数列求和(公开课)
第五章 第四节 数列求和(优秀经典公开课比赛课件)
首页 上页 下页 尾页
教材通关
2.常见数列的求和公式 (1)12+22+32+…+n2=nn+162n+1 (2)13+23+33+…+n3=nn2+12
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
首页 上页 下页 尾页
教材通关
[小题诊断]
1.(2018·安溪质检)数列{an}的前n项和为Sn,已知Sn=1-2+3
首页 上页 下页 尾页
教材通关
3.1+2x+3x2+…+nxn-1=________(x≠0且x≠1).
解析:设Sn=1+2x+3x2+…+nxn-1,① 则xSn=x+2x2+3x3+…+nxn,② ①-②得:(1-x)Sn=1+x+x2+…+xn-1-nxn =11--xxn-nxn, ∴Sn=11--xxn2-1n-xnx. 答案:11--xxn2-1n-xnx
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
首页 上页 下页 尾页
教材通关
[必记结论]
1.常见的裂项公式
(1)nn1+1=n1-n+1 1.
(2)2n-112n+1=122n1-1-2n1+1.
(3)
1 n+
n+1=
n+1-
n.
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
a1+4d=5, ∴5a1+5×25-1d=15,
∴ad1==11,,
∴an=a1+(n-1)d=n.∴ana1n+1=nn1+1=n1-n+1 1,
∴数列
1 anan+1
的前100项和为
1-12
+
12-13
+…+
1010-1101
=1-1101=110001. 答案:A
数列求和法-公开课ppt课件
Sn2
an (Sn
1), 2
Qan SnSn1
∴ S n 2 (S n S n 1 )(S n 1 2 ) 1 2 (S n 1 S n ) S n S n 1
递
1 1 2 Sn Sn1
推
∴数列
∴1
Sn
S1n S1是1以2(nS111)1首2项n,12为即. 公差S的n 等差2数n1列
14 47 7 10(3 n2 )3 (n1 )
1
提示:
1 ( 1 1 )
(3n2)(3n1) 3 3n2 3n1
∴
1 1
1
14 47
(3n2)(3n1)
1[(1 1)(1 1) ( 1 1 )]
3 4 47
3n2 3n1
1(1 1 ) n 3 3n1 3n.1
错位相减法
错位相减法:主要用于一个等差数列与一个等比数列 对应项相乘得的新数列求和,此法即为等比数列求 和公式的推导方法.
1
法
数列求和法小结
公式法求和
分组求和法
倒序相加法
裂项相消法
错位相减法
周期法求和
其它方法:递推法、合并法
.
( a 1 9 a 1 9 9 3 9 a 1 4 ) 9 a 1 9 9 8 a 2 9 0 a 9 2 0 0 a 0 2 0 0
a19 9a 9 20 0a 0 20 0a 1 2002
a1a2a3a45
.
其它方法求和
例7:求和 1 3 5 ( 1 )n(2 n 1 )
而 a 6 k 1 a 6 k 2 a 6 k 3 a 6 k 4 a 6 k 5 a 6 k 6 0
∴ S 2002 ( a 1 a 2 a 3 a 6 ) ( a 7 a 8 a 1 ) 2 ( a 6 k 1 a 6 k 2 a 6 k 6 )
数列求和(错位相减法-公开课)
32 3n 3 3 2 (2n 1) 3 n1 6 (2 2n) 3n1 1 3
故Sn 3 (1 n) 3n1
课堂总结
数列求和的新方法:错位相减法
1、什么数列可以用错位相减法来求和?
通项公式是“等差×等比”型的数列
2、错位相减法的步骤是什么?
Sn a1 a2 a3 an1 an
后一项都比前 一项多乘个q
Sn a1 a1q a1q a1q
2
2 3
n 2
a1q
n1
n1
n
①
②
qSn a1q a1q a1q a1q
①—② ,得
a1q
错 位 相 n 减 a1 an q 法 a1 a1q q 1时 : S n 错位相减法:来自展开,乘公比,错位,相减
即S n 1 2 2 2 2 (n 1) 2 n 1 n 2 n
2Sn 1 2 2 2 2 3 (n - 1) 2 n n 2 n1 ①-②得 Sn 1 2 1 2 2 1 23 1 2 n n 2 n1
公式法
(3)求数列{a n bn }的前n项和
分组求和法
新问题: 求数列{a n bn } 的前n项和
?
情景重现:
银行贷款问题
N年后,如果你自己开了公司,当了 老板,但是由于资金短缺,需向银行贷款 1000万。银行向你推荐了一个新的贷款 方案:
银行一次性借给你1000万元,你可以分30个月 偿还,第一个月还2元,第二个月还4元,第三个月 还8元,第四个月还10元,以此类推,每个月的还 款数是前一个月的两倍。 你能接受这个方案吗?
数列求和【公开课教学PPT课件】
1 2
Tn
1 2
3 22
5 23
2n 3 2n 1
2n1
2n
(1
1 2
)Tn
2
1 2
1 22
1 23
Tn
6
2n 3 2n1
1 2n2
2n 1 2n
3
2n 3 2n
高考数学第一轮复习 第六章 数列 第4节 数列求和
已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(2)Sn
a1(1 qn ) 1 q
2n 1, bn
an1 Sn Sn1
Sn1 Sn Sn Sn1
1 Sn
1 Sn1
Tn b1 b2 b3 bn
( 1 1 )( 1 1 ) ( 1 1 )
S1 S2
S2 S3
Sn
1 S1
高考数学第一轮复习 第六章 数列 第4节 数列求和
考点二 分组、并项求和法
例2. 设等比数列{an}的通项公式为an=3n ,等差数列{bn}的通项 公式为bn=2n+1.
(1)记cn=an+bn,求数列{cn}的前n项和Sn. (2)记dn=(-1)nbn ,求数列{dn}的前n项和Tn.
解:(1)
cn an bn,an,bn分别为等差、等比数列。
高考数学第一轮复习 第六章 数列 第4节 数列求和
考点一 倒序相加法
例1. 若数列{an}是首项为1,公差为2的等差数列.求
S Cn0a1 Cn1a2 Cn2a3 + Cnnan1
第讲数列的求和精选课件
【互动探究】 1.(2019 年陕西)已知{an}是公差不为零的等差数列,a1=1,
且 a1,a3,a9 成等比数列. (1)求数列{an}的通项公式; (2)求数列{2 a n}的前 n 项和 Sn.
4.数列 112,214,318,…,n+21n,…的前 n 项和 Sn=______ __12_n_(n_+__1_)_+__1_-__21_n___.
5.数列{an}的通项公式 an=
1 n+
n+1,若前
n
项的和为
10,
则项数 n=___1_2_0___.
考点1 利用公式或分组法求和
例1:(2011 年重庆)设{an}是公比为正数的等比数列,a1=2, a3=a2+4.
数列求和常用的方法
1.公式法 (1)等差数列{an}的前
n
项和公式:Sn=nnaa1+ 12+nann2-,1d.
(2)等比数列{an}的前n项和Sn:①当q=1时,Sn=__n_a_1_;
a11-qn
a1-anq
②当 q≠1 时,Sn=____1_-__q___=____1_-__q__.
2.分组求和法 把一个数列分成几个可以直接求和的数列. 3.错位相减法 适用于一个等差数列和等比数列对应项相乘构成的数列求 和. 4.裂项相消法 有时把一个数列的通项公式分成两项差的形式,相加过程消 去中间项,只剩有限项再求和.
解析:(1)P1(-1,0),an=n-2,bn=2n-2. (2)f(n)=n2- n-2, 2,n为 n为奇偶数数,. 假设存在符合条件. ①若 k 为偶数,则 k+5 为奇数. 有 f(k+5)=k+3,f(k)=2k-2. 如果 f(k+5)=2f(k)-2,则 k+3=4k-6⇒k=3 与 k 为偶数矛 盾.故不符(舍去). ②若 k 为奇数,则 k+5 为偶数, 有 f(k+5)=2k+8,f(k)=k-2. ∴2k+8=2(k-2)-2 这样的 k 也不存在. 综上所述:不存在符合条件的 k.
高中阶段最全的数列求和(10种)省公开课获奖课件说课比赛一等奖课件
4.处理非等差、等比数列旳求和,主要有两种思绪
(1)转化旳思想,即将一般数列设法转化为等差或等比 数列,这一思想措施往往经过通项分解或错位相减来完 毕.
(2)不能转化为等差或等比数列旳数列,往往经过裂项 相消法、错位相减法、倒序相加法等来求和.
5.“错位相减”、“裂项相消”等是数列求和最主要 旳措施.是高考要点考察旳内容,应熟练掌握.
(其中d=an+1-an).
常见旳拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
4. 1 1 ( a b) a b ab
5.
1
1[ 1
1
]
即数列an的周期是 4,
a4=-1 又 a3 2 ,
故 a1+a2 +a3 +a4 =2 , a2009 a45021 a1 ,
a1+a2 +a3 +a4 +.......+a2009 502(a1+a2 +a3 +a4 ) a2009 1003
练习:
已知在数列 an
中,
a1
2
,
an1
(3)求数列1,3+4,5+6+7,7+8+9+10, …,前n项和Sn.
例1:求和:
1. 4 6 8 ……+(2n+2)
2.
11 1 1 2 22 23
1 2n
3. x x2 xn
10看通项,是什么数列,用哪个公式; 20注意项数
例2、已知lg(xy) 2
第20讲 数列的求和PPT课件
【典例分析】
【典例分析】
考点五 分组求和
有时,可将原数列分解成若干个可用公式法求和的新数列进行分 别求解.
【典例分析】
【典例分析】
考点一 公式法
【典例分析】
【典例分析】
考点二 裂项相消法 将数列的每一项分解成两项的差,逐一累加相消.
【典例分析】
【典例分析】
【典例分析】
考点三 错位相减法
【典例分析】【典例分析】来自【典例分析】考点四 倒序相加法
如等差数列前n项和公式的推导就是使用的该法,有时关于组合 数的求和问题,也常用倒序相加法.
第一部分 基础知识串讲
4.2 数列的求和
数列的求和问题是高中数学中的一个非常重要的知识点,也是各大高校 自主招生试题中经常涉及的内容.由于数列的形式多种多样、种类繁多, 除一般外表形式较为简单的实数数列以外,还有三角函数数列、反三角 函数数列、组合数列、复数数列等.因此,其求和方法也是灵活多样、纷 繁多变的.本节我们介绍几种数列求和的基本方法.
第四节 数列求和 课件(共48张PPT)
-
1 n+3
)=
1 2
56-n+1 2-n+1 3. 答案:1256-n+1 2-n+1 3
考点1 分组转化法求和 [例1] (2020·焦作模拟)已知{an}为等差数列,且 a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4= 88,且数列{bn-an}为等比数列. (1)求数列{an}和{bn-an}的通项公式; (2
an=n(n1+k)型
[例2] (2020·中山七校联考)已知数列{an}为公差 不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式; (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=
3,求数列b1n的前n项和Tn.
1.裂项时常用的三种变形.
(1)n(n1+1)=n1-n+1 1.
(2)n(n1+2)=12n1-n+1 2.
(3)(2n-1)1(2n+1)=122n1-1-2n1+1.
(4)
1 n+
n+1=
n+1-
n.
2.应用裂项相消法时,应注意消项的规律具有对称 性,即前面剩第几项则后面剩倒数第几项.
3.在应用错位相减法求和时,若等比数列的公比为 参数,应分公比等于1和不等于1两种情况求解.
) B. 2 020-1
C. 2 021-1 D. 2 021+1
解析:由f(4)=2,可得4α=2,解得α=12,
则f(x)= x.
所以an=
1 f(n+1)+f(n)
=
1 n+1+
= n
n+1 -
n,
所以S2 020=a1+a2+a3+…+a2 020=( 2 - 1 )+ ( 3- 2)+( 4- 3)+…+( 2 021- 2 020)=
数列求和(公开课课件)
思维升华
(1)若数列{cn}的通项公式为cn=an±bn,且{an},{bn}为等差 或等比数列,可采用分组求和法求数列{cn}的前n项和. (2)若数列{cn}的通项公式为cn=abnn,,nn为为奇偶数数,,其中数列{an}, {bn}是等比数列或等差数列,可采用分组求和法求{cn}的前 n项和.
d≠0,
解得a1=1,d=1, ∴数列{an}的通项公式an=1+(n-1)×1=n.
(2)设bn=2an +(-1)nan,求数列{bn}的前2n项和T2n.
由(1)知,bn=2n+(-1)nn,记数列{bn}的前2n项和为T2n, 则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n). 记A=21+22+…+22n,B=-1+2-3+4-…+2n,
(√ ) (2)当 n≥2 时,n2-1 1=12n-1 1-n+1 1.( √ )
(3)求Sn=a+2a2+3a3+…+nan时,只要把上式等号两边同时乘a即可根
据错位相减法求得.( × )
(4)求数列21n+2n+3的前 n 项和可用分组转化法求和.( √ )
1.数列{an}的通项公式是an=(-1)n(2n-1),则该数列的前100项之和为
设{nan}的前n项和为Sn,a1=1,an=(-2)n-1,
Sn=1×1+2×(-2)+3×(-2)2+…+n(-2)n-1,
①
-2Sn=1×(-2)+2×(-2)2+3×(-2)3+…+(n-1)·(-2)n-1+n(-2)n,
②
①-②得,3Sn=1+(-2)+(-2)2+…+(-2)n-1-n(-2)n
(2)记bm为{an}在区间(0,m](m∈N*)中的项的个数,求数列{bm}的前 100项和S100.
高考数学复习第六章数列6.4数列求和理市赛课公开课一等奖省名师优质课获奖PPT课件
考点 4 裂项相消法求和
38/85
裂项相消法 (1)把数列的通项拆成两项之差,在求和时中间的一些项可以 相互抵消,从而求得其和.
39/85
(2)常见的裂项技巧:
①nn1+1=1n-n+ 1 1.
②nn1+2=121n-n+ 1 2.
③2n-112n+1=122n1-1-2n1+1.
④
24/85
考点 3 错位相减法求和
25/85
错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的 对应项之积构成的,那么这个数列的前 n 项和即可用此法来求, 如等比数列的前 n 项和公式就是用此法推导的.
26/85
(1)[教材习题改编]数列 1,1+1 2,1+12+3,…,1+2+1…+n 2n
34/85
[2015·天津卷]已知{an}是各项均为正数的等比数列,{bn}是 等差数列,且 a1=b1=1,b2+b3=2a3,a5-3b2=7.
(1)求{an}和{bn}的通项公式; (2)设 cn=anbn,n∈N*,求数列{cn}的前 n 项和.
35/85
解:(1)设数列{an}的公比为 q,数列{bn}的公差为 d,由题 意知 q>0.
32/85
2Tn=23+(30+3-1+3-2+…+32-n)-(n-1)×31-n =23+11- -331--1n-(n-1)×31-n =163-62n×+33n , 所以 Tn=1132-64n×+33n , 经检验,n=1 时也适合. 综上知,Tn=1132-64n×+33n .
33/85
设数列{an}
的前 n 项和为 Sn,则 S9=___3_7_7___.
18/85
[典题 2] 已知数列{an}的通项公式是 an=2·3n-1+(-1)n·(ln 2-ln 3)+(-1)nnln 3,求其前 n 项和 Sn.
《数列求和专题》课件
数列求和的分类
有穷数列求和
数列的项数是有限的,求和时只需要 将所有项加起来即可。
无穷数列求和
数列的项数是无限的,需要采用特定 的方法进行求和。
数列求和的基本方法
公式法
对于一些特定的数列,可以直 接使用公式进行求和。
裂项法
将数列中的每一项都拆分成两 个部分,然后分别进行求和。
错位相减法
将数列中的每一项都乘以一个 常数,然后错位相减,得到一 个等差数列,最后进行求和。
03
等比数列求和
等比数列的定义
等比数列是一种常见的数列,其 中任意两个相邻项之间的比值都
相等。
等比数列的每一项都可以由首项 和公比唯一确定。
等比数列的通项公式为 $a_n=a_1*q^{(n-1)}$,其中 $a_n$是第n项,$a_1$是首项
,q是公比。
等比数列的通项公式
等比数列的通项公式 是数列中任意一项的 数学表示。
详细描述
分组转化法的基本思路是将原数列分组,每组内的项可以转化为等差数列或等比数列,然后利用相应 的求和公式计算每组的和,最后将各组的和相加得到原数列的和。这种方法适用于一些复杂的数列求 和问题。
05
数列求和的应用
在数学竞赛中的应用
数学竞赛中,数列求和是常见的 题型,考察学生的数学思维和计
算能力。
数列求和在金融领域中还应用于计算复利、评估贷款还款等金融业务。
在日常生活中的应用
在日常生活中,数列求和的应用也十 分常见,如计算购物清单的总价、计 算工资总额等。
数列求和在日常生活中的应用还体现 在统计数据、计算平均值等方面。
通过数列求和,人们可以快速准确地 计算出一系列数字的总和,提高日常 生活中的计算效率。
(完整版)数列求和(错位相减法_公开课)
变式训练
例:数列{an}的通项公式an n, 数列{bn}的通项公式bn 2n
变式问题:
求数列 {an } 的前n项和 bn
课堂练习 解:an bn
n 2n
n (1)n 2
Tn
1 1 2 (1)2
2
2
(n 1) ( 1 ) n1 2
n(1)n 2
新问题:求数列{an bn }的前n项和
解:anbn n 2n
错位相减法:
Sn a1b1 a2b2 anbn 展开,乘公比,错位,相减
即Sn 1 2 2 22 (n 1) 2n1 n 2n
2Sn 1 22 2 23 (n -1) 2n n 2n1
3Sn 1 32 3 33 (2n 3) 3n (2n 1) 3n1
两式相减得
2Sn 1 3 2 32 2 3n (2n 1) 3n1
2Sn 3 2 (32 3n ) (2n 1) 3n1
1 2 Tn
1 ( 1 )2 2 ( 1 )3 (n 1) ( 1 )n n ( 1 )n1
2
2
2
2
① ②得
1 2
Tn
1
1 2
1(1 )2 2
1( 1 )n n ( 1 ) n1
2
2
1 ( 1 ) 2 ( 1 ) n n ( 1 ) n1
①-②得
Sn 1 2 1 22 1 23 1 2n n 2n1
高中数学第二章数列数列求和习题课省公开课一等奖新优质课获奖课件
由题意得 d=
=
12-3
=3.
3
所以an=a1+(n-1)d=3n(n=1,2,…).
设等比数列{bn-an}公比为q,
4 -4
1 -1
由题意得 q3=
=
20-12
=8,解得
4-3
q=2.
所以bn-an=(b1-a1)qn-1=2n-1.
所以bn=2n-1+3n(n=1,2,…).
(2)由(1)知bn=3n+2n-1,
用错位相减法求和时,应注意:
在写出“Sn”与“qSn”表示式时,应尤其注意将两式“错项对齐”,方便下一步准确写
出“Sn-qSn”表示式.若公比是参数(字母),则应先对参数加以讨论,普通情况下分为
等于1和不等于1两种情况分别求和.
10/28
探究一
探究二
探究三
经典例题2
已知正项等差数列{an}前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.
2
3
4
5
)
D.-2 016
解析:S2 016=-1+2-3+4+…+(-2 013)+2 014+(-2 015)+2 016=(-1+2)+(-3+4)+…+(-2
013+2 014)+(-2 015+2 016)=1 008.
答案:A
24/28
1
2.数列{an}的前 n 项和为 Sn,若 an=
1
项和.求
1
1
n为
1
1
+ +…+ .
数列求和公开课教案
《数列求和复习》教学设计开课时间:2016/12/22 开课人:洪来春一、学情分析:学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。
本节课作为一节复习课,将会根据已知数列的特点选择适当的方法求出数列的前n项和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。
二、教法设计:本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。
采用以具体题目为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。
先引出相应的知识点,然后剖析需要解决的问题,在例题中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。
在教学过程中采取如下方法:(1)诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性;(2)讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
三、教学设计:1、教材的地位与作用:对数列求和的考查是近几年高考的热点内容之一,属于高考命题中常考的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。
化归与转化思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。
2、教学重点、难点:教学重点:根据数列通项求数列的前n项,本节课重点复习分组求和与裂项法求和。
教学难点:解题过程中方法的正确选择。
3、教学目标:(1)知识与技能:会根据通项公式选择求和的方法,并能运用分组求和与裂项法求数列的前n项。
(2)过程与方法:①培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力;②通过阶梯性练习和分层能力培养练习,提高学生分析问题和解决问题的能力,使不同层次的学生的能力都能得到提高。
高中数学《数列求和方法》公开课优秀教学设计
教学设计数列求和方法3——错位相减一.教学内容分析本节内容是《普通高中课程标准实验教科书数学》人教A版必修5第二章中,学生在学习了等差数列和等比数列的通项公式以及前n项和公式的基础上,学习了求和方法:公式法、分组求和法之后的第3种求和方法,主要体现数学中的转化思想。
即将不能直接求和的问题通过错位相减,转化为能用等比求和的问题。
重点:会用错位相减法求通项为等差数列与等比数列对应项乘积的数列前n 项和。
难点:错位相减后的项数、符号问题,以及对转化数学思想的理解。
二.教学目标分析1.知识与技能:会用错位相减求通项为等差数列与等比数列对应项乘积的数列前n项和。
2.过程与方法:通过两等式错位相减,将不能求和的问题转化成能用等比数列求和的问题,在探究的过程中让学生体会数学的转化思想。
3.情感、态度与价值观:在问题导练的过程中,培养学生的探究能力、化归能力、运算能力。
三.学情分析本节课之前学生已经学习了等差和等比数列前n项和公式,数列求和方法:公式法、分组求和法,在推导等比数列前n项和公式时,错位相减法已经使用过,本节课需要再次阅读课本,探究方法,通过学生自己的努力学会错位相减的流程,但是错位相减的目的、错位相减后的项数及符号需要在学生尝试练习、巩固练习之后通过老师的引导、点评才能理解掌握。
同时转化的数学思想更需要在老师的启发中得以理解。
四.教学策略分析数列求和方法3---错位相减,需要学生在不断的尝试练习、巩固练习中得到掌握,此方法在等比数列前n项和公式推导过程中已经运用过,按照知识的发生、发展过程和学生的思维规律,本节课首先给出用公式法和分组求和法能够解决的两道练习题,对前一节内容进行复习,然后对第一道练习题目进行变式,设置障碍,创设情境,把学生的注意力引到再读课本,探究方法,引出课题,再次尝试,提炼方法,限时训练,互命试题,让学生在层层练习中掌握方法,整个设计过程中学生是学习的主体,老师仅仅是帮助者、服务者,这样设计重视了新旧知识实质性联系,让重点知识和重要数学思想方法得到螺旋式巩固和提高。
数列求和公开课课件
数列求和在实际生活中的应用
如存款利息计算、物品分批购买等。
通过实际问题理解数列求和的意义
将实际问题抽象为数列求和,培养学生运用数学知识解决实际问题的能力。
数列求和与其他数学知识的联系
数列求和与函数的关系
数列是一种特殊的函数,数列求和可以看作是函数求和在离散点 上的应用。
数列求和与极限的联系
数列求和的极限就是无穷级数的和,无穷级数是分析数学的重要工 具。
数列求和与微积分的联系
通过微积分的基本定理,可以将数列求和转化为定积分进行计算。
数列求和的思维训练与拓展
培养逻辑思维
通过数列求和的学习,培 养学生的逻辑思维能力, 学会从已知条件出发推导 出结论。
培养创新思维
通过一题多解、一题多变 等方式,培养学生的创新 思维能力,学会从不同角 度思考问题。
在计算机科学中,数列求和常用 于算法分析和数据处理等方面。 例如,在计算某个算法的时间复 杂度时,需要用到数列求和的知
识。
02
等差数列求和
等差数列的定义与性质
定义
等差数列是指在一个数列中,从 第二项起,每一项与它的前一项 的差等于同一个常数的一种数列 。
性质
等差数列的公差是一个常数,等 差数列的任意两项之和是一个常 数,等差数列的中项等于首项与 末项的平均数。
数列求和公开课课件
目录
• 引言 • 等差数列求和 • 等比数列求和 • 分组数列求和 • 递推数列求和 • 数列求和的综合应用
01
引言
数列求和的背景与意义
数列求和的概念
数列求和是数学中的一个重要概念,指的是将数列中的所有项加起来得到的结 果。
高考数学一轮复习第六章数列6.4数列求和市赛课公开课一等奖省名师优质课获奖PPT课件
2.非基本数列求和惯用方法
(1)倒序相加法:假如一个数列{an}前n项中与首末两端等“距离”
两项和相等,那么求这个数列前n项和即可用倒序相加法,如等差数
列前n项和公式即是用此法推导.
2/28
-3知识梳理
考点自测
(2)分组求和法:一个数列通项公式是由若干个等差数列或等比数
列或可求和数列组成,则求和时可用分组求和法,分别求和后再相
2.在写出“Sn”与“qSn”表示式时,应尤其注意将两式“错项对齐”,方
便下一步准确写出“Sn-qSn”表示式.
15/28
-16考点1
考点2
考点3
考点4
对点训练2已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项
为2等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
1 1
1
+1
.(
)
关闭
)
答案
6/28
-7知识梳理
1
考点自测
2
3
4
5
2.若数列{an}通项公式为an=2n+2n-1,则数列{an}前n项和为(
A.2n+n2-1
B.2n+1+n2-1
C.2n+1+n2-2 D.2n+n-2
)
关闭
2(1-2 )
Sn=
1-2
+
(1+2-1)
2
=2n+1-2+n2.
得Tn=(3n-4)2n+2+16.
所以,数列{a2nbn}前n项和为(3n-4)2n+2+16.
第七章 第四节 数列求和 课件(共42张PPT)
1.一些常见数列的前 n 项和公式 (1)1+2+3+4+…+n=n(n+ 2 1) ; (2)1+3+5+7+…+2n-1=n2; (3)2+4+6+8+…+2n=n2+n.
2.三种常见的拆项公式
1 (1)n(n+1)
=1n
-n+1 1
;
1 (2)(2n-1)(2n+1)
=12
2n1-1-2n1+1
答案: (1)× (2)√ (3)√
2.(必修 5P47T4 改编)数列{an}的前 n 项和为 Sn,若 an=n(n1+1) ,
则 S5 等于( )
A.1
B.56
C.16
D.310
B [∵an=n(n1+1) =1n -n+1 1 ,∴S5=a1+a2+…+a5=1-12 +12 -13 +…+15 -16 =56 .]
所以 an=-2n1+1 (n 为正奇数), 若 n 为奇数,则 an-1=-2an+21n =(-2)-2n1+1 +21n , 所以 an=21n (n 为正偶数), 所以 a3=-214 =-116 , 因为 an=-2n1+1 (n 为正奇数),所以-a1=--212 =212 ,
因为 an=21n (n 为正偶数),所以 a2=212 , 所以-a1+a2=2×212 , 因为-a3=--214 =214 ,a4=214 , 所以-a3+a4=2×214 , …… -a99+a100=2×21100 .
(2)因为 an=2n,所以 bn=(n+1)log2an=(n+1)log22n=n(n+1), 所以,2n2b+n2 2n =n(n2+1) =21n-n+1 1 , 所以 Tn=21-12+12-13+…+1n-n+1 1 =21-n+1 1 =n2+n1 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.裂项相消法:把数列的通项拆成两项之 差,即数列的每一项都可按此法拆成两 项之差,在求和时一些正负项相互抵消, 于是前n项的和变成首尾若干少数项之和, 这一求和方法称 为裂项相消法.
5.倒序相加法:如果一个数列 an ,与首末 两项等距的两项之和等于首末两项之和, 可采用把正着写与倒着写的两个和式相加, 有公因式可提,并且剩余的项的和可求出来, 这一求和的方法称为倒序相加法。
课堂诊断
1 1 1 1 . 数 列 , , , „ , 2· 5 5· 8 8· 11 1 ,„的前 n 项和为( B ) (3n-1)· (3n+2) n n A. B. 3n+2 6n+4 n+1 3n C. D. 6n+4 n+2
2 -1 2.已知数列{an}的通项公式是 an= n , 2 321 其前 n 项和 Sn= ,则项数 n 等于( D ) 64 A.13 B.10 C.9 D.6
1 2 n 变式、求和: S n 2 n a a a
【解析】 (1)a=1 时,Sn=1+2+„+n= n(n+1) ; 2 1 2 3 n (2)a≠1 时,Sn= + 2+ 3+„+ n① a a a a n-1 1 1 2 n S n + n+1② n= 2+ 3+„+ a a a a a 由①-②得
1 1 1- n 2 2 1 =2 n- =2n-1- + 1 2n 1-2 1 =2n-2+ n-1. 2
思维升华:要求和,先弄清通项(长什么 样用什么样的方法)!
错位相减法
例3、数列 {an }中a1 3,已知点(an , an 1)在 直线y x 2上, ( 1 )求数列 {an }的通项公式; (2)若bn an 3 , 求数列 {bn }的前n项的和Tn .
祝愿同学们学业有成,前途似锦!
细心、用心是制胜的法宝!
数列求和(一)
高三数学组 鲁云霞
循 环 教 研 、 实 证 推 进 研 讨 课
--
考 1. 熟练掌握等差、等比数列的前n项和公式. 纲 2.能利用等差、等比数列的前n项和公式 点 击 及其性质求一些特殊数列的和。
热 ቤተ መጻሕፍቲ ባይዱ 提 示
1.多以选择题或填空题的形式 考查等差、等比数列的前n项和. 2.以考查等差、等比数列的前n项和为主, 同时考查分组求和法、错位相减法、 裂项相消法、倒序相加法等常用方法.
1 1 1 1 1 n (1-a)Sn=a+ 2+ 3+„+an- n+1 a a a 1 1 (1 - n) a a n = - n+1, 1 a 1-a n a(a -1)-n(a-1) ∴Sn= . n 2 a (a-1) 综 上 所 述 , Sn
n(n+1) 2 n a(a -1)-n(a-1) n 2 a (a-1)
1 1 1 1 3. ( ) (2n 1)(2n 1) 2 2n 1 2n 1
1 1 1 1 4. [ ] n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
1 5. ( n k n) n nk k
1
利用裂项相消法求和时,应注意: ①将通项公式裂项后,有时候需要 调整前面的系数,使裂开的两项之 差和系数之积与原通项公式相等. ②抵消后并不一定只剩下第一项和 最后一项,也有可能前面剩两项, 后面也剩两项,
n
3.数列{(-1) · n}的前 2 010 项的和 S2 为( D ) A.-2 010 B.-1 005 C.2 010 D.1 005
n
010
4、已知数列 {an }满足:a1 2t , t 2an 1t an 1an 0, n 2, n N ,
2
(其中t为常数,且t 0) 1 ( 1 )求证:数列 { }为等差数列; an t (2)求数列 {an }的通项公式;
sn
a1(1-q ) a1-anq 1-q 1 - q =__________=_________
(其中
n
a1 为首项,q为公比)
例1.: 求和
1. 1+2+3+……+n 答案: Sn=n(n+1)/2 2. 2+4+8+……+2n 答案: Sn=2n+1-2
方法:直接求和法
找漏洞,辨错因
方法:分组转化求和法
【思考】 用裂项相消法求数列前n项和
的前提是什么?
【提示】 裂项相消法的前提是将数列的每一项 拆成二项或多项,使数列中的项出现 有规律的抵消项,进而达到求和的目的。
常见的拆项公式有:
1 1 1 1. n(n 1) n n 1
1 1 1 1 2. ( ) n( n k ) k n n k
an (3)设bn , 求数列{bn }的前n项和S n . 2 (n 1)
反思小结:
1.公式法:直接利用等差等比数列的求和公式 2.分组转化法:有一类数列,既不是等差数列, 也不是等比数列,若将这类数列适当拆开,可 分为几个等差、等比或常见的数列,然后分别 求和,再将其合并即可. 3.错位相减法:如果一个数列的各项是由 一个等差数列与一个等比数列对应项乘积 组成,此时求和可采用错位相减法.
n
1.一般地,如果数列{an}是等差 数列,{bn}是等比数列,求数列{an· bn}的前 n 项和时,可采用错位相减法. 2.用乘公比错位相减法求和时,应注意 (1)要善于识别题目类型,特别是等比数列 公比为负数的情形; (2)在写出“Sn”与“qSn”的表达式时应特 别注意将两式“错项对齐”以便下一步准 确写出“Sn-qSn”的表达式.
——基础知识梳理 —— 1、等差数列的前n项和公式:
s
(其中 a1为首项,d为公差) 2、等比数列的前n项和公式: na1 当q=1时, =__________ n
n(n-1) n(a1+an) na + d 1 = ________________ . 2 n =____________ 2
s
当q≠1时,
=
(a=1) . (a≠1)
利用错位相减法求和时,转化为等比 数列求和.若公比是个参数(字母), 则应先对参数加以讨论,一般情况下 分等于1和不等于1两种情况分别求和.
题型三、裂项相消法
1 2 n 例4、在数列 {an }中,an , n 1 n 1 n 1 2 又bn , 求数列{bn }的前n项和。 an an 1
1 1 1 1 例2、求数列 2 、 4 、 6 、 8 、 的前 n项和 S n . 4 8 16 32
【思路点拨】 先求通项 →转化为几个容易求和的数列形式 →分别求和 →得结论
解:
1 1 1 1 sn 2 4 6 (2n n1 ) 4 8 16 2 1 1 1 (2 4 6 2n) ( n 1 ) 4 8 2 1 1 n [1 ( ) ] 4 2 n(n 1) 1 1 2 1 1 n 1 2 n n ( ) 2 2
练习:试卷78页夯基释疑T3
Answer:C
变式:78页跟踪训练1
解析: 和式中的第 k 项为:
1 1-2k 1 1 1 1 1- k ak=1+2+4+„+ k-1= = 2 2 1 2 1- 2
Sn=a1 +a2 +a3 +……. +an
n个 1 1 1 =2 1+1+„+1 - + 2+„+ n 2 2 2