实验一 蟾蜍坐骨神经
蟾蜍坐骨腓肠肌实验报告
一、实验目的1. 掌握蟾蜍坐骨神经-腓肠肌标本的制备方法。
2. 观察并分析坐骨神经刺激对腓肠肌收缩反应的影响。
3. 探究不同刺激强度和频率对腓肠肌收缩的影响。
二、实验原理坐骨神经是人体最大的混合神经,由腰骶神经根合并而成,主要负责下肢的感觉和运动功能。
腓肠肌是人体下肢的主要肌肉之一,负责小腿的屈曲和踝关节的屈伸。
本实验通过刺激坐骨神经,观察腓肠肌的收缩反应,探讨神经肌肉的兴奋性和收缩机制。
三、实验材料与仪器1. 实验动物:蟾蜍2. 实验仪器:刺激器、放大器、示波器、张力传感器、计算机、剪刀、镊子、电极、玻璃皿、任氏液等四、实验方法1. 制备坐骨神经-腓肠肌标本:将蟾蜍处死后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经及小腿的腓肠肌。
将神经和肌肉两端结扎,剪去无关分支,保留膝关节,剪去腿骨,将标本离体。
将标本置于任氏液中,保持湿润。
2. 连接实验装置:将坐骨神经连接刺激器输出端,腓肠肌连接张力传感器,张力传感器连接放大器,放大器连接示波器和计算机。
3. 设置刺激参数:根据实验需求设置刺激强度、频率和持续时间。
4. 进行实验:刺激坐骨神经,观察腓肠肌的收缩反应,记录张力变化。
5. 数据分析:分析不同刺激强度和频率下腓肠肌的收缩反应,探讨神经肌肉的兴奋性和收缩机制。
五、实验结果1. 在不同刺激强度下,腓肠肌的收缩反应随着刺激强度的增加而增强,直至达到最大收缩。
2. 在不同刺激频率下,腓肠肌的收缩反应随着刺激频率的增加而增强,直至出现不完全强直收缩。
3. 当刺激强度和频率同时增加时,腓肠肌的收缩反应更为明显。
六、实验结论1. 坐骨神经刺激可以引起腓肠肌的收缩反应,说明神经肌肉之间存在兴奋传递。
2. 不同刺激强度和频率对腓肠肌的收缩反应有显著影响,说明神经肌肉的兴奋性和收缩机制与刺激参数密切相关。
3. 本实验结果为研究神经肌肉的兴奋性和收缩机制提供了实验依据。
七、实验讨论1. 本实验中,刺激坐骨神经可以引起腓肠肌的收缩反应,说明神经肌肉之间存在兴奋传递。
蟾蜍坐骨神经干
注意事项
1.破坏脑脊髓要彻底,防止蟾酥射入操作者眼 中或污染实验标本。 2.操作时避免压挤、损伤和用力牵拉标本,不 可用金属器械触碰神经干。 3.操作过程中,应给神经和肌肉滴加任氏液, 防止表面干燥,以免影响标本的兴奋性。 4.标本制成后须放在任氏液中浸泡数分钟,使 标本兴奋性稳定,再开始实验效果会较好。
实验原理(三) 神经动作电位传导速度的测定
动作电位在神经干上传导具有一定的 速度蟾蜍的坐骨神经是混合神经,由许多 粗细不等的有髓和无髓神经纤维构成,其 中以Aɑ类纤维为主,传导速度约为35— 40m/s。
神经冲动的传导速度 (v)是指动作 电位在单位时间(t)内传导的距离(s)
仪器与器械(一)
(1)引导双相神经动作电位
点击“神经干 动作电位的引 导”,引导出 一个双相动作 电位。
(2)观察和测定双相动作电位
① 自动调节刺激强度,观
察动作电位波形的变化。读 出波宽为某一数值时的阈刺 激和最大刺激。
②仔细观察双相动作电位的
波形。读出最大刺激时双相 动作电位上下相的振幅和整 个动作电位持续时间数值。
注意事项
1.制备标本时,神经干应尽可能分离长一些,上自 脊柱附近的主干,下至踝关节附近。分离过程中 勿损伤神经组织,以免影响其兴奋性。
2.将神经干搭在引导电极上时,神经干不能与标本 盒壁相接触,尽量将其拉成水平线,不要下垂或 斜向放置。
3.刺激强度在开始时不要过强,先由弱强度开始, 逐步加大强度,以免剌激伤害神经标本。
4.经常滴加任氏液,保持神经标本湿润。 5.实验完毕神经糟应仔细清洗,擦干,以免残留的
盐液. 神经干动作电位与刺激强度有何关系? 神经干动作电位符合“全或无”定律吗 ? 为什么?
感谢聆
蟾蜍的神经实验报告
一、实验目的1. 观察蟾蜍神经系统的基本结构和功能。
2. 掌握蟾蜍坐骨神经-腓肠肌标本的制备方法。
3. 学习神经兴奋传导和反射弧的实验技术。
4. 了解神经肌肉接头兴奋传递的机制。
二、实验原理蟾蜍作为两栖类动物,其神经系统结构与哺乳动物有相似之处,且其离体组织生活条件简单,易于控制和掌握。
本实验通过制备蟾蜍坐骨神经-腓肠肌标本,观察神经兴奋传导和反射弧的实验技术,了解神经肌肉接头兴奋传递的机制。
三、实验材料与仪器1. 实验材料:蟾蜍、任氏液、生理盐水、剪刀、镊子、大头针、蛙板、玻璃分针、锌铜弓等。
2. 实验仪器:显微镜、刺激器、张力换能器、示波器、记录仪等。
四、实验方法1. 制备蟾蜍坐骨神经-腓肠肌标本- 用剪刀剪去蟾蜍的躯干和上肢,暴露腰骶丛神经。
- 游离大腿肌肉之间的坐骨神经及小腿的腓肠肌。
- 注意不要将胫神经与腓神经分离,神经端结扎后,剪去无关分支。
- 肌肉端结扎在肌腱上,将腓神经也一起结扎,结扎线留长。
- 保留膝关节,剪去腿骨,将标本离体。
- 将标本放入任氏液中,保持湿润。
2. 连接实验装置- 用大头针将标本的膝关节固定于标本盒R2和R3两记录电极之间的石蜡凹槽内。
- 神经中枢端接触刺激电极S1和S2,肌肉接触记录电极R3和R4,之间接触接地电极。
- 肌肉的结扎线从标本盒中穿出,连接张力换能器。
3. 观察神经兴奋传导- 用刺激器对坐骨神经进行电刺激,观察腓肠肌的收缩反应。
- 改变刺激强度和频率,观察腓肠肌收缩的变化。
4. 观察反射弧- 制备脊蛙,观察反射弧的结构和功能。
- 分别刺激感受器、传入神经、反射中枢、传出神经和效应器,观察反射活动的变化。
5. 观察神经肌肉接头兴奋传递- 在神经肌肉接头处滴加药物,观察肌肉收缩的变化。
五、实验结果与分析1. 观察到蟾蜍坐骨神经-腓肠肌标本在电刺激下产生收缩反应。
2. 随着刺激强度的增加,腓肠肌收缩力量逐渐增大。
3. 随着刺激频率的增加,腓肠肌收缩频率逐渐增大。
快速制作蟾蜍坐骨神经标本的一种方法
1、破坏蟾蜍的脑和脊髓
从箱子里取蟾蜍一只,用自来水冲洗干净。
左手握蟾蜍,用食指按压其头部使其尽量前俯,右手用大头针自枕骨大穴垂直插入,向前刺入颅腔,左右搅动,毁坏其脑组织;将探针回撤向后刺入脊椎管,反复提插毁其脊髓。
如果蟾蜍四肢酸软,呼吸消失,说明其脑和脊髓被破坏的差不多,否则继续上述方法进行。
2、剪除蟾蜍的躯干上部和其内脏
沿着蟾蜍的上肢处将蟾蜍的头部剪去,继而沿脊柱两侧剪开腹壁,这时的内脏全部下垂,减除内脏。
此时,你可以在脊柱的两旁看见坐骨神经,注意剪除的过程中不要损伤坐骨神经!
3、剥皮
用镊子夹紧脊柱的断端,右手捏住蟾蜍的皮肤边缘,逐步向下剥离皮肤,将标本置于盛有任氏液的培养皿中。
4、制备坐骨神经的小腿标本
用粗剪刀沿中线将脊柱剪成左右两半,从耻骨联合处剪开两侧的大腿,在这期间,注意不要损伤了坐骨神经。
将分离的标本放到盛有任氏液的培养皿中。
取一侧的下肢用大头针固定在蛙板上,用玻璃分针沿脊柱侧游离坐骨神经,于近脊柱侧结扎。
再循着坐股神经沟分离暴露出坐骨神经的大腿部分,直至胫腓神经分叉处。
自上向下剪断所有坐骨神经的分支,游离出坐骨神经。
将游离的坐骨神经搭于腓肠肌上,自膝关节周围向上剪除所有的大腿肌肉,在股骨的中部剪去上段股骨,保留部分即为坐骨神经小腿标本。
5、完成坐骨神经-腓肠肌标本
将上面所做的标本在跟腱处结扎后剪断,并逐步游离腓肠肌至膝关节处,将小腿的其余部分全部剪掉,这样就制成了坐骨神经-腓肠肌标本。
浙江大学生理学实验坐骨神经
蟾蜍坐骨神经干复合动作电位特性目的:应用微机生物信号采集处理系统记录蟾蜍坐骨神经干复合动作电位(compound action potention,CAP),观察刺激、神经损伤、药物对神经兴奋性、兴奋传导的影响并探讨其机制。
1.材料和方法(materials and methods)1.1 实验动物:蟾蜍(中华蟾蜍指名亚种,Zhuoshan Toad)1.2 药品:任氏液、3 mol/L 氯化钾1.3器材:RM6240微机生物信号处理系统(成都仪器厂)、神经干标本盒、包括器械方盘、蛙板等实验器械材料一套。
1.4 坐骨神经干制备:蟾蜍毁脑脊髓,去上肢和内脏,下肢剥皮浸于任氏液中。
蟾蜍下肢背面向上置于蛙板上,剪去尾椎;标本腹面向上,用玻璃分针分离脊柱两侧神经丛,用线在近脊柱处结扎,剪断神经;将神经干从腹面移向背面。
标本背面向上固定,从大腿至跟腱分离坐骨神经。
坐骨神经标本置任氏液中备用。
1.5 仪器连接和参数:神经干标本盒两对引导电极分别接微机生物信号处理系统1、2通道。
仪器参数:1、2通道时间常数0.02s、滤波频率3KHz、灵敏度5mV,采样频率:100KHz,扫描速度:0.2ms/div。
单刺激激方式,刺激幅度1.0V,刺激波宽0.1ms,延迟2ms,同步触发。
1.6 动作电位引导:神经干标本置于标本盒的电极上,神经与电极接触良好,调节刺激电压,记录动作电位。
2.观察(observations)2.1 中枢端引导的双向动作电位(biphasic action potential,BAP):用1.0V电压,波宽0.1ms方波刺激神经干末梢端,观察动作电位波形。
2.2 测定末梢端引导的双向动作电位:用1.0V电压,波宽0.1ms的单个方波刺激神经干中枢端,测定动作电位正、负向振幅和时程。
2.3 兴奋传导速度测定:用1.0V电压,波宽0.1ms的单个方波激刺激神经干中枢端,测定第1和第2对引导电极引导CAP起点的时间差Δt ,根据υ=S R1- R2- / Δt 计算出AP的传导速度。
【报告】实验1:不同频率的刺激对肌肉收缩的影响
实验1:不同频率的刺激对肌肉收缩的影响(浙江中医药大学第一临床医学院)关键词:刺激;强度;频率;腓肠肌1实验目的:本实验在保持足够的刺激时间(脉冲波宽)和刺激强度(脉冲振幅)不变的条件下,通过不同频率电脉冲刺激蟾蜍离体坐骨神经,观察腓肠肌收缩活动的改变。
2 实验材料:(1)实验对象:蟾蜍(2)实验工具:蛙板、锌铜弓,探针,粗剪刀、尖镊子、玻璃分针、瓷碗、培养皿(3)实验试剂:任氏液(4)实验仪器:铁支架、微调固定器、刺激输出线、肌动槽、张力换能器、RM6240微机生物信号采集系统。
3 实验方法:(1)离体蟾蜍坐骨神经腓肠肌标本制备(2)实验系统连接和参数设置:1)实验菜单中选择“刺激频率对骨骼肌收缩的影响”2)选择菜单中选择“强度/频率显示刺激参数”(3)肌动槽——坐骨神经-腓肠肌-张力换能器——RM6240前负荷调至4g。
波宽0.1ms.,频率递增刺激;组间隔4s.,强度2V,记录,打标,开始刺激。
(4)实验观察:刺激频率按1HZ,2HZ,3HZ,4HZ,5HZ…30HZ,31HZ,32HZ,33HZ逐渐增加,连续记录不同频率时的肌肉收缩曲线,观察肌肉收缩形态和张力的改变_(5)统计方法:结果以x±s表示,统计采用student t test 方法4实验结果:(1)表格肌肉最大张力原始数据表/7组刺激强度(ZV)---------------------------------------------------单收缩完全强直收缩5.7 176.72 29.990.16 7.844.95 15.860.29 13.520.55 4.20.27 5.02表1—2 通过统计处理的表动物数/n 肌肉张力(g)单收缩7 2.6629±8.8334完全强直收缩7 13.3471±8.9444P《=0.01,得结果两样本差别有极显著意义(2)刺激频率与肌肉收缩张力曲线刺激频率按1Hz、2Hz、3Hz、4Hz、····、30Hz逐渐增加,连续记录不同频率时的肌肉收缩曲线(附页)分析:当刺激频率较小,刺激的间隔大于一次肌肉舒张的持续时间,则肌肉收缩表现为一连串的单收缩,即图中第一个收缩曲线;增大刺激频率,使刺激的间隔大于一次肌肉收缩的收缩时间、小于一次肌肉收缩的时续时间,即当后一收缩发生在前一收缩的舒张期时,则肌肉产生不完全强直收缩,如图所示;继续增加刺激频率,使刺激的间隔小于一次肌肉收缩的收缩时间,即后一收缩发生在前一收缩的收缩期时,各自的收缩则完全融合,肌肉出现持续的收缩状态,则产生完全强直收缩,如图所示。
生理实验报告神经干复合动作电位
人体解剖及动物生理学实验报告实验名称神经干复合动作电位姓名学号系别组别同组姓名实验室温度20℃实验日期2015年4月24日一、实验题目蟾蜍坐骨神经干复合动作电位(CAP)A蟾蜍坐骨神经干CAP阈值和最大幅度的确定B蟾蜍坐骨神经干CAP传导速度的确定C蟾蜍坐骨神经干CAP不应期的确定二、实验目的确定蟾蜍坐骨神经干复合动作电位(CAP)的(1)临界值和最大值(2)传导速度(3)不应期(相对不应期、绝对不应期)三、实验原理神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。
坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。
如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。
一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。
刺激强度越爱,兴奋的神经纤维数目就越多,CAP 的幅度也就越大。
与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。
阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。
在一定范围内增加刺激强度,CAP幅度相应增大。
最大CAP所对应的最小刺激电位即最大刺激。
动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。
它们包括神经的直径、有无髓鞘、温度等等。
神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。
兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。
绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。
绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。
蟾蜍坐骨神经实验报告
蟾蜍坐骨神经实验报告蟾蜍坐骨神经实验报告一、引言在生物学研究中,动物模型的使用是不可或缺的。
蟾蜍作为一种常见的实验动物,其神经系统的研究一直备受关注。
本实验旨在通过观察和分析蟾蜍坐骨神经的结构和功能,深入了解神经系统的运作机制。
二、实验方法1. 实验材料准备本实验所需材料包括:蟾蜍、手术刀、显微镜、显微摄像机、生理记录仪等。
2. 实验操作步骤(1)蟾蜍麻醉:将蟾蜍置于麻醉盒中,使用适量的麻醉剂使其进入麻醉状态。
(2)手术准备:用手术刀小心地在蟾蜍的背部切开一小段皮肤,暴露出坐骨神经。
(3)神经刺激:使用细电极刺激坐骨神经,并记录下相应的电信号变化。
(4)数据记录与分析:使用生理记录仪记录下坐骨神经的电信号,并通过显微摄像机观察和记录蟾蜍的反应。
三、实验结果通过实验观察和数据记录,我们得到了以下结果:1. 坐骨神经的结构:坐骨神经是蟾蜍神经系统中的重要组成部分,由多个神经纤维组成。
在显微镜下观察,我们可以清晰地看到这些纤维的排列和分布情况。
2. 神经刺激的效果:通过对坐骨神经进行电刺激,我们发现蟾蜍会出现明显的反应,如肌肉的收缩和腿部的运动。
这表明坐骨神经对蟾蜍的运动起到了重要的调控作用。
3. 神经信号的记录与分析:通过生理记录仪,我们成功地记录下了坐骨神经的电信号,并进行了进一步的分析。
这些信号的变化可以反映出蟾蜍神经系统的活动状态。
四、实验讨论1. 坐骨神经的功能:坐骨神经是蟾蜍神经系统中的一条重要神经通路,它负责传递运动指令和感觉信号。
通过实验观察,我们可以看到坐骨神经的刺激会引起蟾蜍的运动反应,这进一步验证了其在运动调控中的重要性。
2. 神经信号的传导:通过记录和分析坐骨神经的电信号,我们可以了解神经信号的传导过程。
这有助于我们深入了解神经系统的工作原理,并为神经疾病的治疗提供参考。
五、实验结论通过本实验,我们深入了解了蟾蜍坐骨神经的结构和功能。
坐骨神经在蟾蜍的运动调控中起到了重要的作用,通过对其电信号的记录和分析,我们可以更好地理解神经系统的运作机制。
实验报告:蟾蜍坐骨神经干动作电位引导及传导速度测定
一、蟾蜍坐骨神经干动作电位引导及传导速度测定实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。
熟悉仪器设备的操作。
实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度。
1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第一个引导电极间的距离s,v=s/t。
2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的距离,v=(s2-s1)/(t2-t1)。
实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。
2.连接仪器,引导动作电位波形。
3.剪裁编辑图形,计算传导速度。
实验结果:1.图形2.计算S=10mm, t=0.33ms, v=10mm/0.33ms=33m/s分析讨论:1. 当刺激端和记录端离得较远时,引导的复合动作电位波形会发生什么改变,为什么?2.用什么方法可使复合动作电位传导速度的测量更准确?实验结论:神经干动作电位的传导速度为33m/s.二、兴奋性不应期的测定实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化过程的理解。
实验原理:神经纤维受到适宜刺激后,产生兴奋,即动作电位。
一次兴奋产生后,必须经绝对不应期、相对不应期、超常期等变化后,兴奋性才能恢复。
本实验通过生物电放大器引导并记录神经干复合动作电位,验证和测量动作电位的不应期。
先给一个条件刺激,再用另一个检验刺激在兴奋的不同时期给予刺激,检查兴奋未阈值及所引起动作电位的幅度。
实验步骤:1.制备坐骨神经-腓神经标本,并浸在任氏液中约5分钟,待其兴奋性稳定后实验。
2.连接仪器,设置实验参数,观察并测量神经干的不应期。
实验结果:(见图)分析讨论:1.为什么要先引导神经纤维的单向复合动作电位,然后再测量其兴奋性的不应期?2.神经干不应期与单根神经纤维的不应期有何不同?实验结论:兴奋性的不应期包括绝对不应期、相对不应期、超常期、低常期。
动物生理实验报告册
一、前言动物生理实验是生理学研究中不可或缺的环节,通过对动物生理过程的观察和测量,可以揭示动物生命活动的内在规律。
本报告册旨在记录动物生理实验的过程、结果及分析,为生理学研究和教学提供参考。
二、实验内容1. 实验一:蟾蜍坐骨神经干复合动作电位(CAP)(1)实验目的确定蟾蜍坐骨神经干复合动作电位(CAP)的临界值、最大值、传导速度及不应期。
(2)实验方法采用蟾蜍坐骨神经标本,通过生物信号采集系统记录CAP,分析其临界值、最大值、传导速度及不应期。
(3)实验结果与分析根据实验数据,得出蟾蜍坐骨神经干CAP的临界值、最大值、传导速度及不应期,并与理论值进行比较,分析误差原因。
2. 实验二:小鼠生理指标测定(1)实验目的掌握健康小鼠的外观检查方法、性别鉴定、捉拿和固定方法、小鼠灌胃给药与小鼠腹腔注射给药等技术。
(2)实验方法观察小鼠的外观、性别、捉拿、固定、给药等操作,记录相关数据。
(3)实验结果与分析根据实验数据,分析小鼠的生理指标,如体重、心率、呼吸频率等,并与正常值进行比较,判断小鼠生理状态。
3. 实验三:蟾蜍骨骼肌生理(1)实验目的确定蟾蜍骨骼肌收缩的阈水平和最大收缩,分析刺激强度与肌肉收缩之间的关系曲线,确定收缩的三个时期:潜伏期、缩短期、舒张期,分析刺激频度与肌肉收缩的关系。
(2)实验方法采用蟾蜍腓肠肌标本,通过生物信号采集系统记录肌肉收缩,分析其阈水平和最大收缩、刺激强度与肌肉收缩之间的关系曲线、收缩的三个时期及刺激频度与肌肉收缩的关系。
(3)实验结果与分析根据实验数据,得出蟾蜍骨骼肌收缩的阈水平和最大收缩、刺激强度与肌肉收缩之间的关系曲线、收缩的三个时期及刺激频度与肌肉收缩的关系,并与理论值进行比较,分析误差原因。
4. 实验四:实验动物学实验(1)实验目的熟悉实验动物的操作流程,包括抓取、固定、编号、给药、取血、麻醉、绝育、解剖等。
(2)实验方法按照操作流程,对实验动物进行各项操作,记录相关数据。
蟾蜍的坐骨神经 腓肠肌标本的制备及刺激强度,刺激频率与肌肉收缩反应实验报告
蟾蜍的坐骨神经—腓肠肌标本的制备及刺激强度,刺激频率与肌肉收缩反应实验报告实验名称蛙的坐骨神经—腓肠肌标本的制备及神经干的性质实验目的要求学习并掌握坐骨神经—腓肠肌标本以及腓肠肌标本制备的方法;在刺激时间、强度变化率恒定的条件下,不同强度和频率的电刺激对肌肉收缩的影响。
学习微机生物信号采集处理系统和换能器的使用。
实验材料,仪器,试剂蟾蜍:锌铜弓:探针;剪刀,镊子:玻璃分针:蛙板,蛙钉;结扎线;任氏液:培养皿:微调固定器,张力换能器,微机生物信号采集处理系统实验方法1.破坏脑和脊髓左手持蟾蜍,用食指压其头部前端,使头前俯。
右手持探针由头端沿正中线向后划,触到凹陷即为枕骨大孔,将探针由此垂直刺入。
再将探针折向前方,插入颅腔内并左右搅动捣毁脑组织。
再将探针退回至进针处,针尖转向后方,刺入椎管捣毁脊髓。
此时蟾蜍四肢瘫软,表明脑脊髓已完全破坏。
2.剪除躯干上部及内脏用粗剪刀在骶髂关节水平以上1cm处剪断脊柱。
左手握住后肢,右手持剪刀沿脊柱的断口向下剪开两侧的皮肤及肌肉,再剪除已下垂的躯干上部及内脏。
3.剥皮左手捏脊柱断端(勿触碰神经),右手捏住断端边缘的皮肤,向下剥掉两后肢皮肤。
将标本背位放于表面有少许任氏液的蛙板上,洗净双手及用过的器械。
4.游离坐骨神经沿脊柱两侧用玻璃分针分离坐骨神经,沿中线将脊柱剪成两半。
捏住两侧下肢带骨用力向两侧掰,使耻骨联合处脱臼,再从耻骨联合中央剪开两后肢,一后肢放入盛有任氏液的平皿中备用,一后肢用玻璃分针划开梨状肌及其附近的结缔组织,循坐骨神经沟(股二头肌与半膜肌之间的裂隙处)找出坐骨神经的大腿部分,用玻璃分针将腹部的坐骨神经小心勾出来,手执结扎神经的线,剪断坐骨神经的所有分支,一直游离至膝关节。
5.完成坐骨神经腓肠肌标本的制备将分离干净的坐骨神经搭于腓肠肌上,在膝关节周围剪掉全部大腿肌肉,并用普通剪刀将股骨刮干净,在股骨中部剪去上段股骨。
再在跟腱处以线结扎,剪断并游离腓肠肌至膝关节处,在膝关节以下将小腿其余部分剪掉。
影响蟾蜍坐骨神经冲动传导速度的因素
影响蟾蜍坐骨神经冲动传导速度的因素【目的要求】1.学习测定蟾蜍离体坐骨神经干上神经冲动传导速度的方法和原理。
2.观察温度(37℃)、3%KCl、5%NaCl、2%普鲁卡因对蟾蜍离体坐骨神经冲动传导速度的影响。
【基本原理】神经干在受到有效刺激后可以产生复合动作电位,标志着神经发生了兴奋。
如果在离体神经干的一端施加刺激,从另一端引导传来的兴奋,可以记录到双相动作电位。
如果在引导的两个电极之间将神经干麻醉或损坏,阻断兴奋的传导,这时记录到的动作电位就是单相动作电位。
单个神经细胞的动作电位是以“全或无”方式发生的,而神经干复合动作电位的幅值在一定的刺激强度下是随刺激强度的增加而增大的。
如果在原理刺激点的不同距离处分别引导离体神经干动作电位,两引导点之间的距离为m,在两引导点分别引导出的动作电位的时差为s,即可按照公式v=m/s来计算兴奋的传导速度。
神经兴奋的发生和传导有赖于细胞膜上Na+内流。
其客观指标是神经兴奋时产生的动作电位。
普鲁卡因等局麻醉药可阻滞Na离子内流,从而抵制神经冲动的发生与传导速度的减慢。
神经纤维的静息电位接近K离子的平衡电位,故细胞外液K离子浓度升高可使细胞膜内外浓度差减小,K离子平衡电位减小,膜发生去极化。
在此基础上,由于Na离子通道受到抑制,神经干传导速度降低;当细胞外夜Na离子内流减弱,也可以使神经干传导速度减慢。
【实验对象及器材】实验对象:蟾蜍实验器材:常用手术器械(手术剪,手术镊,手术刀,金冠剪,眼科剪、镊,毁髓针,玻璃分针)、娃板、纱布(卫生纸)、粗棉线、恒温箱、3%KCl、5%NaCl、2%普鲁卡因、PC机、信号采集处理系统、电子刺激器、神经屏蔽盒、Ringer’s液【方法与步骤】1.蟾蜍坐骨神经干的标本制备取蟾蜍1只,双毁髓后在尚难部用粗剪将脊柱剪短,撕下皮肤和内脏。
将带有部分脊柱、后肢的标本用任氏液洗净,置于娃解剖盘上。
在神经出脊柱处,用粗棉线结扎一侧坐骨神经,并于结扎点与脊柱之间将神经剪断。
坐骨神经标本制备
蟾蜍坐骨神经—腓肠肌标本制备(一)目的要求学习并掌握蛙类坐骨神经-腓肠肌标本的制备。
利用此标本做神经肌肉的一些实验。
(二)实验原理蛙类的一些基本生命活动和生理功能与温血动物近似,而其离体组织器官的生活条件较为简单,可以在事温条件下,于一定时间内保持其功能。
因此在生理实验中常用蛙类的坐骨神经-腓肠肌标本来观察兴奋性、兴奋过程的一些规律及骨肌的收缩特性。
(三)实验材料1.动物:蟾蜍或蛙2.药品:任氏液3.器械:蛙板、探针、粗剪刀、细剪刀、尖镊子、玻璃分针、大头针、培养皿、滴管、瓷碗、锌铜弓或铝银电极。
(四)实验方法与步骤1.毁脑脊髓取蟾蜍一只,用左手握住,以示指压其头部前端使其尽量前俯(图5-1),右手持探针自枕骨大孔处垂直刺入,到达椎管,即将探针改变方向刺入颅腔,向各侧不断搅动,彻底捣毁脑组织;再将探针原路退出,刺向尾侧,捻动探针使逐渐刺入整个椎管内,捣毁脊髓。
此时蟾蜍下颌呼吸运动应消失,四肢松软,即成为一毁脑脊髓的蟾蜍(pithed toad)。
否则须按上法再行捣毁。
2.剪除躯干上部及内脏用粗剪刀在颅骨后方剪断脊柱(图5-2)。
左手握住蟾蜍脊柱,右手将粗剪刀沿两侧(避开坐骨神经)剪开腹壁。
此时躯干上部及内脏即全部下垂(图5-3)。
剪除全部躯干上部及内脏组织,弃于瓷碗内。
3.剥皮避开神经,用左手持圆头镊子夹住脊柱,右手捏住皮肤边缘,逐步向下牵拉剥离皮肤(图5-4)。
拉至大腿时,如阻力较大,可先剥下一侧,再剥另一侧。
将全部皮肤剥除后,将标本置于盛有任氏液的培养皿中。
4.洗净双手和用过的全部手术器械,再进行下列步骤。
5.完成坐骨神经腓肠肌标本方法1:(1)分离两腿:避开坐骨神经,用粗剪刀从背侧剪去骶骨,然后沿中线将脊柱剪成左右两半,再从耻骨联合中央剪开(为保证两侧坐骨神经完整,应避免剪时偏向一侧)。
将已分离的标本浸入盛有任氏液的培养皿中。
(2)游离坐骨神经:取腿一条,先用玻璃分针沿脊柱侧游离坐骨神经腹腔部,然后用大头针将标本背位固定于干净蛙板上。
实验1 蟾蜍坐骨神经干动作电位的实验研究
Central end
刺激电极
Peripheral end
引导电极
引导电极
(1ch)
Abp
Dbn Abn
Dbn
Abp Abn
2.4 测定兴奋传导的速度 利用前一实验结果测定第1和第2对引导电极引
导CAP起点的时间差Δt ,根据υ= S R1- R2- / Δt 计算出AP的传导速度。(表
6)(在分析测量时再测定)
本堂课安排
一、蟾蜍坐骨神经干动作电位的实验研究
1.讲解和讨论:实验方法、观察项目、问题及假设 2.示范: 神经干制备、动作电位引导、数据测量 3.自主实验 4.数据汇总统计 5.讨论:对实验数据统计结果的分析与机制探讨
二、失血代偿(高仿)实验
1.讲解 2.自主实验 3.讨论
1
注意事项
1.独立完成实验,不串岗,认真如实记录数据 2.遵守实验室规制制度,离开实验室须经教师许可 3. 数据资料用邮件发回,请不要使用移动存储器 4.器具须用水擦洗、擦干,按原样整齐放置 5.实验台须用湿的干净抹布擦拭干净。用品摆放整齐、关机 6.高真实验完成后,关机、将椅子放回原位 7.第3、第4组值日:督查各组善后工作;扫地、拖地,凳子
S+ S-
R1- R1 + R2- R2 +
Central end
Peripheral end
S R1- R2-
υ=
S R1- R2-
Δt
Δt
2.5 测定单相动作电位 (monophasic action potential, MAP) 用镊子夹伤第1对引 导电极间的神经干,用强度 1.0V,波宽0.1ms的电脉冲刺 激神经干中枢端,测定末梢 端引导的MAP的振幅和时程。 (表4)
蟾蜍坐骨神经
蟾蜍坐骨神经-腓肠肌标本的制作以及神经动作电位观察及传导速度测定一:实验目的1、掌握蛙类动物单毁髓与双毁髓的方法2、掌握坐骨神经-腓肠肌标本的制备3、掌握测定神经动作电位传导速度的原理与方法二:实验材料1、材料:蟾蜍2、器材:常用手术器械(毁髓针、手术镊、手术剪、骨钳、玻璃分针、图钉、蛙板、不锈钢盘)、污物缸、信号采集处理系统、神经屏蔽盒3、试剂:任氏液三:实验方法与步骤1、蟾蜍的双毁髓一只手握住蟾蜍,拇指按住其背部,食指压住其头部;另一只手捏住其嘴部将其头部上下轻轻扳动,找到第一道折痕,其中部即为枕骨大孔,用毁髓针垂直插入枕骨大孔;然后将针尖向前刺入颅腔并搅动以捣毁脑组织,此时的蛙为单毁髓动物;再将毁髓针退至枕骨大孔,针尖转向后方与脊柱平行刺入椎管,捣毁脊髓,彻底捣毁脊髓时可看到蟾蜍的后肢突然蹬直而后瘫软,此时的动物为双毁髓动物。
注意:a、若毁髓后蟾蜍的四肢肌肉紧张或活动自如,需重新毁髓;b、操作要快、准,且操作过程中不要挤压到蟾蜍的耳后腺,避免其分泌蟾酥。
2、坐骨神经-腓肠肌标本的制作(1)剥离后肢标本。
将蟾蜍背面向上置于蛙板上,用手术镊轻轻提起两前肢间的背部皮肤,用手术剪横向环形剪开皮肤,将蟾蜍身体下半部的皮肤剥离。
将蟾蜍剖腹,内脏向头部方向掀起,用骨钳在其第三节脊椎骨处剪断脊柱,然后用手术剪剪断相连的肌肉组织。
(2)分离两后肢。
用左手托起标本,拇指和食指固定住两后肢的肌肉,右手持骨钳剪断耻骨,手术剪剪开肌肉连接;纵向剪开脊柱使两后肢完全分离。
一只放入任氏液中备用,另一只用于继续下一步操作。
注意:在分离两后肢时需谨慎,不要使剪刀偏离中线太远以免损伤神经。
(3)分离坐骨神经。
将后置的脊柱端腹面向上,趾端想外侧翻转,使其足底向上,用图钉将其固定在蛙板上。
用玻璃分针沿脊神经向后分离坐骨神经。
股部沿肱二头肌和半膜肌之间的裂缝找到坐骨神经,用镊子和手术剪仔细去除半膜肌和肱二头肌,使神经暴露出来。
用玻璃分针轻轻挑起神经,自前向后剪断支配腓肠肌之外的分支,并去除神经上的其它组织。
实验1蟾蜍坐骨神经干复合动作电位特性
实验1 蟾蜍坐骨神经干复合动作电位特性张三,李四,王五(浙江大学08级八年制临床医学班组浙江杭州310058)【目的】探讨神经干双相动作电位的形成机制及影响因素。
1 材料蟾蜍;任氏液;BB-3G标本屏蔽盒,微机生物信号采集处理系统。
2 方法2.1 系统连接和参数设置RM6240多道生理信号采集处理系统与标本盒连接,1、2通道时间常数0.02s、滤波频率3KHz、灵敏度5mV,采样频率100KHz,扫描速度0.2ms/div。
单刺激激模式,刺激波宽0.1ms,延迟1ms,同步触发。
2.2 制备蟾蜍坐骨神经干标本蟾蜍毁脑脊髓和下肢标本制备,下肢标本仰卧置于蛙板上,分离脊柱两侧的坐骨神经,紧靠脊柱根部结扎,近中枢端剪断神经干,将神经干从骶部剪口处穿出。
循股二头肌和半膜肌之间的坐骨神经沟,纵向分离坐骨神经直至腘窝胫腓神经分叉处,将腓浅神经、胫神经与腓肠肌和胫骨前肌分离。
置剪刀于神经与组织之间,剪切直至跟腱并剪断跟腱和神经。
剥离附着在神经干的组织,坐骨神经干标本浸入任氏液中。
2.3 实验观察2.3.1 中枢端引导动作电位神经干末梢端置于刺激电极处,用刺激电压1.0V,波宽0.1ms 的方波刺激神经干,测定第1和第2对引导电极引导的双相动作电位正相波和负相波的振幅和时程。
2.3.2 改变引导电极距离用刺激电压1.0V,波宽0.1ms的方波刺激神经干中枢端,记录引导电极距离10mm、20mm、30mm时的动作电位。
分别测定上述三个引导电极距离的动作电位正相波和负相波的振幅和时程。
2.3.3 末梢端引导动作电位和测定动作电位传导速度引导电极距离10mm,神经干中枢端置于刺激电极处,用刺激电压1.0V,波宽0.1ms的方波刺激神经干,测定第1对引导电极引导的双相动作电位正相波和负相波的振幅和时程。
分别测量两个动作电位起始点的时间差和标本盒中两对引导电极之间的距离S(应测R11- R12的间距),计算动作电位传导速度。
普鲁卡因蟾蜍实验报告
一、实验背景普鲁卡因(Procaine)是一种局部麻醉药,广泛应用于临床手术、牙科治疗等领域。
其主要作用是通过阻断神经信号的传导,从而产生麻醉效果。
为了探究普鲁卡因对神经传导的影响,本实验以蟾蜍坐骨神经为研究对象,观察普鲁卡因对坐骨神经动作电位传导速度的影响。
二、实验目的1. 观察普鲁卡因对蟾蜍坐骨神经动作电位传导速度的影响。
2. 比较不同浓度普鲁卡因对坐骨神经动作电位传导速度的影响差异。
3. 探讨普鲁卡因的麻醉作用机制。
三、实验材料与方法1. 实验动物:蟾蜍(Bufo bufo gargarizans)5只,体重(30±5)g。
2. 实验仪器:生物信号采集处理系统、刺激器、示波器、张力换能器、神经钩、手术剪、镊子、玻璃杯、蒸馏水等。
3. 实验试剂:盐酸普鲁卡因(0.1%、0.5%、1.0%)、生理盐水。
4. 实验方法:(1)制备坐骨神经标本:将蟾蜍处死,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经及小腿的腓肠肌。
神经端结扎后,剪去无关分支,游离至膝关节处;肌肉端结扎在肌腱上,将腓神经也一起结扎,结扎线留长。
保留膝关节,剪去腿骨,将标本离体。
注意保持神经肌肉湿润。
(2)连接实验装置:将制备好的坐骨神经标本固定于实验装置上,神经中枢端接触刺激电极,肌肉接触记录电极,之间接触接地电极。
(3)实验分组:将实验分为4组,分别给予0.1%、0.5%、1.0%的盐酸普鲁卡因溶液进行灌洗,对照组给予等体积的生理盐水。
(4)记录动作电位传导速度:在给予不同浓度的普鲁卡因溶液灌洗后,记录坐骨神经动作电位传导速度的变化。
四、实验结果1. 0.1%普鲁卡因组:动作电位传导速度明显降低,与对照组相比,差异具有统计学意义(P<0.05)。
2. 0.5%普鲁卡因组:动作电位传导速度明显降低,与对照组相比,差异具有统计学意义(P<0.05)。
3. 1.0%普鲁卡因组:动作电位传导速度明显降低,与对照组相比,差异具有统计学意义(P<0.05)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一蟾蜍坐骨神经--腓肠肌标本的制备
〔目的要求〕
1、学习蛙类动物双毁髓的实验方法。
2、学习并掌握坐骨神经--腓肠肌标本的制备。
〔动物与器材〕
蟾蜍、常用手术器械(手术剪、手术镊、手术刀、眼科剪、眼科镊、毁髓针、玻璃解剖针、咬骨钳)、蜡盘、蛙板、玻璃板、蛙钉、铜锌弓、培养皿、滴管、纱布、粗棉线、任氏液。
〔方法与步骤〕
1、双毁髓方法:
左手握蟾蜍,让蟾蜍趴在左手掌内,用食指按压其头部前端,拇指压住躯干背部,使头前俯;右手持毁髓针,由两眼之间沿中线向后划触
及两耳后腺间的凹陷处即枕骨大孔的位置。
将毁髓针垂直刺入,即进入
枕骨大孔。
然后将针尖向前刺入颅腔,在颅腔内搅动,捣毁脑组织。
此
时的动物为单毁髓动物。
再将毁髓针退至枕骨大孔,针尖转向后方,
与脊柱平行刺入椎管,捣毁脊髓。
此时动物四肢瘫软,为双毁髓动物。
如动物仍表现为四肢肌肉紧张或活动自如,必须重新捣毁。
2、剥制后肢标本:
将双毁髓的蟾蜍背面向上放入蜡盘内。
左手捏住背部的脊柱,右手持手术剪横向剪断脊柱。
左手持手术镊提起断开的脊柱后端,右手用手
术剪沿脊柱两侧剪开体壁,再剪断下腹壁肌肉,自基部剪断内脏。
然后
用蘸有任氏液的左手捏住断开的脊柱后端,右手向后方撕剥皮肤。
将剥
干净的后肢放入盛有任氏液的培养皿中。
清洗手术器械。
3、分离两后肢:
将去皮的后肢腹面向上放于玻璃板上,左手固定,右手持手术剪剪开耻骨联合。
将分开的后肢,一只继续剥制标本,另一只放入任氏液中
备用。
4、分离坐骨神经:
将一侧后肢标本的腹面向上,趾端向外侧反转,使足底向上,用固定针将标本固定在玻璃板下面的蛙板上。
用玻璃解剖针沿脊神经向后分离坐骨神经。
股部在股二头肌和半膜肌之间的裂缝找出坐骨神经。
坐骨神经基部有梨状肌盖住,用玻璃解剖针轻轻挑起此肌肉,便可看清下面穿行的坐骨神经。
剪断梨状肌,完全暴露坐骨神经与其相连的脊神经。
用玻璃解剖针轻轻挑起神经,自前向后剪去支配腓肠肌之外的分支,将坐骨神经分离至腘窝处。
用剪刀剪去脊柱骨及肌肉,只保留坐骨神经发出部位的一小块脊柱骨。
取下脊柱端的固定针,用手术镊轻轻提起脊柱骨的骨片,将神经搭在腓肠肌上。
5、分离股骨头:
左手捏住股骨,沿膝关节剪去股骨周围的肌肉,用手术剪自膝关节向前刮干净股骨上的肌肉,保留股骨的后2/3,剪断股骨。
6、游离腓肠肌:
用手术镊在腓肠肌肌腱下穿线,并结扎。
提起结扎线,剪断肌腱与胫腓骨的联系,游离腓肠肌。
剪去膝关节下部的后肢,保留腓肠肌与股骨的联系,制成完整的坐骨神经—腓肠肌标本。
标本应包括:坐骨神经、腓肠肌、股骨头和一段脊柱。
7、检验标本:
左手持手术镊轻轻提起标本的脊柱骨片,使神经离开玻璃板,右手持用任氏液蘸湿的铜锌弓,使其两极接触神经,如腓肠肌发生收缩,则表示标本机能正常。
注意:制备标本的过程中经常用任氏液湿润去皮的标本。
附:任氏液的制备:
用量(g)
成分
NaCl 6.5
KCl 0.14
CaCl 0.12
NaHCO3 0.20
NaH2PO4 0.01
葡萄糖 2.0
蒸馏水加至1000ml
CaCl2应在其它成分加入蒸馏水后再边搅拌边逐渐加入,以防钙盐沉淀生成。
葡萄糖应在用前临时加入,否则不宜久置。
〔作业〕
1.剥去皮肤的后肢能用自来水冲洗吗?为什么?
2.金属器械碰压、触及或损伤神经及腓肠肌,可能引起哪些不良后果?
3.如何保持标本的机能正常?。