-∞.解答:(1)当5a =时,要使函数()f x 有意义,当1x ≤时,不等式①等价于210x -+>,即 当15x <≤时,不等式①等价于10->,∴无解;当5x >时,不等式①等价于2110x ->,即 综上,函数()f x 的定义域为11,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭(2)∵函数()f x 的定义域为R ,∴不等式1x -+当且仅当()()150x x --≥时取等号)a 的取值范围是(),4-∞.考点:1.含绝对值不等式的解法;2.不等式的恒成立的问题.3,且当(],1x ∈-∞时()f x 有意义,求实数a 的取值范围. 答案:解答:欲使(),1x ∈-∞时,()f x 有意义,需1240x x a ++>恒成立,(1x ≤)恒成立. 在(),1-∞上是增函数, ∴当1x =时,时,满足题意,即a 的取值范围为 4(0a >且1a ≠)在()1,+∞上的单调性,并予以证明. 答案:当1a >时,()f x 在()1,+∞上为减函数;当01a <<时,()f x 在(1,)+∞上为增函数. 解答:,任取211x x >>,则∵11x >,21x >,∴110x ->,210x ->, 又∵12x x <,∴120x x -<.,即21u u <. 当1a >时,log a y x =是增函数,∴21log log a a u u <,即21()()f x f x <;当01a <<时,函数log a y x =是减函数,∴21log log a a u u >,即21()()f x f x >. 当01a <<时, 5.已知函数()log (3)a f x ax =-(0a >且1a ≠).(1)当[0,2]x ∈时,函数()f x 恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数()f x 在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.答案:3(0,1)(1,)2; (2)不存在实数a ,使()f x 在[1,2]上为减函数且最大值为1.解答:(1)由于3y ax =-为减函数,所以要使函数()f x 在[0,2]上恒有意义,因此a 的取值范围是3(0,1)(1,)2; (2)由于3y ax =-为减函数,要使()f x 在[1,2]为减函数且最大值为1,则1a >,且max ()(1)log (3)1a f x f a ==-=,又3y ax =-在[1,2]上需恒大于零,故不存在实数a ,使()f x 在[1,2]上为减函数且最大值为1.6 (1) (2)对于[2,4]x ∈,恒成立,求m 的取值范围. 答案:(1))证明见解答;(2)(0,15)(45,)+∞. 解答:(1),解得1x <-或1x >, ∴函数的定义域为(,1)(1,)-∞-+∞. 当(,1)(1,)x ∈-∞-+∞时,(2)由[2,4]x ∈时, ①当1a >时,∴对[2,4]x ∈恒成立, ∴0(1)(1)(7)m x x x <<+--在[2,4]x ∈恒成立.设()(1)(1)(7)g x x x x =+--,[2,4]x ∈ 则32()77g x x x x =-++-,∴当[2,4]x ∈时,'()0g x >, ∴()y g x =在区间[2,4]上是增函数,min ()(2)15g x g ==. ∴015m <<. ②当01a <<时,由[2,4]x ∈时,对[2,4]x ∈恒成立. ∴(1)(1)(7)m x x x >+--在[2,4]x ∈恒成立. 设()(1)(1)(7)g x x x x =+--,[2,4]x ∈, 由①可知()y g x =在区间[2,4]上是增函数,max ()(4)45g x g ==,∴45m >. ∴m 的取值范围是(0,15)(45,)+∞.7.已知函数()()24log 23f x ax x =++. (1)已知()11f =,求()f x 单调递增区间;(2)是否存在实数a ,使()f x 的最小值为0?若存在, 求出a 的值; 若不存在, 说明理由. 答案:(1)()1,1-;解答:(1)()()24log 23f x ax x =++且()()2411,log 12131,54,1f a a a =∴+⨯+=∴+=∴=-,可得函数()()24log 23f x x x =-++, 2230,x x -++>∴函数的定义域为()1,3-, 令()222314t x x x =-++=--+可得,当()1,1x ∈-时,t 为关于x 的增函数,底数为41,>∴函数()()24log 23f x x x =-++单调递增区间为()1,1-. (2)设存在实数a ,使()f x 最小值为0. 由于底数为41>,可得真数2231t ax x =++≥恒成立, 且真数t 最小值恰好是1.8.已知函数()()()22lg 32215f x m m x m x ⎡⎤=-++-+⎣⎦,如果函数()f x 的值域为R ,求实数m 的取值范围.答案:解答:令()()()2232215g x m m x m x =-++-+, 如果函数()f x 的值域为R ,则()g x 能取到任意的正数,当2320m m -+=时,即1m =或2.经验证当2m =时适合当2320m m -+≠时据二次函数知识知要使的函数值取得所有正在值只需23200m m ⎧-+>⎨∆≥⎩解之得综上可知满足题意的m 的取值范围是 9.已知函数mx x f x ++=)14(log )(2.(1)若)(x f 是偶函数,求实数m 的值;(2)当0>m 时,关于x 的方程上恰有两个不同的实数解,求m 的范围.答案:解答: (1)若)(x f 是偶函数,则有)()(x f x f =-恒成立,即mx mx x x ++=-+-)14(log )14(log 22,即是x mx 22-=对R x ∈恒成立,故1-=m ;(2)当0>m 时,)14(log 2+=x y ,在R 上单增,mx y =在R 上也单增,所以mx x f x ++=)14(log )(2在R 上单增,且1)0(=f ;又)(x f 单增,得令4222++-=t t y ,又0>m ,故10(1)当7m =时,求函数()f x 的定义域;(2)若关于x 的不等式()2f x ≥的解集是R ,求m 的取值范围.答案: (1) ),4()3,(+∞⋃--∞; (2) ]1-,(-∞解答:(1)不等式的解集是以下不等式组解集的并集:⎩⎨⎧>-++≥7212x x x ,或⎩⎨⎧>+-+<≤72121x x x ,或⎩⎨⎧>+---<7211x x x 解得函数)(x f 的定义域为),4()3,(+∞⋃--∞;(2)不等式2)(≥x f 即R x ∈ 时,恒有R ,m m ,34≤+∴的取值范围是 ]1-,(-∞11.已知a ∈R ,函数 (1)当5a =时,解不等式()0f x >;(2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a 的取值范围;(3)设0a >,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.答案:()0,⎫+∞⎪⎭; (2)(]{}1,23,4;解答:(1)()0,⎫+∞⎪⎭. ,()()24510a x a x -+--=, 当3a =时,121x x ==-,经检验,满足题意.当3a ≠且4a ≠时,,21x =-,12x x ≠. 1x 是原方程的解当且仅当,即2a >; 2x 是原方程的解当且仅当,即1a >. 于是满足题意的(]1,2a ∈.综上,a 的取值范围为(]{}1,23,4.(3)当120x x <<时, 所以()f x 在()0,+∞上单调递减.函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +.即()2110at a t ++-≥,对任意因为0a >,所以函数()211y at a t =++-在区间时,y故a 的取值范围为12(1)若函数内单调递增,求a 的取值范围;(2)求函数在区间[1,2]上的最小值.答案:(1)[)1,+∞;(2) 当1a ≥时,()min 0f x =.解答:(1)由已知,得上恒成立,即 又当 (2)当时,在(1,2)上恒成立, 这时在[1,2]上为增函数(1,2)上恒成立,这时在[1,2]上为减函数),1[)(+∞在区间x f )(x f ),1[0)(+∞≥'在x f 1≥a 0)(>'x f )(x f 0)1()(min ==∴f x f )(x f综上,在[1,2]上的最小值为③当13.已知函数22()lg (32)(1)1f x m m x m x ⎡⎤=-++-+⎣⎦的定义域为R ,求实数m 的取值范围.答案: 1m ≤或解答:∵函数()f x 的定义域为R ,∴对于任意x R ∈,恒有22(32)(1)10m m x m x -++-+>①若2320m m -+=,则2m =或1,当1m =时,不等式即为10>,符合题意,当2m =时,不等式即为210x +>,不恒成立,∴2m =不合题意,舍去.②若2320m m -+≠,由题意得 222320(1)4(32)0m m m m m ⎧-+>⎨∆=---+<⎩,解得,即1m <或综上可得,m 的取值范围是1m ≤或 14.已知函数)1,0(log )(≠>=a a x x f a ,且1)2()3(=-f f .(1)若)52()23(+<-m f m f ,求实数m 的取值范围;(2)成立的x 的值. 答案:)(x f 0)(,1min =≥x f a 时解答:定义域0+∞(,)上单调递增,所以可得: 3202503225m m m m ->⎧⎪+>⎨⎪-<+⎩,解得(2)15 (1)求函数)(x f 的定义域;(2)求函数)(x f 的值域.答案:(1)(p ,1);(2)见解答:.解答:(1)要使求函数)(x f 有意义,则得1>x 且p x <, 又因为函数的定义域为非空数集,所以1>p ,所以函数)(x f 的定义域是(p ,1);,其中p x <<1,,即31≤<p 时, 因为)(x h 在],1[p 上单调递减,且0)1(2)1(>-=p h ,0)(=p h , 所以)1(log 1)1(2log )(22-+=-<p p x f ; ,即3>p 时, ,0)(=p h , 所以当p x <<1时,时,即1-<p ,这与1>p 矛盾. 综上所述当31≤<p 时,函数)(x f 的值域是()()1log 1,2-+∞-p ;当3>p 时,函数)(x f 的值域是()]21log 2,(2-+-∞p .16 (1)判断()f x 的奇偶性并证明;(2)若对于[2,4]x ∈,恒有成立,求m 的取值范围. 答案:(1)详见解答;(2)当1>a 时,150<<m ; 当10<<a 时,16>m .解答:(1)解得11x x <->或所以函数()f x 的定义域为(,1)(1,)-∞-+∞ 函数()f x 为奇函数,证明如下:由(I)知函数()f x 的定义域关于原点对称,又因为所以函数()f x 为奇函数(2) 对[2,4]x ∈恒成立 当10<<a 时,对[2,4]x ∈成立.即(1)(7)x x m +⋅->成立,所以015m << 同理当10<<a 时,,解得16m > 综上所述:当1>a 时,150<<m ,当10<<a 时,16>m17.已知函数2()lg(2)f x ax ax =++ (∈a R ).(1)若1a =-,求()f x 的单调区间;(2)若函数()f x 的定义域为R ,求实数a 的取值范围.答案:(1) ()f x 的单调增区间为(2) 08a ≤<.解答:(1)当1a =-时,2()lg(2)f x x x =--+ 220x x --+>,即220x x +-<,解得:21x -<< 所以函数()f x 的定义域为(2,1)-设2()2,(2,1)t x x x x =--+∈-,则()lg f x t =关于t 在(0,)t ∈+∞为增函数. 由复合函数的单调性,()f x 的单调区间与2()2,(2,1)t x x x x =--+∈-的单调区间一致.二次函数2()2,(2,1)t x x x x =--+∈-的对称轴为所以()t x 在所以()f x 的单调增区间为(2)当0a =时,()lg 2f x =为常数函数,定义域为R ,满足条件. 当0a ≠时,()f x 的定义域为R 等价于220ax ax ++>恒成立. 于是有2080a a a >⎧⎨∆=-<⎩,解得:08a << 综上所述,实数a 的取值范围是08a ≤<.18.已知函数()ln(3)ln(3)f x x x =++-.(1)求函数()y f x =的定义域;(2)判断函数()y f x =的奇偶性;(3)若(21)()f m f m -<,求m 的取值范围.答案: (1)()3,3-;(2)函数()f x 为偶函数; 或12m <<. 解答:(1)303330x x x +>⎧⇒-<<⎨->⎩,所以定义域为()3,3-; (2))()3ln()3ln()(x f x x x f =++-=-)(x f ∴为偶函数;(3)因为()()()()2ln 3ln 3ln 9f x x x x=++-=- 可知)(x f 在]3,0[上为减函数,又为偶函数则原不等式可化为⎪⎩⎪⎨⎧>-<<-<-<-|||12|333123m m m m 解得或12m <<.。

复合函数的单调性测试题(一)(含答案)

复合函数的单调性测试题(一)(含答案)

复合函数的单调性(一)一、单选题(共11道,每道9分)1.函数的单调递减区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性2.函数的单调递增区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性3.函数的单调递增区间是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的单调性4.已知,,则函数的单调递增区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性5.函数的单调递增区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性6.函数的单调递减区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性7.函数的单调递减区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性8.函数的单调递减区间是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:复合函数的单调性9.函数的单调递增区间是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性10.函数的单调递减区间是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性11.函数的单调递增区间是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的单调性。

指数和对数的复合函数的单调性、奇偶性、最值问题(主要内容)

指数和对数的复合函数的单调性、奇偶性、最值问题(主要内容)

青苗辅导1
21
例:求函数y
1 2
2x
4
1 2
x
+5的值域.
-,5
青苗辅导1
22
例:求函数y=22x -2x-1+1的最值, 并求出相应的x的值
变题1:已知函数y=9x -2 3x +2,
x 1, 2,求函数的值域。
青苗辅导1
23
变题2:已知函数y=(1)x -(1)x +1的 42
定义域为3, 2,求函数的值域.
求实数c的取值范围;
(3)若方程f(x) c 3x在0,1上有唯一
实数解,求实青数苗辅导c1 的取值范围。 25
例:当x
2, 8时,求函数y
log2
x 2
log2
x 4
的最大值和最小值.
ymin
7 4 , ymax
2.
青苗辅导1
26
26.若 1 27
x
9,则f(x)=log3
x 27
log3 3x ( )
log1
x
6 log1 x 2.
3
3
答案:(1)递增区间为-,-1,递减区间为3,+;
(2)递增区间为
1 27
,+ ,递减区间为 青苗辅导1
0,1 27
。14
例:函数y
1 2
2
x
+4
1 2
x
-1,+
+5的递减区间是_______.
青苗辅导1
15
例:已知函数f (x) loga(3 ax)在x 0, 2
(2)讨论f (x)的奇偶性
(3)求证f (x) 0

高中数学沪教版(上海)高一第一学期 复合函数的单调性 精品课件

高中数学沪教版(上海)高一第一学期 复合函数的单调性 精品课件

例5:设定义在 (0,) 上的函数 f (u) 在 (0,) 上
是增函数,如果 f (ax2 x)在 x [2,4]上是增函数,
求 a 的取值范围.
f (ax2 x) y f (u) u ax2 x
x [2,4]

(0,)

x[2,4] u 0
?增
高中数学沪教版(上海)高一第一学 期第三 章3.4 复合函数的单调性 课件

二、复合函数单调性的判定
引理 若 u g(x) 在区间 (a,b)上是增函数, 其值域为 (c, d ) ,又函数 y f (u) 在区间 (c, d )上
是增函数,那么复合函数 y f [g(x)] 在区间 (a,b)上是
增函数.(本引理中的开区间也可以是闭区间或半开半闭区间)
任取 x1, x2 (a,b)
3.复合函数的概念:设函数 y f [g(x)] ,
则 y 是由 f 、g 复合而成的关于 x 的复合函数.
其中 u g(x) (x D,u A) 是它的内层函数,
y f (u) 是它的外层函数.
复合关系的分解练习:
1
(1) 函数 y 2 x 3 1 可以看成哪两个函数的复合,
内层函数是
1
2x 1
1增

[0,) 上的单调性.
在[0,)上的单调递减.
u
2.外层函数只有一种单调性,内层函数有两种单调性的复合型:
例2:写出函数 y (1) x2 2x1 的单调增区间. 3
y (1)u 减,u x2 2x 1
3
的减区间
单调增区间为(,1] .
高中数学沪教版(上海)高一第一学 期第三 章3.4 复合函数的单调性 课件

2函数的基本性质(单调性、奇偶性、周期性)(含答案)

2函数的基本性质(单调性、奇偶性、周期性)(含答案)

函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域; (2)一些单调性的判断规则:①若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。

②复合函数的单调性规则是“同增异减”。

2.函数的奇偶性的定义:(1)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,则称)(x f 为 . 奇函数的图象关于 对称。

(2)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,则称)(x f 为 . 偶函数的图象关于 对称。

(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。

3.奇偶函数图象的对称性(1)若)(x a f y +=是偶函数,则⇔=-⇔-=+)()2()()(x f x a f x a f x a f )(x f 的图象关于直线a x =对称;(2)若)(x b f y +=是偶函数,则⇔-=-⇔+-=-)()2()()(x f x b f x b f x b f )(x f 的图象关于点)0,(b 中心对称;4.若函数满足()()x f a x f =+,则函数的周期为T=a 。

二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( ) A .||2x y = B .3y x = C .12+-=x y D .y =cosx 【答案】C 【解析】试题分析:偶函数需满足()()f x f x -=,由此验证可知A,C,D 都是偶函数,但要满足在区间(0,+∞)上单调递减,验证可知只有C 符合. 考点:偶函数的判断,函数的单调性.2.2()24f x x x =-+的单调减区间是 .【答案】(,1)-∞ 【解析】试题分析:将函数进行配方得22()24(1)3f x x x x =-+=-+,又称轴为1x =,函数图象开口向上,所以函数的单调减区间为(,1)-∞. 考点:二次函数的单调性.3.函数22log (23)y x x =+-的单调递减区间为( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(-3,-1) 【答案】A 【解析】试题分析:由2230x x +->,得3x <-或1x >,∴()f x 的定义域为(,3)(1,)-∞-+∞.22log (23)y x x =+-可看作由2log y u =和223u x x =+-复合而成的,223u x x =+-=2(1)4x +-在(,3)-∞-上递减,在(1,)+∞上递增,又2log y u =在定义域内单调递增,∴22log (23)y x x =+-在(,3)-∞-上递减,在(1,)+∞上递增,所以22log (23)y x x =+-的单调递减区间是(,3)-∞-,故选A .考点:复合函数的单调性.4.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A.2a ≤-B.2a ≥-C.6-≥aD.6-≤a 【答案】B 【解析】试题分析:函数5)2(22+-+=x a x y 的图像是开口向上以2x a =-为对称轴的抛物线,因为函数在区间(4,)+∞上是增函数,所以24a -≤,解得2a ≥-,故A 正确。

函数的基本性质老师版(部分含答案)

函数的基本性质老师版(部分含答案)

函数的基本性质函数的三个基本性质:单调性,奇偶性,周期性一、单调性1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。

2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。

)3.二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a ,当0>a 时函数)(x f 在对称轴a bx 2-=的左侧单调减小,右侧单调增加;当0<a 时函数)(x f 在对称轴a bx 2-=的左侧单调增加,右侧单调减小;例1:讨论函数322+-=ax x f(x)在(-2,2)内的单调性。

练习:讨论函数()2-21f x ax x =+在(-1,1)内的单调性。

4.证明方法和步骤:⑴设元:设21,x x 是给定区间上任意两个值,且21x x <;⑵作差:)()(21x f x f -;⑶变形:(如因式分解、配方等);⑷定号:即0)()(0)()(2121<->-x f x f x f x f 或;⑸根据定义下结论。

例2、判断函数1()x f x x +=在)0,(-∞上的单调性并加以证明.练习: 判断函数2()1x f x x +=-在(-∞,0)上的单调性并加以证明。

[例3] 求证函数f (x )=x +xa (a .,>0)在(0,a ]上是减函数,在[a ,+∞)上是增函数. 分析 利用定义证明,证明函数单调性的关键在于作差变形.证明 (1)设0<x 1<x 2≤a ,则f (x 1)-f (x 2)=x 1+1x a -x 2-2x a =(x 1-x 2)⎪⎪⎭⎫ ⎝⎛-211x x a . 因为0<x 1<x 2≤a ,所以x 1-x 2<0,0<x 1x 2<a .,所以\21x x a >1,所以211x x a -<0, 所以f (x 1)-f (x 2)>0,所以f (x 1)>f (x 2).所以f (x )在(0,\r(a .,)]上为减函数.(1) 设a ≤x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2) ⎪⎪⎭⎫ ⎝⎛-211x x a . 因为x 1-x 2<0,x 1x 2>a .,,所以\21x x a <1, 所以211x x a ->0,所以f (x 1)-f (x 2)<0.5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”。

高考数学专题《函数的单调性与最值》习题含答案解析

高考数学专题《函数的单调性与最值》习题含答案解析

专题3.2 函数的单调性与最值1.(2021·全国高一课时练习)函数f(x)=1,01,0x xx x+≥⎧⎨-<⎩在R上()A.是减函数B.是增函数C.先减后增D.先增后减【答案】B【解析】画出函数图像即可得解.【详解】选B.画出该分段函数的图象,由图象知,该函数在R上是增函数.故选:B.2.(2021·全国高一课时练习)若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有()-()-f a f ba b>0成立,则必有()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)先增后减D.函数f(x)先减后增【答案】A【解析】根据条件可得当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),从而可判断.【详解】练基础由()-()-f a f b a b>0知f (a )-f (b )与a -b 同号,即当a <b 时,f (a )<f (b ),或当a >b 时,f (a )>f (b ),所以f (x )在R 上是增函数. 故选:A.3.(2021·全国高一课时练习)设函数f (x )是(-∞,+∞)上的减函数,则 ( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a ) D .f (a 2+1)<f (a )【答案】D 【解析】利用0a =排除ABC ,作差可知21a a +>,根据单调性可知D 正确. 【详解】当0a =时,选项A 、B 、C 都不正确; 因为22131()024a a a +-=-+>,所以21a a +>, 因为()f x 在(,)-∞+∞上为减函数,所以2(1)()f a f a +<,故D 正确.故选:D4.(2021·西藏高三二模(理))已知函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为( ) A .(),3-∞ B .()3,+∞C .(),3-∞-D .()3,-+∞【答案】C 【解析】根据函数为奇函数且在R 上单调递减可得()()32f m f m -<求解. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<, 得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C .5.(2021·广西来宾市·高三其他模拟(理))已知定义在R 上的偶函数()f x 满足在[0,)+∞上单调递增,(3)0f =,则关于x 的不等式(2)(2)0f x f x x++-->的解集为( )A .(5,2)(0,)--+∞ B .(,5)(0,1)-∞- C .(3,0)(3,)-⋃+∞ D .(5,0)(1,)-+∞【答案】D 【解析】根据题意作出函数()f x 的草图,将(2)(2)0f x f x x++-->,转化为2(2)0f x x +>,利用数形结合法求解. 【详解】因为定义在R 上的偶函数()f x 满足在(0,)+∞内单调递增, 所以()f x 满足在(,0)-∞内单调递减,又(3)0f =, 所以(3)(3)0f f -==. 作出函数()f x 的草图如下:由(2)(2)0f x f x x ++-->,得(2)[(2)]0f x f x x++-+>,得2(2)0f x x+>, 所以0,(2)0,x f x >⎧⎨+>⎩或0,(2)0,x f x <⎧⎨+<⎩所以0,23,x x >⎧⎨+>⎩或0,323,x x <⎧⎨-<+<⎩ 解得1x >或5x 0-<<, 即不等式(2)(2)0f x f x x++-->的解集为(5,0)(1,)-+∞.故选:D6.(2021·黑龙江哈尔滨市·哈师大附中高三三模(文))已知函数()22f x x x -=-( )A .是奇函数,0,单调递增B .是奇函数,0,单调递减C .是偶函数,0,单调递减D .是偶函数,0,单调递增【答案】D 【解析】利用奇偶性和单调性的定义判断即可 【详解】解:定义域为{}0x x ≠, 因为2222()()()()f x x x x x f x ---=---=-=,所以()f x 为偶函数,任取12,(0,)x x ∈+∞,且12x x <,则2222212211()()f x f x x x x x ---=--+212122121()()(1)x x x x x x =-++, 因为12x x <,12,(0,)x x ∈+∞,所以212122121()()(1)0x x x x x x -++>,所以21()()f x f x >,所以()f x 在0,单调递增,故选:D7.(2021·全国高三月考(理))若()f x 是奇函数,且在(,0)-∞上是减函数,又(4)0f -=,则(2)(2)0f x f x x+--->的解集是( )A .(4,0)(4,)-⋃+∞B .(6,2)(0,2)--⋃C .(6,2)(2,)--⋃+∞D .(,4)(0,4)-∞-⋃【答案】B 【解析】根据函数()f x 为奇函数,(4)0f -=得到(4)0f =,再由函数在(,0)-∞上是减函数,作出函数()f x 的图象,再由(2)(2)0f x f x x +--->,等价于2(2)0f x x+>,利用数形结合法求解.【详解】因为函数()f x 为奇函数, 所以(4)(4)0f f -=-=, 所以(4)0f =,因为函数()f x 在(,0)-∞上是减函数, 所以函数()f x 在(0,) +∞上是减函数. 作出函数()f x 的大致图象如图所示,而(2)(2)0f x f x x +--->,等价于(2)[(2)]0f x f x x +--+>,即2(2)0f x x+>,则0(2)0x f x <⎧⎨+<⎩或0(2)0x f x >⎧⎨+>⎩,所以0420x x <⎧⎨-<+<⎩或0024x x >⎧⎨<+<⎩,解得62x -<<-或02x <<. 综上,(2)(2)0f x f x x+--->的解集是(6,2)(0,2)--⋃.故选:B8.(2021·全国高三专题练习(文))已知函数()||2f x x x x =⋅-,则下列结论正确的是( )A .()f x 是偶函数,递增区间是()0-∞,B .()f x 是偶函数,递减区间是()1-∞,C .()f x 是奇函数,递减区间是(11)-, D .()f x 是奇函数,递增区间是(0)+∞,【答案】C 【解析】将函数解析式化为分段函数型,画出函数图象,数形结合即可判断; 【详解】解:将函数()||2f x x x x =⋅-去掉绝对值得2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,画出函数()f x 的图象,如图,观察图象可知,函数()f x 的图象关于原点对称,故函数()f x 为奇函数,且在(11)-,上单调递减, 故选:C9.(2021·宁夏银川市·高三二模(文))设函数()21f x x x=-,则()f x ( )A .是偶函数,且在(),0-∞单调递增B .是偶函数,且在(),0-∞单调递减C .是奇函数,且在(),0-∞单调递增D .是奇函数,且在(),0-∞单调递减【答案】B 【解析】利用定义可判断函数()f x 的奇偶性,化简函数()f x 在(),0-∞上的解析式,利用函数单调性的性质可判断函数()f x 在(),0-∞上的单调性. 【详解】函数()21f x x x =-的定义域为{}0x x ≠,()()()2211f x x x f x x x-=--=-=-, 所以,函数()f x 为偶函数, 当0x <时,()21f x x x=+,由于函数2y x 、1y x=在(),0-∞上均为减函数,所以,函数()f x 在(),0-∞上单调递减, 故选:B.10.(2021·全国高一课时练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______. 【答案】1223⎛⎫- ⎪⎝⎭, 【解析】结合函数定义域和函数的单调性列不等式求解即可. 【详解】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,1.(2021·黑龙江大庆市·大庆实验中学高二月考(文))定义在*N 上的函数()22,3,3x ax a x f x ax x ⎧-+<=⎨≥⎩为递增函数,则头数a 的取值范围是( ) A .()1,2 B .33,42⎛⎫⎪⎝⎭C .3,14⎡⎫⎪⎢⎣⎭D .()1,3【答案】D 【解析】练提升根据定义域和单调性可知()()12f f <,再根据3x ≥时()f x 的单调性判断出()()32f f >,由此求解出a 的取值范围..【详解】因为*x ∈N ,所以3x <时,即{}1,2x ∈,由单调性可知()()21f f >,所以22142a a a a -+<-+,解得3a <;当3x ≥时,y ax =为增函数,若()f x 单调递增,则只需()()32f f >,所以2342a a a >-+,解得14a <<,综上可知a 的取值范围是:()1,3, 故选:D.2.(2021·上海高三二模)已知函数()(),y f x y g x ==满足:对任意12,x x R ∈,都有()()()()1212f x f x g x g x -≥-.命题p :若()y f x =是增函数,则()()y f x g x =-不是减函数;命题q :若()y f x =有最大值和最小值,则()y g x =也有最大值和最小值. 则下列判断正确的是( ) A .p 和q 都是真命题 B .p 和q 都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题【答案】A 【解析】利用函数单调性定义结合已知判断命题p 的真假,再利用函数最大、最小值的意义借助不等式性质判断命题q 的真假而得解. 【详解】对于命题p :设12x x <,因为()y f x =是R 上的增函数,所以()()12f x f x <, 所以()()()()1221f x f x f x f x -=-, 因为()()()()1212f x f x g x g x -≥-,所以()()()()211221()()f x f x g x g x f x f x -+≤-≤-所以()()1122()()f x g x f x g x -≤- 故函数()()y f x g x =-不是减函数, 故命题p 为真命题;对于命题():q y f x =在R 上有最大值M ,此时x a =,有最小值m ,此时x b =, 因为()()()()()()()()f x f a g x g a f x M g x g a M f x -≥-⇔-≤-≤-,()()()()()()()()f x f b g x g b m f x g x g b f x m -≥-⇔-≤-≤-所以()()()()2()()()()22m M g a g b M m g a g b m M g x g a g b M m g x -++-++-≤--≤-⇔≤≤,所以()y g x =也有最大值和最小值,故命题q 为真命题. 故选:A3.(2021·全国高三二模(理))已知实数a ,b ,c ,d 满足a b c >>,且0a b c ++=,220ad bd b +-=,则d 的取值范围是( ) A .(][),10,-∞-+∞B .()1,1-C .(D .(11--+【答案】D 【解析】先求解出方程的解1,2d ,然后利用换元法(bt a=)将d 表示为关于t 的函数,根据条件分析t 的取值范围,然后分析出d 关于t 的函数的单调性,由此求解出d 的取值范围. 【详解】因为220ad bd b +-=,所以1,2b b d a a -==-±2440b ab ∆=+≥,令bt a=,则1,2d t =-±20t t +≥,所以(][),10,t ∈-∞-+∞,又因为0a b c ++=且a b c >>,所以0a >且c a b b a =--<<, 所以2,a b b a -<<,所以112bt a-<=<,所以[)0,1t ∈,当[)0,1t ∈时,())10,1d t t =-==∈, 因为1y t=在()0,1上单调递减,所以y t =-()0,1上单调递增, 当0t =时,10d =,当1t =时,11d =,所以)11d ⎡∈⎣; 当[)0,1t ∈时,2d t =-,因为y t =、2y t t =+在[)0,1上单调递增,所以y t =-[)0,1上单调递减, 当0t =时,20d =,当1t =时,21d =-(21d ⎤∈-⎦,综上可知:(11d ∈---, 故选:D.4.【多选题】(2021·湖南高三三模)关于函数()111f x x x =++的结论正确的是( ) A .()f x 在定义域内单调递减 B .()f x 的值域为R C .()f x 在定义城内有两个零点 D .12y f x ⎛⎫=-⎪⎝⎭是奇函数 【答案】BD 【解析】根据所给函数结合函数性质,对各项逐个分析判断, 即可得解. 【详解】()111f x x x =++的定义域为(,1)(1,0)(0,)-∞--+∞, 而1x和11x +在各段定义域内均为减函数, 故()f x 在各段上为减函数,但不能说在定义域内单调递减,故A 错误; 当(1,0)x ∈- ,1x →-时,有()111f x x x =+→+∞+, 当0x →时,有()111f x x x =+→-∞+,所以()f x 的值域为R ,故B 正确; 令()2112101x f x x x x x+=+==++,可得12x =-,所以()f x 在定义城内有一个零点,故C 错误;2211128111241224x x y f x x x x x ⎛⎫=-=+== ⎪-⎝⎭-+-, 令28()41x g x x =-,易知12x ≠±,此时定义域关于原点对称,且28()()41xg x g x x --==--,故()g x 为奇函数, 所以12y f x ⎛⎫=- ⎪⎝⎭是奇函数,故D 正确, 故选:BD.5.【多选题】(2021·全国高三专题练习)(多选题)已知函数f (x )的定义域为R ,对任意实数x ,y 满足f (x +y )=f (x )+f (y )+12,且f 1()2=0,当x >12时,f (x )>0,则以下结论正确的是( ) A .f (0)=-12,f (-1)=-32B .f (x )为R 上的减函数C .f (x )+12为奇函数 D .f (x )+1为偶函数 【答案】AC 【解析】取0x y ==,11,22x y ==-,12x y ==-得出(0)f ,12f ⎛⎫- ⎪⎝⎭,(1)f -的值进而判断A ;由(1)(0)f f -<判断B ;令y x =-结合奇偶性的定义判断C ;令1()()2=+g x f x ,结合g (x )为奇函数,得出()1()f x f x -+=-,从而判断D.【详解】由已知,令0x y ==,得1(0)(0)(0)2f f f =++,1(0)2f ∴=-,令11,22x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112f ⎛⎫∴-=- ⎪⎝⎭,再令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3(1)2f ∴-=-,A 正确;(1)(0)f f -<,()f x ∴不是R 上的减函数,B 错误;令y x =-,得1()()()2f x x f x f x -=+-+,11()()022f x f x ⎡⎤⎡⎤∴++-+=⎢⎥⎢⎥⎣⎦⎣⎦,故C正确;令1()()2=+g x f x ,由C 可知g (x )为奇函数,11()()22g x g x ∴-+=-+,即1111()()2222f x f x ⎡⎤⎡⎤-++=-++⎢⎥⎢⎥⎣⎦⎣⎦,()1()f x f x ∴-+=-,故D 错误. 故选:AC6.【多选题】(2021·全国高一单元测试)如果函数()f x 在[,]a b 上是增函数,对于任意的1212,[,]()x x a b x x ∈≠,则下列结论中正确的是( )A .1212()()0f x f x x x ->-B .1212()[()()]0x x f x f x -->C .12()()()()f a f x f x f b ≤<≤D .12()()f x f x >E.1212()()0f x f x x x -<-【答案】AB 【解析】利用函数单调性的定义:12x x -与12()()f x f x -同号,判断A 、B 、E 的正误;而对于C 、D 选项,由于12,x x 的大小不定,1()f x 与2()f x 的大小关系不能确定. 【详解】由函数单调性的定义知,若函数()y f x =在给定的区间上是增函数,则12x x -与12()()f x f x -同号,由此可知,选项A ,B 正确,E 错误;对于选项C 、D ,因为12,x x 的大小关系无法判断,则1()f x 与2()f x 的大小关系确定也无法判断,故C ,D 不正确.故选:AB.7.【多选题】(2021·全国高一课时练习)(多选题)已知函数()f x 的定义域为D ,若存在区间[,]m n D ⊆使得()f x :(1)()f x 在[,]m n 上是单调函数; (2)()f x 在[,]m n 上的值域是[2,2]m n , 则称区间[,]m n 为函数()f x 的“倍值区间”. 下列函数中存在“倍值区间”的有( ) A .2()f x x =; B .1()f x x=; C .1()f x x x=+; D .23()1x f x x =+.【答案】ABD 【解析】函数中存在“倍值区间”,则()f x 在[],m n 内是单调函数,()()22f m m f n n ⎧=⎪⎨=⎪⎩或()()22f m nf n m ⎧=⎪⎨=⎪⎩,对四个函数的单调性分别研究,从而确定是否存在“倍值区间”. 【详解】函数中存在“倍值区间”,则(1)()f x 在[,]m n 内是单调函数,(2)()2()2f m m f n n =⎧⎨=⎩或()2()2f m nf n m=⎧⎨=⎩,对于A ,2()f x x =,若存在“倍值区间”[,]m n ,则()2()2f m m f n n =⎧⎨=⎩⇒2222m m n n⎧=⎨=⎩⇒02m n =⎧⎨=⎩,2()f x x ∴=,存在“倍值区间”[0,2];对于B ,1()()f x x R x =∈,若存在“倍值区间”[,]m n ,当0x >时,1212n m mn⎧=⎪⎪⎨⎪=⎪⎩⇒12mn =,故只需12mn =即可,故存在; 对于C ,1()f x x x=+;当0x >时,在区间[0,1]上单调递减,在区间[1,)+∞上单调递增, 若存在“倍值区间”1[],1][0,2n m n m m ⊆⇒+=,212210n m m mn n+=⇒-+=,222210n mn m n -+=⇒=不符题意;若存在“倍值区间”1[,][1,)2m n m m m ⊆+∞⇒+=,22121n n m n n+=⇒==不符题意,故此函数不存在“倍值区间“; 对于D ,233()11x f x x x x==++,所以()f x 在区间[0,1]上单调递增,在区间[1,)+∞上单调递减,若存在“倍值区间”[,][0,1]m n ⊆,2321m m m =+,2321n n n =+,0m ∴=,2n =, 即存在“倍值区间”[0,2; 故选:ABD .8.(2021·全国高三专题练习(理))已知1a >,b R ∈,当0x >时,[]24(1)102x a x b x ⎛⎫---⋅-≥ ⎪⎝⎭恒成立,则3b a +的最小值是_____.3 【解析】根据题中条件,先讨论10,1x a ⎛⎤∈ ⎥-⎝⎦,根据不等式恒成立求出114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦;再讨论1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭,求出114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦得到b ,再由基本不等式即可求出结果.【详解】当10,1x a ⎛⎤∈ ⎥-⎝⎦时,(1)10a x --<,即2402x b x--≤恒成立, 24222x x y x x-==-是10,1x a ⎛⎤∈ ⎥-⎝⎦上的增函数, ∴114(1)21b a a ⎡⎤≥--⎢⎥-⎣⎦, 当1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭时,(1)10a x -->,即2402x b x--≥恒成立,24222x x y x x-==-是1,1x a ⎡⎫∈+∞⎪⎢-⎣⎭上的增函数, ∴114(1)21b a a ⎡⎤≤--⎢⎥-⎣⎦, ∴114(1)21b a a ⎡⎤=--⎢⎥-⎣⎦,∴13(1)332(1)b a a a +=+-+≥-,当12a =+时等号成立.3.9.(2021·全国高三专题练习)对于满足2p ≤的所有实数p ,则使不等式212x px p x ++>+恒成立的x的取值范围为______.【答案】()()13+-∞-⋃∞,,. 【解析】将不等式转化为在[-2,2]内关于p 的一次函数函数值大于0恒成立求参变量x 的范围的问题. 【详解】解:原不等式可化为2(1)210x p x x -+-+>,令2()(1)21f p x p x x =-+-+,则原问题等价于()0f p >在[2,2]p ∈-上恒成立,则(2)0(2)0f f ->⎧⎨>⎩,即2243010x x x ⎧-+>⎨->⎩解得:1311x x x x ⎧⎪⎨-⎪⎩或或∴1x <-或3x >. 即x 的取值范围为()()13+-∞-⋃∞,,. 故答案为:()()13+-∞-⋃∞,,. 10.(2021·上海高三二模)已知a R ∈,函数()22,011,02x a x x f x x ax a x ⎧++-≥⎪=⎨-++<⎪⎩的最小值为2a ,则由满足条件的a 的值组成的集合是_______________.【答案】{3- 【解析】讨论a -与0、2的大小关系,判断函数()f x 在[)0,+∞、(),0-∞上的单调性与最小值,根据函数()f x 的最小值列方程解出实数a 的值.【详解】分以下三种情况讨论:①若0a -≤时,即当0a ≥时,()222,22,0211,02x a x f x a x x ax a x ⎧⎪+->⎪=+≤≤⎨⎪⎪-++<⎩,所以,函数()f x 在(),0-∞上单调递减,且()112f x a >+, 当0x ≥时,()min 1212f x a a =+>+, 此时,函数()f x 无最小值;②若02a <-≤时,即当20a -≤<时,()222,22,222,011,02x a x a a x f x x a x a x ax a x +->⎧⎪+-≤≤⎪⎪=⎨--+≤<-⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥+.22a a +>,所以,21242a aa -++=,整理可得2640a a +-=,20a -≤<,解得3a =-±; ③当2a ->时,即当2a <-时,()222,2,222,0211,02x a x a a x a f x x a x x ax a x +->-⎧⎪--≤≤-⎪⎪=⎨--+≤<⎪⎪-++<⎪⎩,当0x <时,()211242a a f x f a ⎛⎫≥=-++ ⎪⎝⎭, 当0x ≥时,()2f x a ≥--.因为202a a -->>,所以,21242a aa -++=,整理可得2640a a +-=,2a <-,解得3a =-3a =-+.综上所述,实数a的取值集合为{3-.故答案为:{3-.1.(2020·全国高考真题(文))设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A 【解析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出. 【详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数.又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .2.(2019·北京高考真题(文))下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A 【解析】函数122,log xy y x -==, 练真题1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .3.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .4.(2017课标II)函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【答案】D【解析】函数有意义,则:2280x x --> ,解得:2x <- 或4x > ,结合二次函数的单调性、对数函数的单调性和复合函数同增异减的原则可得函数的单调增区间为()4,+∞ . 故选D.5.(2017天津)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>, 即,a b c c b a >><<,本题选择C 选项.6.(2020·北京高考真题)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________. 【答案】①②③ 【解析】根据定义逐一判断,即可得到结果 【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③。

函数的性质-单调性、奇偶性、周期性、对称性(解析版)

函数的性质-单调性、奇偶性、周期性、对称性(解析版)

函数的性质-单调性、奇偶性、周期性、对称性目录一、常规题型方法1题型一函数的单调性1题型二函数的奇偶性4题型三单调性与奇偶性的综合应用10题型四函数的周期性13题型五函数的对称性18题型六周期性与对称性的综合应用22二、针对性巩固练习26练习一函数的单调性26练习二函数的奇偶性28练习三单调性与奇偶性的综合应用30练习四函数的周期性32练习五函数的对称性34练习六周期性与对称性的综合应用36常规题型方法题型一函数的单调性【典例分析】典例1-1.(2020·天津·高一期末)函数f (x )=log 13-x 2+6x -5 的单调递减区间是( )A.(-∞,3]B.[3,+∞)C.(1,3]D.[3,5)【答案】C 【分析】首先由函数解析式,求其定义域,根据复合函数的单调性,结合对数函数与二次函数的单调性,可得答案.【详解】由f x =log 13-x 2+6x -5 ,则-x 2+6x -5>0,x -5 x -1 <0,解得1<x <5,即函数f x 的定义域1,5 ,由题意,令g x =log 13x ,h x =-x 2+6x -5,则f x =g h x ,易知g x 在其定义域上单调递减,要求函数f x 的单调递减区间,需求在1,5 上二次函数h x 的递增区间,由h x =-x 2+6x -5=-x -3 2+4,则在1,5 上二次函数h x 的递增区间为1,3 ,故选:C .典例1-2.(2022·湖北武汉·高一期中)若二次函数f x =ax 2+a +6 x -5在区间-∞,1 为增函数,则a 的取值范围为( )A.-2,0B.-2,0C.-2,0D.-2,0【答案】A 【分析】根据条件确定二次函数的图象应开口向下,再利用端点值和对称轴比较大小.【详解】当a <0时,-a +62a≥1,解得:a ≥-2,所以-2≤a <0,当a >0时,不满足条件,综上可知:-2≤a <0故选:A典例1-3.(浙江省台州山海协作体2022-2023学年高一上学期期中联考数学试题)已知函数f x =x 2-2ax +52a ,x ≤1ax ,x >1 是定义在R 上的减函数,则实数a 的取值范围为( )A.1,2B.1,2C.1,+∞D.0,1【答案】A 【分析】根据二次函数和反比例函数的单调性,结合分割点处函数值之间的关系,列出不等式,求解即可.【详解】解:因为函数f x =x 2-2ax +52a ,x ≤1a x,x >1 是定义在R 上的减函数,所以a ≥1a >01-2a +52a ≥a解得1≤a ≤2,即a ∈1,2 .故选:A .【方法技巧总结】1.函数单调性的判断方法有:定义法、性质法、图像法、导数法。

函数专题:指数型与对数型复合函数的单调性与值域-【题型分类归纳】高一数学上学期同步讲与练(解析版)

函数专题:指数型与对数型复合函数的单调性与值域-【题型分类归纳】高一数学上学期同步讲与练(解析版)

函数专题:指数型与对数型复合函数的单调性与值域一、复合函数的概念如果函数()=y f t 的定义域为A ,函数()=t g x 的定义域为D ,值域为C , 则当⊆C A 时,函数()()=y f g x 为()f t 与()g x 在D 上的复合函数, 其中()=t g x 叫做内层函数,()=y f t 叫做外层函数 二、复合函数的单调性1、复合函数单调性的规律:“同增异减”若内外两层函数的单调性相同,则它们的复合函数为增函数; 若内外两层函数的单调性相反,则它们的复合函数为减函数 2、具体判断步骤(1)求出原函数的定义域;(2)将复合函数分解为内层函数和外层函数; (3)分析内层函数和外层函数的单调性; (4)利用复合函数法“同增异减”可得出结论. 三、指数型复合函数值域的求法1、形如()=x y f a (0>a ,且1≠a )的函数求值域借助换元法:令=x a t ,将求原函数的值域转化为求()f t 的值域, 但要注意“新元t ”的范围2、形如()=f x y a (0>a ,且1≠a )的函数求值域 借助换元法:令()=f x μ,先求出()=f x μ的值域, 再利用=y a μ的单调性求出()=f x y a 的值域。

四、对数型复合函数值域的求法1、形如(log )=a y f x (0>a ,且1≠a )的函数求值域 借助换元法:令log =a x t ,先求出log =a x t 的值域M , 再利用()=y f t 在M 上的单调性,再求出()=y f t 的值域。

2、形如()log =a y f x (0>a ,且1≠a )的函数的值域 借助换元法:令()=f x μ,先求出()=f x μ的值域, 再利用log =a y μ的单调性求出()log =a y f x 的值域。

题型一 复合函数的单调性判断【例1】(多选)函数2(65)1()()2x x f x -+-=在下列哪些区间内单调递减( )A .(3),-∞B .(3,5)C .(1,3)D .(2,3) 【答案】ACD【解析】由题意,函数1()2xy =在R 上单调递减,又由函数265y x x =-+-在(3),-∞上单调递增,在(3,)+∞上单调递减, 由复合函数的单调性可知,函数()f x 在(3),-∞上单调递减, 结合选项,可得选项ACD 符合题意. 故选:ACD.【变式1-1】求函数21181722xxy ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭的单调区间___________.【答案】增区间为[2,)-+∞,减区间为(,2)-∞-【解析】设t =12x⎛⎫⎪⎝⎭>0,又22817(4)1y t t t =-+=-+在(0,4]上单调递减,在(4,)+∞上单调递增.令12x⎛⎫ ⎪⎝⎭≤4,得x ≥-2,令12x⎛⎫⎪⎝⎭>4,得x <-2. 而函数t =12x⎛⎫⎪⎝⎭在R 上单调递减,所以函数21181722x xy ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭的增区间为[2,)-+∞,减区间为(,2)-∞-.故答案为:增区间为[2,)-+∞,减区间为(,2)-∞-【变式1-2】函数()()212log 32f x x x =-+-的单调递减区间为( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎛⎫⎪⎝⎭ C .3,22⎛⎫ ⎪⎝⎭D .3,2⎛⎫+∞ ⎪⎝⎭【答案】B【解析】由2320x x -+->得:12x <<,即()f x 定义域为()1,2;令232t x x =-+-,则t 在31,2⎛⎫⎪⎝⎭上单调递增,在3,22⎛⎫ ⎪⎝⎭上单调递减; 又12log y t=在()0,∞+上单调递减,()()212log 32f x x x ∴=-+-的单调递减区间为31,2⎛⎫ ⎪⎝⎭.故选:B.【变式1-3】函数()()2ln 4f x x =-的单调增区间是______.【答案】(2,0]-【解析】由240x ->,得22x -<<,所以函数的定义域为(2,2)-, 令24t x =-,则ln y t =,因为24t x =-在(2,0]-上递增,在[0,2)上递减,而ln y t =在(0,)+∞上为增函数, 所以()f x 在(2,0]-上递增,在[0,2)上递减, 故答案为:(2,0]-题型二 根据复合函数的单调性求参数【例2】若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥- 【答案】C【解析】依题意函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,15xy =在R 上递减, 2y x ax =+的开口向上,对称轴为2ax =-,根据复合函数单调性同增异减可知,122a a -≤⇒≥-.故选:C【变式2-1】若函数22113x mx y +-⎛⎫= ⎪⎝⎭在区间[]1,1-上为增函数,则实数m 的取值范围为______.【答案】1m ≤-【解析】由复合函数的同增异减性质可得,221y x mx =+-在[1,1]-上严格单调递减,二次函数开口向上,对称轴为x m =- 所以1m -≥,即1m ≤- 故答案为:1m ≤-【变式2-2】已知f (x )=()212log 3x ax a -+在区间[2,+∞)上为减函数,则实数a 的取值范围是________. 【答案】](4,4-【解析】二次函数23=-+y x ax a 的对称轴为2=a x , 由已知,应有22≤a,且满足当x ≥2时y =x 2-ax +3a >0, 即224230⎧≤⎪⎨⎪-+>⎩a a a ,解得44-<≤a .故答案为:](4,4-【变式2-3】若函数()f x =312⎛⎫⎪⎝⎭,单调递减,则a 的取值范围是( ) A .32⎡⎫+∞⎪⎢⎣⎭,B .32⎛⎫+∞ ⎪⎝⎭, C .3724⎡⎤⎢⎥⎣⎦, D .3724⎛⎫ ⎪⎝⎭, 【答案】C【解析】因为()f x =312⎛⎫⎪⎝⎭,单调递减, 所以,函数()212log 22y x ax =-+-在312⎛⎫⎪⎝⎭,单调递减,且函数值非负, 所以函数222t x ax =-+-在312⎛⎫ ⎪⎝⎭,是单调递增且01t <≤, 故2232332121220a a a ⎧≥⎪⎪⎪⎛⎫-+-≤⎨ ⎪⎝⎭⎪⎪-+-≥⎪⎩,解得3724a ≤≤,故选:C【变式2-4】已知()()2log 3(0a f x x ax a =-+>且1)a ≠,对任意12,(,]2a x x ∈-∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则a 的取值范围是__________.【答案】(【解析】因为对任意12,(,]2a x x ∈-∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,所以()f x 在(,]2a-∞上单调递减,因为23y x ax =-+在(,]2a-∞上单调递减,由复合函数的单调性知1a >,又由对数函数的定义域知,当(,]2a x ∈-∞时,230x ax -+>恒成立,可得2()3022a a a -⨯+>,解得a -<<综上可得;1a <<a 的取值范围为(.【变式2-5】已知函数()log a f x x =,记()()()()21g x f x f x f ⎡⎤=⋅+-⎣⎦,若()g x 在区间1,22⎡⎤⎢⎥⎣⎦上是增函数,则实数a 的取值范围是( )A .10,2⎛⎤⎥⎝⎦ B .1,12⎡⎤⎢⎥⎣⎦C .()()0,11,2UD .[)2,+∞【答案】A【解析】()()()()()21log log log 21a a a g x f x f x f x x ⎡⎤=⋅+-=+⎣-⎦, 则()()22lg lg lg 21lg lg lg 2lg lg lg lg lg 1x x g x x a x a a a a ⎛⎫-⎡⎤=+=-- ⎪⎣⎦⎝⎭, 令lg t x =,由1,22x ⎡∈⎤⎢⎥⎣⎦,所以[]lg 2,lg 2t ∈-,令()()221lg lg 2lg M t t a t a⎡⎤=--⎣⎦, 因为()g x 在区间1,22⎡⎤⎢⎥⎣⎦上是增函数, 所以()M t 在[]lg 2,lg 2t ∈-也是增函数, 所以lg lg 21lg 2lg lg 2lg 22a a -≤-⇒≤-=, 则102a <≤,即10,2a ⎛⎤∈ ⎥⎝⎦故选:A.题型三 复合函数的值域求解【例3】函数()2212x xf x -+⎛⎫= ⎪⎝⎭的值域为( )A .1,2⎛⎤-∞ ⎥⎝⎦ B .10,2⎛⎤⎥⎝⎦ C .1,2⎡⎫+∞⎪⎢⎣⎭ D .[)2,+∞【答案】C【解析】令22t x x =-+,则2(1)11t x =--+≤,因为1()2ty =在R 上单调递减,所以12y ≥,故函数()2212x xf x -+⎛⎫= ⎪⎝⎭的值域为1,2⎡⎫+∞⎪⎢⎣⎭,故选:C【变式3-1】函数113()934x xf x --⎛⎫=++ ⎪⎝⎭在[1,)-+∞上的值域为___________.【答案】375,44⎛⎤⎥⎝⎦【解析】2113113()9334334x x xx f x --⎛⎫⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎝⎭∵[1,)x ∈-+∞则令(],3130xt ⎛⎫⎪⎭∈= ⎝,2334y t t =++在(]0,3递增∴375,44y ⎛⎤∈ ⎥⎝⎦【变式3-2】已知函数2()421x x f x +=--,[0,2]x ∈则其值域为___________. 【答案】[]5,1--【解析】令2x t =,∵[0,2]x ∈,∴14t ≤≤,∴22()41(2)5f t t t t =--=--, 又()y f t =关于2t =对称,2t ∴=即1x =时,函数取得最小值,即min ()5f x =-,4t =即2x =时,函数取得最大值,即max ()1f x =-, ()[5f x ∴∈-,1]-.【变式3-3】已知函数()()()44log 1log 3f x x x =++-,求()f x 的单调区间及最大值. 【答案】单调递增区间为()1,1-,单调递减区间为()1,3;()max 1=f x【解析】由1030x x +>⎧⎨->⎩得:13x -<<,()f x ∴的定义域为()1,3-;()()()()()224444log 1log 3log 23log 14f x x x x x x ⎡⎤=++-=-++=--+⎣⎦, 令()()214t x x =--+,则()t x 在()1,1-上单调递增,在()1,3上单调递减,又4log y t =在定义域内单调递增,由复合函数单调性可知:()f x 的单调递增区间为()1,1-,单调递减区间为()1,3; 由单调性可知:()()4max 1log 41f x f ===.【变式3-4】已知()222()log 2log 4,[2,4]f x x x x =-+∈.(1)设2log ,[2,4]t x x =∈,求t 的最大值与最小值;(2)求()f x 的值域.【答案】(1)2t =最大,1t =最小;(2)[3,4].【解析】(1)因为函数2log t x =在区间[2,4]上是单调递增的,所以当4x =时,2log 42t ==最大, 当2x =时,2log 21t ==最小.(2)令2log t x =,则()()()222413f x g t t t t ==-+=-+,由(1)得[]1,2t ∈,因为函数()g t 在[]1,2上是单调增函数,所以当1t =,即2x =时,()min 3f x =;当2t =,即4x =时,()max 4f x =, 故()f x 的值域为[]3,4.【变式3-5】已知函数()2421x xf x a =⋅-⋅+,求函数()f x 在[]0,1上的最小值.【答案】()2min3,41,48892,8a a a f x a a a -≤⎧⎪⎪=-<≤⎨⎪-≥⎪⎩【解析】设2x t =,由[0,1]x ∈得[1,2]t ∈,2()()21f x g t t at ==-+,222()212()148a a g t t at t =-+=-+-,当14a ≤,即4a ≤时,min ()(1)3g t g a ==-, 当124a <≤,即48a <≤时,2min ()()148a a g t g ==-, 当,即8a >时,min ()(2)92g t g a ==-, 综上()2min3,41,48892,8a a a f x a a a -≤⎧⎪⎪=-<≤⎨⎪-≥⎪⎩.【变式3-6】已知函数()1423x x f x a +=⋅--,若0a >,求()f x 在区间[]1,2上的最大值()g a .【答案】()147,0311611,3a a g a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩.【解析】令[]22,4x t =∈,即求()223h t at t =--在区间[]2,4上的最大值.当0a >时,二次函数()223h t at t =--的图象开口向上,对称轴为直线1t a=.①当12a ≤时,即当12a ≥时,函数()h t 在区间[]2,4上单调递增,则()()41611g a h a ==-; ②当123a<≤时,即当1132a ≤<时,函数()h t 在区间12,a ⎡⎫⎪⎢⎣⎭上单调递减,在区间1,4a ⎛⎤ ⎥⎝⎦上单调递增,因为()247h a =-,()41611h a =-,()()421240h h a -=-≥, 则()()41611g a h a ==-; ③当134a<<时,即当1143a <<时,函数()h t 在区间12,a ⎡⎫⎪⎢⎣⎭上单调递减,在区间1,4a ⎛⎤ ⎥⎝⎦上单调递增,此时,()()42h h <,则()()247g a h a ==-;④当14a ≥时,即当104a <≤时,函数()h t 在区间[]2,4上单调递减, 所以,()()247g a h a ==-.综上所述,()147,0311611,3a a g a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩.题型四 根据复合函数的值域求解【例4】若函数()22312ax x f x -+⎛⎫= ⎪⎝⎭的最大值是2,则=a ( )A .14B .14-C .12 D .12- 【答案】A【解析】由1()2uy =在定义域上递减,要使()f x 有最大值,则223u ax x =-+在定义域上先减后增, 当max ()2f x =,则223u ax x =-+的最小值为1-,所以0131a a>⎧⎪⎨-=-⎪⎩,可得14a =.故选:A【变式4-1】已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤ ⎥⎝⎦,若不等式()()log 4log 2x a xa t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( )A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2【答案】A【解析】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤ ⎥⎝⎦,可得函数y 的最大值为116, 当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递减, 当1x a =时,函数y 有最大值,即12411416a a -+⎛⎫=⎪⎝⎭,解得12a =; 当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x xt t ⋅<-在[]1,2x ∈上恒成立, 即402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立, 由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <;由42x x t t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122xxf x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫⎪⎝⎭.故选:A.【变式4-2】已知函数()()2log 41x f x ax =++是偶函数,函数()()22222f x x x g x m -=++⋅的最小值为3-,则实数m 的值为( )A .3B .52-C .2-D .43【答案】B【解析】因为函数()()2log 41x f x ax =++是偶函数,所以()()f x f x -=,即()()22log 41log 41x x ax ax -+-=++,所以()()222log 41log 410x x ax -++-+=, 其中()()()()()22222241441441log 41log 41log log log log 424141414x x x x x x x x x x x x x ---+⋅+⋅++-+=====+++⋅, 所以220ax x +=,解得1a =-,所以()()2log 41x f x x =+-,所以()()2log 414122222x x x f x x x x +--+===+, 故函数()()222222x x x x g x m --=+++的最小值为3-.令22x x t -+=,则2t ≥,故函数()()222222x x x x g x m --=+++的最小值为3-等价于()()222h t t mt t =+-≥的最小值为3-, 等价于()2? 22223m h m ⎧-≤⎪⎨⎪=+=-⎩或22? 22324m m m h ⎧->⎪⎪⎨⎛⎫⎪-=--=- ⎪⎪⎝⎭⎩, 解得52m =-.故A ,C ,D 错误.故选:B .【变式4-3】函数()22lg 34a f x ax x ⎛⎫=++ ⎪⎝⎭没有最小值, 则a 的取值范围是______. 【答案】22,33⎛⎤- ⎥⎝⎦【解析】令()2234a t x ax x =++,则外函数为()lg f t t =, 因为lg y t =在定义域上单调递增,要使函数()22lg 34a f x ax x ⎛⎫=++ ⎪⎝⎭没有最小值, 即()2234a t x ax x =++的值域能够取到0,且不恒小于等于0,当0a =时()23t x x =,符合题意,当0a <时()2234a t x ax x =++开口向下, 只需224034a a ⎛⎫∆=-⨯⨯> ⎪⎝⎭,解得2233-<<a ,即203a -<<; 当0a >时()2234a t x ax x =++开口向上, 只需224034a a ⎛⎫∆=-⨯⨯≥ ⎪⎝⎭,解得2233a -≤≤,即203a <≤; 综上可得2233a -<≤,即22,33a ⎛⎤∈- ⎥⎝⎦.【变式4-4】已知函数()()213log 25f x x mx =-+,若()f x 的值域为R ,求实数m 的取值范围.【答案】(),-∞⋃+∞ 【解析】由()f x 的值域为R ,可得225u x mx =-+能取()0,∞+内的一切值,故函数225u x mx =-+的图象与x 轴有公共点, 所以24200m -≥,解得m ≤m ≥故实数m 的取值范围为(),-∞⋃+∞.。

第三节 函数的单调性(必修1第三章)

第三节  函数的单调性(必修1第三章)

第三节函数的单调性知识清单1.函数单调性的定义一般地,设函数的定义域为I ,区间ID ⊆(1)如果D x x ∈∀21,,当21x x <时,都有)()(21x f x f <,那么称函数)(x f 在区间D 上单调递增.特别地,当函数)(x f 在它的定义域上单调递增时,我们就称它是增函数.(2)如果D x x ∈∀21,,当21x x <时,都有)()(21x f x f >,那么称函数)(x f 在区间D 上单调递减.特别的,当函数)(x f 在它的定义域上单调递减时,我们就称它是减函数函数.(3)如果函数)(x f y =在区间D 上单调递增或单调递减,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做函数)(x f y =的单调区间.注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2.函数单调性的证明步骤(1)取值,D x x ∈∀21,,且21x x <;(2)作差,)()(21x f x f -,然后通过因式分解、配方等进行化简(也可作商);(3)定号,判断出)(1x f 与)(2x f 的大小关系;(4)下结论,根据函数的单调性的定义得出相应的结论.3.复合函数的单调性(同增异减))(x g u =)(u f y =))((x g f y =增增增增减减减增减减减增4.函数的最大值与最小值一般的,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)I x ∈∀,都有M x f ≤)(;(2)I x ∈∃0,使得Mx f =)(0那么,我们称M 是函数)(x f y =的最大值.(最小值同理)题型训练题型一求函数的单调区间1.已知xx x f 2)(+=,当0>x 时,)(x f 的单调递减区间是()A .)2(∞+,B .)2(∞+,C .)20(,D .)20(,2.函数11)(-+=x x f 的单调递减区间为()A .)1(∞+-,B .)1(--∞,C .)1(,-∞D .)1(∞+,3.已知函数212)(++=x x x f ,则函数)(x f 的单调增区间是()A .)(∞+-∞,B .)2(--∞,C .)2()2(∞+---∞,, D .)2(--∞,,)2(∞+-,4.函数452+-=x x y 的单调递增区间是()A .)25(∞+,B .)425(,C .)4(∞+,D .251(,,)4(∞+,5.函数2-=x x y 的单调递增区间为,函数432--=x x y 的单调递减区间为6.函数232--=x x y 的单调递减区间为,函数542--=x x y 的单调递增区间为题型二根据函数的单调性求参数7.若函数32)(2-+=x ax x f 在区间)4(,-∞上是单调递增的,则实数a 的取值范围是()A .)41(∞+-,B .)41[∞+-,C .)041[,-D .]041[,-8.已知函数⎪⎩⎪⎨⎧>≤---=)1()1(5)(2x xa x ax x x f 是R 上的增函数,则a 的取值范围是()A .03<≤-a B .23-≤≤-a C .2-≤a D .0<a 9.若函数3)1()(+-=x m x f 在R 上单调递增,则m 的范围是10.函数3)(2--=ax x x f 在区间]31[,-上是单调函数,则a 的取值范围是11.函数43)(2+-=mx x x f 在上,)2[∞+单调递增,则m 的范围是12.函数⎩⎨⎧≤-+->-+-=0)2(01)12()(2x x a x x a x a x f ,,在R 上为增函数,则实数a 的取值范围是题型三判断与证明函数的单调性(定义法证明单调性)13.下列函数中,在)0(∞+,上为增函数的是()A .xx f -=3)(B .xx x f 3)(2-=C .11)(+-=x x f D .xx f -=)(14.定义在R 上的函数)(x f 对任意两不相等的实数b a ,都有0)()(>--ba b f a f ,则必有()A .函数)(x f 在R 上先增后减B .函数)(x f 是R 上的增函数C .函数)(x f 在R 上先减后增D .函数)(x f 是R 上的减函数15.已知函数24)(++=xx x f ,判断函数)(x f 在)2[∞+,的单调性,并证明.16.已知函数x x x f +=3)(,判断函数)(x f 在R 上的单调性,并证明.题型四复合函数的单调性(同增异减,注意定义域)17.已知函数)(x f y =在R 上是减函数,则)3(-=x f y 的单调递减区间是()A .)(∞+-∞,B .)3(∞+,C .)3(∞+-,D .)3(,-∞18.已知函数)(x f y =是R 上的减函数,则)2(2x x f y -=的单调递增区间为()A .)(∞+-∞,B .)1(--∞,C .)1(,-∞D .)1(∞+,19.已知函数()f x 是定义在区间)13(,-上的减函数,则)1(2x f -的单调递增区间为20.函数11)(2-=x x f 的单调递减区间是题型五单调性的应用21.已知)(x f 对任意的)(,2121x x x x ≠都有0)()(2121<--x x x f x f ,若)3()(2+>-a f a a f ,则实数a 的取值范围是()A .)31(,-B .)13(,-C .)3()1(∞+--∞,, D .)1()3(∞+--∞,, 22.已知函数⎩⎨⎧<+-≥+=0,20,2)(22x x x x x x x f ,若)()2(2a f a f <-,则实数a 的取值范围是()A .)21(,-B .)12(,-C .)2()1(∞+--∞,, D .)1()2(∞+--∞,, 23.已知函数)(x f 是定义在区间]22[,-上的减函数,且有0)21()1(>---m f m f ,则实数m 的取值范围是24.已知函数)(x f 是定义在)0(∞+,上的增函数,满足)()()(y f x f xy f +=,1)3(=f .(1)求)1(f 与)3(f 的值;(2)若2)8()(≤-+x f x f ,求x 的取值范围题型六抽象函数的单调性25.已知)(x f 的定义域为R ,对于任意实数y x ,都有)()()(y f x f y x f +=+,1)2(=f 且当0>x 时,0)(>x f .(1)求)0(f ,)2(-f 与)4(f 的值;(2)证明)(x f 在R 上为增函数;(3)解关于x 的不等式2)1()32(-->+x f x f .26.已知定义域为)0(∞+,的函数)(x f 对任意)0(∞+∈,,y x 都有)()()(y f x f xy f +=,1)3(-=f 且当1>x 时,0)(<x f .(1)求)9(f 与)3(f 的值;(2)证明函数)(x f 在)0(∞+,上为减函数;(3)解不等式)1(2)6(-<+x f x f .27.已知函数)(x f 对任意的实数y x ,都有1)()()(-+=+y f x f y x f ,且当0>x 时,1)(>x f .(1)证明)(x f 在R 上为增函数;(2)若关于x 的不等式)()5(2m f a ax x f <+-的解集为{}23<<-x x ,求m 的值.28.已知)(x f 的定义域为R ,对于任意实数y x ,都有)()()(y f x f y x f ⋅=+,且当0>x 时,1)(0<<x f .(1)求)0(f 的值;(2)证明0)(>x f ;(3)证明)(x f 在R 上为增函数.综合训练1.函数322-+=x x y 的单调递减区间是()A .]3(--∞,B .]1(--∞,C .)1[∞+-,D .)1[∞+,2.函数x x y )3(-=的递增区间是()A .)23(∞+,B .)23(,-∞C .)230(,D .)30(,3.若函数)(x f 在R 上是减函数,则下列关系式一定成立的是()A .)2()(a f a f >B .)()(2a f a f <C .)()(2a f a a f <+D .)()1(22a f a f <+4.若函数⎩⎨⎧≤->--=222)1()(2x ax x x a x a x f ,,在R 上为减函数,则实数a 的取值范围为5.若定义在R 上的二次函数b ax ax x f +-=4)(2在区间]20[,上是增函数,且)0()(f m f ≥,则实数m 的取值范围是6.已知函数1)3()(2+-+=x a ax x f 在区间)1[∞+-,上单调递减,则a 的取值范围是7.已知函数)21(21)(≠++=a x ax x f .(1)当2=a 时,证明函数在)2(∞+-,上是增函数;(2)讨论函数在)2(∞+-,上的单调性.8.已知定义在区间)0(∞+,上的函数)(x f 满足)()()(2121x f x f x x f -=,且当1>x 时,0)(<x f .(1)求)1(f 的值;(2)证明:)(x f 为单调递减函数;(3)若1)31(=f ,解不等式:2)63(->-x f .第三节函数的单调性参考答案题型一求函数的单调区间1-4C ,B ,D ,C5.(1)(1,2)(2)(1-,+∞),(23,4)6.(1))2,(-∞,),2(+∞(2)(2-,0),(2,+∞)题型二根据函数的单调性求参数7-8D ,B9.1>m 10.2-≤a 或6≥a 11.34≤m 12.21≤≤a 题型三判断与证明函数的单调性13-14C ,D15-16略题型四复合函数的单调性17-18B ,C19.(0,2)20.(0,1),(1,+∞)题型五单调性的应用21-22A ,D23.)32,21[-24.略题型六抽象函数的单调性25-28略综合训练1-5A ,C ,D ,4≥a ,40≤≤m 6.03≤≤-a 7.(1)略(2)当21>a 时,函数)(x f 在)2(∞+-,上单调递增,当21<a 时,函数)(x f 在()2(∞+-,上单调递减.8.(1)0)1(=f (2)略(3)(2,5)。

高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)

高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)

高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。

求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。

一、基础知识:1、函数的单调性:设()f x 的定义域为D ,区间I D ⊆,若对于1212,,x x I x x ∀∈<,有()()12f x f x <,则称()f x 在I 上单调递增,I 称为单调递增区间。

若对于1212,,x x I x x ∀∈<,有()()12f x f x >,则称()f x 在I 上单调递减,I 称为单调递减区间。

2、导数与单调区间的联系(1)函数()f x 在(),a b 可导,那么()f x 在(),a b 上单调递增()',()0x a b f x ⇒∀∈≥,此结论可以这样理解:对于递增的函数,其图像有三种类型: ,无论是哪种图形,其上面任意一点的切线斜率均大于零。

等号成立的情况:一是单调区间分界点导数有可能为零,例如:()2f x x =的单调递增区间为[)0+∞,,而()'00f =,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为()3f x x =在0x =处的导数为0,但是()0,0位于单调区间内。

(2)函数()f x 在(),a b 可导,则()f x 在(),a b 上单调递减()',()0x a b f x ⇒∀∈≤,(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由()',()x a b f x ∀∈,的符号能否推出()f x 在(),a b 的单调性呢?如果()f x 不是常值函数,那么便可由导数的符号对应推出函数的单调性。

(这也是求函数单调区间的理论基础) 3、利用导数求函数单调区间的步骤 (1)确定函数的定义域(2)求出()f x 的导函数'()f x(3)令'()0f x >(或0<),求出x 的解集,即为()f x 的单调增(或减)区间(4)列出表格4、求单调区间的一些技巧(1)强调先求定义域,一方面定义域对单调区间有限制作用(单调区间为定义域的子集)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合函数的单调性(一)一、单选题(共11道,每道9分)
1.函数的单调递减区间是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:复合函数的单调性
2.函数的单调递增区间是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:复合函数的单调性
3.函数的单调递增区间是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:复合函数的单调性
4.已知,,则函数的单调递增区间是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:复合函数的单调性
5.函数的单调递增区间是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:复合函数的单调性
6.函数的单调递减区间是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:复合函数的单调性
7.函数的单调递减区间是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:复合函数的单调性
8.函数的单调递减区间是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:复合函数的单调性
9.函数的单调递增区间是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:复合函数的单调性
10.函数的单调递减区间是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:复合函数的单调性
11.函数的单调递增区间是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:复合函数的单调性。

相关文档
最新文档