一笔画问题-三年级-奥数
一笔画(奥数)
一笔画【知识要点】1概念:一笔画是指笔不离开纸,而且每条线都只画一次不准重复而画成的图形。
2•分类:图中的点可分两大类:(1)双数点:从这点出发的线的数目是双数的,叫双数点。
(2)单数点:从这点出发的线的数目是单数的,叫单数点。
3•规律:一个图形能否一笔画成,关键在于图中单数点的多少。
(1凡是图形中没有单数点的一定可以一笔画成。
(2)凡是图形中只有两个单数点,一定可以一笔画成,画时必须从一个单数点为起点,最后以另一单数点为终点。
(3 )凡是图形中单数点的个数多于两个时,此图肯定是不能一笔画成。
【题目】1 判断下面图形中哪些点是单数点哪些点是双数点。
甲田木全4下面图形能不能一笔画成?这什么?F 列图形中各有几个单数点?能一笔画成吗?判断下面图形能不能一笔画成?如果能,应该怎样画?6 将下图加上最少的线改成一笔画的图形。
7.将下图去掉最少的线改成一笔画图形。
8•下图中的线段代表小路,请小朋友想一想,能够不重复地爬遍小路的甲蚂蚁还是乙蚂蚁? 该怎么爬?9.为迎接2008年奥运会在北京召开,你能一笔画出奥运会的五环图案吗?F 图是一个公园的平面图,应怎样走才能使游客走通每条路而不重复,设计一条最佳路线。
方?10. 、A如图是一个大型花池中小路的平面图,你能否不重复地一次走完所有的小路?进出口应设在什么地 DG11 一个公园的平面图如下, 请你设计好入口、出口,并给出一条浏览路线, 要求走遍每一条路且不重复。
16. 一个邮递员投递信件要走的街道如图,为节约时间,他想自己设计一条线路,可以不重复的走遍每 条街道,你能帮帮他吗?17. 一只蚂蚁要想不重复的爬遍每一条线路,应从哪里出发,到哪里结束?18 .你能用一笔画成 4条线段把下图的9个点都连起来吗?12.如图, 重复。
是一个公园的平面图,请你设计好入口、出口,并给出一种游 B求走遍每一条路且不 B13.如图, 是一个名画展厅的平面图,要使参观者不重复地走遍每一条画廊, 问:出口、入口应设在哪里?14.黑色的鱼与白色的鱼所能游动的河道如下图所示。
小学奥数 奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
一笔画(三年级奥数题及答案)
⼀笔画:
在六⾯体的顶点B和E处各有⼀只蚂蚁(见下图),它们⽐赛看谁能爬过所有的棱线,最终到达终点D。
已知它们的爬速相同,哪只蚂蚁能获胜?
解:利⽤⼀笔画的知识,能⾮常巧妙地解答这道题。
这道题只要求爬过所有的棱,没要求不能重复。
可是两只蚂蚁爬速相同,如果⼀只不重复地爬遍所有的棱,⽽另⼀只必须重复爬某些棱,那么前⼀只蚂蚁爬的路程短,⾃然先到达D点,因⽽获胜。
问题变为从B到D与从E到D哪个是⼀笔画问题。
图中只有E,D两个奇点,所以从E到D可以⼀笔画出,⽽从B到D却不能,因此E点的蚂蚁获胜。
一笔画(奥数)
一笔画【知识要点】1.概念:一笔画是指笔不离开纸,而且每条线都只画一次不准重复而画成的图形。
2.分类:图中的点可分两大类:(1)双数点:从这点出发的线的数目是双数的,叫双数点。
(2)单数点:从这点出发的线的数目是单数的,叫单数点。
3.规律:一个图形能否一笔画成,关键在于图中单数点的多少。
(1)凡是图形中没有单数点的一定可以一笔画成。
(2)凡是图形中只有两个单数点,一定可以一笔画成,画时必须从一个单数点为起点,最后以另一单数点为终点。
(3)凡是图形中单数点的个数多于两个时,此图肯定是不能一笔画成。
【题目】1 判断下面图形中哪些点是单数点哪些点是双数点。
2 下列图形中各有几个单数点?能一笔画成吗?3 判断下面图形能不能一笔画成?如果能,应该怎样画?A4下面图形能不能一笔画成?这什么?5 如图是一个大型花池中小路的平面图,你能否不重复地一次走完所有的小路?进出口应设在什么地方?6 将下图加上最少的线改成一笔画的图形。
7.将下图去掉最少的线改成一笔画图形。
8.下图中的线段代表小路,请小朋友想一想,能够不重复地爬遍小路的甲蚂蚁还是乙蚂蚁?该怎么爬?9.为迎接2008年奥运会在北京召开,你能一笔画出奥运会的五环图案吗?10.下图是一个公园的平面图,应怎样走才能使游客走通每条路而不重复,设计一条最佳路线。
11 一个公园的平面图如下,请你设计好入口、出口,并给出一条浏览路线,要求走遍每一条路且不重复。
12.如图,是一个公园的平面图,请你设计好入口、出口,并给出一种游玩路线,要求走遍每一条路且不重复。
13.如图,是一个名画展厅的平面图,要使参观者不重复地走遍每一条画廊,问:出口、入口应设在哪里?14.黑色的鱼与白色的鱼所能游动的河道如下图所示。
黑色的鱼在A点位置,白色的鱼在B点位置。
哪条鱼能不重复地游遍所有的河道?15.能用一根铁丝弯成下面的图形吗?16.一个邮递员投递信件要走的街道如图,为节约时间,他想自己设计一条线路,可以不重复的走遍每一条街道,你能帮帮他吗?17.一只蚂蚁要想不重复的爬遍每一条线路,应从哪里出发,到哪里结束?18.你能用一笔画成4条线段把下图的9个点都连起来吗?19.下图能否一笔画成?如果能,应怎样画?20.如图,在一个六面体的顶点A和B处各有一只蜗牛,它们比赛看谁能不重复地爬遍每一棱线到达C点。
最新三年级奥数详解答案 第十七讲 一笔画问题
第十七讲 一笔画问题小朋友们,你们能把下面的图形一笔画出来吗?知识点:1.一笔画的概念:如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。
那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。
2.一笔画的规律3.奇点和偶点例【1】 下面这些图形,哪个能一笔画?哪个不能一笔画?(1)(2) (3) (4)分析 图(1)一笔画出,可以从图中任意一点开始画该图,画到同一点结束。
经过尝试后,可以发现图(2)不能一笔画出。
图(3)不是连通的,显然也不能一笔画出。
图(4)也可以一笔画出,且从任何一点出发都可以。
通过观察,我们可以发现一个几何图形中和一点相连通的线的条数不同。
由一点发出有偶数条线,那么这个点叫做偶点。
相应的,由一点出发有奇数条数,则这个点叫做奇点。
再看图(1)、(4),其中每一点都是偶点,都可以一笔画,且可以从任意一点画起。
而图(2)有4个奇点,2个偶点,不能一笔画成。
这样我们发现,一个图形能否一笔画和这个图形奇点,偶点的个数有某种联系,到底存在什么样的关系呢,我们再看一个例题。
例【2】 下面各图能否一笔画成?(1) (2) (3)A EC D B CD A ABCD BF分析 图(1)从任意一点出都可以一笔画成,因为它的每一个点都是与两条线相连的偶点。
关于图(2),经过反复试验,也可找到画法:由 A B C AD C 。
图中B 、D 为偶点,A 、C为奇点,即图中有两个奇点,两个偶点。
要想一笔画,需从奇点出发,回到奇点。
经过尝试,图(3)无法一笔画成,而图中有4个奇点,5个偶点。
解 图(1)、(2)可以一笔画。
这样我们可以发现能否一笔画和奇点、偶点的数目有着紧密的关系。
如果图形只有偶点,可以以任意一点为起点,一笔画出。
如果只有两个奇点,也可以一笔画出,但必须从奇点出发,由另一点结束。
如果图形的奇点个数超过两个,则图形不能一笔画出。
例【3】 下面的图形,哪些能一笔画出?哪些不能一笔画出?分析 图(1)有两个奇点,两个偶点,可以一笔画,须由A 开始或由B 开始到B 结束或到A 结束。
小学三年级奥数专题(二十八)一笔画(1)
小学三年级奥数专题(二十八)一笔画(1)关键词:欧拉笔画复地斯堡画成奥数图形年级这个小学摘要:《小学三年级奥数专题(二十八)一笔画(1)》...现了一笔画原理。
欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上...如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。
显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。
同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。
哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。
所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?当时的许多人都热衷于解决七桥问题,但是都没成功。
后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。
欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。
如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。
欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。
奥数-03一笔画+答案
【例 8】 如图 A 所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河 岸。问:一个散步者能否一次不重复地走遍这七座桥?
解析:通过画图,把一个实际问题转化为一个几何图形(如图 B),成为一笔画 的问题了,而图 B 中有 2 个奇点,所以能一笔画出。 练习四 1、右边各图至少要用几笔画完?
1
【例 1】 右图中,哪些点是偶点?哪些点是奇点? 解析:我们把一个图形上与偶数条线相连的点叫
做偶点,与奇数条线相连的点叫做奇点。奇点有 J、D、 H,偶点有 A、B、C、E、F、G、I。
【例 2】 下面图形能不能一笔画成?如果能,应该怎样画?
解析:图 1 能一笔画,因为图中只有两个奇点。图 2 也能一笔画,因为图中全 是偶点,图 3 不能一笔画,因为有 4 个奇点。
条线,将其改成成可一笔画的图形。
G
H
A
I
J
F
B
K
L
E
C
图b
D
【例 2】 右图是某展览厅的平面图,它由五个展室组 成,任两展室之间都有门相通,整个展览厅还有一个进 口和一个出口,问游人能否从入口进,从出口出,并且 一次不重复地穿过所有的门?
解析:将图形中的 6 个区域看成 6 个点,每个门看 成连结他们的线段,显然 6 个点都是偶点,所以游人能 一次不重复的走过所有的门。
2
【例 4】 右图中的线段表示小路,请你仔细观 察,认真思考,能够不重复地爬遍小路的是甲蚂 蚁还是乙蚂蚁?该怎样爬?
解析:要想不重复爬遍小路,需要图形能 一笔画出,由于图中有两个奇点,所以应该从 奇点出发才能一笔画出图形,所以甲蚂蚁能够。
三年级奥数一笔画
作业
1.如图每个小正方形边长为1,从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?最短是多少?(在图上添上需要重复走的线段)
2.图中是一辆越野车爬过两个山峰的路一线图,试这辆车该从那个点上山,经过全部路段,且不重复.最后终点落在哪个结点上?
笑笑去公园游玩,下图为公园简易地图,菱形四角为公园四个出入口,笑笑要从一个门进公园,从另一个门出来,要走遍各条小路,怎样走才能使所走的行程最短?
例5:一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。怎样走才能使所走的行程最短?全程多少千米?
练一练:图中是一个社区公园的平面图,要使社区群众走遍公园每一条路,且不重复,出人口应设在哪个交点上?请你在这个位置标上字母A和B.
例2:六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D。已知它们的爬速相同,哪只蚂蚁能获胜?
再回头看看七桥问题,能否转换成一笔画问题呢
你学会了吗
1.下列图形分别是几笔画?怎样画?
2.能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?为什么?
3.如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸。问:一个散步者能否一次不重复地走遍这七座桥?
4.邮递员要从邮局出发பைடு நூலகம்走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?
例3:有三个小岛,分别有七座桥相通请回答,能不能一次不重复走完这七座桥呢?
一起学奥数--一笔画(三年级)
动动手: p.62随堂1
一笔画规则: 1、如果一个连在一起的图中,奇点个数为0或2,那么这个图形可以一笔画。 2、如果一个连在一起的图中,奇点个数不是0或2,那么这个图形就不能一
笔画成。
如何一笔画成: 奇点个数为0时,可从任何一个点开始画,最后回到始点; 当奇点个数为2时,可以从任一个奇点开始,最后到另一个奇点终止。
思考: 1、一个图形中奇点是否可以为奇数个(引起对数奇偶性的兴趣) 2、为什么偶点不影响一笔画(养成学生搞清问题根源的习惯)
例2、如下图中的线段代表小路,A、B处各有一只蚂蚁。哪只蚂蚁能够不重复 地爬完这5条小路?
A
D 【分析】1、由以上总结可知,奇点的数量决定了是否可
以一笔画成图形。本题蚂蚁能够不重复地爬完5条小路,
西岛
北岸 东岛
南岸
【分析】1、首先得把实景图转化为示意图。 用点和线分别来表示两个岛、两岸及七座桥。 注意:先画点,再按桥连通两个点
2、如果这个示意图,能够做到一笔画,则 可以证明能够不重复、不遗漏的经过每座桥, 否则就没法实现。
3、数连接每个点的线,发现四个点都是奇 点,所以没法完成一笔画。即没法做到不重 复、不遗漏的经过每一座桥。
C
2、当我们不得不重复走某些路段才能达到“一笔画”的效果时,就需要去选择应该 重复走哪几条路合理。显然,重复走的路要尽量的少,且尽量选择路程短的道理。
3、回到“一笔画”数学模型,只要我们快速消灭奇点个数,就能实现重 复走的路少。那么请考虑怎么实现呢?
4、如上图,我们可以在E和G、F和H之间两条线,就符合了从B点出发 的一笔画。
例1、下图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相 通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有 的门,并且从入口进,从出口出?
小学奥数:奇妙的一笔画.专项练习
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏. 我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.例题精讲知识点拨4-1-5.奇妙的一笔画【例 3】 判断下列图a 、图b 、图c 能否一笔画.图aNML KF DECBA 图bODCBA图cGFEDCBA【例 4】 下面图形能不能一笔画成?若果能,应该怎样画?(1)(2)(3)【例 5】 下面的图形,哪些能一笔画出?哪些不能一笔画出?【例 6】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?E CDB A【例 7】 下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?乙甲【例 8】 能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【例 9】 下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?IHGFEDC BA【例 10】 邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【例 11】 观察下面的图,看各至少用几笔画成?(1)A ED HCF GB (2)(3)【例 12】 在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A 点到B 点,不许走重复路,他最多能走多少米?【例 13】 有16个点排成的44 方阵。
三年级奥数第二十九讲一笔画二
启新教育三年级奥数第二十九讲一笔画二利用一笔画原理,我们可以解决许多有趣的实际问题。
例1 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由。
如果能,应从哪开始走?分析与解:我们将每个展室看成一个点,室外看成点E,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到右图。
能否不重复地穿过每扇门的问题,变为右图是否一笔画问题。
右图中只有A,D两个奇点,是一笔画,所以答案是肯定的,应该从A或D展室开始走。
例1的关键是如何把一个实际问题变为判断是否一笔画问题,就像欧拉在解决哥尼斯堡七桥问题时做的那样。
例2 一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。
怎样走才能使所走的行程最短?全程多少千米?分析与解:图中共有8个奇点,必须在8个奇点间添加4条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画。
在距离最近的两个奇点间添加一条连线,如左上图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米。
走法参考右上图(走法不唯一)。
例3右图中每个小正方形的边长都是100米。
小明沿线段从A点到B点,不许走重复路,他最多能走多少米?分析与解:这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解。
首先,图中有8个奇点,在8个奇点之间至少要去掉4条线段,才能使这8个奇点变成偶点;其次,从A点出发到B点,A,B两点必须是奇点,现在A,B都是偶点,必须在与A,B连接的线段中各去掉1条线段,使A,B成为奇点。
所以至少要去掉6条线段,也就是最多能走1800米,走法如下页上图。
或例2与例3的图中各有8个奇点,都是通过减少奇点个数,将多笔画变成一笔画的问题,但它们采用的方法却完全不同。
因为例2中只要求走遍所有的线段,没有要求不能重复,所以通过添加线段的方法(实际是重复走添加线段的这段路),将奇点变为偶点,使多笔画变成一笔画。
一起学奥数--一笔画(三年级)
A
B
F E
A
B
E F
C
D C
D
【分析】1、左图是一个平面示意图,要分析 路线与出入口问题,应该把左图转化为点线 示意图。
2、只要点ቤተ መጻሕፍቲ ባይዱ示意图能够一笔画成,就能达到 一次走遍各通道而又不必重复的进出方法。
3、左下图,除了C、D两点为奇点,其它的 为偶点。因此,只要C或D点进,D或C点出 就能达到要求。
4、我们可以设定一条线路: D E F A B E C B D
西岛
北岸 东岛
南岸
【分析】1、首先得把实景图转化为示意图。 用点和线分别来表示两个岛、两岸及七座桥。 注意:先画点,再按桥连通两个点
2、如果这个示意图,能够做到一笔画,则 可以证明能够不重复、不遗漏的经过每座桥, 否则就没法实现。
3、数连接每个点的线,发现四个点都是奇 点,所以没法完成一笔画。即没法做到不重 复、不遗漏的经过每一座桥。
动动手: p.62随堂1
一笔画规则: 1、如果一个连在一起的图中,奇点个数为0或2,那么这个图形可以一笔画。 2、如果一个连在一起的图中,奇点个数不是0或2,那么这个图形就不能一
笔画成。
如何一笔画成: 奇点个数为0时,可从任何一个点开始画,最后回到始点; 当奇点个数为2时,可以从任一个奇点开始,最后到另一个奇点终止。
思考: 1、一个图形中奇点是否可以为奇数个(引起对数奇偶性的兴趣) 2、为什么偶点不影响一笔画(养成学生搞清问题根源的习惯)
例2、如下图中的线段代表小路,A、B处各有一只蚂蚁。哪只蚂蚁能够不重复 地爬完这5条小路?
A
D 【分析】1、由以上总结可知,奇点的数量决定了是否可
以一笔画成图形。本题蚂蚁能够不重复地爬完5条小路,
三年级奥数专题:一笔画
三年级奥数专题:一笔画(一)如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。
显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。
同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。
哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。
所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?当时的许多人都热衷于解决七桥问题,但是都没成功。
后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。
欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。
如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。
欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。
利用一笔画原理,七桥问题很容易解决。
因为图中A,B,C,D 都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。
顺便补充两点:(1)一个图形的奇点数目一定是偶数。
因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。
小学数学奥数测试题笔画问题_人教版-学习文档
2019年小学奥数智巧趣题专题——一笔画问题1.判断下列图a、图b、图c能否一笔画.2.下面图形能不能一笔画成?若果能,应该怎样画?3.下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.4.下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?5.下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?6.邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?7.观察下面的图,看各至少用几笔画成?8.判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.9.18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?10.右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?11.一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?12.如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?13.在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?14.一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?第 1 页参考答案1.图a和图c能,图b不能。
小学奥数-一笔画
来源:2014·乐乐课堂·练习
难度:简单
类型:选择题
答案:A
40.小燕子从邮局出发送快件,下图是街道布局图.请添加1条路线,使小燕子可以不重复地走完所有的路.下面满足要求的选项是哪个?(红色的粗线表示添加的路线)
A. B.
来源:2014·乐乐课堂·练习
难度:简单
类型:选择题
答案:B
首页上一页12345下一页尾页
A. B.
来源:2014·乐乐课堂·练习
难度:简单
类型:选择题
答案:B
45.在一个公园的湖里,有4个小岛,它们之间共有4座桥.如果游客想一次不重复地走完所有的桥,应该从哪个岛出发?
A.岛C或岛DB.岛A或岛DC.岛B或岛CD.岛A、岛B、岛C或岛D
来源:2014·乐乐课堂·练习
难度:简单
类型:选择题
41.添加1条线,使下图能一笔画成.下面满足要求的选项是哪个?(红色的粗线表示添加的线)
A. B.
来源:2014·乐乐课堂·练习
难度:简单
类型:选择题
答案:A
42.下图是乡间的一条小河,上面建有A、B、C、D、E、F、G七座桥.将实物图画成点线图.下列选项中正确的是哪个?
A. B.
来源:2014·乐乐课堂·练习
来源:2014·乐乐课堂·练习
难度:简单
类型:选择题
答案:C
38.下图最少需要几笔画完成?
A.2B.1C.3
来源:2014·乐乐课堂·练习
难度:简单
类型:选择题
答案:A
39.炜炜沿着路跑步,下图是跑步路线布局图.请添加1条路线,使炜炜可以不重复地跑完所有的路.下面满足要求的选项是哪个?(红色的粗线表示添加的路线)
小学奥数三年级一笔画
从图形的一点出发,笔不离开纸,每条边只画一次,不准重复,这样画出的图形就叫一笔画。
判断能否一笔画:1、连通图形 2、有两个奇点或没有奇点。
奇点:与奇数条边相连的结点 偶点:与偶数条边相连的结点
1、下列哪些图形可以一笔画?
2、下面的图形可以一笔画出吗?
3、甲乙二人分别从AB 两点同时出发,以相同的速度走遍所有街道,最后回到C 点,谁先到达?
4、甲乙二人分别从AB 两点同时出发,以相
同的速度走遍所有街道,最后回到C 点,谁
5、游人能否一次不重复的穿过所有的门,并且从入口入,从出口出?
6、能否用剪刀一次不重复的剪下三个正方形和两个三角形?
7、下图是一个公园的平面图,要使游客走遍每条路而且不重复,应该把出入口设在哪里?
8、下图是一个公园的平面图,要使游客走遍每条路而且不重复,应该把出入口设在哪里?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1
计算
(1010)2+(1100)2
一位数加法口诀; 0+0=0, 1+0=1, 0+1=1, 1+1=10. 即“满二进一”。
例2
• 计算
• (1101)2-(110)2
从以上例题中可以看出,二进制数的加 减法比十进制的加减法更简单,数位对 齐以后要记住其特点是“满二进一”、 “借一当二”即可
公元3012年,火星上有了人类。还有一片人类从 未发现的原始森林,森林里树木杂草丛生,有各种各 样的怪兽和外星人出没。突然有一天有个人类在森林 里发现了一条奇怪的路线,这是外星人设计的挑选精 英伙伴的谜题。题是这样要求的:选择一个图形,并 且不重复的走过每条路。选错图形或走错了路都要被 送回被污染的地球。 下面哪条路线可以呢?
练习
• 计算
• (1).(1010)2+(1001)2
• (2).(1111)2+(1001)2
• (3).(1101101)2-(101101)2 • (4).(1011)2-(101)2
哈哈,本故事纯属虚构, 如有雷同不胜荣幸!
通过观察我们发现:
图1,经过几次尝试后我们发现不能一笔画。
图2,无论从哪一点起都能一笔画成。
事实上,一笔画是有规律的:能一笔画 的图,要么只有偶点(从这个点出发的线段 有偶数条),没有奇点。要么只有两个奇点。
图1
图2
例2.判断下列图形能否一笔画成。
A
C
小窗口播放
二进制数的加减法
什么叫二进制呢?
18世纪德国数理哲学大师莱布尼兹从他的传教士 朋友鲍威特寄给他的拉丁文译本《易经》中,读到 了八卦的组成结构,惊奇地发现其基本素数(0) (1),即《易经》的阴爻- -和__阳爻,其进位制就 是二进制,并认为这是世界上数学进制中最先进的。 二进制数据是用0和1两个数码来表示的数。它 的基数为2,进位规则是“逢二进一”,借位规则是 “借一当二”。 二进制是一种非常古老的进位制,由于在现代 被用于电子计算机中,而旧貌换新颜变得身价倍增 起来。
B
D
技巧点拨: 判断一幅图能否一笔画,关键是判断图中奇点 和偶点的个数。一笔画的规律是当一幅图中只有两 个奇点时,是可以一笔画的,否则是不能一笔画的。 如果一幅图中有两个奇点,一笔画时可以从一个奇 点出发,至另一个奇点结束。
体验:判断下列图形能否一笔画
判断下列图形能否一笔画?
跳荷叶一笔画-小鸟要回家