电控发动机传感器及执行器的认识

合集下载

项目2 汽油发动机电控系统信号输入装置、 执行器认知与检修

项目2 汽油发动机电控系统信号输入装置、 执行器认知与检修

翼片式空气流量计结构简单、 可靠性好, 测量精度不受电源电压波动的影响。 但 是进气阻力大、 急加速 响应慢、 外形尺寸大、 布置比较困难。 另外, 单位体积空气在不同的温度和压力下, 具有不同的质量, 因此 还需测量进气温度和压力, 才能计算出 空气的质量流量。
该形式的空气流量传感器用于早期的如: 宝马535、 雷克萨斯ES300、 沃尔沃760 型发动机上。
(1)翼片式空气流量传感器的结构与工作原理。 翼片式空气流量传感器也叫叶片 式空气流量传感器, 安装在空气滤清器后方的进气道上, 结构如图2-2、 图2-3所 示。 翼片式空气流量计由测量板、 补偿板、 回位弹簧、 电位计、 旁通道、 怠速调整螺 钉和接线插头等组成。
翼片式空气流量计的工作原理如图2-4 所示。 汽油发动机工作时, 具有一定流 速的空气推开测量翼片, 经主空气通道进入发动机气缸。 测量翼片被气流推开的程 度, 也即偏转角 α 的大小, 与空气流速和扭簧的回复 力矩有关。 测量翼片的偏转角α 越大, 扭簧的回复力矩也越大, 与之对应的是较高空气流速(即较大的空气流 量), 反 之则相反。 对于某一具体的空气流量计, 在流量计主空气通道几何尺寸已定的情况 下, 对应于每一偏 转角α, 就有一个确定的主通道流通截面积。 由于空气的体积流 量=空气流速×流通截面积, 因此对应于每一偏 转角α, 就有一个确定的空气流量值, 只要把偏转角α转换为对应的电信号并输送到ECU, ECU就能根据偏 转角仪和空气流 流量的对应关系, 算出单位时间发动机吸入的空气量。
合理地设计进气通道的截面积和涡流发生器的尺寸, 可使在发动机的进气流速范围 内St 为一常数。 于是, 卡门涡旋频率就只与空气流速成正比关系。 这样, 只要测出卡门 涡旋的频率f, 就可知道空气的流速v, v乘 以空气通道的截面积, 便是空气的体积流量。

项目一发动机电控系统总体认识

项目一发动机电控系统总体认识

项目一发动机电控系统总体认识项目描述发动机电子控制系统是车辆上最重要的电控系统之一。

发动机电控系统主要由空气供给系统、燃油供给系统、点火控制系统、排放控制系统以及发动机辅助控制系统等组成。

如果发动机电子控制系统出现故障,发动机会出现油耗增加、动力不足、运行不良等各种故障,甚至是发动机无法起动。

图3-1大众发动电子控制系统组成图G28发动机转速传感器 G130催化器后氧传感器 G40霍尔传感器 F和F47制动信号灯开关 G39氧传感器 G70热膜式空气质量流量计 G62冷却液温度传感器 G42进气温度传感器 G61爆燃传感器I J338节气门控制单元 G61爆燃传感器I G62爆燃传感器II F36离合器踏板开关 G187和G188节气门传动装置角度传感器(电子节气门调节器) G79和G185加速踏板位置传感器传感器侧附加信号:空调压缩机接通,空调准备就绪,车速信号 K83废气警告灯 N156调节式进气管转换阀 J17燃油泵继电器G6燃油泵 J299二次空气泵继电器 N30~N33喷射阀 V101二次空气泵电动机继电器J338节气门控制单元 G186节气门传动装置 N152点火变压器 N80活性炭罐电磁阀Z29催化器后氧传感器加热装置 Z19氧传感器加热装置执行器侧附加信号:空调压缩机关闭,电子节气门故障指示灯,定速巡航控制系统,耗油量信号任务1 发动机电控系统总体认识任务描述:一辆2009款迈腾1.8T 轿车,装备BYJ发动机,行驶里程8.6万公里。

客户李先生反映该车在行驶中发动机故障灯点亮,此前车辆并未出现过事故和维修。

发动机故障灯点亮,意味着发动机电控系统出现了故障,并且记录在了发动机电脑板中。

故障部位一般电控系统的传感器、执行器、电脑板或者是线路故障。

在进行维修之前,需要对故障车辆的发动机电控系统比较熟悉,然后使用解码器对发动机电控系统进行故障码的读取,然后结合故障码和维修手册进行故障维修和修复。

传感器与执行器的解析

传感器与执行器的解析

传感器与执行器的解析什么是传感器?甲传感器监视环境条件,例如流体的水平,温度,振动,或电压。

当这些环境条件发生变化时,它们会向传感器发送电信号,然后传感器可以将数据或警报发送回中央计算机系统,或调整特定设备的功能。

例如,如果电动机达到过热温度点,它将自动关闭。

什么是执行器?另一方面,致动器引起运动。

它接收电信号并将其与能源结合以产生物理运动。

致动器可以是气动的,液压的,电动的,热的或磁性的。

例如,电脉冲可以驱动资产中电动机的功能。

传感器和执行器之间的6个主要区别传感器和执行器跟踪不同的信号,通过不同的方式进行操作,并且必须协同工作才能完成任务。

它们还物理上位于不同的区域,并且经常用于单独的应用程序中。

传感器负责跟踪进入机器的数据,而执行器则执行动作。

输入和输出传感器查看来自环境的输入,这些输入触发特定的动作。

另一方面,执行器跟踪系统和机器的输出。

电信号传感器通过电子信号读取特定的环境条件并执行分配的任务。

但是,执行器会测量热量或运动能以确定所产生的作用。

依赖传感器和执行器实际上可以相互依赖来执行特定任务。

如果两者都存在,则执行器将依靠传感器来完成其工作。

如果一个或两个都无法正常工作,则系统将无法运行。

转换方向传感器倾向于将物理属性转换为电信号。

执行器的作用相反:将电信号改变为物理动作。

位置如果同时存在传感器和执行器,则个位于输入端口,而后者位于输出端口。

应用传感器通常用于测量资产温度,振动,压力或液位。

执行器的工业应用包括操作风门,阀门和联轴器。

执行器和传感器示例在工业领域,执行器和传感器都有许多用途。

它们都有助于关键资产更有效地工作,从而有助于减少停机时间并提高生产率。

5种不同类型的执行器1、手动执行器这些执行器需要员工控制齿轮,杠杆或车轮。

尽管它们便宜且易于使用,但适用性有限。

2、气动执行器这些执行器利用气压为阀门提供动力。

压力推动活塞影响阀杆。

3、液压执行器这些执行器使用流体产生压力。

液压执行器不使用气压,而是使用液压来操作阀门。

电控发动机的工作原理

电控发动机的工作原理

电控发动机的工作原理
电控发动机是一种通过电子控制系统对发动机的燃油喷射、气门开关等进行精确调控的动力装置。

其工作原理主要包括以下几个方面:
1. 点火系统:电控发动机通过电子控制单元(ECU)对点火系统进行精确控制。

ECU接收来自传感器的信息,判断最佳点
火时机,并通过点火线圈产生高电压来点燃混合气体,从而引爆燃料混合气。

2. 燃油喷射系统:电控发动机采用电喷技术,通过ECU控制
喷油嘴的喷油时间和喷油量,实现对燃料供给的精确调控。

ECU接收来自传感器的信息,计算最佳喷油时间和喷油量,
并送出相应的指令,使喷油嘴以精确的喷油量和时间完成燃油喷射过程。

3. 气门控制系统:电控发动机通过ECU控制气门的开闭时机
和持续时间。

ECU根据发动机负荷和转速等参数,计算出最
佳气门控制策略,并通过控制执行器来实现气门的精确控制。

气门的开闭时机和持续时间对进气量和排气量等影响很大,因此精确的气门控制能够使发动机达到更高的燃烧效率。

4. 传感器系统:电控发动机依靠各种传感器来获取发动机工作状态的信息,如气温传感器、氧传感器、曲轴传感器等。

这些传感器将实时的工作参数转化为电信号并送至ECU,ECU根
据这些信息作出相应的调整,以实现对发动机工作的精确控制。

通过以上这些系统的协同工作,电控发动机能够更加精确地控制燃油喷射、点火时机和气门控制等参数,从而提高燃烧效率、减少能量损失,实现更低的燃油消耗和更高的动力输出效率。

同时,电控技术还使得发动机能够根据驾驶员的需求做出即时响应,提升了驾驶的舒适性和安全性。

电控发动机工作原理

电控发动机工作原理

电控发动机工作原理随着科技的发展,电控发动机已经成为现代汽车的主流动力。

它采用电子控制系统来管理燃油喷射、点火和排放等过程,从而实现更高效、更环保的动力输出。

本文将详细介绍电控发动机的工作原理。

1. 传感器电控发动机的控制系统需要通过传感器来获取发动机运行状态的信息。

这些传感器包括空气流量计、氧气传感器、水温传感器、气压传感器等,它们将发动机的运行状态转化为电信号并传送给控制器。

2. 控制器控制器是电控发动机的“大脑”,它根据传感器的信息来计算燃油喷射量、点火时机等参数,并发送指令给执行器。

控制器还会对发动机的工作状态进行监测,并根据需要进行调整。

3. 发动机执行器执行器是控制器指令的执行者,它们包括燃油喷嘴、点火线圈、节气门执行器等。

这些执行器受到控制器的指令后,会相应地控制燃油喷射量、点火时机和节气门开度等参数,从而控制发动机的输出功率和转速。

4. 燃油系统电控发动机的燃油系统包括油泵、燃油滤清器、燃油喷射器等部件。

在控制器的指令下,燃油泵会将燃油送至燃油滤清器进行过滤,再由燃油喷射器将燃油喷射到发动机的气缸中。

燃油喷射器的喷射量和喷射时机等参数由控制器根据传感器的信息进行计算和控制。

5. 点火系统电控发动机的点火系统包括点火线圈、火花塞等部件。

在控制器的指令下,点火线圈会产生高压电流,从而使火花塞产生火花,点燃气缸中的燃油混合气。

点火时机的计算和控制也是由控制器完成的。

6. 排放系统电控发动机的排放系统包括三元催化器、氧气传感器等部件,它们能够有效地减少尾气排放的有害物质。

氧气传感器会监测排气中的氧气含量,并将信息传送给控制器。

控制器根据氧气传感器的信息来调整燃油喷射量,使得燃烧产生的尾气排放更加环保。

电控发动机采用电子控制系统来管理燃油喷射、点火和排放等过程,从而实现更高效、更环保的动力输出。

传感器、控制器、执行器、燃油系统、点火系统和排放系统等部件相互协作,共同完成发动机的工作。

汽车电控系统工作原理与结构

汽车电控系统工作原理与结构

汽车电控系统工作原理与结构汽车电控系统是指用电子技术控制汽车运行和操作的系统。

它是汽车电子技术的重要应用,通过精确控制发动机、传动系统、制动系统、灯光系统等汽车的相关部件,提高汽车的性能、安全性和舒适性。

本文将从工作原理和结构两个方面,详细介绍汽车电控系统的相关知识。

一、工作原理1.传感器感知:汽车电控系统通过传感器感知车身的各种物理、化学和电学参数。

例如,氧传感器能够感知排气中的氧含量,进而判断发动机的燃烧情况;油温传感器能够感知发动机的油温,从而为油路提供适当的油量和油压。

2.信号转化:传感器将感知到的参数转化为电信号,从而为后续的电子元件处理和传输提供基础。

例如,氧传感器将氧含量转化为电压信号,通过电缆传输给电控单元。

3.信号处理:电控单元作为汽车电控系统的核心部件,接收各个传感器传来的电信号,进行数字化处理,计算各参数的值,并根据预先设定的控制策略制定相应的控制命令。

例如,在发动机控制方面,电控单元根据氧传感器的信号计算空燃比,再根据设定的控制策略调整喷油时间和量。

4.执行器控制:执行器根据电控单元发送的控制信号,控制相应部件的工作状态。

例如,喷油器根据电控单元的命令,调节燃油的喷入量和喷射时间,从而实现发动机功率和排放控制。

二、结构1.感知系统:感知系统由各种传感器组成,用于感知控制参数。

例如,汽车发动机控制系统常用的传感器包括氧传感器、油温传感器、速度传感器等。

2.信号调理系统:信号调理系统用于将传感器感知到的信号进行处理和转化。

例如,模拟信号经过模拟电路处理后,转化为数字信号,再传输给电控单元进行处理。

3.控制器:控制器是整个电控系统的核心部件,负责接收和处理感知到的信号,并根据设定的控制算法制定控制策略。

控制器一般由微处理器和相应的存储器组成。

4.执行器:执行器根据控制器的命令,控制汽车各个部件的工作状态。

例如,喷油器根据控制器的控制信号,调整喷油时间和量;制动系统根据控制器的信号,调节制动力度。

电控发动机的工作原理

电控发动机的工作原理

电控发动机的工作原理
电控发动机是一种通过电子控制设备来控制燃料喷射和点火时机的发动机。

它主要包括以下几个部分:
1. 传感器:电控发动机中设置了多个传感器,用于监测发动机的工作状态。

例如,空气流量传感器用于测量进气量,进气温度传感器用于测量进气温度,氧气传感器用于监测尾气中氧气浓度等。

2. 控制单元:电控发动机的控制单元是一个特定的电子装置,用于接收传感器所采集到的各种数据,并根据预设的程序进行计算和判断。

它能够通过控制喷油器和点火系统来实现发动机的控制。

3. 喷油器:电控发动机中的喷油器是非常重要的部件。

控制单元会根据传感器所监测到的数据,计算出适当的燃油量,并通过电子信号控制喷油器喷射相应的燃油量到发动机燃烧室。

4. 点火系统:点火系统用于在正确的时机点燃混合气体。

电控发动机中的点火系统主要包括火花塞和点火线圈。

控制单元会根据传感器数据计算出适当的点火时机,并通过点火线圈产生高压电流,点燃混合气体。

电控发动机的工作原理可以总结为:传感器监测实时数据,控制单元根据这些数据计算出相应的控制信号,控制喷油器喷射适当的燃油量,并通过点火系统点燃混合气体。

通过精确的控制,电控发动机可以提供更高的燃烧效率和更低的排放。

发动机电控原理实验报告

发动机电控原理实验报告

一、实验目的1. 理解发动机电控系统的工作原理,掌握电控发动机的基本组成和功能。

2. 掌握电控发动机传感器的原理、类型、工作特性及检修方法。

3. 掌握电控发动机执行器的原理、类型、工作特性及检修方法。

4. 熟悉电控发动机ECU(电子控制单元)的原理、组成、功能及检修方法。

5. 通过实验,提高动手能力和实际操作技能。

二、实验原理发动机电控系统是一种利用电子技术对发动机进行控制的技术,它通过传感器、执行器和控制器(ECU)的相互作用,实现对发动机工作状态的精确控制。

以下是发动机电控系统的主要组成部分及其工作原理:1. 传感器:传感器将发动机的工作状态转换为电信号,输送给ECU。

常见的传感器有空气流量传感器、曲轴位置传感器、发动机转速传感器、节气门位置传感器、氧传感器、爆燃传感器等。

2. 执行器:执行器根据ECU的控制指令,实现对发动机工作状态的调整。

常见的执行器有电动燃油泵、喷油器、怠速控制(ISC)阀、废弃再循环(EGR)阀等。

3. ECU:ECU是电控系统的核心,负责接收传感器信号、处理数据、生成控制指令,并通过执行器实现对发动机的精确控制。

ECU主要由中央处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、输入和输出接口电路、驱动电路和固化在ROM中的发动机控制程序等组成。

三、实验内容1. 传感器实验:观察传感器的外观、结构,了解其工作原理和检修方法。

以空气流量传感器为例,实验内容包括:(1)测量空气流量传感器的电阻值,判断其是否正常。

(2)检测传感器信号输出波形,分析其工作状态。

2. 执行器实验:观察执行器的外观、结构,了解其工作原理和检修方法。

以电动燃油泵为例,实验内容包括:(1)测量电动燃油泵的电流、电压,判断其是否正常。

(2)检测电动燃油泵的启动、停止功能。

3. ECU实验:观察ECU的外观、结构,了解其工作原理和检修方法。

实验内容包括:(1)检测ECU的电源、接地情况。

(2)读取ECU中的故障代码,分析故障原因。

发动机电控系统的组成与工作原理

发动机电控系统的组成与工作原理

发动机电控系统的组成与工作原理1.传感器:传感器是发动机电控系统的重要组成部分,用于感知发动机各种参数的变化情况,如进气压力、进气温度、冷却液温度、曲轴转速等。

2.控制单元(ECU):控制单元是发动机电控系统的大脑,负责接收传感器信号,进行数据处理,并控制各种执行器的工作状态,如喷油器、点火线圈等。

3.执行器:执行器是发动机电控系统的执行部分,根据控制单元的命令,控制各个系统的工作状态,常见的执行器包括喷油器、点火线圈、进气门控制阀等。

4.电源系统:电源系统主要为电控系统提供电能,包括电池、发电机、线束等。

1.传感器采集数据:传感器感知发动机各种参数的变化情况,并将其转化为电信号传输给控制单元。

2.数据处理和控制:控制单元接收传感器信号后,进行数据处理,并根据预设的控制策略,计算出相应的控制命令。

控制单元也会根据当前发动机的工作状态和外部环境因素,不断调整控制策略。

3.信号输出和执行:控制单元将计算得出的控制命令通过电信号发送给相应的执行器,执行器根据接收到的信号,控制发动机的工作状态。

例如,控制单元向喷油器发送信号,控制喷油器的喷油量和喷油时机。

4.反馈控制:发动机电控系统还会不断地对发动机的工作状态进行监测,并根据实际情况对控制策略进行实时调整。

例如,根据氧传感器的反馈信号,控制单元可以调整燃油喷射量,以保持最佳的燃烧效率。

总结起来,发动机电控系统通过传感器感知发动机各种参数的变化情况,控制单元进行数据处理和控制策略的计算,然后通过执行器控制发动机的工作状态,以实现对发动机的精确控制和调节。

发动机电控系统的实时性和准确性对于提高发动机的性能、经济性和环保性具有重要意义。

发动机电控系统概述

发动机电控系统概述

发动机电控系统概述1.传感器部分:传感器是发动机电控系统的感知器官,它们用于检测发动机各种工作参数的变化并将其转化为电信号,供电控单元进行分析和处理。

常见的传感器包括空气流量传感器、氧气传感器、曲轴位置传感器、气缸压力传感器等。

2.控制单元部分:控制单元是发动机电控系统的大脑,它接收传感器传来的信息经处理后,控制相应的执行机构,调整发动机工作状态。

控制单元通常由一块微控制器芯片组成,该芯片集成了处理器、存储器和输入输出接口等功能。

3.执行机构部分:执行机构是发动机电控系统的执行器,通过控制发动机各个部件的工作,完成对发动机工作状态的调整。

常见的执行机构包括燃油喷射器、点火线圈、气门执行器等。

4.燃油系统部分:燃油系统是发动机电控系统的重要组成部分,它负责将控制单元发出的燃油喷射信号传递给燃油喷射器,并控制燃油喷射量的大小。

同时,燃油系统还负责将燃油供应到发动机燃烧室,保证发动机正常运转。

5.点火系统部分:点火系统是发动机电控系统的另一重要组成部分,它通过控制点火线圈的工作,产生高电压放电信号,点燃混合气体,完成燃烧反应。

点火系统的性能直接影响着发动机的可靠性和燃烧效率。

发动机电控系统的工作过程如下:首先,传感器检测发动机各种工作参数,并将其转化为电信号;然后,这些电信号被传输给控制单元进行处理;控制单元根据传感器信号分析发动机工作状态,确定最佳的燃油喷射时间、燃油喷射量和点火时机等参数;最后,控制单元将调整好的控制信号发送给执行机构,执行机构根据信号调整燃油喷射和点火等操作,使发动机工作在最佳状态。

发动机电控系统的优点在于能够实时监测发动机工作状态并进行调整,从而优化燃烧效率和性能,提高发动机的经济性和环保性。

通过合理的传感器选择和控制单元的设计,发动机电控系统能够适应不同工况和负载的要求,保证发动机在各种工况下的稳定运行。

总的来说,发动机电控系统是现代汽车发动机控制系统的核心,它通过传感器、控制单元、执行机构等多个部分的协调工作,实现对发动机的精确控制,提高其性能、经济性和环保性。

汽车发动机电控系统的工作原理

汽车发动机电控系统的工作原理

汽车发动机电控系统的工作原理一、引言汽车发动机电控系统是现代汽车的重要组成部分,它通过控制发动机的燃油喷射、点火时间等参数,实现对发动机的精准控制。

本文将从系统组成、工作原理、常见故障等方面进行详细介绍。

二、系统组成汽车发动机电控系统主要由以下几个部分组成:1. 传感器:包括氧气传感器、水温传感器、空气流量传感器等,用于采集发动机运行时的各种参数。

2. 控制单元:也称为ECU(Engine Control Unit),是整个系统的核心部件,负责接收传感器采集到的数据,并根据预设的程序进行计算和判断,最终输出相应的控制信号。

3. 执行器:包括喷油嘴、点火线圈等,用于执行ECU输出的控制信号。

4. 电源:提供整个系统所需的电能。

三、工作原理汽车发动机电控系统主要实现以下功能:1. 燃油喷射量控制燃油喷射量是影响发动机燃烧效率和排放水平的重要参数。

当ECU接收到传感器采集到的数据后,根据预设的程序计算出最佳的燃油喷射量,并通过喷油嘴输出相应的控制信号,从而实现对燃油喷射量的精准控制。

2. 点火时间控制点火时间是指点火线圈在发动机正时点前后产生高压电弧的时间点。

它直接影响着发动机的功率和燃油经济性。

当ECU接收到传感器采集到的数据后,根据预设的程序计算出最佳的点火时间,并通过点火线圈输出相应的控制信号,从而实现对点火时间的精准控制。

3. 排放控制汽车排放是环保问题中不可忽视的一部分。

发动机电控系统通过精准地控制燃油喷射量和点火时间等参数,使发动机在工作过程中产生更少、更干净的废气。

四、常见故障及解决方法1. 传感器故障:由于传感器长期工作在恶劣环境下,容易受到污染或损坏。

当传感器故障时,ECU将无法正确地采集和处理数据,导致发动机工作不稳定、动力下降等问题。

解决方法是更换故障传感器。

2. 控制单元故障:由于控制单元长期工作在高温、高压的环境下,容易受到电路老化或损坏。

当控制单元故障时,ECU将无法正常工作,导致发动机无法启动或失去控制等问题。

发动机电控系统概述

发动机电控系统概述

发动机电控系统概述和传统的机械控制的发动机相比,电控发动机通过一个中央电子控制单元(ECM)来控制和协调发动机的工作,ECM就象人的大脑一样,通过各种传感器和开关实时监测发动机的各种运行参数和操作者的控制指令,通过计算后发出命令给相应的控制元件,如喷油器等,实现对发动机的优化控制。

控制系统通过精确控制喷油时间和喷油量,以达到降低排放和提高燃油经济性的目的。

如下示意图所示,ECM处在整个发动机控制系统的核心位置。

各种输入设备,包括传感器、开关和油门踏板向ECM提供各种信息,ECM通过这些信息来判断发动机当前的运行工况和操作者的控制指令。

输出设备为执行元件,它们执行ECM通过计算得出的各种控制指令。

在所有的执行元件中,最重要的执行元件是实现喷油量控制和喷油时间控制的元件。

一、电子控制单元(ECM)电子控制单元(ECM)是整个控制系统的核心。

ECM内部有存储器,存储控制系统运行的程序。

这些程序在ECM没有物理损伤的前提下可以通过服务软件擦除重写。

ECM是精密的电子元件,在对车辆系统进行维修时要注意保护。

♦在查拔ECM上的连接插头前,请断开系统电源。

不允许带电插拔ECM上的连接插头。

♦在对ECM插头内的针脚进行测量时,一定要使用合适的转接导线,不可以用万用表的表笔直接测量。

在需要对底盘和发动机进行焊接作业时,一定要将ECM从发动机上拆下来,否则将损伤ECM,导致ECM失效。

输入设备输入设备向ECM输入各种参数,ECM通过这些参数来判断发动机当前的运行工况、司机的操作指令和其它的一些信号。

只有基于输入设备输入的正确参数,ECM才能做出正确的判断,控制发动机的运行。

按照输入设备功能的不同,可简单地将其分为三类,传感器、开关和油门踏板。

输入设备由ECM提供工作电源,大部分输入设备的工作电压都为5伏。

发动机主要通过安装在发动机和车辆上的各种传感器来实时监测当前的运行参数,不同的机型在传感器类型和数量上会有所不同,对柴油电控发动机,这些传感器通常包括:机油压力和温度传感器,进气温度和压力传感器,冷却液温传感器,柴油压力和温度传感器,发动机转速传感器,发动机位置传感器,大气压力传感器等等。

控制系统中的传感器与执行器

控制系统中的传感器与执行器

控制系统中的传感器与执行器传感器和执行器是控制系统中不可或缺的两个组成部分。

传感器用于探测环境中的物理量、化学量或其他信息,并将其转化为可用的电信号;执行器则用于接受来自控制系统的指令,并执行相应的动作或操作。

它们共同协作,实现了控制系统对外界的感知和对物理世界的控制。

本文将重点探讨控制系统中传感器与执行器的作用和特点。

一、传感器的作用与特点传感器作为控制系统中的输入设备,其主要作用是将外界的物理量转化为电信号,以便供控制系统进行处理和判断。

传感器能够实时感知环境中的各种物理信息,如温度、湿度、压力、光照等,为控制系统提供了对外界环境的感知能力。

传感器的特点主要包括以下几个方面:1. 准确性:传感器需要具备高准确性,确保所传递的信息与实际环境相符。

通过采用合适的物理原理和工艺,传感器能够精确地测量各种物理量,并将其转化为相应的电信号。

2. 灵敏性:传感器对外界环境的微小变化能够做出及时反应,以保证控制系统对环境变化的快速感知。

良好的灵敏性可提高传感器的响应速度和控制系统的实时性。

3. 可靠性:传感器需要具备高可靠性,能够在长时间运行中保持稳定的性能,并具备一定的抗干扰能力。

传感器的可靠性直接影响到控制系统的稳定性和可操作性。

4. 多样性:传感器的种类繁多,涵盖了光学、电磁、声学、化学等多个领域。

每种传感器都有着适用的范围和特点,可以针对特定的应用场景进行选择和使用。

二、执行器的作用与特点执行器作为控制系统中的输出设备,其主要作用是接受来自控制系统的指令,将其转化为相应的物理动作或操作。

执行器能够将控制系统的输出信号转化为力、位移、速度等物理量,从而控制物理世界中的各种设备和系统。

执行器的特点主要包括以下几个方面:1. 动力性:执行器需要具备一定的动力输出,能够实现对物理世界的控制。

其输出能力取决于其驱动方式和机构设计,可以实现不同程度的力、位移或速度输出。

2. 灵活性:执行器能够根据控制系统的指令做出相应的动作,并适应不同的工作环境和工况需求。

电控发动机系统的组成

电控发动机系统的组成

电控发动机系统的组成
电控发动机系统的组成包括以下几个部分:
1. 电控单元(ECU):负责控制整个发动机系统的运行,包括燃油喷射、点火时机、进气量调整等。

2. 传感器:用于监测发动机运行状态和环境条件,例如空气质量传感器、发动机转速传感器、水温传感器等。

3. 执行器:根据电控单元的指令进行动作,如喷油器、点火器等。

4. 电子节气门:用于控制进气量,通过电控单元调整节气门的开启程度来控制发动机的输出功率。

5. 燃油喷射系统:通过喷油器将燃油喷射到气缸中,电控单元根据需要控制喷油器的工作周期和喷油量。

6. 点火系统:通过点火器在适当时机点燃空燃混合气体,使发动机正常燃烧。

7. 故障诊断系统:电控发动机系统还包括故障诊断系统,能够检测出故障并提供相应的故障代码,以便维修人员进行故障排查。

这些组成部分共同协作,控制发动机工作,达到提高燃油效率、减少尾气排放、提升动力性能等目的。

电控发动机传感器及执行器的认识

电控发动机传感器及执行器的认识

教学项目:电控发动机传感器及执行器认识
实习教师:常喜运
一、教学项目名称
电控发动机传感器及执行器的认识
二、教学场景设计
PSSTAB5电控发动机台架,丰田5A发动机机台架如图1---1所示
三、工作安全
1. 在良好的通风条件下进行。

2、不经允许,不得私自拔传感器等电子部件的线束。

3、不要私自起动发动机
四、教学目标和工作任务
1、教学目标
掌握各传感器及执行器的作用及安装位置
2、工作任务
部件认识
五、教学项目流程
(一)作业技术规范流程
汽车电控发动机传感器认识考核评分表班级:姓名:。

电控发动机实训总结报告

电控发动机实训总结报告

一、前言随着科技的飞速发展,汽车工业在不断创新中取得了显著的成果。

电控发动机作为汽车动力系统的重要组成部分,其技术含量和复杂程度不断提高。

为了更好地适应汽车行业的发展需求,提高我国汽车专业人才的素质,我们开展了电控发动机实训课程。

通过本次实训,我们对电控发动机的结构、原理及维修技术有了更深入的了解,现将实训总结如下。

二、实训内容本次电控发动机实训主要包括以下内容:1. 电控发动机基本结构及原理实训过程中,我们学习了电控发动机的基本结构,包括气缸体、曲轴、凸轮轴、配气机构、燃油系统、点火系统、冷却系统、润滑系统等。

同时,我们还了解了电控发动机的工作原理,包括进气、压缩、做功、排气四个冲程,以及点火、喷油、冷却、润滑等过程。

2. 电控发动机传感器及执行器传感器是电控发动机的“眼睛”,它将各种工况信息转化为电信号,传递给电子控制单元(ECU)。

实训中,我们学习了各种传感器的原理、作用及安装位置,如进气温度传感器、冷却液温度传感器、氧传感器、转速传感器等。

同时,我们还了解了执行器的原理、作用及安装位置,如喷油器、点火线圈、空调压缩机等。

3. 电控发动机故障诊断与维修实训过程中,我们学习了电控发动机故障诊断与维修的基本方法。

通过使用万用表、示波器等工具,我们学会了如何检测传感器、执行器、ECU等部件的电信号,以及如何根据故障码、波形图等信息判断故障原因。

4. 电控发动机维修实践在实训老师的指导下,我们进行了电控发动机的拆装、调试、故障排除等实践操作。

通过实际操作,我们掌握了电控发动机的维修技能,提高了动手能力。

三、实训收获1. 理论知识与实践操作相结合本次实训将电控发动机的理论知识与实际操作相结合,使我们更加深入地理解了电控发动机的工作原理和维修技术。

2. 提高了动手能力通过拆装、调试、故障排除等实践操作,我们的动手能力得到了很大提高。

3. 增强了团队协作意识在实训过程中,我们分工合作,共同完成各项任务,增强了团队协作意识。

ECU、传感器和执行器的工作过程实训报告

ECU、传感器和执行器的工作过程实训报告

ECU、传感器和执行器的工作过程实训报告
一、翼板式空气流量传感器
1.翼板式空气流量传感器的功能:
测量吸入发动机的空气流量。

电控发动机为了在各种运转工况下都能获得最佳浓度的混合气,必须计算出每一瞬间吸入的空气量,以此作为ECU控制喷油量的主要依据。

2.翼板式空气流量传感器的结构
1:空气入口2:进气温度传感器3:阀门
4:阻尼室5:缓冲片6:旋转翼片7:主气路8:支气路3.电路图
二、进气歧管绝对压力传感器
1.进气歧管绝对压力传感器的功能:
测量节气门后方的绝对压力,根据发动机转速和负荷的大小检测出绝对压力的变化,然后转换成电压信号送至ECU,ECU依据此信号电压的大小,控制基本喷油量的大小。

2.进气歧管绝对压力传感器的结构
1:滤清器2:塑料外壳3: MFI过滤器4:混合集成电路5:压力转换元件
3.线路图以及实验电路
4.实验数据
5.特性图
三、氧传感器1.氧传感器的功能:
用于检查废气中的氧气含量,并向ECU发送信息,让ECU调整和保持理想的空燃比,以便得到更好的排放性和燃油经济性2.实验数据
四、热线式进气温度传感器1.热线式进气温度传感器的功能检测发动机的进气温度,将进气温度转变为电压信号输入给ECU做为喷油修正的信号。

2.实验数据
3.电路图
4.特性图。

发动机的传感器和执行器

发动机的传感器和执行器

发动机机械教案课时内容:发动机电器重点:难点:一.发动机电器。

教学内容:一)发动机电脑电子控制多点喷射系统(MPI),是以一个电子控制装置(又称电脑或ECU)为控制中心,利用安装在发动机不同部位上的各种传感器,测得发动机的各种工作参数,按预先在电脑中设定的控制程序,通过控制喷油器,精确地控制喷油量,使发动机在各种工况下都能获得最佳浓度的混合气。

此外,电子控制汽油喷射系统通过电脑中的控制程序,还能实现起动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制怠速断油、自动怠速速度控制等功能,满足发动机特殊工况对混合气的要求,使发动机获得良好的燃料经济性和排放性,同时也提高了汽车的使用性能。

另外ECU也有几种故障诊断模式,可以简化寻找故障的工作。

燃油喷射控制ECU控制喷油器驱动时间和喷油正时,使发动机在各种工况下都能获得最佳浓度的混合气。

每个缸的进气口均装有一只喷油器,燃油箱内的燃油泵将燃油泵出,送到燃油分配管内,燃油压力调节器使喷油压力保持稳定,喷油器将燃油直接喷射到每缸的气道内。

在发动机的每个工作循环中(曲轴每转两圈),各缸喷油一次(喷油顺序为1-3-4-2),这种喷射方式称为顺序喷射。

当发动机在冷车或高负荷状态下运转时,为保持良好的性能,ECU进行开环控制,提供较浓的混合气;当发动机在正常工作状态下(中小负荷),ECU通过氧传感器反馈的信号,进行闭环控制,以得到最佳的空燃比,使三元催化转换器达到最佳的净化效率。

怠速速度控制根据怠速状况和怠速时发动机负荷的变化控制节气门的旁通空气量,使怠速速度保持在最佳的转速上。

根据发动机冷却液温度和空调负荷,ECU驱动怠速速度控制马达(ISC),使发动机在预设的目标怠速转速下运转。

另外,当发动机在怠速运转时,将空调开关打开或关闭,ISC马达将根据发动机的负荷状况调整旁通空气量,避免怠速不稳。

点火正时控制功率晶体管的开和关控制点火线圈内初级电流的导通。

点火正时的控制是为了获得最佳的点火时期以满足发动机变化工况的需求。

汽车电控发动机传感器和执行器的功能

汽车电控发动机传感器和执行器的功能

汽车电控发动机传感器和执行器的功能、安装位置、构造、工作原理、电路图、检测方法以及结果分析等内容。

其中传感器包括空气流量传感器、冷却液温度传感器、进气温度传感器、进气歧管压力传感器、大气压力传感器、节气门位置传感器、曲轴位置传感器与凸轮轴位置传感器、爆震传感器、氧传感器、EGR位置传感器和发动机其他传感器与开关信号等;执行器主要包括喷油器、点火控制模块、怠速控制阀、各种继电器、电动燃油泵以及各种电磁阀等。

(可选其中几个进行论述)建议用故障案例将各种元件检测串联起来。

注:①最好选择自己实习单位业务范围内车型;车型要求为最近几年生产。

②图文并茂,无文字错误,注意格式随着世界汽车保有量的迅速增长,日益严重的环境污染和能源危机迫使人们对汽车进行越来越严格的排放控制和提出更高的节能要求,化油器式汽油机在动力性、经济性以及排放指标等方面都达不到这些要求,电控发动机取代化油器式发动机后,提高了发动机的动力性、燃油经济性,降低了排放污染,改善了发动机的加减速性能和起动性能,发动机故障发生率大大降低。

随着汽车电子化发展,自动化越高,对传感器执行器的依赖程度也就越大。

传感器和执行器作为汽车电子控制系统的信息源与执行元件,是汽车电子控制系统的关键部件,对汽车的性能影响很大,所以我们要研究它。

与此同时,也随着人们生活水平的提高,对汽车的舒适性和安全性要求越来越高。

汽车电控发动机传感器和执行器的功能、安装位置、构造、工作原理、电路图、检测方法以及结果分析等内容。

其中传感器包括空气流量传感器、冷却液温度传感器、进气温度传感器、进气歧管压力传感器、大气压力传感器、节气门位置传感器、曲轴位置传感器与凸轮轴位置传感器、爆震传感器、氧传感器、EGR位置传感器和发动机其他传感器与开关信号等;执行器主要包括喷油器、点火控制模块、怠速控制阀、各种继电器、电动燃油泵以及各种电磁阀等。

(可选其中几个进行论述)建议用故障案例将各种元件检测串联起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学项目:电控发动机传感器及执行器认识
实习教师:常喜运
一、教学项目名称
电控发动机传感器及执行器的认识
二、教学场景设计
PSSTAB5电控发动机台架,丰田5A发动机机台架如图1---1所示
三、工作安全
1. 在良好的通风条件下进行。

2、不经允许,不得私自拔传感器等电子部件的线束。

3、不要私自起动发动机
四、教学目标和工作任务
1、教学目标
掌握各传感器及执行器的作用及安装位置
2、工作任务
部件认识
五、教学项目流程
(一)作业技术规范流程
汽车电控发动机传感器认识考核评分表班级:姓名:。

相关文档
最新文档