minitab部分因子设计,响应面设计,参数设计
Minitab怎么做最优参数设计?
Minitab怎么做最优参数设计?
在Minitab中,最优参数设计是一种用于优化实验设计的方法,旨在找到最佳的参数组合,以最小化或最大化响应变量。
下面是一些关于Minitab最优参数设计的步骤:
1. 导入数据:首先,您需要将您的数据导入Minitab中。
您可以使用“输入”菜单中的“数据”选项导入数据。
2. 创建因子:在“选择”菜单中选择“因子”,然后选择“创建因子”。
在“创建因子”对话框中,您可以为每个因子指定名称、取值范围和单位。
3. 创建响应变量:在“选择”菜单中选择“响应变量”,然后选择您的响应变量。
您还可以为响应变量指定单位和度量单位。
4. 运行最优参数设计:选择“分析”菜单中的“最优参数设计”。
在“最优参数设计”对话框中,您可以指定因子和响应变量,并选择要优化的目标。
Minitab将自动计算最优参数
设计。
5. 查看结果:Minitab将显示最优参数设计的结果,包括每个参数组合的得分和权重。
您可以使用这些结果来确定最佳的参数组合。
通过使用Minitab进行最优参数设计,我们可以快速、准确地确定最佳参数组合,以实现最佳结果。
Minitab的强大功能可以帮助我们进行实验设计和参数优化,提高工作效率和质量。
末了,深圳天行健六西格玛培训公司想要提醒的是:最优参数设计是一种高级的分析方法,需要一定的统计学知识。
如果您不熟悉这些概念,建议先学习一些统计学基础知识,然后再尝试使用Minitab的最优参数设计功能。
响应面法和实验设计软件Minitab 及 Design-Expert简介
Adj MS 4.0517 2.5962 4.4619 5.0970 0.9920 1.4760 0.5079
F 4.08 2.62 4.50 5.14
P 0.019 0.109 0.030 0.021
2.91 0.133
R-Sq(adj) = 59.4%
此值大于0.05,表示二次多 项式回归模型正确。
非线性回归结果
输出结果:二次多项式回归方差分析表
此值小于0.05的项显著有效,回归的整体、二次项和交叉 乘积项都显著有效,但是一次项的效果不显著。
Source Regression
Linear Square Interaction Residual Error Lack-of-Fit Pure Error Total S = 0.9960
响应面法的分类
中心复合试验设计 (central composite design,CCD);
Box-Behnken试验设计;
中心复合试验设计
中心复合试验设计也称为星点设计。其设计
表是在两水平析因设计的基础上加上极值点和 中心点构成的,通常实验表是以代码的形式编 排的, 实验时再转化为实际操作值,(一般水 平取值为 0, ±1, ±α, 其中 0 为中值, α 为极值, α=F*(1/ 4 )
其设计表是在两水平析因设计的基础上加上极值点和中心点构成的通常实验表是以代码的形式编排的实验时再转化为实际操作值一般水平取值为01其中0为中值为极值f14精品资料boxbehnkendesignboxbehnkendesign简称bbd也是响应面优化法常用的实验设计方法其设计表安排以三因素为例三因素用abc表示见下页表其中0是中心点分别是相应的高值和低值
2. 创建“中心复合”或“Box-Behnken”设计; 3. 确定试验运行顺序(Display Design); 4. 进行试验并收集数据; 5. 分析试验数据; 6. 优化因素的设置水平。
响应表面试验设计方法和MINITAB优化(CCD_BBD)
立方点 轴向点 中心点 区组 序贯试验 旋转性
立方点(cube point)
立方点,也称立方体点、角点,即2水平对 应的“-1”和“+1”点。各点坐标皆为+1或-1。 在k个因素的情况下,共有2k个立方点
轴向点(axial point)
轴向点,又称始点、星号点,分布在轴向上。
这种设计失去了旋转性。但
保留了序贯性,即前一次在 立方点上已经做过的试验结 果,在后续的CCF设计中可 以继续使用,可以在二阶回
归中采用。
中心点的个数选择
在满足旋转性的前提下,如果适当选择Nc,则可 以使整个试验区域内的预测值都有一致均匀精度 (uniform precision)。见下表:
但有时认为,这样做的试验次数多,代价 太大, Nc其实取2以上也可以;如果中心 点的选取主要是为了估计试验误差, Nc 取4以上也够了。
一般步骤
1. 确定因素及水平,注意水平数为2,因素数一般不超 过4个,因素均为计量数据;
2. 创建“中心复合”或“Box-Behnken”设计; 3. 确定试验运行顺序(Display Design); 4. 进行试验并收集数据; 5. 分析试验数据; 6. 优化因素的设置水平。
2 中心复合试验设计
-1.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000
适用范围
确信或怀疑因素对指标存在非线性影响; 因素个数2-7个,一般不超过4个; 所有因素均为计量值数据; 试验区域已接近最优区域; 基于2水平的全因子正交试验。
方法分类
中心复合试验设计 (central composite design,CCD); Box-Behnken试验设计;
minitab部分因子设计,响应面设计,参数设计解读
北京信息科技大学经济管理学院《工程优化技术》课程结课报告成绩:_______________班级:__工商1002_____学号:__2010011713____姓名:__魏坡_______日期:_2013年6月7日_部分因子试验设计1.实验设计背景部分因子试验设计与全因子试验设计的不同之处在于大大减少了试验的次数,具体表现在试验设计创建阶段的不一致,下面主要就部分因子试验设计的创建进行讲述。
2.因子选择用自动刨床刨制工作台平面的工艺条件试验。
在用刨床刨制工作台平面试验中,考察影响其工作台平面光洁度的因子,并求出使光洁度达到最高的工艺条件。
3.实验方案共考察6个因子:A 因子:进刀速度,低水平1.2,高水平1.4(单位:mm/刀)B 因子:切屑角度,低水平10,高水平12(单位:度)C 因子:吃刀深度,低水平0.6,高水平0.8(单位:mm )D 因子:刀后背角,低水平70,高水平76(单位:度)E 因子:刀前槽深度,低水平1.4,高水平1.6(单位:mm )F 因子:润滑油进给量,低水平6,高水平8(单位:毫升/分钟) 要求:连中心点在内,不超过20次试验,考察各因子主效应和2阶交互效应AB 、AC 、CF 、DE 是否显著。
由于试验次数的限制,我们在因子点上只能做试验16次,另4次取中心点,这就是6224-+的试验,通过查部分因子试验分辨度表可知,可达分辨度为Ⅳ的设计。
具体操作为:选择 [统计]=>[DOE ]=>[因子]=>[创建因子设计],单击打开创建因子设计对话框。
在“设计类型”中选择默认2水平因子(默认生成元),在“因子数”中选定6。
单击“显示可用设计”就可以看到下图的界面,可以确认:用16次试验能够达到分辨度为Ⅳ的设计。
单击“设计”选项,选定1/4部分实施,在每个区组的中心点数中设定为4,其他的不进行设定,单击确定。
单击“因子”选项,设定各个因子的名称,并设定高、低水平值。
响应面法和实验设计软件Minitab 及 Design-Expert介绍
Box-Behnken Design
Box-Behnken Design,简称BBD,也是响应 面优化法常用的实验设计方法,其设计表安排 以三因素为例(三因素用A、B、C表示),见下 页表,其中 0 是中心点,+, -分别是相应的高 值和低值。
响应面法的实验设计一般步骤
1. 确定因素及水平,注意水平数为2,因素数一般不超 过4个,因素均为计量数据;
按上述公式选定的α值来安排中心复合试
验设计(CCD)是最典型的情形,它可以实 现试验的序贯性,这种CCD设计特称中心 复合序贯设计(central composite circumscribed design,CCC),它是CCD中 最常用的一种。
如果要求进行CCD设计,但又希望试验水平安排不 超过立方体边界,可以将轴向点设置为+1及-1,则 计算机会自动将原CCD缩小到整个立方体内,这种 设计也称为中心复合有界设计(central composite inscribed design,CCI)。
这样做,每个因素的取值水平只有3个(-1,0,1),而 一般的CCD设计,因素的水平是5个(-α,-1,0,1,α), 这在更换水平较困难的情况下是有意义的。
这种设计失去了旋转性。但
保留了序贯性,即前一次在 立方点上已经做过的试验结 果,在后续的CCF设计中可 以继续使用,可以在二阶回
归中采用。
中心点的个数选择
响应面优化法的优点
• 响应面优化法,考虑了试验随机误差;同时,响应面
法将复杂的未知的函数关系在小区域内用简单的一次 或二次多项式模型来拟合,计算比较简便,是解决实 际问题的有效手段。
• 所获得的预测模型是连续的,与正交实验相比,其优
势是:在实验条件寻优过程中,可以连续的对实验的 各个水平进行分析,而正交实验只能对一个个孤立的 实验点进行分析。
MINITAB响应曲面法应用
MINITAB响应曲面法应用响应面法优化牛蒡根总黄酮提取工艺以下是文献中利用Minitab统计软件的析因实验得到的一些相关数据:现在同样就这篇文章中的相关数据,利用minitab实际操作如下:一、部分析因设计及实验结果1.创建因子设计得:(对应表3)2.分析因子设计得:(对应表4)拟合因子:Y与A,B,C,DY的估计效应和系数(已编码单位)项效应系数系数标准误TP常量16.10840.04058397.000.000A0.44130.22060.040585.440.012B1.72020.8 6010.0405821.200.000C0.86630.43310.0405810.670.002D0.14720.07360.040581.810.167A某B-1.9323-0.96610.04058-23.810.000A某C-0.0982-0.04910.04058-1.210.313A某D-0.5173-0.25860.04058-6.370.008Y=16.1084+O.2206A+0,.8601B+0.4331C-0.9661ABCtPt0.84960.0702812.090.001S=0.114764PRESS=某R-Sq=99.78%R-Sq(预测)=某%R-Sq(调整)=99.19%Y的方差分析(已编码单位)合计1117.8381Y的异常观测值拟合值标准化观测值标准序Y拟合值标准误残差残差1317.564017.56400.11480.0000某某3514.876014.87600.11480.0000某某5113.247013.24700.11480.0000某某6416.024016.02400.11480.0000某某8617.004017.00400.11480.0000某某9717.864017.86400.11480.0000某某10215.866015.86600.1148-0.0000某某11816.422016.42200.11480.0000某某某表示受某值影响很大的观测值。
minitab正交分析、响应分析
R-Sq = 92.49% R-Sq(预测)= 53.68% R-Sq(调整)= 83.11%
强度的方差分析(已编码单位)
来源自由度Seq SS Adj SS Adj MS F P
主效应4 3298.85 3298.85 824.71 22.90 0.000
2因子交互作用6 252.17 252.17 42.03 1.17 0.408
选择[统计]=>[DOE]=>[因子]=>[分析因子设计],打开分析因子设计对话框。
点击“项”选项后,在“模型中包含项的阶数”中选择2(表示模型中只包含2阶交互作用和主效应项,三阶以上交互作用不考虑),对默认的“在模型中包括中心点”保持不选。单击确定。
在“图形”选项中,“效应图”中选择“正态”和“Pareto”,“图中的标准差”中选择“正规”,“残差图”中选择“四合一”,在“残差与变量”图中将“加热温度”、“加热时间”、“转换时间”和“保温时间”选入,单击确定。
minitab部分因子设计,响应面设计,参数设计解读
北京信息科技大学经济管理学院《工程优化技术》课程结课报告成绩:_______________班级:__工商1002_____学号:__2010011713____姓名:__魏坡_______日期:_2013年6月7日_部分因子试验设计1.实验设计背景部分因子试验设计与全因子试验设计的不同之处在于大大减少了试验的次数,具体表现在试验设计创建阶段的不一致,下面主要就部分因子试验设计的创建进行讲述。
2.因子选择用自动刨床刨制工作台平面的工艺条件试验。
在用刨床刨制工作台平面试验中,考察影响其工作台平面光洁度的因子,并求出使光洁度达到最高的工艺条件。
3.实验方案共考察6个因子:A 因子:进刀速度,低水平1.2,高水平1.4(单位:mm/刀)B 因子:切屑角度,低水平10,高水平12(单位:度)C 因子:吃刀深度,低水平0.6,高水平0.8(单位:mm )D 因子:刀后背角,低水平70,高水平76(单位:度)E 因子:刀前槽深度,低水平1.4,高水平1.6(单位:mm )F 因子:润滑油进给量,低水平6,高水平8(单位:毫升/分钟) 要求:连中心点在内,不超过20次试验,考察各因子主效应和2阶交互效应AB 、AC 、CF 、DE 是否显著。
由于试验次数的限制,我们在因子点上只能做试验16次,另4次取中心点,这就是6224-+的试验,通过查部分因子试验分辨度表可知,可达分辨度为Ⅳ的设计。
具体操作为:选择 [统计]=>[DOE ]=>[因子]=>[创建因子设计],单击打开创建因子设计对话框。
在“设计类型”中选择默认2水平因子(默认生成元),在“因子数”中选定6。
单击“显示可用设计”就可以看到下图的界面,可以确认:用16次试验能够达到分辨度为Ⅳ的设计。
单击“设计”选项,选定1/4部分实施,在每个区组的中心点数中设定为4,其他的不进行设定,单击确定。
单击“因子”选项,设定各个因子的名称,并设定高、低水平值。
minitab实验之试验设计(DOC 64页)
按照上图的试验计划进行试验,将结果填入上表的最后一列,则可以得到试验的结果数据(数据文件:DOE_热处理(全因)),如下:
拟合选定模型的主要任务是根据整个试验的目的,选定一个数学模型。通常首先可以选定“全模型”,就是在模型中包含全部因子的主效应及全部因子的二阶交互效应。在经过细致的分析之后,如果发现某些主效应和二阶交互效应不显著,则在下次选定模型的时候,应该将不显著的主效应和二阶交互效应删除。
实验内容和步骤:
实验之一:全因子试验设计
:例:改进热处理工艺提高钢板断裂强度问题。合金钢板经热处理后将提高其断裂其抗断裂性能,但工艺参数的选择是个复杂的问题。我们希望考虑可能影响断裂强度的4个因子,确认哪些因子影响确实是显著的,进而确定出最佳工艺条件。这几个因子及其试验水平如下:
A:加热温度,低水平:820,高水平:860(摄氏度)
在实际工作中,常常要研究响应变量Y是如何依赖于自变量,进而能找到自变量的设置使得响应变量得到最佳值(望大、望小或望目)。如果自变量的个数较少(通常不超过3个),则响应曲面方法(response surface methodology,RSM)是最好的方法之一,本方法特别适合于响应变量望大或望小的情形。通常的做法是:先用2水平因子试验的数据,拟合一个线性回归方程(可以包含交叉乘积项),如果发现有弯曲的趋势,则希望拟合一个含二次项的回归方程。其一般模型是(以两个自变量为例):
进行2水平全因子设计时,全因子试验的总试验次数将随着因子个数的增加而急剧增加,例如,6个因子就需要64次试验。但是仔细分析所获得的结果可以看出,建立的6因子回归方程包括下列一些项:常数项、主效应项有6项、二阶交互作用项15项、三阶交互项20项,…,6阶交互项1项,除了常数项、主效应项和二阶交互项以外,共有42项是3阶以及3阶以上的交互作用项,而这些项实际上已无具体的意义了。部分因子试验就是在这种思想下诞生的,它可以使用在因子个数较多,但只需要分析各因子和2阶交互效应是否显著,并不需要考虑高阶的交互效应,这使得试验次数大大减少。
minitab部分因子设计,响应面设计,参数设计
对于这批数据按全因子试验进行分析,具体操作为:选择[统计]=>[DOE]=>[因子]=>[分析因子设计],打开分析因子设计对话框。首先将全部备选项列入模型,删除在模型中包括中心点,在“图形”中的残差与变量下将压力和温度选入进去。得到的结果如下:
纯度的效应和系数的估计(已编码单位)
项效应系数系数标准误T P
从残差与各变量的图也验证了存在严重的弯曲现象。这些都表明,对响应变量单纯地拟合一阶线性方程已经不够了,需要再补充些“星号点”,构成一个完整的响应曲面设计,拟合一个含二阶项的方程就可能问题了。补充的4个星号点的实验结果见数据表:DOE_烧碱纯度(响应2)。
下面对全部11个点构成的中心复合序贯设计进行分析,拟合一个完整的响应曲面模型。分析如下:
(2)看删减后的模型是否比原来的有所改进。
全模型
变化
删减模型
R-Sq
99.35%
减小
99.34%
R-Sq(调整)
98.70%
增大
98.91%
S
0.181900
减小
0.166665
R-Sq(预测)
97.27%
增大
97.85%
PRESS
0.693677
减小
0.546550
由于模型项缺少了一项,R-Sq通常会有所降低,但关键要看调整的R-Sq(调整)是否有所提高,s值是否有所降低,预测残差平方和PRESS是否有所降低,R-Sq(预测)是否有所提高。从表中来看,均符合上述要求,表明删除了不显著的交互作用后,回归的效果更好了。
看方差分析表中的失拟现象,本例中,失拟项对应的P值为0.747,明显大于显著性水平0.05,接受原假设,认为本模型中不存在失拟现象。
minitab实验之试验设计
Minitab 实验之试验设计实验目的:本实验主要引导学生利用Minitab 统计软件进行试验设计分析,包括全因子设计、部分因子设计、响应曲面设计、混料设计、田口设计以及响应优化,并能够对结果做出解释。
实验仪器:Minitab 软件、计算机 实验原理:“全因子试验设计”(full factorial design )的定义是:所有因子的所有水平的所有组合都至少要进行一次试验的设计。
由于包含了所有的组合,全因子试验所需试验的总次数会比较多,但它的优点是可以估计出所有的主效应和所有的各阶交互效应。
所以在因子个数不太多,而且确实需要考察较多的交互作用时,常常选用全因子设计。
一般情况下,当因子水平超过2时,由于试验次数随着因子个数的增长而呈现指数速度增长,因而通常只作2水平的全因子试验。
进行2水平全因子设计时,全因子试验的总试验次数将随着因子个数的增加而急剧增加,例如,6个因子就需要64次试验。
但是仔细分析所获得的结果可以看出,建立的6因子回归方程包括下列一些项:常数项、主效应项有6项、二阶交互作用项15项、三阶交互项20项,…,6阶交互项1项,除了常数项、主效应项和二阶交互项以外,共有42项是3阶以及3阶以上的交互作用项,而这些项实际上已无具体的意义了。
部分因子试验就是在这种思想下诞生的,它可以使用在因子个数较多,但只需要分析各因子和2阶交互效应是否显著,并不需要考虑高阶的交互效应,这使得试验次数大大减少。
在实际工作中,常常要研究响应变量Y 是如何依赖于自变量,进而能找到自变量的设置使得响应变量得到最佳值(望大、望小或望目)。
如果自变量的个数较少(通常不超过3个),则响应曲面方法(response surface methodology ,RSM )是最好的方法之一,本方法特别适合于响应变量望大或望小的情形。
通常的做法是:先用2水平因子试验的数据,拟合一个线性回归方程(可以包含交叉乘积项),如果发现有弯曲的趋势,则希望拟合一个含二次项的回归方程。
响应表面试验设计及MINITAB优化
序贯试验(顺序试验)
先后分几段完成试验,前次试验设计的点上 做过的试验结果,在后续的试验设计中继续 有用。
旋转性(rotatable)设计
旋转设计具有在设计中心等距点上预测方差 恒定的性质,这改善了预测精度。
α的选取
在α的选取上可以有多种出发点,旋转性是
适用范围
➢确信或怀疑因素对指标存在非线性影响; ➢因素个数2-7个,一般不超过4个; ➢所有因素均为计量值数据; ➢试验区域已接近最优区域; ➢基于2水平的全因子正交试验。
方法分类
➢中心复合试验设计 (central composite design,CCD); ➢Box-Behnken试验设计;
除一个坐标为+α或-α外,其余坐标皆为0。
在k个因素的情况下,共有2k个轴向点。
中心点(center point)
中心点,亦即设计中心,表示在图上,坐标 皆为0。
三因素下的立方点、轴向点和中心点
区组(block)
也叫块。设计包含正交模块,正交模块 可以允许独立评估模型中的各项及模块 影响,并使误差最小化。
三因子4种响应曲面设计实验点计划表
CCD
CCI
CCF
ABC ABC ABC
1
-1 -1 -1 -0.6 -0.6 -0.6 -1 -1 -1
2
1 -1 -1 0.6 -0.6 -0.6 1 -1 -1
3
-1 1 -1 -0.6 0.6 -0.6 -1 1 -1
4
1 1 -1 0.6 0.6 -0.6 1 1 -1
总之,当时间和资源条件都允许时,应尽 可能按推荐的Nc个数去安排试验,设计结 果和推测出的最佳点都比较可信。实在需 要减少试验次数时,中心点至少也要2-5 次。
minitab实验之试验设计(2)解读
分析要点三:分析评估各项效应的显著性。计算结果显示,4个主效应中,加热温度、加热时间和保温时间是显著的,只有转换时间不显著;6个2因子水平交互效应中,只有加热时间*保温时间是显著的。说明本例中还有不显著的自变量和2因子交互作用,改进模型时应该将这些主效应和交互作用删除。
加热温度*保温时间3.062 1.531 1.500 1.02 0.337
加热时间*转换时间1.263 0.631 1.500 0.42 0.685
加热时间*保温时间7.113 3.556 1.500 2.37 0.045
转换时间*保温时间0.837 0.419 1.500 0.28 0.787
S = 6.00146 PRESS = 1778.45
稳健参数设计(robust parameter design)(也称健壮设计、鲁棒设计,简称参数设计)是工程实际问题中很有价值的统计方法。它通过选择可控因子的水平组合来减少一个系统对噪声变化的敏感性,从而达到减小此系统性能波动的目的。过程的输入变量有两类:可控因子和参数因子。可控因子是指一旦选定就保持不变的变量,它包括产品或生产过程设计中的设计参数,而噪声因子是在正常条件下难以控制的变量。在做参数设计时,就是把可控因子的设计当做研究的主要对象,与此同时让噪声因子按照设定的计划从而系统改变其水平的方法来表示正常条件下的变化,最终按照我们预定的望大、望小或望目地目标选出最佳设置。田口玄一博士在参数设计方法方面贡献非常突出,他在设计中引进信噪比的概念,并以此作为评价参数组合优劣的一种测度,因此很多文献和软件都把稳健参数设计方法称为田口方法(Taguchi design)。
响应面法和实验设计软件Minitab 及 DesignExpert简介
Adj MS 4.0517 2.5962 4.4619 5.0970 0.9920 1.4760 0.5079
F 4.08 2.62 4.50 5.14
P 0.019 0.109 0.030 0.021
2.91 0.133
R-Sq(adj) = 59.4%
此值大于0.05,表示二次多 项式回归模型正确。质量管理统计的领先者,全球 六西格玛实施的共同语言,以无可比拟的强大功 能和简易的可视化操作深受广大质量学者和统计 专家的青睐。Minitab 1972年成立于美国的宾夕 法尼亚州州立大学(Pennsylvania State University),到目前为止,已经在全球100多 个国家,4800多所高校被广泛使用。
响应面法的分类
➢中心复合试验设计 (central composite design,CCD);
➢Box-Behnken试验设计;
中心复合试验设计
中心复合试验设计也称为星点设计。其设 计表是在两水平析因设计的基础上加上极值点 和中心点构成的,通常实验表是以代码的形式 编排的, 实验时再转化为实际操作值,(一般 水平取值为 0, ±1, ±α, 其中 0 为中 值, α为极值, α=F*(1/ 4 )
在满足旋转性的前提下,如果适当选择Nc,则可 以使整个试验区域内的预测值都有一致均匀精度 (uniform precision)。见下表:
• 但有时认为,这样做的试验次数多,代价
太大, Nc其实取2以上也可以;如果中心 点的选取主要是为了估计试验误差, Nc取 4以上也够了。
• 总之,当时间和资源条件都允许时,应尽
响应面优化法的不足
• 响应面优化的前提是:设计的实验点应包括最佳的实
验条件,如果实验点的选取不当,使用响应面优化法 是不能得到很好的优化结果的。因而,在使用响应面 优化法之前,应当确立合理的实验的各因素与水平。
minitab4因子部分因子最优设计
minitab4因子部分因子最优设计
Minitab软件可以进行因子部分因子最优设计(Fractional Factorial Design),是一种经济高效的试验设计方法。
以下是在Minitab软件中进行因子部分因子最优设计的基本步骤:
1. 打开Minitab软件,并选择菜单栏中的Stat -> DOE -> Factorial -> Create Factorial Design。
2. 在弹出的对话框中,选择“General Factorial”类型,然后输入需要进行试验的因子数量和水平数。
3. 在“Design”选项卡中,选择“Optimal”方法,并指定试验的总数或者指定要测试的方案数。
4. 在“Model”选项卡中,选择需要建立的试验模型类型,可以选择主效应模型、交互作用模型或者是包含二阶交互作用的模型。
5. 对于要设置的每个因子,选择“None”或者“Half”以指定它们是不变量或者部分因子。
6. 在“Output”选项卡中,选择需要生成的输出结果,可以选择生成主效应图、残差图、方差分析表等。
7. 最后单击“OK”按钮进行设计,Minitab将生成部分因子最优设计方案。
需要注意的是,因子部分因子最优设计具有一些局限性,例如不能完全分离出所有的交互作用效应,因此在设计试验时需要仔细考虑选择哪些因子进行测试。
minitab正交分析、响应分析
Minitab 实验之试验设计实验目的:本实验主要引导学生利用Minitab 统计软件进行试验设计分析,包括全因子设计、部分因子设计、响应曲面设计、混料设计、田口设计以及响应优化,并能够对结果做出解释。
实验仪器:Minitab 软件、计算机 实验原理:“全因子试验设计”的定义是:所有因子的所有水平的所有组合都至少要进行一次试验的设计。
由于包含了所有的组合,全因子试验所需试验的总次数会比较多,但它的优点是可以估计出所有的主效应和所有的各阶交互效应。
所以在因子个数不太多,而且确实需要考察较多的交互作用时,常常选用全因子设计。
一般情况下,当因子水平超过2时,由于试验次数随着因子个数的增长而呈现指数速度增长,因而通常只作2水平的全因子试验。
进行2水平全因子设计时,全因子试验的总试验次数将随着因子个数的增加而急剧增加,例如,6个因子就需要64次试验。
但是仔细分析所获得的结果可以看出,建立的6因子回归方程包括下列一些项:常数项、主效应项有6项、二阶交互作用项15项、三阶交互项20项,…,6阶交互项1项,除了常数项、主效应项和二阶交互项以外,共有42项是3阶以及3阶以上的交互作用项,而这些项实际上已无具体的意义了。
部分因子试验就是在这种思想下诞生的,它可以使用在因子个数较多,但只需要分析各因子和2阶交互效应是否显著,并不需要考虑高阶的交互效应,这使得试验次数大大减少。
在实际工作中,常常要研究响应变量Y 是如何依赖于自变量,进而能找到自变量的设置使得响应变量得到最佳值(望大、望小或望目)。
如果自变量的个数较少(通常不超过3个),则响应曲面方法(response surface methodology ,RSM )是最好的方法之一,本方法特别适合于响应变量望大或望小的情形。
通常的做法是:先用2水平因子试验的数据,拟合一个线性回归方程(可以包含交叉乘积项),如果发现有弯曲的趋势,则希望拟合一个含二次项的回归方程。
其一般模型是(以两个自变量为例):22011221112221212y b b x b x b x b x b x ε=++++++这些项比因子设计的模型增加了各自的变量的平方项。
minitab实验之试验设计
minitab实验之试验设计Minitab 实验之试验设计实验目的:本实验主要引导学生利用Minitab 统计软件进行试验设计分析,包括全因子设计、部分因子设计、响应曲面设计、混料设计、田口设计以及响应优化,并能够对结果做出解释。
实验仪器:Minitab 软件、计算机实验原理:“全因子试验设计”(full factorial design)的定义是:所有因子的所有水平的所有组合都至少要进行一次试验的设计。
由于包含了所有的组合,全因子试验所需试验的总次数会比较多,但它的优点是可以估计出所有的主效应和所有的各阶交互效应。
所以在因子个数不太多,而且确实需要考察较多的交互作用时,常常选用全因子设计。
一般情况下,当因子水平超过 2 时,由于试验次数随着因子个数的增长而呈现指数速度增长,因而通常只作 2 水平的全因子试验。
进行 2 水平全因子设计时,全因子试验的总试验次数将随着因子个数的增加而急剧增加,例如,6 个因子就需要 64 次试验。
但是仔细分析所获得的结果可以看出,建立的 6 因子回归方程包括下列一些项:常数项、主效应项有 6 项、二阶交互作用项 15 项、三阶交互项 20 项,…,6 阶交互项1 项,除了常数项、主效应项和二阶交互项以外,共有42 项是 3 阶以及 3 阶以上的交互作用项,而这些项实际上已无具体的意义了。
部分因子试验就是在这种思想下诞生的,它可以使用在因子个数较多,但只需要分析各因子和 2 阶交互效应是否显著,并不需要考虑高阶的交互效应,这使得试验次数大大减少。
在实际工作中,常常要研究响应变量 Y 是如何依赖于自变量,进而能找到自变量的设置使得响应变量得到最佳值(望大、望小或望目)。
如果自变量的个数较少(通常不超过3 个),则响应曲面方法(response surface methodology, RSM)是最好的方法之一,本方法特别适合于响应变量望大或望小的情形。
通常的做法是:先用 2 水平因子试验的数据,拟合一个线性回归方程(可以包含交叉乘积项),如果发现有弯曲的趋势,则希望拟合一个含二次项的回归方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB + CE + ACDF + BDEF
AC + BE + ABDF + CDEF
AD + EF + ABCF + BCDE
AE + BC + DF + ABCDEF
AF + DE + ABCD + BCEF
BD + CF + ABEF + ACDE
BF + CD + ABDE + ACEF
(3)各效应的显著性。从表中可以看到,压力、温度以及它们的平方项对应的概率值都小于显著性水平,说明这些效应都是显著的;而压力和温度的交互效应项对应的概率值为0.855,显然大于显著性水平,认为该效应项是不显著的。
第二步:进行残差诊断
利用自动输出的残差图来进行残差诊断。
从上述残差图中可以看出,残差的状况是正常的。
残差误差6 0.1667 0.1667 0.02778
失拟4 0.0675 0.0675 0.01687 0.34 0.836
纯误差2 0.0992 0.0992 0.04960
合计10 25.3964
纯度的估计回归系数,使用未编码单位的数据
项系数
常量-59.9731
压力5.36834
温度0.134611
对于纯度的方差分析
来源自由度Seq SS Adj SS Adj MS F P
回归4 25.2298 25.2298 6.30744 227.07 0.000
线性2 15.7127 15.7127 7.85635 282.83 0.000
平方2 9.5171 9.5171 4.75853 171.31 0.000
看方差分析表中的失拟现象,本例中,失拟项对应的P值为0.747,明显大于显著性水平0.05,接受原假设,认为本模型中不存在失拟现象。
(2)看拟合的总效果。本例中,R-Sq与R-Sq(调整)比较接近,认为模型的拟合效果比较好;R-Sq(预测)比较接近于R-Sq值且这个值比较大,说明将来用这个模型进行预测的效果比较可信。
2.因子选择
用自动刨床刨制工作台平面的工艺条件试验。在用刨床刨制工作台平面试验中,考察影响其工作台平面光洁度的因子,并求出使光洁度达到最高的工艺条件。
3.实验方1.2,高水平1.4(单位:mm/刀)
B因子:切屑角度,低水平10,高水平12(单位:度)
C因子:吃刀深度,低水平0.6,高水平0.8(单位:mm)
2.实验因子的选择
对于这批数据按全因子试验进行分析,具体操作为:选择[统计]=>[DOE]=>[因子]=>[分析因子设计],打开分析因子设计对话框。首先将全部备选项列入模型,删除在模型中包括中心点,在“图形”中的残差与变量下将压力和温度选入进去。得到的结果如下:
纯度的效应和系数的估计(已编码单位)
项效应系数系数标准误T P
(2)看删减后的模型是否比原来的有所改进。
全模型
变化
删减模型
R-Sq
99.35%
减小
99.34%
R-Sq(调整)
98.70%
增大
98.91%
S
0.181900
减小
0.166665
R-Sq(预测)
97.27%
增大
97.85%
PRESS
0.693677
减小
0.546550
由于模型项缺少了一项,R-Sq通常会有所降低,但关键要看调整的R-Sq(调整)是否有所提高,s值是否有所降低,预测残差平方和PRESS是否有所降低,R-Sq(预测)是否有所提高。从表中来看,均符合上述要求,表明删除了不显著的交互作用后,回归的效果更好了。
响应面设计的分析
1.实验设计背景
提高烧碱纯度问题。在烧碱生产过程中,经过因子的筛选,最后得知反应炉内压力及温度是两个关键因子。在改进阶段进行全因子试验,因子A压力的低水平和高水平分别取为50帕和60帕,因子B反应温度的低水平和高水平分别取为260及320摄氏度,在中心点处也作了3次试验,试验结果在数据文件:DOE_烧碱纯度。
ABD + ACF + BEF + CDE
ABF + ACD + BDE + CEF
从此表得知,计算机自己选择的生成元是:E=ABC,F=BCD。后面的别名结构中列出了交互作用项的混杂情况,即每列中互为别名的因子有哪些;从上表可以看出,主效应与三阶及四阶交互作用混杂,二阶交互作用与四阶交互作用混杂,三阶交互作用与四阶交互作用混杂;关键是要检查一下题目所要求的2阶交互作用情况,将3阶以上的交互作用忽略不计,混杂的情况有:AB=CE,AC=BE,AD=EF, AF=DE,AE=BC=DF,BD=CF,BF=CD。本例中所要求的4个2阶交互作用是AB,AC,CF,DE,显然可以看到,这四个2阶交互作用均没有混杂。因此可以看到此试验计划是可行的。
残差误差5 0.1654 0.1654 0.03309
失拟3 0.0662 0.0662 0.02208 0.45 0.747
纯误差2 0.0992 0.0992 0.04960
合计10 25.3964
结果解释:
(1)看方差分析表中的总效果。在本例中,回归项的P值为0.000,表明应该拒绝原假设,认为本模型总的来说是有效的。
第三步:判断模型是否需要改进。
根据第一步的分析,我们得知压力和温度的交互作用项是不显著的,应该予以剔除,因此需要重新拟合新的模型,使得新的模型中不包含交互作用项。
得到的结果为:
纯度的估计回归系数
项系数系数标准误T P
常量97.7804 0.09622 1016.177 0.000
压力-1.8911 0.08350 -22.647 0.000
残差误差3 3.6170 3.61701 1.20567
弯曲1 3.5178 3.51781 3.51781 70.92 0.014
纯误差2 0.0992 0.09920 0.04960
合计6 11.3057
从上述表中可以看到,主效应和2因子交互作用对应的概率P值均大于0.1,说明模型的总效应不显著,而且弯曲对应的概率P值为0.014,拒绝原假设,认为存在明显的弯曲趋势;R-Sq和R-Sq(预测)的值都比较小,说明了模型的总效果不显著。
压力*压力-0.0512244
温度*温度-2.56700E-04
结果解释:
(1)先看方差分析表中的总效果。回归项对应的P值为0.000,拒绝原假设,说明回归模型总的来说是有效的;看方差分析表中的失拟现象,可以看到失拟对应的P值为0.836,大于0.05,接受原假设,即可以判定,本模型删去了一项,但没有造成失拟现象。
温度*温度-0.4615 0.15314 -3.014 0.030
压力*温度0.0351 0.18253 0.192 0.855
S = 0.181900 PRESS = 0.693667
R-Sq = 99.35% R-Sq(预测)= 97.27% R-Sq(调整)= 98.70%
对于纯度的方差分析
来源自由度Seq SS Adj SS Adj MS F P
此外,我们还可以得到最后确定的回归方程:
从标准化残差以及删后残差的结果分析表中,可以看到这些值都小于2,因此认为新的模型的残差没有发现任何不正常的情况。
第四步:对选定的模型进行分析解释。
通过前面得到的回归方程,运用数学方法我们可以得到使得纯度最大的A和B分别取什么值,但是不能保证该最大值就一定落在试验范围之内。在求解前,先看一下等值线图和曲面图,具体实现:[统计]>[DOE]>[响应曲面]>[等值线图/曲面图]。从图中可以看到,在原试验范围内确实有个最大值。
回归5 25.2310 25.2310 5.04620 152.51 0.000
线性2 15.7127 15.7127 7.85635 237.44 0.000
平方2 9.5171 9.5171 4.75853 143.82 0.000
交互作用1 0.0012 0.0012 0.00123 0.04 0.855
温度-0.6053 0.08331 -7.265 0.000
压力*压力-2.5822 0.14054 -18.373 0.000
温度*温度-0.4615 0.14031 -3.289 0.017
S = 0.166665 PRESS = 0.546550
R-Sq = 99.34% R-Sq(预测)= 97.85% R-Sq(调整)= 98.91%
北京信息科技大学经济管理学院
《工程优化技术》
课程结课报告
成绩:_______________
班级:__工商1002_____
学号:__2010011713____
姓名:__魏坡_______
日期:_2013年6月7日_
部分因子试验设计
1.实验设计背景
部分因子试验设计与全因子试验设计的不同之处在于大大减少了试验的次数,具体表现在试验设计创建阶段的不一致,下面主要就部分因子试验设计的创建进行讲述。
常量96.961 0.4150 233.63 0.000
压力-2.665 -1.332 0.5490 -2.43 0.094
温度-0.765 -0.382 0.5490 -0.70 0.536
压力*温度0.035 0.018 0.5490 0.03 0.977
S = 1.09803 PRESS = 134.203
R-Sq = 68.01% R-Sq(预测)= 0.00% R-Sq(调整)= 36.01%
对于纯度方差分析(已编码单位)
来源自由度Seq SS Adj SS Adj MS F P